Sample records for spring tuff samples

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less

  2. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized low-temperature stage (generally 50–70°C) of calcite, quartz and opal secondary mineralization, formed from downward-percolating meteoric water, that locally coats fracture footwalls and lithophysal floors.

  3. Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.

    1981-07-01

    Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows andmore » thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.« less

  4. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  5. Geochemistry of rock units at the potential repository level, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Cloke, P.L.

    2002-01-01

    The compositional variability of the phenocryst-poor member of the 12.8 Ma Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults. The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in wt. % or g/100 g is: SiO2, 76.29; Al2O3, 12.55; FeO, 0.14; Fe2O3, 0.97; MgO, 0.13; CaO, 0.50; Na2O, 3.52; K2O, 4.83; TiO2, 0.11; and MnO, 0.07. ?? 2002 Published by Elsevier Science Ltd.

  6. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  7. Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plume, R.W.; La Camera, R.J.

    1996-12-31

    The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock.more » The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are most common in the devitrified tuff, especially between depths of 600 feet and 1,040 feet. Much of the water produced in well JF-3 probably comes from the sequence of these devitrified tuffs that is below the water table. The transmissivity of the aquifer is an estimated 140,000-160,000 feet squared per day and hydraulic conductivity is 330-370 feet per day. These values exceed estimates made at well J-13 by two orders of magnitude. Such large differences may be accounted for by differences in the development of fractures and lithophysae in the Topopah Spring Tuff at the two wells.« less

  8. A Remotely Sensed and Paleomagnetic Perspective on the Bonelli Tuff of NW AZ and SE CA

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.

    2015-12-01

    The southern Black and Cerbat Mountains of NW AZ and the Sacramento Mountains of SE CA preserve ignimbrites associated with multiple episodes of volcanic activity that span at least a million years. Unraveling the stratrigraphy of these deposits, as well as their eruptive centers, is critical for constraining the volcanic history of this ignimbrite, the 18.8 Ma Peach Spring Tuff, is the recently identified 17.7 Ma Tuff of Bonelli House (TB) (Ferguson & Cook 2015) and may also occur in the southern Black and Sacramento Mountains. To help determine the extent and possible source of the TB, we have performed a combined remote sensing and paleomagnetic study of this unit, including possible correlatives. Paleomagnetic work involved Remanence and anisotropic magnetic susceptibility methods. Drill samples were collected and processed at Scripps Institute of Oceanography & Pomona College. An AC current was run to obtain the Paleomag current, as opposed to the traditional of heating up the cores at specific intervals. Sacramento Mountains samples produced an average direction of 200.9 / -26.4, which contrasts the Peach Spring Tuff paleodirection of 036.4/33 (Wells & Hillhouse, 1989). An AMS direction was determined using a MFK1 Kappabridge instrument and consistently showed similar flow direction to that of the PST. In compiling our data on a map, we took into account the Whipple Detachment Fault, ~40 km westward (Lister & Davis, 1989). We were able to identify a spectral signature and remnant paleomagnetic direction for the TB and identify potential additional outcrops in the southern Black mountains. AMS showed us that the ignimbrites originated from a source in the Silver Creek Caldera, which may indicate the PST at TB were produced from a similar source. The remnant paleomagnetic direction allows us to closely correlate these tuff units as occurring within a similar timeframe. The contrasting paleodirection of the TB and the PST allows us to confidently say that the Peach Spring and Bonelli Tuffs occurred at different times when the Earth's magnetic field directions were different.

  9. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million years to form one or two large middle Miocene lake basins.

  10. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions years to form one or two large middle Miocene lake basins.

  11. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  12. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site.more » This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain.« less

  13. Geohydrologic data and test results from Well J-13, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.

    Well J-13 was drilled to a depth of 1063.1 meters by using air-hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of alluvium of Quaternary and Tertiary age and 927.5 meters of tuff of Tertiary age. The Topopah Spring Member of the Paintbrush Tuff, the principal aquifer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test indicated its transmissivity is 120 meters squared per day, and its hydraulic conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff units are confining beds; transmissivities range from 0.10 to 4.5 meters squared per day, and hydraulic conductivities rangemore » from 0.0026 to 0.15 meter per day. Confining beds penetrated below a depth of 719.3 meters had the smallest transmissivities (0.10 to 0.63 meter squared per day) and hydraulic conductivities (0.0026 to 0.0056 meter per day). A static water level of about 282.2 meters was measured for the various water-bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper, 283.3 to 283.6 meters. Ground water sampled from well J-13 is a sodium bicarbonate water containing small concentrations of calcium, magnesium, silica, and sulfate, which is a typical analysis of water from tuff. Apparent age of the ground water, derived from carbon-14 age dating, is 9900 years. 15 references, 24 figures, 13 tables.« less

  14. Lithostratigraphy and shear-wave velocity in the crystallized Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Buesch, D.C.; Stokoe, K.H.; Won, K.C.; Seong, Y.J.; Jung, J.L.; Schuhen, M.D.

    2006-01-01

    Evaluation of the potential future response to seismic events of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities; rims on lithophysae and some fractures; spots (which are similar to rims but without an associated cavity or aperture); amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization; and fractures. Seismic properties, including shear-wave velocity (Vs), have been measured on 38 pieces of core, and there is a good "first order" correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger Vs values compared to samples from lithophysal zones. Some samples have Vs values that are outside the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, "large" lithophysal cavities, or "missing pieces" relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as Vs data from small-scale samples (typical and "flawed" core) to larger scale transects in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.

  15. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    USGS Publications Warehouse

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    Question 2—Does basin and range normal faulting observed in the hills north of Frenchman Flat continue southward under alluvium and possibly disrupt the Topopah Spring Tuff of the Paintbrush Group (the Topopah Spring welded tuff aquifer or TSA) east of the Pin Stripe underground nuclear test, which was conducted in Emplacement hole U11b?

  16. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    USGS Publications Warehouse

    Spengler, Richard W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.

  17. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were used to determine matrix hydrologic properties of the tuffs and lavas of Calico Hills and the Crater Flat Tuff in the C-holes. The porosity ranged from 12 to 43 percent and, on the average, was larger in nonwelded to partially welded, ash-flow tuff, ashfall tuff, and reworked tuff than in moderately to densely welded ash-flow tuff. The pore-scale horizontal permeability of nine samples ranged from 5.7x10'3 to 2.9 millidarcies, and the pore-scale vertical permeability of these samples ranged from 3.7x10'* to 1.5 millidarcies. Ratios of pore-scale horizontal to vertical permeability generally ranged from 0.7 to 2. Although the number of samples was small, values of pore-scale permeability determined were consistent with samples from other boreholes at Yucca Mountain. The specific storage of nonwelded to partially welded ash-flow tuff, ash-fall tuff, and reworked tuff was estimated from porosity and elasticity to' be 2xlO'6 per meter, twice the specific storage of moderately to densely welded ash-flow tuff and tuff breccia. The storativity of geologic units, based on their average thickness (corrected for bedding dip) and specific storage, was estimated to range from 1xlO's to 2xlO'4. Ground-water flow in the Tertiary rocks of the Yucca Mountain area is not confined by strata but appears to result from the random intersection of water-bearing fractures and faults. Even at the C-hole complex, an area of only 1,027 square meters, water-producing zones during pumping tests vary from borehole to borehole. In borehole UE-25c #1, water is produced mainly from the lower, nonwelded to welded zone of the Bullfrog Member of the Crater Flat Tuff and secondarily from the tuff-breccia zone of the Tram Member of the Crater Flat Tuff. In borehole UE-25c #3, water is produced in nearly equal proportions from these two intervals and the central, moderately to densely welded zone of the Bullfrog Member. In borehole UE-25c #2, almost all production comes from the moderately to dense

  18. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Lecain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico Hills bedded tuff. Thermal gradients in the unsaturated zone vary with location, and range from ~2.0 °C to 6.0 °C per 100 m; the variability appears to be associated with topography. Large-scale heater testing identified a heat-pipe signature at ~97 °C, and identified thermally induced and excavation-induced changes in the stress field. Elevated gas-phase CO2 concentrations and a decrease in the pH of water from the condensation zone also were identified. Conceptual and numerical flow and transport models of Yucca Mountain indicate that infiltration is highly variable, both spatially and temporally. Flow in the unsaturated zone is predominately through fractures in the welded units of the Tiva Canyon and Topopah Spring Tuffs and predominately through the matrix in the Paintbrush Tuff nonwelded units and Calico Hills Formation. Isolated, transient, fast-flow paths, such as faults, do exist but probably carry only a small portion of the total liquid-water flux at Yucca Mountain. The Paintbrush Tuff nonwelded units act as a storage buffer for transient infiltration pulses. Faults may act as flow boundaries and/or fast pathways. Below the proposed repository horizon, low-permeability lithostratigraphic units of the Topopah Spring Tuff and/or the Calico Hills Formation may divert flow laterally to faults that act as conduits to the water table. Advective transport pathways are consistent with flow pathways. Matrix diffusion is the major mechanism for mass transfer between fractures and the matrix and may contribute to retardation of radionuclide transport when fracture flow is dominant. Sorption may retard the movement of radionuclides in the unsaturated zone; however, sorption on mobile colloids may enhance radionuclide transport. Dispersion is not expected to be a major transport mechanism in the unsaturated zone at Yucca Mountain. Natural analogue studies support the concepts that percolating water may be diverted around underground openings and that the percentage of infiltration that becomes seepage decreases as infiltration decreases.

  19. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  20. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    NASA Astrophysics Data System (ADS)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are periodically generated and erupted in a low magmatic flux state, which is punctuated by larger volume caldera-forming eruptions.

  1. Tephra layers of blind Spring Valley and related upper pliocene and pleistocene tephra layers, California, Nevada, and Utah: isotopic ages, correlation, and magnetostratigraphy

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.

    2005-01-01

    Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other intercalated tephra layers and sediments for which age data were previously lacking. The identification at several sections of the widespread Huckleberry Ridge ash bed, derived from the Yellowstone eruptive source area in Wyoming, as well as a new 40Ar/39Ar age on this ash bed from a proximal locality, provide additional age constraints to several of the distal sections. The dated or temporally bracketed distal units, in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Tephra layers of Glass Mountain (undiff.) P-mag.*; correlation N/A 1.78 , 1.96, 1.96, 2.22, 2.57, <2.89 Ma Tephra layers of Benton Hot Springs Ar/Ar; correlation plagioclase 2.89?0.03 Ma *Magnetostratigraphic polarity determination At the Cowan Pumice Mine, only a partial section of the eruptive record is preserved, but the best materials for laser-fusion 40Ar/39Ar and other isotopic dating methods were obtained. In the more distal Willow Wash and Confidence Hills sections, both persistent depositional basins for most of late Pliocene time, more complete sections of upper Pliocene tephra layers were preserved. In the region of Glass Mountain, the tephra layers that make up each of the mapped and dated pyroclastic units are multiple and complex, but a progressive simplification of the stratigraphy away from the source area was observed for more distal sites in southern and southwestern California and in Utah. This progressive

  2. U-Pb ages of secondary silica at Yucca Mountain, Nevada: Implications for the paleohydrology of the unsaturated zone

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207PB/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past -0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability over the past 10 Ma. despite significant climate variations. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from fractures in the shallower part of the UZ (welded part of the overlying Tiva Canyon Tuff) indicate larger long-term average growth rates up to 23 mm/Ma and an absence of recently deposited materials (ages of outermost layers are 3-5 Ma.). These differences between the characteristics of the coatings for samples from the shallower and deeper parts of the UZ may indicate that the nonwelded tuffs (PTn), located between the welded parts of the Tiva Canyon and Topopah Spring Tuffs, play an important role in moderating UZ flow.

  3. Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

    USGS Publications Warehouse

    Gascoyne, M.; Miller, N.H.; Neymark, L.A.

    2002-01-01

    Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California

    USGS Publications Warehouse

    Wells, Ray E.; Hillhouse, John W.

    1989-01-01

    We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.

  5. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios observed in coatings from the TCw, these data indicate that evaporation decreases with depth in the UZ. Evaporation at the repository horizon and in the overlying units is an important process that reduces the amount of seepage at the repository horizon.

  6. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  7. Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Wright, S. P.; Glotch, T. D.; Schröder, C.; Sklute, E. C.; Dyar, M. D.

    2018-07-01

    Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.

  8. Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada

    USGS Publications Warehouse

    Carr, W.J.; Byers, F.M.; Orkild, Paul P.

    1984-01-01

    The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a caldera related to the Lithic Ridge Tuff has not been specifically identified.

  9. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an intrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted n tabulation of 7,848 fractures, predominately open and high angle. The fractures were filled or coated with material in various combinations and include the following in decreasing abundance: CaCo3, iron oxides and hydroxides, SiO2, manganese oxides and hydroxides, clays and zeolites. An increase in the intensity of fracturing can be correlated with the following: (1) densely welded zones, (2) lithophysal zones, (3) vitrophyre, (4) silicified zones, (5) fault zones, and (6) cooling joints. Numerous fault zones were penetrated by the drill hole, predominately in the lithophysal zone of the Topopah Spring Member and below the tuffaceous beds of Calico Hills. The faults are predominately high angle with both a vertical and lateral component. Three major faults were penetrated, two of which intersect the ground surface, with displacements of at least 20 m and possibly as much as 52 m. The faults and some fractures are probably related to the regional doming of the area associated with the volcanism-tectonism of the Timber Mountain-Claim Canyon caldera complex, and to Basin and Range tectonism.

  10. Volcanotectonic history of Crater Flat, southwestern Nevada, as suggested by new evidence from drill hole USW-VH-1 and vicinity

    USGS Publications Warehouse

    Carr, W.J.

    1982-01-01

    New evidence for a possible resurgent dome in the caldera related to eruption of the Bullfrog Member of the Crater Flat Tuff has been provided by recent drilling of a 762-meter (2,501-foot) hole in central Crater Flat. Although no new volcanic units were penetrated by the drill hole (USW-VH-1), the positive aeromagnetic anomaly in the vicinity of the drill hole appears to result in part from the unusually thick, densely welded tuff of the Bullfrog. Major units penetrated include alluvium, basalt of Crater Flat, Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, and Prow Pass and Bullfrog Members of the Crater Flat Tuff. In addition, the drill hole provided the first subsurface hydrologic information for the area. The water table in the hole is at about 180 meters (600 feet), and the temperature gradient appears slightly higher than normal for the region.

  11. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with distance northward from the Cady fault and may reflect Late Miocene and younger accommodation of right-lateral motion across the Eastern California Shear Zone. The new results also expand the area known to be affected by the Peach Springs eruption, and confirm that a pink ash-flow tuff surrounding Daggett Ridge near Barstow is part of the PST.

  12. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with distance northward from the Cady fault and may reflect Late Miocene and younger accommodation of right-lateral motion across the Eastern California Shear Zone. The new results also expand the area known to be affected by the Peach Springs eruption, and confirm that a pink ash-flow tuff surrounding Daggett Ridge near Barstow is part of the PST.

  13. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  14. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    USGS Publications Warehouse

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< ~ 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.

  15. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.

  16. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are contemporaneous with the latest stages of eruptions nearby. High Rock and McDermitt rhyolites are associated with propagation of Steens Basalt dikes to the south, and LOVF rhyolites with later propagation of Grande Ronde Basalt dikes to the north and north-northwest.

  17. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  18. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  19. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used to evaluate larger-scale silica sealing observed in a portion of the Yellowstone geothermal system, a natural analog for the precipitation-experiment processes.

  20. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.

  1. Radioelements and their occurrence with secondary minerals in heated and unheated tuff at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexser, S.; Wollenberg, H.A.

    1992-06-01

    Samples of devitrified welded tuff near and away from the site of a heater test in Rainier Mesa were examined with regard to whole-rock radioelement abundances, microscopic distribution of U, and oxygen isotope ratios. Wholerock U averages between 4 and 5 ppM, and U is concentrated at higher levels secondary opaque minerals as well as in accessory grains. U in primary and secondary sites is most commonly associated with Mn phases, which average {approximately}30 ppM U in more uraniferous occurrences. This average is consistent and apparently unaffected by proximity to the heater. The Mn phases differ compositionally from Mn mineralsmore » in other NTS tuffs, usually containing abundant Fe, Ti, and sometimes Ce, and are often poorly crystalline. Oxygen isotope ratios show some depletion in {delta}{sup 18}O in tuff samples very close to the heater; this depletion is consistent with isotopic exchange between the tuff and interstitial water, but it may also reflect original heterogeneity in isotopic ratios of the tuff unrelated to the heater test. Seismic properties of several tuff samples were measured. Significant differences correlating with distance from the heater occur in P- and S-wave amplitudes; these may be due to loss of bound water. Seismic velocities are nearly constant and indicate a lack of significant microcracking. The absence of clearer signs of heater-induced U mobilization or isotopic variations may be due to the short duration of the heater test, and to insufficient definition of pre-heater-test heterogeneities in the tuff.« less

  2. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.

  3. Geophysical methods as mapping tools in a strata-bound gold deposit: Haile mine, South Carolina slate belt.

    USGS Publications Warehouse

    Wynn, J.C.; Luce, R.W.

    1984-01-01

    The Haile mine is the largest gold producer in the eastern USA. It is postulated to be a strata-bound gold deposit formed by a fumarolic or hot-spring system in felsic tuffs of Cambrian(?) age. Two mineralized zones occur, each composed of a sericitic part overlain by a siliceous part. Au is concentrated in especially silicified horizons and in pyrite horizons in the siliceous part of each mineralized zone. The tuffs are metamorphosed to greenschist facies and intruded by diabase and other mafic dykes. Weathering is deep and the mineralized tuffs are partly covered by coastal-plain sediments. It is suggested that certain geophysical methods may be useful in mapping and exploring Haile-type deposits in the Carolina slate belt. Very low frequency electromagnetic resistivity surveys help define alteration and silicified zones. A magnetic survey found sharp highs that correlate with unexposed mafic and ultramafic dykes. Induced polarization proved useful in giving a two-dimensional view of the structure.-G.J.N.

  4. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.

  5. Tuff of Bridge Spring: A mid-Miocene ash-flow tuff, northern Colorado River extensional corridor, Nevada and Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, E.I.; Morikawa, S.A.; Martin, M.W.

    1993-04-01

    The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacitemore » to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.« less

  6. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In descending order, these hydrogeologic units are the Tiva Canyon welded (TCw), Paintbrush nonwelded (PTn), Topopah Spring welded (TSw ), and Calico Hills nonwelded (CHn). Deep percolation takes place as episodic pulses of inflow that propagate rapidly to depth and apparently bypass most of the rock matrix. Field-scale and core-scale water potentials throughout much of the PTn and TSw are very high, generally greater than -0.3 megapascals, and are nearly depth invariant. Thus, the imbibition capacity of the densely welded tuffs, at least near fractures, is very small because of low matrix permeabilities and low water-potential gradients across the fracture-matrix interface. The combination of high fracture permeability, high water potentials, high matrix saturations, and low matrix permeabilities results in a percolation environment that favors deep fracture flow. The episodic pulses of inflow are evidenced in the sporadic but nevertheless commonplace occurrence of water with concentrations of radioactive isotopes indicative of origins postdating the atmospheric testing of nuclear weapons. High concentrations of tritium have been detected at many horizons within the PTn and in the top of the TSw. Much lower concentrations of tritium, indicating the mixing of a bomb-pulse component with older water, have been detected in the deeper sections of the TSw and in the CHn. Evidence for fracture flow also is apparent in the widespread occurrence of perched water with chemical and isotopic signatures that indicate a fracture-flow origin for at least some of this water. In the North Ramp area, perched water has been detected at the base of the Topopah Spring Tuff or in the top of the underlying non welded to partially welded tuffs of the Calico Hills Formation in every dry-drilled borehole of sufficient depth to penetrate the Topopah Spring Tuff-Calico Hills Formation contact. The concentrations of the major ions of the perched water are similar to that of TSw pore water at borehole UZ-14, CHn pore water, and saturated-zone water at boreholes NRG-7 a and SD-9. The absolute chloride concentration of the perched water, however, is much lower than the chloride concentration of pore water from either the PTn or the TSw. The chemical and isotopic compositions of perched water indicate that this water was derived primarily from fracture flow, with little or no contribution from water in the matrix of the overlying rock. Carbon-14 ages of perched water range from 3,000 to 7,000 years. Strontium-87 isotope ratios indicate dissolution of surficial pedogenic calcite and calcite fracture fillings, which supports a fracture-flow origin for perched water. Moreover, carbon-13 and deuterium isotope values indicate rapid infiltration into fractures with little or no prior evaporation. Evidence for deep fracture flow into the Calico Hills Formation at UZ-14 is indicated by carbon-14 values that are from 65 and 95 percent modem carbon, equivalent to apparent ages of about 3,500 to 500 years. Some of these ages are younger than age estimates for perched water in the overlying Topopah Spring Tuff and are much younger than any that could be derived from a matrix-flow model. Evidence is lacking for extensive lateral flow within the PTn or for interception and diversion of this flow downward along structural pathways (faults), two key features of the original conceptual model for unsaturated flow at Yucca Mountain. Where data are available to infer lateral flow in the PTn, it is not certain that fracture flow could not have produced the same results. Pneumatic data, derived primarily from analysis of the interference effects from excavation of the North Ramp tunnel, indicate that faults within the Topopah Spring Tuff are open over substantial distances and are very permeable. Tunnel-boring-induced pneumatic disturbances have been propagated along these faults over distances that exceed 500 meters. These disturbances also have been detected in the pneumatic-pressure record of the overlying PTn in the vicinity of these faults. In spite of the apparent high permeability of faults, the existing data have neither confirmed nor refuted the hypothetical role of these faults in intercepting lateral flow from within or from above the PTn and diverting this flow downward into the deeper subsurface. On the basis of measured temperature gradients within the TSw, deep percolation appears to be greatest beneath active channels of major drainages, diminishing toward the margins and hillslopes bordering these channels. Numerical simulations indicate that this downward percolation is accompanied by lateral spreading as the percolation front moves downward through the PTn and across the contact between the PTn and underlying TSw. Temperature data from a well-documented site in Pagany Wash indicate the presence of a significant heat-flow deficit between the PTn and underlying TSw that most likely is due to nonconductive heat-flow processes with substantial capacity to extract heat. Percolation fluxes on the order of 10 to 20 millimeters per year beneath the Pagany Wash channel and on the order of 5 millimeters per year or less beneath the hillslopes bordering this drainage accounted for the apparent heat-flow deficit. Analyses of borehole temperature gradients in Drill Hole Wash indicate similar percolation fluxes and flux distributions within that drainage. An analysis of residence times estimated from uncorrected carbon-14 activities of perched-water samples and estimates for the volume of the structurally controlled reservoir, however, showed that the perched-water reservoir intersected by borehole UZ-14 under Drill Hole Wash could be sustained by percolation fluxes through the TSw of as little as 0.001 to 0.29 millimeter per year. The significance and implications of these findings with respect to waste isolation are discussed in the appendix of this report.

  7. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Post-middle Miocene Tuffs of Bodie Hills and Mono Basin, California: Paleomagnetic Reference Directions and Vertical Axis Rotation

    NASA Astrophysics Data System (ADS)

    Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.

    2013-12-01

    The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since unit emplacement. A welded 11.7 Ma (K-Ar; Drake, 1979) rhyolitic tuff near Trafton Mountain appears similar in composition to TJS. Drake's tuff exhibits a reversed polarity, consistent with reversed polarity subchron C5r.3r (11.614 - 12.014 Ma) and distinguishes this tuff from TJS and Gilbert's latite ignimbrite.

  9. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.

    2010-12-01

    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference between the different phases of the intrusion is very small and the ages of the intrusion match within errors the age of the PST. This tight time range indicates that the super-eruption and the subsequent reactivation of the caldera by hypabyssal intrusions happened on a much shorter timescale than the evolution of large magma systems that have been described with durations of up to 10 m.y. Additional geochronology in combination with geochemical and AMS analyses are aimed at a more detailed reconstruction of the emplacement and eruption history of this plutonic-volcanic system.

  10. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  11. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand

    PubMed Central

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-01-01

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737

  12. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  13. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya

    USGS Publications Warehouse

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.

    1976-01-01

    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  14. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  15. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    USGS Publications Warehouse

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  16. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard spectral reflectance of each constituent. Unmixing of mineral composition and their weathering products of blocks and matrixes in tuff were conducted and the ratio of mineral composition was calculated for each specimen. This study was supported by National Research Institute of Cultural Heritage (project title: Development on Evaluation Technology for Weathering Degree of Stone Cultural Properties, project no.: 09B011Y-00150-2009).

  17. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin Barajas, A.

    2013-05-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction, on the scale of hundreds of meters. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  18. Geology of the platanares geothermal area, Departamento de Copan, Honduras

    USGS Publications Warehouse

    Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.

    1991-01-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  19. Publications - GMC 146 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 geochronology studies on biotite concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 (488 feet): Alaska Division of Geological & Geophysical Surveys

  20. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity for the welded tuff (including fracture porosity) from 0.05 to 0.10. Because of its continuity and depth and the likelihood of significant fracture permeability in the more competent rocks such as the welded tuff, our model of the hydrothermal system assumes that the Bishop Tuff provides the principal hot-water reservoir. However, because very little direct information exists from drill holes below 300 m, this assumption must be considered tentative. Long Valley caldera is drained by the Owens River and several tributaries which flow into Lake Crowley in the southeast end of the caldera. Streamflow and springflow measurements for water years 1964-74 indicate a total inflow to Lake Crowley of about 10,900 L/s. In contrast, the total discharge of hot water from the hydrothermal reservoir is about 300 L/s. For modeling purposes, the ground-water system is considered as comprising a shallow subsystem in the fill above the densely welded Bishop Tuff containing relatively cold ground water, and a deep subsystem or hydrothermal reservoir in the welded tuff containing relatively hot ground water. Hydrologic, isotopic, and thermal data indicate that recharge to the hydrothermal reservoir occurs in the upper Owens River drainage basin along the western periphery of the caldera. Temperature profiles in a 2.11- km-deep test well drilled by private industry in the southeastern part of the caldera suggest that an additional flux of relatively cool ground water recharges the deep subsystem around the northeast rim. Flow in the shallow ground-water subsystem is neglected in the model except in recharge areas and along Hot Creek gorge, where approximately 80 percent of the hot-water discharge from the hydrothermal reservoir moves upward along faults toward springs in the gorge. Heat-flow data from the Long Valley region indicate that the resurgent dome overlies a residual magma chamber more circular in plan than the original magma chamber that supplied the Bishop Tuff

  1. The distribution and mobility of uranium in glassy and zeolitized tuff, Keg Mountain area, Utah, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Lindsey, D.A.; Rosholt, J.N.

    1980-01-01

    The distribution and mobility of uranium in a diagenetically altered, 8 Ma old tuff in the Keg Mountain area, Utah, are modelled in this study. The modelling represents an improvement over similar earlier studies in that it: (1) considers a large number of samples (76) collected with good geologic control and exhibiting a wide range of alteration; (2) includes radiometric data for Th, K and RaeU (radium equivalent uranium) as well as U; (3) considers mineralogic and trace-element data for the same samples; and (4) analyzes the mineral and chemical covariation by multivariate statistical methods. The variation of U in the tuff is controlled mainly by its primary abundance in glass and by the relative abundance of non-uraniferous detritus and uraniferous accessory minerals. Alteration of glass to zeolite, even though extensive, caused no large or systematic change in the bulk concentration of U in the tuff. Some redistribution of U during diagenesis is indicated by association of U with minor alteration products such as opal and hydrous Fe-Mn oxide minerals. Isotopic studies indicate that the zeolitized tuff has been open to migration of U decay products during the last 0.8 Ma. The tuff of Keg Mountain has not lost a statistically detectable fraction of its original U, even though it has a high (??? 9 ppm) trace U content and has been extensively altered to zeolite. Similar studies in a variety of geological environments are required in order to identify the particular combination of conditions most favorable for liberation and migration of U from tuffs. ?? 1980.

  2. Batch sorption results for neptunium transport through Yucca Mountain tuffs. Yucca Mountain Site Characterization Program milestone 3349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Huddleston, M.H.

    1996-09-01

    We studied the sorption of neptunium onto tuffs characteristic of the proposed nuclear waste repository at Yucca Mountain, Nevada. The neptunium was in the Np(V) oxidation state under oxidizing conditions in groundwaters from two wells located close to the repository site (J-13 and UE-25 p No.1). We used devitrified, vitric, zeolitic (with emphasis on clinoptilolite-rich samples), and calcite-rich tuffs characteristic of the geology of the site. Neptunium sorbed well onto calcite and calcite-rich tuffs, indicating that a significant amount of neptunium retardation can be expected under fractured-flow scenarios because of calcite coating of the fractures. Neptunium sorption onto clinoptilolite-rich zeoliticmore » tuffs in J-13 well water (pH from 7 to 8.5) was moderate, increased with decreasing pH, and correlated to surface area and amount of clinoptilolite. Neptunium sorbed poorly onto zeolitic tuffs from UE-25 p No.1 groundwater (pH from 7 to 9) and onto devitrified and vitric tuffs from J-13 and UE-25 p No.1 waters (pH from 7 to 9). Iron oxides appeared to be passivated in tuffs, not seeming to contribute to the observed neptunium sorption, even though neptunium sorption onto synthetic iron oxide is significant.« less

  3. Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Patiman, A.; Bowles, J.

    2014-12-01

    Unoriented samples from the ~12.7 Ma Tiva Canyon (TC) tuff from Yucca Mountain, Nevada are studied in terms of magnetic properties and geomagnetic paleointensity. The magnetic mineralogy and magnetic properties of the TC tuff have previously been well documented, and the remanence-carrier in ~15-m thick zones at the top and bottom of the unit is dominantly is single domain (SD) to superparamagnetic (SP) magnetite, which may be considered ideal for absolute paleointensity studies. Among one of the several episodic volcanic eruptions of the Southwestern Nevada Volcanic Field (SWNVF), the welded TC tuff belongs to the Paintbrush Group. Here we present magnetic properties from two previously unreported sections of the TC tuff, as well as Thellier-type absolute paleointensity estimates. Samples were collected from the lower ~7 m at the base of the flow. Magnetic properties studied include hysteresis, bulk magnetic susceptibility, frequency-dependent susceptibility, and anhysteretic remanent magnetization acquisition. Magnetic property results are consistent with earlier work, showing that the main magnetic mineral is magnetite. SP samples are dominant from the lower ~1 m to ~3.6 m basal unit while the middle unit of ~3.7 m to 7.0 m mainly consists of SD samples. The paleointensity results are closely tied to the stratigraphic height and magnetic properties linked to domain state. The SD samples have consistent absolute paleointensity values 32.40±0.22 uT, VADM 5.74*1022 A.m2 and behaved ideally during paleointensity experiments. The SP samples have consistently higher paleointensity and less ideal behavior, but would likely pass many traditional quality-control tests. Since the magnetite has been interpreted to form by precipitation out of the glass post-emplacement, but at temperatures higher than the Curie temperature, we tentatively interpret the SD remanence to be a primary thermal remanent magnetization and the paleointensity result to be a valid estimate of geomagnetic paleointensity for the Miocene. Post-emplacement vapor-phase alteration might be expected to alter magnetic mineralogy and magnetization, and has been reported in the upper portions of the TC tuff, but not in the lower sections discussed here.

  4. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less

  5. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin, A.

    2013-12-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction. The azimuth of flow directions observed at 27 sites over 1.5 square kilometers ranges from 8° to 355° with a mean direction of 195° and an α95 of 27°. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  6. Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Yang, I.C.

    2002-01-01

    The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.

  7. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culham, H W; Eaton, G F; Genetti, V

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security.more » UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.« less

  8. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    USGS Publications Warehouse

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before ~19.1 Ma until well after ~18.7 Ma, similar to timing of Barstow Formation lake deposition in the Calico Mountains but at least 3 million years older than comparable lacustrine facies in the Mud Hills type section. These observations are consistent with either of two paleogeographic models: westward transgression of lacustrine environments within a single large basin, or sequential development of geographically distinct eastern and western sub-basins.

  9. Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II).

    PubMed

    Brown, Francis H; McDougall, Ian; Fleagle, John G

    2012-10-01

    Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits

    USGS Publications Warehouse

    Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.

    1991-01-01

    Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.

  11. The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas

    USGS Publications Warehouse

    Kinney, Douglas M.

    1949-01-01

    The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.

  12. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.

  13. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time dependent processes of water redistribution in the fracture-matrix system.« less

  14. Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field

    USGS Publications Warehouse

    Sawyer, D.A.; Sargent, K.A.

    1989-01-01

    The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors

  15. Comparison of Two Methods for Determination of Strontium Isotopes in Pore Water at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Futa, K.; Scofield, K. M.

    2002-12-01

    The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded tuffs. The strontium isotope data obtained on leachates can be used to constrain models of water-rock interaction and estimates of travel times in the unsaturated zone.

  16. Are there Tuffs from Toba Supereruptions in Singapore?

    NASA Astrophysics Data System (ADS)

    Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.

    2016-12-01

    Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.

  17. Geochronology of the mammal-bearing late Cenozoic on the northern Altiplano, Bolivia

    NASA Astrophysics Data System (ADS)

    Marshall, L. G.; Swisher, C. C.; Lavenu, A.; Hoffstetter, R.; Curtis, G. H.

    1992-01-01

    Samples of seven tuff or ignimbrite units associated with known land mammal faunas of late Miocene and Pliocene age were collected from 17 localities on the northern Altiplano of western Bolivia. Mineral separates dated by the classic 40K- 40Ar technique (35 dates) and by single crystal laser fusion (SCLF) 40Ar/ 39Ar analysis (84 dates) indicate the following preferred ages based on SCLF 40Ar/ 39Ar dates on sanidine for six of these units: Ulloma Tuff, 10.35±0.06 Ma; Callapa Tuff, 9.03±0.07 Ma; Toba 76, 5.348±0.003 Ma; Ayo Ayo Tuff, 2.896±0.006 Ma; Perez Ignimbrite, 2.815±0.005 Ma; and Chijini Tuff, 2.650±0.012 Ma. Land mammal faunas of early Huayquerian age are bracketed below by the Callapa Tuff (9.0 Ma) and above the base of the Cerke Formation (7.6 Ma); faunas of Montehermosan age are bracketed below by the Toba 76 and Cota Cota Tuffs ( ca. 5.4 Ma), and above by the Ayo Ayo and Chijini Tuffs ( ca. 2.8 Ma) of the Umala and La Paz Formations, respectively; and faunas of Ensenadan and Lujanian age occur in rocks younger than 1.6 Ma. Hiatuses identified by the absence of late Huayquerian and Chapadmalalan-Uquian faunas correlate with unconformities which are interpreted as deformation phases: the first with Q3 (8.0-5.5 Ma) and the second with Q4 (2.8-1.6 Ma) of the Quechua Orogeny.

  18. A preliminary study of older hot spring alteration in Sevenmile Hole, Grand Canyon of the Yellowstone River, Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Larson, Peter B.; Phillips, Allison; John, David A.; Cosca, Michael A.; Pritchard, Chad; Andersen, Allen; Manion, Jennifer

    2009-01-01

    Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640 ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480 ka) extend from the canyon rim to more than 300 m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal) + kaolinite ± alunite ± dickite, and an argillic or potassic alteration association with quartz + illite ± adularia. Disseminated fine-grained pyrite or marcasite is ubiquitous in both alteration types. These alteration associations are characteristic products of shallow volcanic epithermal environments. The contact between the two alteration types is about 100 m beneath the rim. By analogy to other active geothermal systems including active hydrothermal springs in the Yellowstone Caldera, the transition from kaolinite to illite occurred at temperatures in the range 150 to 170 °C. An 40Ar/39Ar age on alunite of 154,000 ± 16,000 years suggests that hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a deeper structural control for the upflowing hydrothermal fluids. We interpret this deeper structure to be the Yellowstone Caldera ring fault that is covered by the younger tuff of Sulphur Creek. The Sevenmile Hole altered area lies at the eastern end of a band of hydrothermal centers that may mark the buried extension of the Yellowstone Caldera ring fault across the northern part of the Caldera.

  19. Salt efflorescence due to water-rock interaction on the surface of tuff cave in the Yoshimi-Hyakuana Historic Site, central Japan

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan

    2016-04-01

    Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.

  20. The age of the Keystone thrust: laser-fusion 40Ar/39Ar dating of foreland basin deposits, southern Spring Mountains, Nevada

    USGS Publications Warehouse

    Fleck, R.J.; Carr, M.D.

    1990-01-01

    Nonmarine sedimentary and volcaniclastic foreland-basin deposits in the Spring Mountains are cut by the Contact and Keystone thrusts. These synorogenic deposits, informally designated the Lavinia Wash sequence by Carr (1980), previously were assigned a Late Jurassic to Early Cretaceous(?) age. New 40Ar.39Ar laser-fusion and incremental-heating studies of a tuff bed in the Lavinia Wash sequence support a best estimate age of 99.0 ?? 0.4 Ma, indicating that the Lavinia Wash sequence is actually late Early Cretaceous in age and establishing a maximum age for final emplacement of the Contact and Keystone thrust plates consistent with the remainder of the Mesozoic foreland thrust belt. -from Authors

  1. Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P; Zavarin, M; Leif, R

    2007-12-17

    The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15more » to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.« less

  2. Magnetic properties and emplacement of the Bishop tuff, California

    USGS Publications Warehouse

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D = 348??, I = 53?? for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D = 353??, I = 54??, k = 172, ??95 = 2.9??, N = 15.

  3. Magnetic properties and emplacement of the Bishop tuff, California

    NASA Astrophysics Data System (ADS)

    Palmer, H. C.; MacDonald, W. D.; Gromme, C. S.; Ellwood, B. B.

    1996-09-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525 570 °C Curie temperatures, and maghemite with 610° 640 °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D=348°, I=53° for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D=353°, I=54°, k=172, α95=2.9°, N=15.

  4. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, In C.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less

  5. Chemical correlation of some late Cenozoic tuffs of Northern and Central California by neutron activation analysis of glass and comparison with X-ray fluorescence analysis

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Bowman, Harry W.; Russell, Paul C.

    1979-01-01

    Glasses separated from several dacitic and rhyolitic late Cenozoic tuffs of northern and central California were analyzed by neutron activation for more than 43 elemental abundances. Eighteen elements--scandiurn, manganese, iron, zinc, rubidium, cesium, barium, lanthanum, cerium, samarium, europium, terbiurn, dysprosiurn, ytterbiurn, hafniurn, tantalurn, thorium and uranium--were selected as most suitable for purposes of chemical correlation on the basis of their natural variability in silicic tuffs and the precision obtainable in analysis. Stratigraphic relations between tuffs and replicate chemical analyses on individual tuffs make it possib1e to calibrate a quantitative parameter, the similarity coefficient, which indicates the degree of correlation for the tuffs studied. The highest similarity coefficient (0.99) was obtained for analyses of two tuffs (potassium-argon dated at about' 6.0 m.y.) exposed in the Merced(?) and Petaluma Formations of Sonoma County, which represent different paleoenvironments, shallow-water marine and fresh water or brackish marine, respectively. Corre1ation of these formations on the basis of criteria other than tephrochronoloqy would be difficult. Results of neutron activation analysis in general confirm earlier correlations made on the basis of analysis by X-ray fluorescence but also make it possible to resolve small compositional differences between chemically simi1ar tuffs in stratigraphic proximity. The Lawlor Tuff (potassium-argon dated at about 4.0 m.y.) is identified at two new localities: in a core sample obtained from a bore hole east of Suisun Bay, and from the Kettleman Hills of western San Joaquin Valley. This identification permits correlation of the uppermost part of the marine Etchegoin Formation in the San Joaquin Valley with the continental Livermore Gravels of Clark, the Tassajara Formation, and the upper part of the Sonoma Volcanics in the cel1tral Coast Ranges of California. A younger tuff near the top of the marine San Joaquin Formation in the Kettleman Hills has been identified at both new 1oca1ities .

  6. Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff

    NASA Astrophysics Data System (ADS)

    Grunder, Anita L.; Laporte, Didier; Druitt, Tim H.

    2005-04-01

    The abrupt changes in character of variably welded pyroclastic deposits have invited decades of investigation and classification. We conducted two series of experiments using ash from the nonwelded base of the rhyolitic Rattlesnake Tuff of Oregon, USA, to examine conditions of welding. One series of experiments was conducted at atmospheric pressure (1 At) in a muffle furnace with variable run times and temperature and another series was conducted at 5 MPa and 600 °C in a cold seal apparatus with variable run times and water contents. We compared the results to a suite of incipiently to densely welded, natural samples of the Rattlesnake Tuff. Experiments at 1 At required a temperature above 900 °C to produce welding, which is in excess of the estimated pre-eruptive magmatic temperature of the tuff. The experiments also yielded globular clast textures unlike the natural tuff. During the cold-seal experiments, the gold sample capsules collapsed in response to sample densification. Textures and densities that closely mimic the natural suite were produced at 5 MPa, 600 °C and 0.4 wt.% H 2O, over run durations of hours to 2 days. Clast deformation and development of foliation in 2-week runs were greater than in natural samples. Both more and less water reduced the degree of welding at otherwise constant run conditions. For 5 MPa experiments, changes in the degree of foliation of shards and of axial ratios of bubble shards and non-bubble (mainly platy) shards, are consistent with early densification related to compaction and partial rotation of shards into a foliation. Subsequent densification was associated with viscous deformation as indicated by more sintered contacts and deformation of shards. Sintering (local fusion of shard-shard contacts) was increasingly important with longer run times, higher temperatures, and greater pressures. During runs with high water concentrations, sintering was rare and adhesion between clasts was dominated by precipitation of sublimates in pore spaces. A few tenths wt.% H 2O in the rhyolite glass promote the development of welding by sharp reduction of glass viscosity. Large amounts of water inhibit welding by creating surface sublimates that interfere with sintering and may exert fluid pressure counter to lithostatic load if sintering and vapor-phase sublimates seal permeability in the tuff.

  7. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

    USGS Publications Warehouse

    Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.

    2000-01-01

    Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9 ?? 1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ???70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7 ?? 1.8 ka) and overlying ash flow tuff (762.2 ?? 4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Friant, California, ???100 km to the west of the source area, is younger, 750.1 ?? 4.3 ka, but not significantly different within analytical error (??1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ???650 ka to ???1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738 ?? 3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the age of the M-B transition at five sites, assuming constant sedimentation rates, the age of the Bishop ash bed and one or more well-dated chronostratigraphic horizons above and below the Bishop Tuff ash bed and M-B transition, and stratigraphic separations between these datum levels. The age of the M-B transition is 774.2 ?? 2.8 ka, based on the average of eight such calculations, close to other recent determinations, and similar to that determined from the astronomically tuned polarity timescale. Our approach provides an alternative and surprisingly precise method for determining the age of the M-B and other chronostratigraphic levels. The above dates, calculated using U.S. Geological Survey values of 27.92 Ma for the Taylor Creek (TC) sanidine can be recalculated to other widely used values for these monitors. For example, using recently published values of 28.34 Ma (TC) and 523.1 Ma (McLure Mountain hornblende, MMhb-1), the resulting ages are ???774 ka for the Bishop Tuff and ash bed and ???789 ka for the M-B transition. Copyright 2000 by the American Geophysical Union.

  8. Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    NASA Astrophysics Data System (ADS)

    Ma, Lumin

    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode. They slowly crumble, collapse, and maintain considerable relative strength beyond the peak. Due to the presence of multiple relatively large lithophysal cavities, they are far weaker and softer than the nonlithophysal specimens.

  9. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, H.W.; Sikora, R.F.

    1994-12-31

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identifiedmore » within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am{sup {minus}1} needed to produce the 400 nT low observed at the surface.« less

  10. Iceland as a Model for Chemical Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Schiffman, P.; Murad, E.; Southard, R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Subglacial volcanic activity on Iceland has led to the formation of a variety of silicate and iron oxide-rich alteration products that may serve as a model for chemical alteration on Mars. Multiple palagonitic tuffs, altered pillow lavas, hydrothermal springs and alteration at glacial run-off streams were observed during a recent field trip in Iceland. Formation of alteration products and ferrihydrite in similar environments on Mars may have contributed to the ferric oxide-rich surface material there. The spectral and chemical properties of Icelandic alteration products and ferrihydrites are presented here.

  11. Geologic map of the Vigo NE quadrangle, Lincoln County, Nevada

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.

    2006-01-01

    This map of the Vigo NE quadrangle, Lincoln County, Nevada records the distribution, stratigraphy, and structural relationships of Tertiary intracaldera lavas and tuffs in the southeastern part of the Kane Springs Wash caldera, extracaldera Tertiary and upper Paleozoic rocks, and late Cenozoic surficial deposits both within and outside the caldera. The alkaline to peralkaline Kane Springs Wash caldera is the youngest (14 Ma) of three chemically related metaluminous to peralkaline calderas (Boulder Canyon caldera, 15 Ma; Narrow Canyon caldera, 16 Ma) of the nested Kane Springs Wash caldera complex. The chemistry of this caldera complex became progressively more alkalic with time, in contrast to the older calc-alkalic calderas and caldera complexes to the north that migrated progressively southward in eastern Nevada. The increasingly peralkaline eruptions from the Kane Springs Wash caldera complex reached a climax that was simultaneous with the end of both rapid extension and magmatism in this part of the Basin and Range. Using the assumption that degree of tilting is related to the degree of extension, the rate of extension increased until the abrupt halt at about 14 Ma. Silicic volcanism terminated at the Kane Springs Wash caldera followed only by local sporadic basaltic eruptions that ended by about 8 Ma. The northern boundary of an east-west-trending amagmatic corridor appears in the Vigo NE quadrangle south of the Kane Springs Wash caldera.

  12. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less

  13. Paleointensity in ignimbrites and other volcaniclastic flows

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Gee, J. S.; Jackson, M. J.

    2011-12-01

    Ash flow tuffs (ignimbrites) are common worldwide, frequently contain fine-grained magnetite hosted in the glassy matrix, and often have high-quality 40Ar/39Ar ages. This makes them attractive candidates for paleointensity studies, potentially allowing for a substantial increase in the number of well-dated paleointensity estimates. However, the timing and nature of remanence acquisition in ignimbrites are not sufficiently understood to allow confident interpretation of paleointensity data from ash flows. The remanence acquisition may be a complex function of mineralogy and thermal history. Emplacement conditions and post-emplacement processes vary considerably between and within tuffs and may potentially affect the ability to recover ancient field intensity information. To better understand the relevant magnetic recording assemblage(s) and remanence acquisition processes we have collected samples from two well-documented historical ignimbrites, the 1980 ash flows at Mt. St. Helens (MSH), Washington, and the 1912 flows from Mt. Katmai in the Valley of Ten Thousand Smokes (VTTS), Alaska. Data from these relatively small, poorly- to non-welded historical flows are compared to the more extensive and more densely welded 0.76 Ma Bishop Tuff. This sample set enables us to better understand the geologic processes that destroy or preserve paleointensity information so that samples from ancient tuffs may be selected with care. Thellier-type paleointensity experiments carried out on pumice blocks sampled from the MSH flows resulted in a paleointensity of 55.8 μT +/- 0.8 (1 standard error). This compares favorably with the actual value of 56.0 μT. Excluded specimens of poor technical quality were dominantly from sites that were either emplaced at low temperature (<350°C) or were subject to post-emplacement hydrothermal alteration. The VTTS experienced much more wide-spread low-temperature hydrothermal activity than did MSH. Pumice-bearing ash matrix samples from this locality are characterized by at least two magnetic phases, one of which appears to carry a chemical remanent magnetization. Paleointensities derived from the second phase give results that vary widely but which may be correlated with degree of hydrothermal alteration or hydration. Preliminary data from the Bishop Tuff suggests that vapor-phase alteration at high (>600°C) temperatures does not corrupt the paleointensity signal, and additional data will be presented which explores this more fully.

  14. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0-10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing "basification" of a lower crustal magma source by repeated injection of mantle-derived mafic magmas. ?? 1991 Springer-Verlag.

  15. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  16. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite microprobe data, zircon U/Th TIMS data, and the absence of sanidine from some samples serve to help correlate or distinguish some samples despite irresolvable age differences; existing data suggest that 4 distinct tuffs are present in the Dewey Lake Formation. Resolving their ages convincingly will require further work, but it is clear from our results combined with previous magnetostratigraphic data that magnetic polarity reversals were relatively frequent in the latest Permian. Thus the uniqueness of correlations elsewhere with the Permo-Triassic boundary based on magnetostratigraphy alone are not well-founded.

  17. Specific surface area of a crushed welded tuff before and after aqueous dissolution

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1994-01-01

    Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.

  18. Generation of Continental Crust in Central America: New Field and Geochemical Observations on Silicic Magmatism in Costa Rica

    NASA Astrophysics Data System (ADS)

    Szymanski, D. W.; Patino, L. C.; Vogel, T. A.; Alvarado, G. E.

    2002-12-01

    Explaining the occurrence of high-silica arc magmatism in the absence of continental crust remains a fundamental problem in igneous petrology. Recent work in the southern portion of the Central American volcanic arc has expanded the database for the abundant high-silica ash-flow tuffs erupted on top of thick oceanic basement in Costa Rica and southern Nicaragua. Regional differences in geochemistry are observed in data from central and northern Costa Rica. In addition, local heterogeneities among units are demonstrated in plots of both major and trace elements. High-silica ash-flow tuffs in central Costa Rica include the Tiribi Tuff (~0.33 Ma) and Alto Palomo formation (~0.56 Ma). In northern Costa Rica, numerous large silicic ash-flow sheets are found in the Guanacaste province, ranging from late Miocene (<10 Ma) to Pleistocene (~0.6 Ma) in age. A frequency histogram of normalized silica content for all analyses to date from these units (n=222) produces a left-skewed curve with a mode occurring at approximately 70 wt.% SiO2. Samples from the northern region (n=107) demonstrate a tighter distribution of silica content (60.1-78.7 wt.% SiO2 with a median of 72.2 wt.% SiO2) compared to samples from the central region (n=115, 55.4-74.2 wt.% SiO2 with a median of 67.1 wt.% SiO2). The least evolved samples come from the Tiribi Formation in the Valle Central and are chemically distinct from rocks in the Guanacaste region. In both chemistry and geographical position, the Alto Palomo formation appears to represent a transition between tuffs in the Valle Central and those in Guanacaste. Incompatible trace element ratios for these units are nearly identical to regional trends observed in basaltic to andesitic lavas of the modern Costa Rican arc (e.g. Ba/Nb). The Papagayo sequence is an example of chemical variation within one vertical section. The sequence is a ~21 m section of well-exposed tuff that represents an essentially continuous sampling of an evolving magma body. Major-element analyses from a systematic vertical sampling of the section support a model of crystal fractionation, eruption, and mafic replenishment of the magma chamber. Samples range from 60.1 to 70.2 wt.% SiO2, with the most mafic sample occurring at the top of sequence as a visibly mafic-silicic mingled pumice. The Rio Liberia (~1.47 Ma) and Salitral (~1.3 Ma) formations in the Guanacaste region form a series of tuffs, related by the same inferred vent. Despite overlapping silica content, the units have distinct mineral compositions. The Salitral formation includes plagioclase- and amphibole-rich units that appear very similar in the field, while the Rio Liberia contains biotite. Chemically, the units are distinct, forming several separate trends in trace element plots. These heterogeneities most likely reflect differences in both source and/or processes of magma evolution.

  19. Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation

    NASA Astrophysics Data System (ADS)

    La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino

    2016-04-01

    Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration. This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

  20. A field method for making a quantitative estimate of altered tuff in sandstone

    USGS Publications Warehouse

    Cadigan, R.A.

    1954-01-01

    The use of benzidine to identify altered tuff in sandstone is practical for field or field laboratory studies associated with stratigraphic correlations, mineral deposit investigations, or paleogeographic interpretations. The method is based on the ability of saturated benzidine (C12H12N2) solution to produce a blue stain on montmorillonite-bearing tuff grains. The method is substantiated by the results of microscopic, X-ray spectrometer, and spectrographic tests which lead to the conclusion that: (1) the benzidine stain test differentiates grains of different composition, (2) the white or gray grains which are stained a uniform blue color are fragments of altered tuff, and (3) white or gray grains which stain in a few small spots are probably silicified tuff. The amount of sand grains taken from a hand specimen or an outcrop which will be held by a penny is spread out on a nonabsorbent white surface and soaked with benzidine for 5 minutes. The approximate number blue grains and the average grain size are used in a chart to determine a reference number which measures relative order of abundance. The chart, based on a volume relationship, corrects for the variation in the number of grains in the sample as the grain size varies. Practical use of the method depends on a knowledge of several precautionary measures as well as an understanding of the limitations of benzidine staining tests.

  1. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  2. Berriasian (Early Cretaceous) radiometric ages from the Grindstone Creek Section, Sacramento Valley, California

    USGS Publications Warehouse

    Bralower, T.J.; Ludwig, K. R.; Obradovich, J.D.

    1990-01-01

    The Grindstone Creek Section, Glenn County, Northern California is a sequence of hemipelagic mudstone, siltstone and sandstone interbedded with concretionary limestone and a few thin tuffs and bentonites. Two tuffs have been collected from a narrow interval of this sequence and subjected to mineralogical and isotopic analyses. UPb isotopic analyses of zircon fractions from these volcanic horizons indicate an age of 137.1 + 1.6/-0.6 Ma. A detailed investigation has been conducted on the calcareous nannofossil stratigraphy of this section based on numerous samples with moderately preserved assemblages. The nannoflora is largely of Tethyan affinity, and allows direct correlation with the Berriasian stratotype section, with sections with published magnetostratigraphies and with a DSDP site drilled between known magnetic anomalies. The dated tuffs lie in the lower part of the upper Berriasian Cretarhabdus angustiforatus Zone (Assipetra infracretacea Subzone) and within the narrow range of Rhagodiscus nebulosus. At three different sections, this subzone can be correlated with M-sequence Polarity Zones M16 and M16n. An independent magnetostratigraphic correlation is provided at DSDP Site 387, drilled between anomalies M15 and M16, where basal sediments contain R. nebulosus. Buchia collected within a meter of the lower tuff lie within the B. uncitoides Zone which is Berriasian in age. The upper tuff level, which occurs 65 m above the lower tuff, is situated within the overlying B. pacifica Zone. This zone had previously been correlated with the early Valanginian, but is clearly also partly of Berriasian age based on nannofossil stratigraphy. Our results allow an estimate of the age of the Berriasian-Valanginian and Jurassic-Cretaceous boundaries of 135.1 Ma and 141.1 Ma, respectively, and these fall within the range of, but differ significantiy from, several published time-scales. ?? 1990.

  3. Geochronology and Regional Correlation of Continental Permo-Triassic Sediments in West Texas

    NASA Astrophysics Data System (ADS)

    Mitchell, W.; Renne, P. R.; Mundil, R.; Chang, S.; Geissman, J. W.; Tabor, N. J.; Mack, G.

    2011-12-01

    Although many aspects of marine sections spanning the Permian-Triassic boundary (PTB) have been studied in great detail across a broad paleogeographic area, less is known about the timing, pace, and extent of environmental changes and extinctions across this boundary in continental environments, particularly along the Panthalassa margin. Extensive outcrops in the Ochoan Series of west Texas provide an opportunity to investigate the terrestrial record spanning the PTB. The presence of several silicic tuffs in these sections allows for precise radioisotopic dating using both U-Pb and 40Ar/39Ar techniques. Dated strata then serve as a calibration basis for paleomagnetic and lithostratigraphic studies and facilitate stratigraphic correlation across the few to hundreds of kilometers separating study sites. Depending on the possible correlations, as many as seven tuffs have been identified in this region, the ages of which are within about a million years of the chronometrically-defined PTB at the Meishan section in China at ca. 252 Ma. Data obtained thus far indicate that the PTB occurs within the Quartermaster/Dewey Lake Formation. With the aims of determining the number and ages of distinct tuffs found and facilitating a well-correlated regional stratigraphy among the studied sections, we present preliminary radioisotopic age determinations of, and correlations among, these tuffs using the zircon U-Pb system, 40Ar/39Ar dating where possible, as well as mineral chemistry. Our results include the first dated tuff in the Ochoan Series that lies within the Alibates Formation which underlies the Dewey Lake Fm. Other samples in progress from the various tuffs in the region, in combination with results from magneto- and chemostratigraphy, will significantly expand the areal coverage of these strata and lead towards a greatly improved chronostratigraphic framework.

  4. Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains.

    PubMed

    Albert, Rosa Maria; Bamford, Marion K

    2012-08-01

    As part of ongoing research at Olduvai Gorge, Tanzania, to determine the detailed paleoenvironmental setting during Bed I and Bed II times and occupation of the basin by early hominins, we present the results of phytolith analyses of Tuff IF which is the uppermost unit of Bed I. Phytoliths were identified in most of the levels and localities on the eastern paleolake margin, but there are not always sufficient numbers of identifiable morphologies to infer the specific type of vegetation due to dissolution. Some surge surfaces and reworked tuff surfaces were vegetated between successive ash falls, as indicated by root-markings and the presence of a variety of phytolith morphotypes. Dicotyledonous wood/bark types were dominant except at the FLK N site just above Tuff IF when monocots are dominant and for the palm-dominated sample from the reworked channel cutting down into Tuff IF at FLK N. The area between the two fault scarps bounding the HWK Compartment, approximately 1 km wide, was vegetated at various time intervals between some of the surges and during the reworking of the Tuff. By lowermost Bed II times the eastern margin was fully vegetated again. Climate and tectonic activity probably controlled the fluctuating lake levels but locally the paleorelief and drainage were probably the controlling factors for the vegetation changes. These data support a scenario of small groups of hominins making brief visits to the paleolake during uppermost Bed I times, followed by a more desirable vegetative environment during lowermost Bed II times. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Petrologic evolution of the Caetano magmatic system: What can we learn from a dissected, 34 Ma caldera in the northern Great Basin, western U.S.A.?

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Colgan, J. P.; John, D. A.; Henry, C. D.

    2012-12-01

    Eruption of the >1,100 km3 Caetano Tuff and formation of the Caetano caldera occurred during the mid-Tertiary ignimbrite flare-up in the Great Basin. Post-collapse extension and faulting created a series of tilted fault blocks that expose >4 km thick intracaldera tuff, two generations of resurgent granitic plutons, silicic ring-fracture intrusions, a tuff dike that fed the early eruption, and pre- and post-caldera andesites. We integrate new petrologic data for extrusive and intrusive Caetano units with geologic mapping and geochronology to provide an exceptional view into the inner workings of a large caldera center. The Caetano Tuff is a phenocryst-rich (~30-50%) ignimbrite with a mineralogy of plagioclase + sanidine + quartz + biotite + orthopyroxene + Fe-Ti oxides ± hornblende + accessory zircon and allanite. Plagioclase crystals in the Caetano Tuff and cogenetic intrusive units span a wide compositional range (>30 mol% An) and have diverse petrographic textures ranging from euhedral phenocrysts to anhedral, sieved crystals with melt-rich cores. Plagioclase compositions measured by electron microprobe for whole rock thin sections are consistent with compositional zoning of the intracaldera tuff shown by XRF whole rock analyses, oligoclase (~10-30 mol% An) and andesine (~30-50 mol% An) in the most evolved (75-77% SiO2) and least evolved (72-74% SiO2) tuff units, respectively. However, orthopyroxene compositions are apparently decoupled from the host tuff composition, with the highest Mg#s (~60-70%) occurring in the most evolved tuff samples. In the Caetano Tuff, equilibrium pairs of Fe-Ti oxides yield an average eruption temperature of 745°C, which is consistent with the average Ti-in-zircon temperature of 750±70°C (1 stdev, n=90 spots) obtained from Ti concentrations measured by SHRIMP for single zircons. Application of Al-in-hornblende geobarometry indicates an average equilibration pressure of 4.5±0.1 kbar, corresponding to mid-crustal magma storage depths of ~14-15 km. In light of our new petrologic data, we highlight the following key points: (1) Diverse crystal cargoes, disequilibrium textures, and wide compositional oscillations in single phenocrysts and among discrete mineral populations indicate prolonged and complex episodes of magma assembly and growth. Based on zircon U-Pb SHRIMP ages that range from ~34-37 Ma, assembly and growth may have spanned ~2-3 Ma, or a 34 Ma Caetano magma chamber may have assimilated older igneous rocks in and around the caldera. (2) Mineral chemistry, U-Pb and Ar-Ar geochronology, O isotope geochemistry, and whole rock major and trace element geochemistry indicate a genetic connection between the Caetano Tuff and resurgent granitic plutons, supporting the role of linked volcanic-plutonic components in caldera settings. (3) Generation and eruption of crystal-rich "monotonous" rhyolite calls into question the prevailing paradigms of crystal-poor rhyolites derived from crystal mushes, or crystal-rich "monotonous intermediates" derived from homogeneous dacitic magma reservoirs. The Caetano Tuff may be a representative end member of caldera-forming eruptions that is important for understanding large-volume rhyolite genesis in the shallow-middle crust.

  6. Water resources of the Warm Springs Indian Reservation, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Laenen, Antonius

    1976-01-01

    Water-resources data for the 1,000-square-mile Warm Springs Indian Reservation in north-central Oregon were obtained and evaluated. The area is bounded on the west by the crest of the Cascade Range and on the south and east by the Metolius and Deschutes Rivers. The mountainous western part is underlain by young volcanic rocks, and the plateaus and valleys of the eastern part are underlain by basalt, tuff, sand, and gravel of Tertiary and Quaternary ages. There are numerous springs, some developed for stock use, and about 50 domestic and community wells; yields are small, ranging from less than 1 to as much as 25 gallons per minute. Chemical quality of most ground water is suitable for stock or human consumption and for irrigation. Average flows of the Warm Springs River, Metolius River, and Deschutes River are 440, 1,400, and 4,040 cubic feet per second (cfs), respectively. Shitike Creek, which has an average flow of 108 cfs had a peak of 4,000 cfs in January 1974. Most streams have fewer than 100 milligrams per liter (mg/liter) of dissolved solids. Chemical and biological quality of the mountain lakes is also good; of 10 lakes studied, all had fewer than 50 mg/liter of dissolved solids and none had measurable fecal coliform bacteria. (Woodard-USGS)

  7. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Keil, K.; Mansker, W.L.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less

  8. High-resolution 40Ar 39Ar chronology of Oligocene volcanic rocks, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lanphere, M.A.

    1988-01-01

    The central San Juan caldera complex consists of seven calderas from which eight major ash-flow tuffs were erupted during a period of intense volcanic activity that lasted for approximately 2 m.y. about 26-28 Ma. The analytical precision of conventional K-Ar dating in this time interval is not sufficient to unambiguously resolve this complex history. However, 40Ar 39Ar incremental-heating experiments provide data for a high-resolution chronology that is consistent with stratigraphie relations. Weighted-mean age-spectrum plateau ages of biotite and sanidine are the most precise with standard deviations ranging from 0.08 to 0.21 m.y. The pooled estimate of standard deviation for the plateau ages of 12 minerals is about 0.5 percent or about 125,000 to 135,000 years. Age measurements on coexisting minerals from one tuff and on two samples of each of two other tuffs indicate that a precision in the age of a tuff of better than 100,000 years can be achieved at 27 Ma. New data indicate that the San Luis caldera is the youngest caldera in the central complex, not the Creede caldera as previously thought. ?? 1988.

  9. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  10. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  11. An investigation into variable recharge behaviors among eight alluvial observation wells in Pajarito Canyon, Los Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmeer, S. R.

    2010-12-01

    Pajarito Canyon in Los Alamos, New Mexico trends west to east through the Pajarito Plateau from the headwaters in the Jemez Mountains, thirteen miles to the Rio Grande. In summer 2008, Los Alamos National Laboratory installed eight shallow wells, numbered PCAO-5, 6, 7a, 7b1, 7b2, 7c, 8 and 9, in the middle four miles of this canyon. Among these wells, five distinct recharge behaviors have been observed. PCAO-5 demonstrates seasonal recharge in response to annual snowmelt. PCAO-6, while just 400 feet further downstream, is considerably flashier and the well is often dry for months at a time. In PCAO-7a, 7b2 and 7c, another two miles downstream, the water level declined steadily since installation, with no recharge until spring 2010. PCAO-7b1 has not contained water since drilling. Downstream a further two miles, PCAO-8 and PCAO-9 were dry for the majority of 2009 and their hydrographs are more attenuated. This investigation was undertaken to explain the recharge behaviors of the wells, with the goal of improving site selection and design of alluvial wells to provide better representation of the alluvial aquifer. Water level data collected since July 2008 were used to compare the water columns of each well. Well construction diagrams were utilized to construct stratigraphic maps in order to compare well construction and lithology. Results indicate that PCAO-5 consistently contains water due to its location above a flood retention structure (FRS) and the placement of its screened interval immediately above the tuff layer, forcing water to travel through the screened interval. PCAO-6’s flashy, intermittent hydrograph is due to its location downstream of the FRS, and because the bottom of the screened interval rests 2.5 feet above the alluvium-tuff interface, providing a conduit below the screen of the well. The similar behaviors of PCAO-7a, 7b2 and 7c result from their near-identical construction, lithology and location. The general decline of water level until spring 2010 was due to near-drought conditions in 2009. PCAO-7a retained more water more consistently through 2009 because its screened interval rests on the alluvium-tuff interface, whereas PCAO-7b2 and 7c are both screened similarly to PCAO-6. PCAO-7b1, which has not contained water since drilling, has its screened interval within the tuff later, preventing alluvial groundwater from reaching the screen. The attenuated hydrographs of PCAO-8 and 9 are possibly due to their downstream location; in the semi-arid study area, much of the alluvial groundwater sourced in the mountains may already have infiltrated towards the deeper aquifers before reaching the lower portion of the canyon. These results indicate that shallow wells in areas with a lithology similar to the study area should be constructed with a screened interval that rests directly on the alluvium-tuff interface, thereby forcing flow through the screen. Additionally, deep barriers such as the FRS will greatly inhibit consistent flow of alluvial groundwater into shallow wells built immediately downstream of the barrier. Finally, shallow wells in the lower portions of semi-arid canyons may not consistently contain water because source water from the mountains may infiltrate too deep before reaching the wells.

  12. Influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.

  13. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    USGS Publications Warehouse

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems.

  14. Geology and Geochemistry of the 25.0 Ma Underdown Caldera Tuffs and tuff of Clipper Gap, Western Nevada Volcanic Field caldera belt, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Klausen, K. B.; Henry, C.

    2016-12-01

    The 25.0 Ma Underdown Caldera of the Shoshone Mountains near Austin, Nevada, is part of the Ignimbrite Flare-up suite of calderas in north-central Nevada. Our goal is to characterize the geochemistry and geochronology of the tuffs, determine magma sources, and contrast Underdown with nearby contemporaneous caldera suites. The caldera is contained within a single, mildly west-tilted fault block (Bonham, 1970). The basement rocks are altered intermediate volcanic rocks, rarely intruded by rhyolite veins. The lowermost caldera unit, exposed only on the east side of the fault block, is the sparsely qtz-feld-phyric Underdown Tuff, a high-silica rhyolite (Bonham, 1970) that is columnar-jointed, densely welded, commonly includes aphyric pumice, but locally includes porphyritic pumice. Stretched pumice, flow folds, and foliations that reach nearly vertical demonstrate significant rheomorphism. A densely-welded porphyritic tuff is also present along the southeast side of the exposed caldera, and may be either blocks of an older tuff or a porphyritic phase of the Underdown Tuff. Correlative outflow, the tuff of Clipper Gap, emplaced east of the caldera, is petrographically similar with the same two pumice types. Overlying the Underdown Tuff is the Bonita Canyon Formation, which is moderately welded, commonly lithic- and pumice-rich with minor biotite, quartz and feldspar crystals, and contains reworked lenses; megabreccia of intermediate volcanic rocks and abundantly porphyritic tuff are common. This formation may be an upper part of the Underdown Tuff. On the west side of the Shoshone Mountains, the Bonita Canyon units are overlain by a more porphyritic, variably pumiceous, commonly vitrophyric, and densely welded tuff. At 24.7 Ma, this tuff is petrographically similar to and may be a younger part of the 25.2 Ma tuff of Arc Dome exposed to the east in the Toiyabe Range. Ongoing dating and geochemical analyses will constrain the timing and relationships between the tuffs.

  15. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry

    2018-06-01

    Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.

  16. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and flowed into a paleovalley off the Sierra Nevada Mountain front. Based on the new paleomagnetic data, we hypothesize that the JST experienced clockwise vertical axis rotation associated with transtensional faulting east of Mono Lake, CA. Our paleomagnetic data support this hypothesis and we argue that deformation likely occurred between ca. 9.5 Ma to as late as 3 Ma.

  17. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    USGS Publications Warehouse

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.

  18. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  19. Rockfall hazard assessment of nearly vertical rhyolite tuff cliff faces by using terrestrial laser scanner, UAV and FEM analyses

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád

    2017-04-01

    Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified as major cliff stability hazards. These were associated with the major joint systems dissecting cliff faces. This research have proved that the combined methods of field surveying, imaging techniques, data processing and FEM modelling with rock mechanical laboratory analyses allowed the identification of major rock fall hazards even at areas which are difficult to access.

  20. Two examples of subaqueously welded ash-flow tuffs: the Visean of southern Vosges (France) and the Upper Cretaceous of northern Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude

    1992-02-01

    Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils. The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.

  1. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U and 230Th/238U AR values can be maintained indefinitely as long as hydrological and geochemical processes remain stable. Therefore, many Pahute Mesa fractures represent stable hydrologic pathways over million-year timescales. A smaller number of samples have non-steady-state compositions indicating transient conditions in the last several hundred thousand years. In these cases, U mobility is dominated by overall gains rather than losses of U.

  2. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  3. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2003-05-01

    Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However, differences in fluid flow rates and thermal gradients between the experimental setup and anticipated conditions at Yucca Mountain need to be factored into scaling the results of the dissolution/precipitation experiments and associated simulations to THC models for the potential Yucca Mountain repository.

  4. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  5. Transient calcite fracture fillings in a welded tuff, Snowshoe Mountain, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Heymans, M.J.

    2000-01-01

    The core from two boreholes (13.1 and 19.2 m depth) drilled 500 m apart in the fractured, welded tuff near the summit of the Snowshoe Mountain, Colorado (47??30'N, 106??55'W) had unique petrographic and hydrodynamic properties. Borehole SM-4 had highly variable annual water levels, in contrast to SM-1a, whose water level remained near the land surface. Core samples from both boreholes (n = 10 and 11) were examined petrographically in thin sections impregnated with epoxy containing rhodamine to mark the pore system features, and were analyzed for matrix porosity and permeability. Core from the borehole sampling the vadose zone was characterized by open fractures with enhanced porosity around phenocrysts due to chemical weathering. Fractures within the borehole sampling the phreatic zone were mineralized with calcite and had porosity characteristics similar to Unweathered and unfractured rock. At the top of the phreatic zone petrography indicates that calcite is dissolving, thereby changing the hydrogeochemical character of the rock (i.e. permeability, porosity, reactive surface area, and mineralogy). Radiocarbon ages and C and O stable isotopes indicate that calcite mineralization occurred about 30 to 40 ka ago and that there was more than one mineralization event. Results of this study also provide some relationships between primary porosity development from 3 types of fracture in a welded tuff. (C) 2000 Elsevier Science Ltd.

  6. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.

    2015-09-01

    Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.

  7. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  8. U-Pb Geochronology of Hydrous Silica (Siebengebirge, Germany)

    NASA Astrophysics Data System (ADS)

    Tomaschek, Frank; Nemchin, Alexander; Geisler, Thorsten; Heuser, Alexander; Merle, Renaud

    2015-04-01

    Low-temperature, hydrous weathering eventually leads to characteristic products such as silica indurations. Elevated U concentrations and the ability of silica to maintain a closed system permits silica to be dated by the U-Pb method, which, in turn, will potentially allow constraining the timing of near-surface processes. To test the feasibility of silica U-Pb geochronology, we sampled opal and chalcedony from the Siebengebirge, Germany. This study area is situated at the terminus of the Cenozoic Lower Rhine Basin on the Rhenish Massif. The investigated samples include silicified gravels from the Mittelbachtal locality, renowned for the embedded wood opal. Structural characterization of the silica phases (Raman spectroscopy) was combined with in situ isotopic analyses, using ion microprobe and LA-ICPMS techniques. In the Siebengebirge area fluviatile sediments of Upper Oligocene age were covered by an extended trachyte tuff at around 25 Ma. Silica is known to indurate some domains within the tuff and, in particular, certain horizons within the subjacent fluviatile sediments ('Tertiärquarzite'). Cementation of the gravels occurred during at least three successive growth stages: early paracrystalline silica (opal-CT), fibrous chalcedony, and late microcrystalline quartz. It has traditionally been assumed that this silica induration reflects intense weathering, more or less synchronous with the deposition of the volcanic ashes. Results from U-Pb geochronology returned a range of discrete 206Pb-238U ages, recording a protracted silicification history. For instance, we obtained 22 ± 1 Ma for opal-CT cement from a silicified tuff, 16.6 ± 0.5 Ma for silicified wood and opal-CT cement in the fluviatile gravels, as well as 11 ± 1 Ma for texturally late chalcedony. While silicification of the sampled tuff might be contemporaneous with late-stage basalts, opaline silicification of the subjacent sediments and their wood in the Mittelbachtal clearly postdates active Siebengebirge volcanism, and the clastic sedimentation by about 8 Myr. To account for the age discrepancies, opal-CT formation might be a local and episodic phenomenon, reflecting progressive denudation of the trachyte tuff cover. Alternatively, the dominant silicification event of the Mittelbachtal silcretes could be of regional significance (Middle Miocene Climatic Optimum). Our relatively fast approach by LA-ICPMS analysis will be used to further expand the database.

  9. Geochronological and Taxonomic Revisions of the Middle Eocene Whistler Squat Quarry (Devil’s Graveyard Formation, Texas) and Implications for the Early Uintan in Trans-Pecos Texas

    PubMed Central

    Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.

    2014-01-01

    The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115

  10. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  11. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  12. Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows

    USGS Publications Warehouse

    Burgisser, Alain; Gardner, J.E.; Stelling, P.

    2007-01-01

    Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.

  13. Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian

    2017-04-01

    Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea-level and tectonism.

  14. Fault evolution in volcanic tuffs and quartz-rich eolian sandstone as mechanical analogs for faulting in Martian pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2014-12-01

    In order to establish a foundation for studies of faulting in Martian rocks and soils in volcanic terrain, the distribution of brittle strain around faults within the North Menan Butte Tuff in the eastern Snake River Plain, Idaho and the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, has been recently described. These studies employed a combination of macroscopic and microscopic observations, including measurements of in situ permeability as a proxy for non-localized brittle deformation of the host rock. In areas where the tuff retained its primary granular nature at the time of deformation, initial plastic yielding in both tuffs occurred along deformation bands. Both compactional and dilational types of deformation bands were observed, and faulting occurred along clusters of deformation bands. Where secondary alteration processes imparted a massive texture to the tuff, brittle deformation was accommodated along fractures. Host-rock permeability exhibits little variation from non-deformed values in the North Menan Butte Tuff, whereas host rock permeability is reduced by roughly an order of magnitude through compaction alone (no alteration) in the Joe Lott Tuff. To create a bridge between these observations in tuff and the more substantial body of work centered on deformation band formation and faulting in quartz-rich sandstones, the same techniques employed in the North Menan Butte Tuff and the Joe Lott Tuff have also been applied to a kilometer-scale fault in the Jurassic Navajo Sandstone in the Waterpocket Fold, Utah. These observations demonstrate that the manifestation of strain and evolution of faulting in the Mars-analog tuffs are comparable to that in quartz-rich sandstones. Therefore, current understanding of brittle deformation in quartz-rich sandstones can be used to inform investigations into fault growth within porous tuffs on Mars. A discussion of these observations, practical limitations, and directions for future work are presented here.

  15. Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event

    USGS Publications Warehouse

    Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.

    2002-01-01

    40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.

  16. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption.

    PubMed

    Roche, O; Buesch, D C; Valentine, G A

    2016-03-07

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ∼ 70-90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow's base had high-particle concentration and relatively modest speeds of ∼ 5-20 m s(-1), fed by an eruption discharging magma at rates up to ∼ 10(7)-10(8) m(3) s(-1) for a minimum of 2.5-10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  17. Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: New tales from old tuffs

    USGS Publications Warehouse

    Lipman, P.W.; Dungan, M.A.; Brown, L.L.; Deino, A.

    1996-01-01

    Reinterpretation of a voluminous regional ash-flow sheet (Masonic Park Tuff) as two separate tuff sheets of similar phenocryst-rich dacite erupted from separate source calderas has important implications for evolution of the multicyclic Platoro caldera complex and for caldera-forming processes generally. Masonic Park Tuff in central parts of the San Juan field, including the type area, was erupted from a concealed source at 28.6 Ma, but widespread tuff previously mapped as Masonic Park Tuff in the southeastern San Juan Mountains is the product of the youngest large-volume eruption of the Platoro caldera complex at 28.4 Ma. This large unit, newly named the "Chiquito Peak Tuff," is the last-erupted tuff of the Treasure Mountain Group, which consists of at least 20 separate ash-flow sheets of dacite to low-silica rhyolite erupted from the Platoro complex during a 1 m.y. interval (29.5-28.4 Ma). Two Treasure Mountain tuff sheets have volumes in excess of 1000 km3 each, and five more have volumes of 50-150 km3. The total volume of ash-flow tuff exceeds 2500 km3, and caldera-related lavas of dominantly andesitic composition make up 250-500 km3 more. A much greater volume of intermediate-composition magma must have solidified in subcaldera magma chambers. Most preserved features of the Platoro complex - including postcollapse asymmetrical trap-door resurgent uplift of the ponded intracaldera tuff and concurrent infilling by andesitic lava flows - postdate eruption of the Chiquito Peak Tuff. The numerous large-volume pre-Chiquito Peak ash-flow tuffs document multiple eruptions accompanied by recurrent subsidence; early-formed caldera walls nearly coincide with margins of the later Chiquito Peak collapse. Repeated syneruptive collapse at the Platoro complex requires cumulative subsidence of at least 10 km. The rapid regeneration of silicic magmas requires the sustained presence of an andesitic subcaldera magma reservoir, or its rapid replenishment, during the 1 m.y. life span of the Platoro complex. Either case implies large-scale stoping and assimilative recycling of the Tertiary section, including intracaldera tuffs.

  18. Completion Report for Well ER-EC-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2004-10-01

    Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less

  19. An investigation of volcanic depressions. Part 3: Maars, tuff-rings, tuff-cones, and diatremes

    NASA Technical Reports Server (NTRS)

    Lorenz, V.; Mcbirney, A. R.; Williams, H.

    1970-01-01

    A classification of maars, tuff-rings, tuff-cones, and diatremes is given along with a summary of their lithologic and structural characteristics at the surface and at depth, and their probable manner of formation. Particular emphasis is placed on the roles of fluidization and groundwater.

  20. The Lake Forest Tuff Ring, Lake Tahoe, CA: Age and Geochemistry of a Post-arc Phreatomagmatic Eruption

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Henry, C. D.; Pauly, B. D.

    2007-12-01

    The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help constrain the timing of magmatism and the formation of Lake Tahoe.

  1. Influence of rock composition on the geochemistry of stream and spring waters from mountainous watersheds in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado

    USGS Publications Warehouse

    Miller, William Roger

    2002-01-01

    The ranges of geochemical baselines for stream and spring waters were determined and maps were constructed showing acid-neutralizing capacity and potential release of total dissolved solids for streams and spring waters for watersheds underlain by each of ten different rock composition types in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado (GMUG). Water samples were collected in mountainous headwater watersheds that have comparatively high precipitation and low evapotranspiration rates and that generally lack extensive ground-water reservoirs. Mountainous headwaters react quickly to changes in input of water from rain and melting snow and they are vulnerable to anthropogenic impact. Processes responsible for the control and mobility of elements in the watersheds were investigated. The geochemistry of water from the sampled watersheds in the GMUG, which are underlain by rocks that are relatively unmineralized, is compared to the geochemistry of water from the mineralized Redcloud Peak area. The water with the highest potential for release of total dissolved solids is from watersheds that are underlain by Paleozoic sedimentary rocks; that high potential is caused primarily by gypsum in those rocks. Water that has the highest acid-neutralizing capacity is from watersheds that are underlain by Paleozoic sedimentary rocks. The water from watersheds underlain by the Mancos Shale has the next highest acid-neutralizing capacity. Water that has the lowest acid-neutralizing capacity is from watersheds that are underlain by Tertiary ash-flow tuff. Tertiary sedimentary rocks containing oil shale, the Mesavede Formation containing coal, and the Mancos Shale all contain pyrite with elevated metal contents. In these mountainous head-water areas, water from watersheds underlain by these rock types is only slightly impacted by oxidation of pyrite, and over-all it is of good chemical quality. These geochemical baselines demonstrate the importance of rock composition in determining the types of waters that are in the headwater areas. The comparison of these geochemical baselines to later geochemical base-lines will allow recognition of any significant changes in water quality that may occur in the future.

  2. Age, composition, and areal distribution of the Pliocene Lawlor Tuff, and three younger Pliocene tuffs, California and Nevada

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Deino, Alan L.; Fleck, Robert J.; McLaughlin, Robert J.; Wagner, David; Wan, Elmira; Wahl, David B.; Hillhouse, John W.; Perkins, Michael

    2011-01-01

    The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by the K-Ar method on the same tuffs in previous studies.Based on offsets of the ash-flow phase of the Lawlor Tuff by strands of the eastern San Andreas fault system within the northeastern San Francisco Bay area, total offset east of the Rodgers Creek–Healdsburg fault is estimated to be in the range of 36 to 56 km, with corresponding displacement rates between 8.4 and 11.6 mm/yr over the past ∼4.83 Ma.We identify these tuffs by their chemical, petrographic, and magnetic characteristics over a large area in California and western Nevada, and at a number of new localities. They are thus unique chronostratigraphic markers that allow correlation of marine and terrestrial sedimentary and volcanic strata of early Pliocene age for their region of fallout. The tuff of Monticello Road is identified only near its eruptive source.

  3. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  4. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of enriched mid-ocean ridge basalts (E-MORB) erupted today at the southern end of the Explorer Ridge in northeastern Pacific Ocean. The isotopic similarity between the Middle-Late Triassic ambient mantle under Stikinia, and mantle presently tapped at the southern Explorer Ridge suggests that enriched domains in the northeastern Pacific mantle are long-lived (≥222 million years).

  5. Geochronologic and paleomagnetic evidence defining the relationship between the Miocene Hiko and Racer Canyon tuffs, eccentric outflow lobes from the Caliente caldera complex, southeastern Great Basin, USA

    USGS Publications Warehouse

    Gromme, S.; Deino, A.M.; Best, M.G.; Hudson, M.R.

    1997-01-01

    Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33??0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32??0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities.

  6. Perched Ground Water in Zeolitized-Bedded Tuff, Rainier Mesa and Vicinity, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Thordarson, William

    1965-01-01

    Rainier Mesa--site of the first series of underground nuclear detonations--is the highest of a group of ridges and mesas within the Nevada Test Site. The mesa is about 9.5 square miles in area and reaches a maximum altitude of 7,679 feet. The mesa is underlain by welded tuff, friable-bedded tuff, and zeolitized-bedded tuff of the Piapi Canyon Group and the Indian Trail Formation of Tertiary age. The tuff--2,000 to 9,000 feet thick--rests unconformably upon thrust-faulted miogeosynclinal rocks of Paleozoic age. Zeolitic-bedded tuff at the base of the tuff sequence controls the recharge rate of ground water to the underlying and more permeable Paleozoic aquifers. The zeolitic tuff--600 to 800 feet thick--is a fractured aquitard with high interstitial porosity, but with very low interstitial permeability and fracture transmissibility. The interstitial porosity ranges from 29 to 38 percent, the interstitial permeability is generally less than 0.009 gpd/ft3, and the fracture transmissibility ranges from 10 to 100 gpd/ft for 900 feet of saturated rock. The tuff is generally fully saturated interstitially hundreds of feet above the regional water table, yet no appreciable volume of water moves through the interstices because of the very low permeability. The only freely moving water observed in miles of underground workings occurred in fractures, usually fault zones.

  7. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.

  8. Deep electrical investigations in the Long Valley geothermal area, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, W.D.; Jackson, D.B.; Zohdy, A.A.R.

    1976-02-10

    Direct current resistivity and time domain electromagnetic techniques were used to study the electrical structure of the Long Valley geothermal area. A resistivity map was compiled from 375 total field resistivity measurements. Two significant zones of low resistivity were detected, one near Casa Diablo Hot Springs and one surrounding the Cashbaugh Ranch-Whitmore Hot Springs area. These anomalies and other parts of the caldera were investigated in detail with 49 Schlumberger dc soundings and 13 transient electromagnetic soundings. An extensive conductive zone of 1- to 10-..cap omega..m resistivity was found to be the cause of the total field resistivity lows. Drillmore » hole information indicates that the shallow parts of the conductive zone in the eastern part of the caldera contain water of only 73/sup 0/C and consist of highly zeolitized tuffs and ashes in the places that were tested. A deeper zone near Whitmore Hot Springs is somewhat more promising in potential for hot water, but owing to the extensive alteration prevalent in the caldera the presence of hot water cannot be definitely assumed. The resistivity results indicate that most of the past hydrothermal activity, and probably most of the present activity, is controlled by fracture systems related to regional Sierran faulting.« less

  9. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of structural discontinuity that forms in the fault environment is found to be a function of the porosity and granularity of the host rock. Non-localized deformation in the form of pore space compaction of the host rock is found to be prominent around the fault tips at First Spring Hollow. Interestingly, the spatial distribution of host rock compaction and the occurrences of dilational deformation bands around this fault do not correlate with the classic pattern of compression and dilation generally anticipated for slipped normal faults when viewed in mode II. Therefore, while broad generalities regarding the types of discontinuities that form around faults in tuff can be drawn based on current principles, additional work is needed to better understand the genesis of the observed spatial distributions of strain.

  10. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  11. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and Darwin Canyon Formations) representing part of a deep-water turbidite basin filled primarily by fine-grained siliciclastic sediment derived from cratonal sources to the east. Deformation and sedimentation along the western part of this basin continued into late Permian time. The culminating phase was part of a regionally extensive late Permian thrust system that included the Marble Canyon thrust fault just west of the present map area.

  12. Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Singer, Robert B.

    1991-01-01

    As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.

  13. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  14. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption

    USGS Publications Warehouse

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.

    2016-01-01

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  15. Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, I.J.; Thordarson, W.

    Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less

  16. Unraveling the volcanic and post-volcanic history at Upsal Hogback, Fallon, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Anderson, E.; Cousens, B.

    2013-12-01

    Upsal Hogback is a < 25 ka phreatomagmatic volcanic center situated near Fallon, Nevada. The volcano neighbors two other young volcanic complexes: the Holocene Soda Lakes maars and Rattlesnake Hill, a ~ 1 Ma volcanic neck (Shevenell et al., 2005). These volcanoes lie on the transition between the Sierra Nevada and the Basin and Range province, as well as on the edge of the Walker Lane. Upsal Hogback includes two to four vents, fewer than mapped by Morrison (1964), and can be divided into north (one vent) and south (three potential vents) complexes. The vents all produced phreatomagmatic eruptions resulting in tuff rings composed primarily of coarse, indurated lapilli tuffs with abundant volcanic bombs. Ash tuffs are infrequent, as are structures such as crossbedding. The bombs and lapilli include olivine and plagioclase phenocrysts. The basalts are alkaline and have intraplate-type normalized incompatible element patterns. Both complexes are enriched in LREE compared to HREE, though the north complex overall has lower concentrations of the REE. The flat HREE pattern is indicative of spinel peridotite mantle source. Epsilon Nd values for the north complex are +2.50+/-0.02 and for the south complex are +2.83+/-0.02. The magmas appear to have an enriched asthenospheric mantle source. Bomb samples show that eruptions from the two complexes are geochemically distinguishable both in major and trace elements, suggesting that the two complexes tapped different magma types during eruptions that likely occurred at slightly different times. The proximity of Upsal Hogback to Fallon makes constraining its age important to characterize the hazard to the city. It lies above the Wono ash bed, dated at 25,000 years (Fultz et al., 1983), and tufa deposited over the edifice is dated at 11,100 +/- 100 and 8,600 +/- 200 years (Benson et al., 1992; Broecker and Kaufman, 1965). 40Ar/39Ar total gas age by Shevenell et al. (2005) dated the volcano at 0.60 +/- 0.09 Ma, but with no plateau or isochron, and is thus unreliable. The ash bed and tufa ages show that the eruptions would have occurred during the late history of glacial Lake Lahontan. The evidence for primarily subaerial or shallow subaqueous eruptions, including abundant bomb sags and armored lapilli, demonstrate that most of the volcanism occurred during a low stand in lake level history. Some upper tuff units have been heavily altered to palagonite, which establishes that there was substantial water present during some of the later eruptions. The upper edifice has been significantly modified by slumping of the lapilli tuffs during or after of the eruptions, as indicated by the wildly varying strikes and dips found in adjacent lapilli tuff blocks. Lake Lahontan has substantially altered the morphology of the volcano through wave action and shoreline erosion, as well as tufa deposition, since the eruption and emplacement of the tuffs. The edifice has gone through significant changes during its post-eruptive history that mask many of its original features; it was possible that it was a tuff cone that has been modified into a tuff ring.

  17. Determining the physical processes behind four large eruptions in rapid sequence in the San Juan caldera cluster (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Curry, Adam; Caricchi, Luca; Lipman, Peter

    2017-04-01

    Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.

  18. Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas

    NASA Astrophysics Data System (ADS)

    Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.

    2016-12-01

    Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.

  19. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  20. Preliminary geological interpretation and lithologic log of the exploratory geothermal test well (INEL-1), Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Doherty, David J.; McBroome, Lisa Ann; Kuntz, Mel A.

    1979-01-01

    A 10,365 ft (3,159 m) geothermal test well was drilled in the spring of 1979 at the Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho: The majority of rock types encountered in the borehole are of volcanic origin. An upper section above 2,445 ft (745 m) consists of basaltic lava flows and interbedded .sediments of alluvial, lacustrine, and volcanic origin. A lower section below 2,445 ft (745 m) consists exclusively of rhyolitic welded ash-flow tuffs, air-fall ash deposits, nonwelded ash-flow ruffs, and volcaniclastic sediments. The lithology and thickness of the rhyolitic rocks suggest that they are part of an intracaldera fill.

  1. Tephrochronology of Bed II, Olduvai Gorge, Tanzania, and placement of the Oldowan-Acheulean transition.

    PubMed

    McHenry, Lindsay J; Stanistreet, Ian G

    2018-04-12

    Tuffaceous marker beds, derived from volcanic products from the Ngorongoro Volcanic Highlands, help define a stratigraphic framework for the world-renowned fossil and stone tool record exposed at Olduvai Gorge, Tanzania. However, previous efforts to constrain this tuff record, especially for Olduvai Bed II, have been limited because of erosion, contamination, reworking, and the alteration of volcanic glass under saline-alkaline conditions. This paper applies previously defined geochemical and mineralogical "fingerprints" for several major Bed II marker tuffs, based on glass (where available) and phenocrysts more resistant to alteration (feldspar, hornblende, augite, and titanomagnetite), to tuffs from stratigraphic sections in the Olduvai Junction Area, including previously and recently excavated Acheulean and Oldowan sites (HWK EE (Locality (Loc) 42), EF-HR (Loc 12a), FLK (Loc 45), and MNK (Loc 88)). The Middle Bed II Bird Print Tuff (BPT) is found to be more compositionally variable than previously reported but is still valuable as a stratigraphic marker over short distances. The confirmation of blocks of Tuff IID in conglomerate helps constrain Upper Bed II stratigraphy at sites where in-situ tuffs are absent. This paper also compiles the results of published geochronological research, providing stratigraphic context and updating previously reported dates using a consistent 40 Ar/ 39 Ar reference standard age. The results of this work support the following paleoanthropologically relevant conclusions: 1) the early Acheulean site EF-HR (Loc 12a) is situated above the level of Hay's Tuff IIC, and thus sits in Upper rather than Middle Bed II, (2) the HWK EE (Loc 42) Oldowan site is constrained between Tuff IIA and Tuff IIB, just above the boundary between Lower and Middle Bed II, and 3) the Acheulean site at FLK W most likely lies within the Middle Augitic Sandstone, above Tuff IIB, similar to the placements by Leakey and Hay for the earliest Acheulean at Olduvai. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Task IV: Groundshock-Induced Hydrogeologic Response: Volume 2. Hydrologic Response of Deep Based Systems to Blast Loading

    DTIC Science & Technology

    1994-09-01

    north-south. Width of the cap rock is approximately 1.5 miles, length about 3 miles and area about 4.4 square miles. According to Thordarson (1965...The volcanic tuffs making up the mesa are of moderately recent (Miocene) to very recent (Pliocene) origin. Thordarson (1965) identifies 11 layered tuff...various degrees of welded or partially welded tuff can be formed during cooling. The tuff units identified by Thordarson (1965) making up Rainier

  3. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less

  4. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?

    USGS Publications Warehouse

    Lipman, P.W.; McIntosh, W.C.

    2008-01-01

    The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass caldera that has little surviving topographic expression, no voluminous tuffs vented directly from the adjacent Cochetopa Park caldera, which is morphologically beautifully preserved. Instead, Cochetopa Park subsided passively as the >500 km3 Nelson Mountain Tuff vented at 26.9 Ma from an "underfit" caldera (youngest of the San Luis complex) 30 km to the SW. Three separate regional ignimbrites were erupted sequentially from San Luis calderas within an interval of less than 50-100 k.y., a more rapid recurrence rate for large explosive eruptions than previously documented elsewhere. In eruptive processes, volcanic compositions, areal extent, duration of activity, and magmatic production rates and volumes, the Southern Rocky Mountains Volcanic Field represents present-day erosional remnants of a composite volcanic field, comparable to younger ignimbrite terranes of the Central Andes. ?? 2008 Geological Society of America.

  5. Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana

    2016-04-01

    More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.

  6. Physical and hydrologic properties of outcrop samples from a nonwelded to welded tuff transition, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.

    1995-01-01

    Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.

  7. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China.

    PubMed

    Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling

    2018-05-16

    Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.

  8. Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa

    NASA Astrophysics Data System (ADS)

    Vatin-Perignon, N.; Poupeau, G.; Oliver, R. A.; La Venu, A.; Labrin, F.; Keller, F.; Bellot-Gurlet, L.

    1996-03-01

    Trace-element and REE data of glass and pumices of acidic tuffs and related fall deposits erupted in southern Peru and northern Bolivia between 20 and 0.36 Ma display typical characteristics of subduction related continental arc magmatism of the CVZ with strong LILE/HFSE enrichment and non enrichment of HREE and Y. Geochemical variations of these tuffs are linked to subduction processes and controlled by changes in tectonic regimes which occured with each Quechua tectonic pulse and affected the astenospheric wedge and both the dowgoing and the overriding lithospheres. During Neogene — Pleistocene times, tuffs erupted in northern Bolivia are typically enriched in Zr, Hf, Th, Ba, LREEs and other incompatible elements and incompatible /Yb ratios are much higher relative to those erupted from southern Peru, at a given SiO 2 content (65-67 wt. for dacites, 72-73 wt.% for rhyolites). {Zr}/{Hf} ratios increase eastward from 27 to 30 and {Ce}/{Yb N} ratios from 11 to 19 reflecting the variation of degree of wedge contribution. Fractionation of the LREE over the HREE and fractionation of incompatible elements may be due to their heterogeneous distribution in the magma source. More highly fractionated REE patterns of Bolivian tuffs than Peruvian tuffs are attributed to variable amounts of contamination of magmas by lower crust. After the Quechua compressional event at 7 Ma, {Sr}/{Y} ratios of tuffs of the same age, erupted at 150-250 km or 250-400 km from the Peru-Chile trench, increase from southern Peru to northern Bolivia. These differences may be attributed to the subduction of a swarm oceanic lithosphere under the Bolivian Alti-plano, leading to partial melting of the sudbucted lithosphere. New FT dating of obsidian fragments of the sillar of Arequipa at 2.42 ± 0.11 Ma. This tuff dates the last Quechua compressional upper Pliocene phase ( 2.5 Ma) and confirms that the sillar is not contemporaneous with the Toba 76 tuff or the Perez ignimbrite of northern Bolivia. Geochemical characteristics of tuffs erupted before and after this last compressional phase remained the same and provide evidence that the upper Miocene ( 7 Ma) compressional deformations played the most important role on the variability of the geochemical characteristics of the southern Peruvian and northern Bolivian tuffs.

  9. Paleomagnetic and Anisotropy of Magnetic Susceptibility (AMS) Documentation of the Formation of Large-Scale Rheomorphic Structures in the 2.06 Ma Huckleberry Ridge Tuff, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Holm, D.; Harlan, S. S.

    2006-12-01

    In the Teton River Valley, east of Rexburg, Idaho, the ca. 2.06 Ma Huckleberry Ridge Tuff is about 130 m thick, exceedingly well-exposed, and displays large-scale (100-150 m+ amplitude) rheomorphic folds, with eutaxitic fabrics that are parallel to inferred primary internal zonation (e.g. boundary between basal vitrophyre and overlying devitrified part of the pyroclastic deposit) as well as the basal contact with older deposits defining the fold geometries. One 150 m amplitude fold , is well-exposed on the north side of the valley about 2.5 km east of Teton Dam, has a NW trending fold axis and has a southwest limb that is overturned by about 45o. Samples were collected from 16 sites in this fold, on both limbs and the hinge area, to test the hypothesis that folding took place above maximum TRM blocking temperatures (about 580C). Progressive AF and thermal demagnetization both yield characteristic magnetizations of southwest to south-southwest declination and shallow inclination removed over a range of peak fields (typically between 20 and 80 mT) and laboratory unblocking temperatures (typically between 350 and 580C). The preliminary determination of an in situ mean based on the 16 sites is about D = 215°, I = -5°, a95= 5°, N = 16 site means). The direction of this ChRM is statistically indistinguishable from that reported by previous studies of the tuff (e.g. Reynolds, 1977, JGR; Byrd et al., 1994, JGR). The trend of the fold axis is orthogonal to this declination; the paleomagnetic fold test applied to these data is negative, with k values continuously decreasing upon unfolding, thus indicating that the entire structure in the tuff formed after the well-developed compaction fabric was acquired, at a temperature above maximum blocking temperatures of the ChRM. Post-compaction, high temperature deformation is consistent with field evidence indicating plastic secondary deformation of much of the tuff prior to devitrification. Rapid strain rates probably contributed to the formation of brittle features in the uppermost parts of the tuff (joints and fissures). AMS fabrics, at the site level, are typically very well-defined, with AMS foliations roughly parallel to compaction fabric, with K1 (maximum principal susceptibility) axes typically directed in a southwest-northeast orientation.

  10. Preliminary assessment, by means of Radon exhalation rate measurements, of the bio-sustainability of microwave treatment to eliminate biodeteriogens infesting stone walls of monumental historical buildings.

    NASA Astrophysics Data System (ADS)

    Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B.

    2017-10-01

    The main purpose of the work described in this paper has been to establish the protocol for a new non-disruptive technique of intervention, based on microwave treatment, for cleaning operations on monumental historical buildings, to eliminate biodeteriogens infesting stones. Non-destructive methods in the cleaning operations, should not only preserve the physical integrity, the chemical-mineralogical and structural identity of materials, but, when the exhalation of pollutant agents (like for example Radon gas) from building materials is considered, also, make the indoor air quality (IAQ) levels healthy. Therefore, one of the main steps of the protocol proposed in this paper is concerned with the assessment of the Radon exhalation rate in order to verify that microwave treatments do not increase the Radon naturally exhalated by building materials. In this paper, the preliminary results of the Radon measurements performed on two different type of tuff samples (grey tuff and yellow tuff), typical of the Italian traditional construction heritage, with the E-PERM passive technique at the Environmental Radioactivity Laboratory (Amb.Ra.), University of Salerno, Italy, ISO 9001:2008 certified, are summarized.

  11. Pyroxene thermometry of rhyolite lavas of the Bruneau-Jarbidge eruptive center, Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Cathey, Henrietta E.; Nash, Barbara P.

    2009-11-01

    The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km 3 to 200 km 3 each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ± magnetite ± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe-Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe-Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.

  12. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada

    USGS Publications Warehouse

    White, Art F.; Claassen, H.C.; Benson, Larry V.

    1980-01-01

    Geochemistry of ground water associated with the Tertiary tuffs within Rainier Mesa, southern Nevada, was investigated to determine the relative importance of glass dissolution in controlling water chemistry. Water samples were obtained both from interstitial pores in core sections and from free-flowing fractures. Cation com- positions showed that calcium and magnesium decreased as a function of depth in the mesa, as sodium increased. The maximum effect occurs within alteration zones containing clinoptilolite and montmorillonite, suggesting these minerals effectively remove bivalent cations from the system. Comparisons are made between compositions of ground waters found within Rainier Mesa that apparently have not reacted with secondary minerals and compositions of waters produced by experimental dissolution of vitric and crystalline tufts which comprise the principal aquifers in the area. The two tuff phases have the same bulk chemistry but produce aqueous solutions of different chemistry. Rapid parabolic dissolution of sodium and silica from, and the retention of, potassium within the vitric phase verify previous predictions concerning water compositions associated with vitric volcanic rocks. Parabolic dissolution of the crystalline phase results in solutions high in calcium and magnesium and low in silica. Extrapolation of the parabolic dissolution mechanism for the vitric tuff to long times successfully reproduces, at com- parable pH, cation ratios existing in Rainier Mesa ground water. Comparison of mass- transfer rates of the vitric and crystalline tuffs indicates that the apparent higher glass-surface to aqueous-volume ratio associated with the vitric rocks may account for dominance of the glass reaction.

  13. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a cone-margin surge platform into standing water. Few of the tuff cone deposits display a systematic vertical sequence of stratification styles, structures and grain morphologies. This indicates that either the eruptive style varied irregularly between hydrovolcanic and Strombolian and/or that pyroclasts of different origin were mixed during eruptions.

  14. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone

    NASA Astrophysics Data System (ADS)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence of these studies is the hypothesis that the turtleback or low-angle normal faults represent a thermally-warped detachment fault related to the Black Mountains igneous complex and do not conform with the present domino or a rolling-hinge models of low-angle normal fault development.

  15. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  16. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  17. Water chemistry at Snowshoe Mountain, Colorado: mixed processes in a common bedrock

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.

    2001-01-01

    At Snowshoe Mountain the primary bedrock is quite homogeneous, but weathering processes vary as waters moves through the soils, vadose zone and phreatic zone of the subsurface. In the thin soil, physical degradation of tuff facilitates preferential dissolution of potassium ion from glass within the rock matrix, while other silicate minerals remain unaltered. In the vadose zone, in the upper few meters of fractured bedrock, dilute water infiltrates during spring snowmelt and summer storms, leading to preferential dissolution of augite exposed on fracture surfaces. Deeper yet, in the phreatic zone of the fractured bedrock, Pleistocene calcite fracture fillings dissolve, and dioctahedral and trioctahedral clays form as penetrative weathering alters feldspar and pyroxene. Alkalinity is generated and silica concentrations are buffered by mineral alteration reactions.

  18. Paleomagnetism of the Oligocene Kalamazoo Tuff: implications for middle Tertiary extension in east central Nevada

    USGS Publications Warehouse

    Hagstrum, J.T.; Gans, P.B.

    1989-01-01

    The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors

  19. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas generated by the superposition of high hotspot-derived thermal fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby increasing meteoric water transport to depth and generating conditions for regional scale hydrothermal alteration of the crust. The intricacies of deformation rate and style, and the resulting crustal permeability-depth relations along the hotspot track, offer a qualitative explanation for low-δ18O magmas being pervasive in the CSRP, but restricted to post-caldera and late stage ignimbrites in the eastern SRP centers. This model has significant implications for the evolution of SRP-Y systems, as the thermal inputs required to drive both hydrothermal alteration and crustal melting complicate production of long-lived shallow crustal magma chambers. In addition, this model adds to a growing data set (e.g. Tangbai-Dabie-Sulu province, British Tertiary Igneous Province, etc.) demonstrating low-δ18O magmas can be generated in conjunction with regional scale hydrothermal alteration of the crust, and that this process has occurred throughout the geologic past where extensional tectonics and high thermal fluxes are superimposed.

  20. Geological monitoring of Surtsey, Iceland, 1967-1998

    USGS Publications Warehouse

    Jakobsson, Sveinn P.; Gudmundsson, Gudmundur; Moore, James G.

    2000-01-01

    Aspects of the geological monitoring of the volcanic island of Surtsey 1967-1998, are described. A hydrothermal system was developed within the tephra craters in late 1966 to early 1967. Temperatures in a drill hole, situated at the eastern border of the hydrothermal area, indicate that the hydrothermal system at that site has been cooling at an average rate of ≤ 1°C per year since 1980. The tephra was altered rapidly within the hydrothermal area, producing the first visible palagonite tuff in 1969. A substantial part of the tephra pile above sea level was probably converted to tuff by 1972. The visible area of tuff has gradually increased since then, primarily due to erosion of tephra at the surface. By 1998 52% of the exposed tephra area had been converted to palagonite tuff. By volume, however, some 80-85% of the tephra pile above sea level has been converted to tuff in 1998. The area of Surtsey has shrunk from its original 2.65 km2 (1967) to 1.47 km2 (1998) due to marine abrasion. The geological formations on Surtsey have, however, responded quite variably to erosion. The tephra pile was easily eroded, but marine abrasion. The central core of palagonite tuff is estimated to be ≤0.39 km2. Statistical estimation of models of the decreases of Surtsey indicate that it will last for a long time. The numerical experiments indicate that it will take over 100 years until only the palagonite tuff core is left. It is postulated that the final remnany of Surtsey before complete destruction will be a palagonite tuff crag, comparable to those of the other islands in the Vestmannaeyjar archipelago.

  1. Recrystallization and anatexis along the plutonic-volcanic contact of the Turkey Creek caldera, Arizona

    USGS Publications Warehouse

    du Bray, E.A.; Pallister, J.S.

    1999-01-01

    Unusual geologic and geochemical relations are preserved along the contact between intracaldera tuff and a resurgent intrusion within the 26.9 Ma Turkey Creek caldera of southeast Arizona. Thick intracaldera tuff is weakly argillically altered throughout, except in zones within several hundred meters of its contact with the resurgent intrusion, where the groundmass of the tuff has been variably converted to granophyre and unaltered sanidine phenocrysts are present. Dikes of similarly granophyric material originate at the tuff-resurgent intrusion contact and intrude overlying intracaldera megabreccia and tuff. Field relations indicate that the resurgent intrusion is a laccolith and that it caused local partial melting of adjacent intracaldera tuff. Geochemical and petrographic relations indicate that small volumes of partially melted intracaldera tuff assimilated and mixed with dacite of the resurgent intrusion along their contact, resulting in rocks that have petrographic and compositional characteristics transitional between those of tuff and dacite. Some of this variably contaminated, second-generation magma coalesced, was mobilized, and was intruded into overlying intracaldera rocks. Interpretation of the resurgent intrusion in the Turkey Creek and other calderas as intracaldera laccoliths suggests that intrusions of this type may be a common, but often unrecognized, feature of calderas. Development of granophyric and anatectic features such as those described here may be equally common in other calderas. The observations and previously undocumented processes described here can be applied to identification and interpretation of similarly enigmatic relations and rocks in other caldera systems. Integration of large-scale field mapping with detailed petrographic and chemical data has resulted in an understanding of otherwise intractable but petrologically important caldera-related features.

  2. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  3. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations

    USGS Publications Warehouse

    Buesch, David C.

    2014-01-01

    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  4. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  5. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    USGS Publications Warehouse

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after ignimbrite eruption and caldera collapse. Thus, the Caetano Tuff contradicts models for the mutually exclusive origins of voluminous volcanic and plutonic magmas in the upper crust. Crystal-scale O isotope data indicate that the Caetano Tuff is one of the most 18O-enriched rhyolites in the Great Basin (δ18Omagma = 10·2 ± 0·2‰), supporting anatexis of local metasedimentary basement crust. Metapelite xenoliths in the Carico Lake pluton and ubiquitous xenocrystic zircons in the Caetano Tuff provide constraints for the anatexis process; these data point to shallow (<15 km) dehydration melting of a protolith similar to the Proterozoic McCoy Creek Group siliciclastic sediments in eastern Nevada, projected beneath Caetano in fault-stacked shelf sediments that were thickened during Mesozoic crustal shortening. Mean zircon U–Pb ages for different stratigraphic levels of the intra-caldera Caetano Tuff are 34·2–34·5 Ma, 0·2–0·5 Myr older than the caldera sanidine 40Ar/39Ar age of 34·00 ± 0·03 Ma, documenting protracted duration of assembly and homogenization of isotopically diverse upper crustal melts, followed by crystallization and zonation to generate the Caetano Tuff magma chamber. Sanidine rims in the least evolved Caetano Tuff and in the Carico Lake pluton and Redrock Canyon porphyry have sharply zoned Ba domains that point to crystal growth during magmatic recharge events. The recharge magma is inferred to have been compositionally similar to the Caetano Tuff magma, with increased Ba resulting from remelting of Ba-rich sanidine cumulates. Mush reactivation to generate the Caetano Tuff eruption was sufficiently rapid to preserve compositional gradients in the intracaldera ignimbrite, calling into question models that predict homogeneity as a prerequisite for remobilizing crystal-rich ignimbrite magmas.

  6. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less

  7. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.« less

  8. The Late-Holocene evolution of the Miseno area (south-western Campi Flegrei) as inferred by stratigraphy, petrochemistry and 40Ar/39Ar geochronology:Chapter 6 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    USGS Publications Warehouse

    Insinga, Donatella; Calvert, Andrew T.; Lanphere, Marvin A.; Morra, Vincenzo; Perrotta, Annamaria; Sacchi, Marco; Scarpati, Claudio; Saburomaru, James; Fedele, Lorenzo

    2006-01-01

    This study on terrestrial and marine successions increases the understanding of the Late-Holocene volcanological and stratigraphical evolution of the south-western part of Campi Flegrei caldera.Stratigraphic data derived from field studies of two major tuff vents located along the coastal zone, namely Porto Miseno and Capo Miseno, clearly indicate that the Porto Miseno tuff ring slightly predates the Capo Miseno tuff cone. 40Ar/39Ar step-heating experiments, carried out on fresh sanidine separates from pumice samples, yielded a plateau age of 5090±140 yr BP for Capo Miseno and 6490±510 yr BP for Porto Miseno vent, thus confirming field observations.The volcanoclastic input derived from this recent and intense eruptive activity played a major role in the inner-shelf stratigraphic evolution of the Porto Miseno Bay deposits that have been drilled up to 40 m depth off the crater rim. The cored succession is characterised by transgressive marine deposits (mostly volcanic sand) with two intercalated peat layers (t1 and t2), dated at 3560±40 yr BP and 7815±55 yr BP (14C), respectively, interbedded with a 1–5 m thick pumice layer (tephra C). Peat layers have been chronostratigraphically correlated with two widespread paleosols onland while petrochemical analyses allowed us to correlate tephra C with the Capo Miseno tuff cone deposits.The results presented in this study imply a Late-Holocene volcanic activity that is also well preserved in the marine record in this sector of the caldera where a new chronostratigraphic reconstruction of the eruptive events is required in order to better evaluate the hazard assessment of the area.

  9. The Menengai Tuff: A 36 ka widespread tephra and its chronological relevance to Late Pleistocene human evolution in East Africa

    NASA Astrophysics Data System (ADS)

    Blegen, Nick; Brown, Francis H.; Jicha, Brian R.; Binetti, Katie M.; Faith, J. Tyler; Ferraro, Joseph V.; Gathogo, Patrick N.; Richardson, Jonathan L.; Tryon, Christian A.

    2016-11-01

    The East African Rift preserves the world's richest Middle and Late Pleistocene (∼780-12 ka) geological, archaeological and paleontological archives relevant to the emergence of Homo sapiens. This region also provides unparalleled chronological control for many important sites through tephrochronology, the dating and correlation of volcanic ashes as widespread isochronous markers in the geological record. There are many well-characterized Pliocene-Early Pleistocene tephras that are widespread across East Africa. A comparable framework is lacking for the Middle and Late Pleistocene; a period characterized by spatially and temporally complex patterns of climate change, as well as the emergence of modern Homo sapiens and the dispersal of this species across and out of Africa. Unraveling relationships among these spatial and temporally complex phenomena requires a precise chronology. To this end we report the Menengai Tuff, a widespread volcanic ash produced by the large-scale caldera-forming eruption in Kenya and 40Ar/39Ar dated to 35.62 ± 0.26 ka. Geochemical characterization of 565 glass shards from 36 samples by wavelength-dispersive electron probe microanalysis show the Menengai Tuff was deposited over >115,000 km2 and is found in the Baringo, Chalbi, Elmenteita, Nakuru, Olorgesailie, Turkana, and Victoria basins, all of which preserve rich Late Pleistocene paleoenvironmental and archaeological archives. Correlation and dating of the Menengai Tuff demonstrate that it is the most widespread tephra and largest eruption currently known from the Late Pleistocene of East Africa. As such, it is a valuable marker in establishing a Late Pleistocene chronology for paleoclimatic, archeological, and paleontological records relevant to the study of human evolution.

  10. The Early Oligocene Copperas Creek Volcano and geology along New Mexico Higway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument, Grant and Catron Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Mack, Greg; Witcher, James; Lueth, Virgil W.

    2008-01-01

    The section of New Mexico Highway 15 between the intersection of NM-15 and NM 35 (aka Sapillo junction) at the south and the Gila Cliff Dwellings National Monument at the north end of NM –15 occupies an approximately 18 mile long, mile wide, corridor through the eastern part of the Gila Wilderness (Fig. 1). Whereas most of the Gila Wilderness is dominated by silicic, caldera-forming supervolcanoes of Eocene to Oligocene age, this part of NM-15 traverses a volcanic terrain of similar age, but composed mainly of intermediate composition lava flows and minor associated rhyolitic intrusions and pyroclastic rocks, which are related to the here-named Copperas Creek volcano. This volcanic complex is bounded by Basin and Range structures: on the south by the Sapillo Creek graben, and on the north by the Gila Hot Springs graben, both of which are filled with Gila Conglomerate of late Tertiary to Pleistocene(?) age. Hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben. The cliff dwellings of the National Monument were constructed in caves in Gila Conglomerate in the western part of the Gila Hot Springs graben. The eastern edge of the Gila Cliff Dwellings caldera is buried by younger rocks east of the cliff dwellings, but spectacular cliffs of Bloodgood Canyon Tuff, which fills the caldera, can be viewed along the West Fork of the Gila River from the trail starting at the cliff dwellings. Although this is not intended as a formal road log, highway mileage markers (MM) will be used to locate geologic features more or less progressively from south to north along NM-15.

  11. Utilization of ultrasonic atomization for dust control in underground mining

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Kawamura, Youhei; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    This study examined dust suppression using water particles generated by ultrasonic atomization (2.4 MHz) at low temperature (10 °C). Green tuff (4 µm), green tuff (6 µm), kaolin, and silica were used as dust samples. Even though ultrasonic atomization makes fine water particles, raising relative air humidity immediately was difficult at low temperature. However, remaining water particles that did not change to water vapor contributed to suppression of dust dispersion. Additionally, the effect of water vapor amount (absolute humidity) and water particles generated by ultrasonic atomization on the amount of dust dispersion was investigated using experimental data at temperatures of 10, 20, and 30 °C. Utilization of ultrasound atomization at low temperature has the advantages of low humidity increments in the working space and water particles remaining stable even with low relative air humidity.

  12. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less

  13. A cross correlation method for chemical profiles in minerals, with an application to zircons of the Kilgore Tuff (USA)

    NASA Astrophysics Data System (ADS)

    Probst, L. C.; Sheldrake, T. E.; Gander, M. J.; Wallace, G.; Simpson, G.; Caricchi, L.

    2018-03-01

    Magmatic crystals are characterised by chemical zonation patterns that reflect the thermal and chemical conditions within magma reservoirs in which they grew. Crystals that exhibit similar patterns of zonation are often interpreted to have experienced similar conditions of growth. These patterns of zonation may represent continuous processes such as cooling, or more instantaneous events such as magma injection, and provide an insight into the structure and evolution of a magmatic system, both temporally and spatially. We have developed an algorithm that is objectively able to quantify the similarity within and between suites of magmatic crystals from different samples. Significantly, the algorithm is able to identify correlation that occurs between the interiors of two crystals, but does not extend to the rim, which provides an opportunity to understand the long-term evolution of magmatic systems. We develop and explain the mathematical basis for our algorithm and introduce its application using cathodoluminescence images of zircons from the Kilgore Tuff (USA). The results allow us to correlate samples from two different outcrops that are found over 80 km apart.

  14. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  15. Long Valley Caldera 2003 through 2014: overview of low level unrest in the past decade

    USGS Publications Warehouse

    Wilkinson, Stuart K.; Hill, David P.; Langbein, John O.; Lisowski, Michael; Mangan, Margaret T.

    2014-01-01

    Long Valley Caldera is located in California along the eastern escarpment of the Sierra Nevada Range. The caldera formed about 760,000 years ago as the eruption of 600 km3 of rhyolite magma (Bishop Tuff) resulted in collapse of the partially evacuated magma chamber. Resurgent doming in the central part of the caldera occurred shortly afterwards, and the most recent eruptions inside the caldera occurred about 50,000 years ago. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation and seismicity since at least 1978. Periods of intense unrest in the 1980s to early 2000s are well documented in the literature (Hill and others, 2002; Ewert and others, 2010). In this poster, we extend the timeline forward, documenting seismicity and deformation over the past decade.

  16. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  17. Sedimentary conditions of Upper Permian volcano-clastic rocks of Ayan-Yrahskiy anticlinorium (Verhoyansk-Kolyma orogen)

    NASA Astrophysics Data System (ADS)

    Astakhova, Anna; Khardikov, Aleksandr

    2013-04-01

    Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.

  18. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    NASA Astrophysics Data System (ADS)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  19. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: implications for the origin of lithium-rich brines

    USGS Publications Warehouse

    Hofstra, Albert H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E.

    2013-01-01

    To evaluate whether anatectic and/or highly fractionated lithophile element-enriched rhyolite tuffs deposited in arid lacustrine basins lose enough lithium during eruption, lithification, and weathering to generate significant Li brine resources, pre-eruptive melt compositions, preserved in inclusions, and the magnitude of post-eruptive Li depletions, evident in host rhyolites, were documented at six sites in the western United States. Each rhyolite is a member of the bimodal basalt-rhyolite assemblage associated with extensional tectonics that produced the Basin and Range province and Rio Grande rift, an evolving pattern of closed drainage basins, and geothermal energy or mineral resources. Results from the 0.8 Ma Bishop tuff (geothermal) in California, 1.3 to 1.6 Ma Cerro Toledo and Upper Bandelier tephra (geothermal) and 27.9 Ma Taylor Creek rhyolite (Sn) in New Mexico, 21.7 Ma Spor Mountain tuff (Be, U, F) and 24.6 Ma Pine Grove tuff (Mo) in Utah, and 27.6 Ma Hideaway Park tuff (Mo) in Colorado support the following conclusions. Melt inclusions in quartz phenocrysts from rhyolite tuffs associated with hydrothermal deposits of Sn, Mo, and Be are extremely enriched in Li (1,000s of ppm); those from Spor Mountain have the highest Li abundance yet recorded (max 5,200 ppm, median 3,750 ppm). Forty-five to 98% of the Li present in pre-eruptive magma was lost to the environment from these rhyolite tuffs. The amount of Li lost from the small volumes (1–10 km3) of Li-enriched rhyolite deposited in closed basins is sufficient to produce world-class Li brine resources. After each eruption, meteoric water leaches Li from tuff, which drains into playas, where it is concentrated by evaporation. The localized occurrence of Li-enriched rhyolites may explain why brines in arid lacustrine basins seldom have economic concentrations of Li. Considering that hydrothermal deposits of Sn, Mo, Be, U, and F may indicate potential for Li brines in nearby basins, we surmise that the world’s largest Li brine resource in the Salar de Uyuni (10 Mt) received Li from nearby rhyolite tuffs in the Bolivian tin belt.

  20. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits, and mid-ocean ridge hydrothermal systems. The columns allow direct observation to constrain complex models of multiphase convection, reactive transport, and permeability. Our results also have paleoclimate implications, implying a large and stable source of water in the SE/SSE Long Valley area immediately after the ~760,000 ka caldera-forming eruption.

  1. Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

  2. SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of sedimentary strata

    USGS Publications Warehouse

    Evans, K.V.; Aleinikoff, J.N.; Obradovich, J.D.; Fanning, C.M.

    2000-01-01

    New sensitive high resolution ion microprobe (SHRIMP) U-Pb zircon analyses from two tuffs and a felsic flow in the middle and upper Belt Supergroup of northwestern Montana significantly refine the age of sedimentation for this very thick (15-20 km) Middle Proterozoic stratigraphic sequence. In ascending stratigraphic order, the results are (1) 1454 ?? 9 Ma for a tuff in the upper part of the Helena Formation at Logan Pass, Glacier National Park; (2) 1443 ?? 7 Ma for a regionally restricted porphyritic rhyolite to quartz latite flow of the Purcell Lava in the Yaak River region; and (3) 1401 ?? 6 Ma for a tuff in the very thin transition zone between the Bonner Quartzite and Libby Formation, west of the town of Libby. Combining these ages with those previously published by other workers for ca. 1470-Ma sills in the lower Belt in Montana and Canada indicates that all but the uppermost Belt strata (about 1700 m) were deposited over a period of about 70 million years, considerably reducing the time span from longstanding estimates ranging from 250 to 600 million years. Calculated sediment accumulation rates between dated samples indicates rapid, but not unreasonable, values for early Belt strata, with decreasing rates through time. These ages also suggest the inadequacy of previously published paleomagnetic data to resolve Belt Supergroup chronology at an appropriate level of accuracy.

  3. Physical properties of Campi Flegrei tuff from variable depths

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Del Gaudio, Pierdomenico; Iarocci, Alessandro; Mollo, Silvio; Scarlato, Piergiorgio; Freda, Carmela

    2010-05-01

    A number of measurements on physical properties of volcanic tuff from different volcanic Italian districts (Campi Flegrei, Colli Albani, Lago di Vico) has been performed in the recent years. Petrophysical investigations carried out at increasing/decreasing effective pressure (Vinciguerra et al., 2005; 2008) revealed how, within the same lithology, the different degree of lithification and presence of clasts can affect significantly physical property values. Microstructural analyses revealed that the pressurization and depressurization cycles generate inelastic crack damage/pore collapse and permanent reduction of voids space. When cores from boreholes were investigated, significant variations of physical properties have been found even within the same tuff lithologies (Vinciguerra et al., 2008), which significantly influence the modelling of the overall physics and mechanics, as well as the input parameters for ground deformation and seismicity modelling. In this study we analysed the physical properties of Campi Flegrei tuff (12ka) cores from depths down to 100m, which is the most abundant and widely distributed lithology in the caldera (Rosi and Sbrana, 1987). CF tuff is a strongly heterogeneous pyroclastic flow material, which include cavities, pumice and crystals of sanidine, pyroxene and biotite (Vanorio et al., 2002; Vinciguerra et al., 2005). Total porosity was measured, after drying samples at 80°C for 24 hours, throughout a helium pycnometer (AccuPyc II 1340, Micromeritics Company) with ±0.01% accuracy. Initial total porosity of 52% was found for cores coming from 30m of depth. Total porosity decreases to 46% , when cores from 100m depth are considered. Bench measurements of P-wave and S-wave velocities carried out in dry conditions are of 1.8 and 1.2 km/s respectively for the 30m depth cores and increase up to 2.1 km/s and 1.35 km/s at depth of 100m. Taken together, the measurements of porosity and seismic velocities of P and S wave velocities revealed a significant compaction occurring even at such shallow depths. This observation suggests that pore collapse is a pervasive mechanism affecting such weak lithologies and can be activated even from very modest increase of effective pressure (1-10MPa). In order to proof this we aim to carry out simultaneous seismic velocity and permeability under increasing effective pressure, which simulate the lithostatic increasing load. The results obtained from laboratory measurements and their comparison with field determinations, such as sonic logs, provide crucial information for the interpretation of the inner volcanic district structure, and in turn suggest if/how mechanical and thermal stress can significantly change the rheology and permeability tuffs, opening new perspectives for the interpretation of the caldera dynamics.

  4. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    USGS Publications Warehouse

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system. ?? 1993.

  5. Oxygen isotopic and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains, Russia

    USGS Publications Warehouse

    Gazis, C.; Taylor, H.P.; Hon, K.; Tsvetkov, A.

    1996-01-01

    Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was focused within the upper 750 m of intracaldera tuff. Mass balance calculations indicate fluid fluxes of = 6 ?? 10-6 mol cm-2 s-1. We believe that the closest historical analogue to this Chegem hydrothermal event is the situation observed in the Valley of Ten Thousand Smokes (Alaska, USA), where hundreds of steam fumaroles with measured temperatures as high as 645??C persisted for 10 to 15 years in the much smaller welded ash-flow tuff sheet (??? 200 m thick) produced by the 1912 Katmai eruption.

  6. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204Pb. The distribution of Sr-Nd isotopic compositions in the late Cretaceous igneous rocks from different locations of the Eastern Pontides Orogenic Belt is consistent with two-component mixing between depleted mantle and crust. However, the Pb isotopic data are not compatible with two-component mixing and require at least a third component. Considering all of the new data and also previous data such as southward migration and increasing potassium content of the late Cretaceous arc volcanism, the northward migration of Cenozoic igneous activity, northward drift of the belt since the late Cretaceous and the existence of south-dipping reverse fault systems in the whole region, the Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt can be best explained by southward subduction of Tethys oceanic lithosphere, rather than northward subduction.

  7. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within Yellowstone Lake, which is mostly within the Yellowstone caldera, aeromagnetic lows also are associated with known hydrothermal activity in the lake. Many of the magnetic lows extend beyond the areas of alteration and hot springs, suggesting a more extensive currently active or fossil hydrothermal system than is currently mapped. Steep magnetic gradients, suggesting faults or fractures, bound the magnetic lows. This implies that fractures localize the hot springs. Magnetic gradient trends reflect the mapped Basin and Range structural trends of north and northwest, as well as northeasterly trends that parallel the regional trend of the Snake River Plain and the track of the Yellowstone hot spot which follow the Precambrian structural grain. These trends are found both at small scales such as in hydrothermal basins and at more regional fault scales, which suggests that the regional stress field and reactivated older structures may exert some control on localization of hydrothermal activity. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Comparison of neptunium sorption results using batch and column techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less

  9. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    USGS Publications Warehouse

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the Sierra Nevada, which was not a barrier to westward flow of ash flows at that time. At least three tuffs flowed eastward across a north-south paleodivide through central Nevada. That tuffs could flow significant distances apparently uphill raises questions about the absolute elevation of the region and the elevation, relief, and location of the paleodivide.Calderas are equant to slightly elongate, at least 12 km in diameter, and as much as 35 km in longest dimension. Exceptional exposure of two caldera complexes that resulted from extensional faulting and tilting show that calderas subsided as much as 5 km as large piston-like blocks; caldera walls were vertical to steeply inward dipping to depths ≥4–5 km, and topographic walls formed by slumping of wall rock into the caldera were only slightly outboard (≤1 km) of structural margins.Most calderas show abundant post-collapse magmatism expressed as resurgent intrusions, ring-fracture intrusions, or intracaldera lavas that are closely related temporally (∼0–0.5 Ma younger) to caldera formation. Granitoid intrusions, which were emplaced at paleodepths ranging from <1 to ∼7 km, are compositionally similar to both intracaldera ash-flow tuffs and post-caldera lavas. Therefore in the western Nevada volcanic field, erupted caldera-forming tuffs commonly were the upper parts of large magma chambers that retained considerable volumes of magma after tuff eruption.Several calderas in the western Nevada volcanic field hosted large hydrothermal systems and underwent extensive hydrothermal alteration. Different types of hydrothermal systems (neutral-pH alkali-chloride and acid or low-pH magmatic-hydrothermal) may reflect proximity to (depth of) large resurgent intrusions. With the exception of the giant Round Mountain epithermal gold deposit, few known caldera-related hydrothermal systems are strongly mineralized. Major middle Cenozoic precious and base metal mineral deposits in and along the margins of the western Nevada volcanic field are mostly related to intrusive rocks that preceded caldera-forming eruptions.

  10. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of the cooling units. The chemical gradients in the apatite and whole-rock data in the Joe Loft Tuff Member and the consistent mineral assemblages throughout the ash-flow cannot be explained by crystal settling. The fractionation of the Joe Lott Tuff Member appears to closer fit the model of convection-driven thermogravitational diffusion.

  11. Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)

    NASA Astrophysics Data System (ADS)

    Sohn, Y. K.; Son, M.; Jeong, J. O.; Jeon, Y. M.

    2009-10-01

    The Cretaceous Kusandong Tuff, Korea, is a thin (1-5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55-73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of pyroclastic density currents from shallow-level blasts at the onset of eruption. The eruption occurred through multiple vent sites in a short period of time, producing a seemingly single but actually composite ignimbrite unit. Such an eruption was probably possible because of a regional tectonic event within the basin or in its vicinity. It is proposed that a composite ignimbrite with the characteristics of the Kusandong Tuff can be an exemplary product of syntectonic volcanism that can provide an insight into the interpretation of structural and stratigraphic evolution of a sedimentary basin.

  12. Energy Dissipation in Calico Hills Tuff due to Pore Collapse

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.; Morrow, C. A.

    2008-12-01

    Laboratory tests indicate that the weakest portions of the Calico Hills tuff formation are at or near yield stress under in situ conditions and that the energy expended during incremental loading can be more than 90 percent irrecoverable. The Calico Hills tuff underlies the Yucca Mountain waste repository site at a depth of 400 to 500 m within the unsaturated zone. The formation is highly variable in the degree of both vitrification and zeolitization. Since 1980, a number of boreholes penetrated this formation to provide site characterization for the YM repository. In the past, standard strength measurements were conducted on core samples from the drillholes. However, a significant sampling bias occurred in that tests were preferentially conducted on highly vitrified, higher-strength samples. In fact, the most recent holes were drilled with a dry coring technique that would pulverize the weakest layers, leaving none of this material for testing. We have re-examined Calico Hills samples preserved at the YM Core Facility and selected the least vitrified examples (some cores exceeded 50 percent porosity) for mechanical testing. Three basic tests were performed: (i) hydrostatic crushing tests (to 350 MPa), (ii) standard triaxial deformation tests at constant effective confining pressure (to 70 MPa), and (iii) plane strain tests with initial conditions similar to in situ stresses. In all cases, constant pore pressure of 10 MPa was maintained using argon gas as a pore fluid and pore volume loss was monitored during deformation. The strongest samples typically failed along discrete fractures in agreement with standard Mohr-Coulomb failure. The weaker, high porosity samples, however, would fail by pure pore collapse or by a combined shear-induced compaction mechanism similar to failure mechanisms described for porous sandstones and carbonates. In the plane-strain experiments, energy dissipation due to pore collapse was determined for eventual input into dynamic wave calculations. These calculations will simulate ground accelerations at the YM repository due to propagation of high-amplitude compressional waves generated by scenario earthquakes. As an example, in one typical test on a sample with 43 percent starting porosity, an axial stress increase of 25 MPa resulted from 6 percent shortening and energy dissipation (due to grain crushing and pore collapse) of approximately 1.5x106 J/m3. Under proper conditions, this dissipation mechanism could represent a significant absorption of radiated seismic energy and the possible shielding of the repository from extreme ground shaking.

  13. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.

    2014-12-01

    Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.

  14. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less

  15. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  16. Characterization of the hydrology, water chemistry, and aquatic communities of selected springs in the St. Johns River Water Management District, Florida, 2004

    USGS Publications Warehouse

    Phelps, G.G.; Walsh, Stephen J.; Gerwig, Robert M.; Tate, William B.

    2006-01-01

    The hydrology, water chemistry, and aquatic communities of Silver Springs, De Leon Spring, Gemini Springs, and Green Spring in the St. Johns River Water Management District, Florida, were studied in 2004 to provide a better understanding of each spring and to compile data of potential use in future water-management decisions. Ground water that discharges from these and other north-central Florida springs originates from the Upper Floridan aquifer of the Floridan aquifer system, a karstic limestone aquifer that extends throughout most of the State's peninsula. This report summarizes data about flow, water chemistry, and aquatic communities, including benthic invertebrates, fishes, algae, and aquatic macrophytes collected by the U.S. Geological Survey, the St. Johns River Water Management District, and the Florida Department of Environmental Protection during 2004, as well as some previously collected data. Differences in water chemistry among these springs reflect local differences in water chemistry in the Upper Floridan aquifer. The three major springs sampled at the Silver Springs group (the Main Spring, Blue Grotto, and the Abyss) have similar proportions of cations and anions but vary in nitrate and dissolved oxygen concentrations. Water from Gemini Springs and Green Spring has higher proportions of sodium and chloride than the Silver Springs group. Water from De Leon Spring also has higher proportions of sodium and chloride than the Silver Springs group but lower proportions of calcium and bicarbonate. Nitrate concentrations have increased over the period of record at all of the springs except Green Spring. Compounds commonly found in wastewater were found in all the springs sampled. The most commonly detected compound was the insect repellant N,N'-diethyl-methyl-toluamide (DEET), which was found in all the springs sampled except De Leon Spring. The pesticide atrazine and its degradate 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) were detected in water from the Silver Springs group and in both boils at Gemini Springs. No pesticides were detected in water samples from De Leon Spring and Green Spring. Evidence of denitrification was indicated by the presence of excess nitrogen gas in water samples from most of the springs. Aquatic communities varied among the springs. Large floating mats of cyanobacteria (blue-green algae), identified as Lyngbya wollei, were observed in De Leon Spring during all sampling events in 2004. At Gemini Springs, the dominant periphyton was Rhizoclonium sp. Of the three springs sampled for benthic invertebrates, De Leon Spring had the highest overall species richness and most disturbance intolerant species (Florida Index = 4). Green Spring had the lowest species richness of the springs sampled. Based on qualitative comparisons, overall macroinvertebrate species richness seemed to be negatively related to magnesium, potassium, sodium, and specific conductance. Invertebrate abundance was greatest when dissolved oxygen and nitrate were high but phosphorus and potassium concentrations were low. Dipteran abundance seemed to be positively associated with specific conductance and total organic carbon but negatively associated with nitrate-N. Amphipods were the numerically dominant group collected in most (six of nine) collections. Shifts in amphipod abundance of the two species collected (Gammarus sp. and Hyalella azteca) varied by season among the three springs, but there were no trends evident in the variation. Fish populations were relatively species-rich at the Silver Springs group, De Leon Spring, and Gemini Springs, but not at Green Spring. Nonindigenous fish species were observed at all springs except Green Spring.

  17. Carbonatite tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany

    USGS Publications Warehouse

    Hay, R.L.; O'Neil, J.R.

    1983-01-01

    Carbonatite lava and tephra are now well known. The only modern eruptive carbonatites, from Oldoinyo Lengai, Tanzania, are of alkali carbonatite, whereas all of the pre-modern examples are of calcite or dolomite. Chemical and stable isotope analyses were made of separate phases of Pliocene carbonatite tuffs of the Laetolil Beds in Tanzania and of Miocene carbonatite tuffs of the Kaiserstuhl in Germany in order to understand the reasons for this major difference. The Laetolil Beds contain numerous carbonatite and melilitite-carbonatite tuffs. It is proposed that the carbonatite ash was originally of alkali carbonate composition and that the alkali component was dissolved, leaving a residuum of calcium carbonate. The least recrystallized melilitite-carbonatite tuff contains early-deposited calcite cement and calcite pseudomorphs after nyerereite (?) that have contents of strontium and barium and ??18O and ??13C values suggestive of incomplete chemical and isotopic exchange during alteration and replacement of alkali carbonatite ash. Carbonatite tuffs of the Kaiserstuhl contain globules composed of calcite phenocrysts and microphenocrysts in a groundmass of calcite with a small amount of clay, apatite, and magnetite. The SrO contents of phenocrysts, microphenocrysts, and groundmass calcite average 0.90, 1.42, and 0.59 percent, respectively. The average ??18O and ??13C values of globules (+14.3 and -9.0, respectively) fall between those of coarse-grained intrusive Kaiserstuhl carbonatite (avg. +6.6, -5.8) and those of low-temperature calcite cement in the carbonatite tuffs (+21.8, -14.9). The phenocrysts and microphenocrysts are primary magmatic calcite, but several features indicate that the groundmass has been recrystallized and altered in contact with meteoric water, resulting in weathering of silicate to clay, leaching of strontium, and isotopic exchange. The weight of evidence favors an original high content of alkali carbonatite in the groundmass, with recrystallization following leaching of the alkalies. ?? 1983 Springer-Verlag.

  18. Effect of the addition of by-product ash of date palms on the mechanical characteristics of gypsum-calcareous materials used in road construction

    NASA Astrophysics Data System (ADS)

    Khellou, A.; Kriker, A.; Hafssi, A.; Belbarka, K.; Baali, K.

    2016-07-01

    The gypsum-calcareous materials, also known as the crusting tuff, are used in the pavement layers of low -traffic road and considered as the materials of first choice in the Saharan region of Algeria. The objective of this paper is to study the mechanical characteristics of tuff of Ouargla town that is situated in the Southeast of Algeria, by adding different percentage of ash resulted from the combustion of by-products of date palms, such as 4%, 8% and l2%, to the tuff. The results obtained have shown a remarkable improvement both in compressive strength at different ages and in the bearing index in the two cases immediate and after immersion in water. These characteristics of the mixture (tuff+ash) reach their maximum values at the 8% of ash addition.

  19. Translation vs. Rotation: The Battle for Accommodation of Dextral Shear at the Northern Terminus of the Central Walker Lane, Western Nevada

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; Faulds, J. E.

    2014-12-01

    Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left-stepping system of dextral fault. The left steps are analogous to Riedel shears developing above a more through-going shear zone at depth. However, a site directly adjacent to the Benton Springs fault is rotated ~30° CW, likely due to fault drag. These results show the complex and important contribution of vertical-axis rotations in accommodation of dextral shear.

  20. Comparing pre- and post-chemical abrasion ages for Miocene Peach Springs Tuff zircon from ID-TIMS and SIMS analyses

    NASA Astrophysics Data System (ADS)

    Lidzbarski, M. I.; Mundil, R.; Miller, J. S.; Vazquez, J. A.

    2012-12-01

    The Miocene Peach Spring Tuff (PST) is a voluminous (>600 km3), zoned ignimbrite (trachyte to high-SiO2 rhyolite) that is exposed widely in eastern California, western Arizona, and southernmost Nevada, which was erupted from the Silver Creek caldera in the southwestern Black Mountains, AZ. PST serves as a regionally widespread marker unit and its eruption age has been determined to 18.8 to 18.9 Ma by 40Ar/39Ar methods, when corrected for systematic bias and normalized to the U-Pb system (Renne et al., 2010,). We performed ion-microprobe (SIMS) U-Pb dating of zircon from individual pumice clasts from PST to evaluate the growth history of zircon in the PST magma system. Sectioned, polished zircon from conventional epoxy mounts allows dating of internal growth domains (e.g. cores, interiors, and near-rim), whereas mounting unpolished zircon in indium and analyzing unpolished crystal faces provides a means to selectively sample the final increments of crystal growth (Reid and Coath, 2000). Combining U-Pb ages of unpolished zircon rims with near-rim interior analyses on sectioned grains yields a mean age of ca. 18.3 Ma, whereas ages of cores of sectioned crystals yield a mean of ca. 18.9 Ma. Several zircons have rim and/or core ages that are several hundred thousand years older or younger than these means (up to 1 m.y. total spread), although the uncertainties for individual SIMS ages are 2 to 5% (2 sigma uncertainty). Therefore, the distribution of ages is challenging to resolve. A modest number of the older grains are plausibly recycled antecrysts, but we suspect that the youngest zircons may have experienced Pb-loss. Failure to account for the possibility of inheritance and Pb-loss may lead to erroneous interpretations about crystallization in the PST system. In order to evaluate and mitigate the effects of Pb-loss, we employed the chemical abrasion (CA) technique of Mattinson (2005), which effectively eliminates domains in zircon that have suffered Pb-loss, and removes micro-inclusions that typically contain common Pb. Thermal annealing followed by CA techniques were used for ID-TIMS dating of a sub-set of zircon crystals previously analyzed by SIMS. Prior to TIMS analyses, zircon crystals were imaged by scanning electron microscopy (SEM) to evaluate the effects of CA on crystal domains sampled by SIMS. SEM images reveal that whole portions of crystals were removed by the CA technique, and a heterogeneous pattern of etching that was not confined to specific compositional zones visible in cathodoluminescence. Most of the SIMS sputter pits that yield spurious ages, are associated with etching and/or preferential annealing by the combined annealing and CA technique, suggesting that the young ages relative to the 40Ar/39Ar age may be due to Pb loss. ID-TIMS yields a coherent U-Pb age population of 18.8 Ma, with several older and younger crystals that might reflect xenocrysts, Pb-loss, and/or younger crystallization. In order to maintain spatial resolution and further evaluate the effects of Pb-loss in PST zircon, the annealing and CA-technique will be applied to zircon prior to SIMS dating. References: Reid and Coath, 2000, Geology 28: 443 Renne et al., 2010, GCA 78: 5349

  1. Permeability and microstructural changes due to weathering of pyroclastic rocks in Cappadocia, central Turkey

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, M.; Anma, R.; Shiomi, K.

    2014-12-01

    Studies of permeability changes of rocks during weathering are important to understand the processes of geomorphological development and how they are influenced by cyclic climatic conditions. Especially volcanic tuffs and pyroclastic flow deposits are easily affected by water absorption and freezing-thawing cycle (Erguler. 2009, Çelik and Ergül 2014). Peculiar erosional landscapes of Cappadocia, central Turkey, with numerous underground cities and carved churches, that made this area a world heritage site, are consists of volcanic tuffs and pyroclastic flow deposits. Understanding permeability changes of such rocks under different conditions are thus important not only to understand fundamental processes of weathering, but also to protect the landscapes of the world heritage sites and archaeological remains. In this study, we aim to evaluate internal void structures and bulk permeability of intact and weathered pyroclastic rocks from Cappadocia using X-ray CT, mercury intrusion porosimetry data and permeability measurement method of flow pump test. Samples of pyroclastic deposits that comprise the landscapes of Rose Valley and Ihlara Valley, were collected from the corresponding strata outside of the preservation areas. Porosity and pore-size distribution for the same samples measured by mercury intrusion porosimetry, indicate that the intact samples have lower porosity than weathered samples and pore sizes were dominantly 1-10μm in calculated radii, whereas weathered samples have more micropores (smaller than 1 μm). X-ray CT images were acquired to observe internal structure of samples. Micro-fractures, probably caused by repeated expansion and contraction due to temperature changes, were observed around clast grains. The higher micropore ratio in weathered samples could be attributed to the development of the micro-farctures. We will discuss fundamental processes of weathering and geomorphological development models using these data.

  2. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range(?) Formation was erupted 30-31 m.y. ago from an unknown source. Mineralization probably did not occur during the rhyolitic stage of volcanism. The last stage of volcanism was contemporaneous with basin-and-range faulting and was characterized by explosive eruption of ash and pumice, forming stratified tuff, and by quiet eruption of alkali rhyolite as viscous flows and domes. The first episode of alkali rhyolite volcanism deposited the beryllium tuff and porphyritic rhyolite members of the Spor Mountain Formation 21 m.y. ago. After a period of block faulting, the stratified tuff and alkali rhyolite of the Topaz Mountain Rhyolite were erupted 6-7 m.y. ago along faults and fault intersections. Erosion of Spor Mountain, as well as explosive eruptions through dolomite, provided abundant dolomite detritus to the beryllium tuff member. The alkali rhyolite of both formations is fluorine rich, as is evident from abundant topaz, and contains anomalous amounts of lithophile metals. Alkali rhyolite volcanism was accompanied by lithophile metal mineralization which deposited fluorite, beryllium, and uranium. The structure of the area is dominated by the Thomas caldera and the younger Dugway Valley cauldron, which is nested within the Thomas caldera; the Thomas caldera is surrounded by a rim of Paleozoic rocks at Spor Mountain and Paleozoic to Precambrian rocks in the Drum Mountains. The Joy fault and Dell fault system mark the ring-fracture zone of the Thomas caldera. These structural features began to form about 39 m.y. ago during eruption of the Mt. Laird Tuff and caldera subsidence. The Dugway Valley cauldron sank along a series of steplike normal faults southeast of Topaz Mountain in response to collapse of the magma chamber of the Joy Tuff. Caldera structure was modified by block faulting between 21 and 7 m.y. ago, the time of widespread extensional faulting in the Basin and Range Province. Vents erupted alkali rhyolite 6-7 m.y. ago along basin-and-range faults.

  3. SEM-MLA-based Investigation of the Composition of Mafic Volcaniclastic Deposits from the Paraná Large Igneous Province, Brazil

    NASA Astrophysics Data System (ADS)

    Höfig, D. F.; Höfig, T. W.; Licht, O. A. B.; Haser, S.; Valore, L.

    2017-12-01

    Mafic volcaniclastic deposits (MVDs) have been widely reported in Large Igneous Provinces around the world, except for the Paraná Province (review by Ross et al., 2005: J Volcanol Geotherm Res, 145, pp. 281-314). Recent geochemical classification for this unit highlights, however, the occurrence of such deposits, connected to basic lava flows, mostly those High Ti - High P ones (Licht.: J Volcanol Geotherm Res, in press). In southern Brazil, MVDs intercalated with lava flows have been reported at 680 sites, showing conspicuous poorly sorted polymictic breccia at the base, grading to tuff breccias and red silicified tuffs at the top. Newly sampled rocks of Paraná mafic volcanoclastic deposits unravel important information about the composition utilizing Scanning Electron Microscopy-based Mineral Liberation Analysis. Overall, they show similar mineralogy presenting obsidian (25-40%), different phases of iron oxide (5-20%), quartz (10-25%), plagioclase (5-25%), celadonite (5-25%), and chlorite (5-10%). The breccias reveal a greater content of celadonite due to the presence of altered hypohyaline and hypocrystalline basaltic shards, whereas the tuffs are more enriched in glass. Different generations of plagioclase are attributed to various basalt shards and clasts as well vitroclasts found in the matrix. It is proposed that the MVDs were generated by explosive events due the interaction between the ascending mafic magma and deep aquifer systems and its siliciclastic matrix represents the country rock, i.e., the underneath Paleozoic sedimentary sequence of Paraná Basin.

  4. Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, M.S. Jr.; Thordarson, W.; Eshom, E.P.

    This report presents data on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1219 meters. Depthmore » to water below land surface was 519 meters, or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member of the Crater Flat Tuff (Tertiary age) was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member of the Crater Flat Tuff, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. 7 references, 26 figures, 9 tables.« less

  5. 78 FR 36241 - Notice of Inventory Completion: University of Oregon Museum of Natural and Cultural History...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... 13 points, 9 scrapers, 1 blade, 1 bone awl, 1 pumice block, and 1 lot of pigment samples. In 1946... objects are 1 scraper fragment, 1 copper pendant, 1 pipe in fragments, 2 worked tuff, 1 worked bone, 1 dentalium shell, 1 bird bone, 1 pestle, 1 worked chert, and 2 bone fragments. In 1951, human remains...

  6. Explosive shaped charge penetration into tuff rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  7. (40)Ar/(39)Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change.

    PubMed

    Deino, Alan L

    2012-08-01

    (40)Ar/(39)Ar dating of tuffs and lavas of the late Pleistocene volcanic and sedimentary sequence of Olduvai Gorge, north-central Tanzania, provides the basis for a revision of Bed I chronostratigraphy. Bed I extends from immediately above the Naabi Ignimbrite at 2.038 ± 0.005 Ma to Tuff IF at 1.803 ± 0.002 Ma. Tuff IB, a prominent widespread marker tuff in the basin and a key to understanding hominin evolutionary chronologies and paleoclimate histories, has an age of 1.848 ± 0.003 Ma. The largest lake expansion event in the closed Olduvai lake basin during Bed I times encompassed the episode of eruption and emplacement of this tuff. This lake event is nearly coincident with the maximum precessional insolation peak of the entire Bed I/Lower Bed II interval, calculated from an astronomical model of the boreal summer orbital insolation time-series. The succeeding precessional peak also apparently coincides with the next youngest expansion of paleo-Lake Olduvai. The extreme wet/dry climate shifts seen in the upper part of Bed I occur during an Earth-orbital eccentricity maximum, similar to episodic lake expansions documented elsewhere in the East African Rift during the Neogene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  9. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.

  10. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    USGS Publications Warehouse

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences that were traced over areas having diameters of about 100 km. These two sheets are the herein-named Swisher Mountain Tuff, which is about 13.8 m.y. old, and the Little Jacks Tuff, which is about 10 m.y. old. The Swisher Mountain Tuff was erupted from the Juniper Mountain volcanic center, a gentle dome that is not bounded by arcuate faults indicative of cauldron subsidence. The tuff is 200 m thick over a considerable area in and adjacent to its source. It apparently thins gradually toward its distal edges, and it is inferred to be uniformly distributed around its source at Juniper Mountain. The unit contains vitrophyres at various intervals from base to top, and, although the vitrophyres are, in general, flow layered and commonly flow brecciated, they occasionally contain well-defined pumice clasts. The vitrophyres indicate compound cooling, and, near the distal edges of the sheet, some of them probably represent complete cooling breaks. The Little Jacks Tuff onlaps the Swisher Mountain Tuff in expo sures east of Juniper Mountain, and it is inferred to have been erupted from a source on the part of the Owyhee Plateau that lies just east of the area studied. This inferred source area, like that at Juniper Mountain, is also expressed today as a gentle dome without structural features indicative of cauldron subsidence. The Little Jacks Tuff, in most exposures in the deep canyons of the Plateau, consists of at least four cooling units, and, in places in the eastern part of the studied area near the source area, it possibly comprises as many as six. Although there is no obvious evidence of erosion between the various cooling units, magnetic polarity measurements indicate that there were at least two magnetic reversals during the eruption interval of the Little Jacks Tuff. Like the Swisher Mountain Tuff, the Little Jacks has flattened pumice clasts in a few outcrops-principally at the bases of the various cooling units. The two tuff sequences are calc-a

  11. Volatile organic compound data from three karst springs in middle Tennessee, February 2000 to May 2001

    USGS Publications Warehouse

    Williams, Shannon D.; Farmer, James

    2003-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Superfund, collected discharge, rainfall, continuous water-quality (temperature, dissolved oxygen, specific conductance, and pH), and volatile organic compound (VOC) data from three karst springs in Middle Tennessee from February 2000 to May 2001. Continuous monitoring data indicated that each spring responds differently to storms. Water quality and discharge at Wilson Spring, which is located in the Central Basin karst region of Tennessee, changed rapidly after rainfall. Water quality and discharge also varied at Cascade Spring; however, changes did not occur as frequently or as quickly as changes at Wilson Spring. Water quality and discharge at Big Spring at Rutledge Falls changed little in response to storms. Cascade Spring and Big Spring at Rutledge Falls are located in similar hydrogeologic settings on the escarpment of the Highland Rim. Nonisokinetic dip-sampling methods were used to collect VOC samples from the springs during base-flow conditions. During selected storms, automatic samplers were used to collect water samples at Cascade Spring and Wilson Spring. Water samples were collected as frequently as every 15 minutes at the beginning of a storm, and sampling intervals were gradually increased following a storm. VOC samples were analyzed using a portable gas chromatograph (GC). VOC samples were collected from Wilson, Cascade, and Big Springs during 600, 199, and 55 sampling times, respectively, from February 2000 to May 2001. Chloroform concentrations detected at Wilson Spring ranged from 0.073 to 34 mg/L (milligrams per liter). Chloroform concentrations changed during most storms; the greatest change detected was during the first storm in fall 2000, when chloroform concentrations increased from about 0.5 to about 34 mg/L. Concentrations of cis-1,2-dichloroethylene (cis-1,2-DCE) detected at Cascade Spring ranged from 0.30 to 1.8 ?g/L (micrograms per liter) and gradually decreased between November 2000 and May 2001. In addition to the gradual decrease in cis-1,2-DCE concentrations, some additional decreases were detected during storms. VOC samples collected at weekly intervals from Big Spring indicated a gradual decrease in trichloroethylene (TCE) concentrations from approximately 9 to 6 ?g/L between November 2000 and May 2001. Significant changes in TCE concentrations were not detected during individual storms at Big Spring. Quality-control samples included trip blanks, equipment blanks, replicates, and field-matrix spike samples. VOC concentrations measured using the portable GC were similar to concentrations in replicate samples analyzed by the USGS National Water Quality Laboratory (NWQL) with the exception of chloroform and TCE concentrations. Chloroform and TCE concentrations detected by the portable GC were consistently lower (median percent differences of ?19.2 and ?17.4, respectively) than NWQL results. High correlations, however, were observed between concentrations detected by the portable GC and concentrations detected by the NWQL (Pearson?s r > 0.96). VOC concentrations in automatically collected samples were similar to concentrations in replicates collected using dip-sampling methods. More than 80 percent of the VOC concentrations measured in automatically collected samples were within 12 percent of concentrations in dip samples.

  12. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  13. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range ofmore » temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.« less

  14. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less

  15. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock.

    PubMed

    Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

    2003-06-01

    The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.

  16. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    USGS Publications Warehouse

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  17. Publications - GMC 145 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 145 Publication Details Title: Analytical results of x-ray diffraction studies on tuff beds , Analytical results of x-ray diffraction studies on tuff beds from core of the following 5 NPRA wells: U.S

  18. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  19. Petrographic and geochemical characteristics of a section through the Tiva Canyon Tuff at Antler Ridge, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, F.R.; Widmann, B.L.; Dickerson, R.P.

    1994-12-31

    The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can bemore » used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.« less

  20. Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Thordarson, William; Rush, F.E.; Waddell, S.J.

    1985-01-01

    Test well USW H-3 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 meters were volcanic tuffs of Tertiary age. The most transmissive zone in this well is in the upper part of the Tram Member of the Crater Flat Tuff that was penetrated at a depth from 809 to 841 meters; transmissivity is about 7 x 10 -1 meter squared per day. The remainder of the rocks penetrated between the depths of 841 to 1,219 meters have a transmissivity of about 4 x 10 -1 meter squared per day and are predominatly in the Tram Member of the Crater Flat Tuff and the Lithic Ridge Tuff in the depths from 841 to 1,219 meters. (USGS)

  1. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that they were subjected to heated gases at approximately the temperatures expected from waste emplacement. These deposits provide at least limited textural and mineralogic analogs for waste-induced, high-humidity thermal alteration of emplacement drift wall rocks.

  2. Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden

    USGS Publications Warehouse

    Brown, F.H.; Sarna-Wojcicki, A. M.; Meyer, C.E.; Haileab, B.

    1992-01-01

    Electron-microprobe analyses of glass shards from volcanic ash in Pliocene and Pleistocene deep-sea sediments in the Gulf of Aden and the Somali Basin demonstrate that most of the tephra layers correlate with tephra layers known on land in the Turkana Basin of northern Kenya and southern Ethiopia. Previous correlations are reviewed, and new correlations proposed. Together these data provide correlations between the deep-sea cores, and to the land-based sections at eight levels ranging in age from about 4 to 0.7 Ma. Specifically, we correlate the Moiti Tuff (???4.1 Ma) with a tephra layer at 188.6 m depth in DSDP hole 231 and with a tephra layer at 150 m depth in DSDP hole 241, the Wargolo Tuff with a tephra layer at 179.7 m in DSDP Hole 231 and with a tephra layer at 155.3 m depth in DSDP Hole 232, the Lomogol Tuff (defined here) with a tephra layer at 165 m in DSDP Hole 232A, the Lokochot Tuff with a tephra layer at 140.1 m depth in DSDP Hole 232, the Tulu Bor Tuff with a tephra layer at 160.8 m depth in DSDP Hole 231, the Kokiselei Tuff with a tephra layer at 120 m depth in DSDP Hole 231 and with a tephra layer at 90.3 m depth in DSDP Hole 232, the Silbo Tuff (0.74 Ma) with a tephra layer at 35.5 m depth in DSDP Hole 231 and possibly with a tephra layer at 10.9 m depth in DSDP Hole 241. We also present analyses of other tephra from the deep sea cores for which correlative units on land are not yet known. The correlated tephra layers provide eight chronostratigraphic horizons that make it possible to temporally correlate paleoecological and paleoclimatic data between the terrestrial and deep-sea sites. Such correlations may make it possible to interpret faunal evolution in the Lake Turkana basin and other sites in East Africa within a broader regional or global paleoclimatic context. ?? 1992.

  3. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  4. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years.Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (δD) and oxygen-18 (δ18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  5. Massive Pyroclastic Eruptions Accompanied the Sector Collapse of Oahu and the Nu`uanu Landslide: Petrological Evidence for a Submarine Directed Blast

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Atlas, Z.

    2003-12-01

    During ODP Leg 200 in December, 2002, a series of thinly bedded volcaniclastic turbidites and silty muds interbedded with two thicker and strongly indurated vitric tuffs was drilled at Site 1223 on the crest of the Hawaiian arch east of the island of Oahu. The massive Nu`uanu landslide debris field, derived from a massive collapse of the eastern half of Oahu at about 2 Ma, lies in the flexural moat between the site and the island. The shipboard interpretation (1) was that the muds and silts are typical turbidites derived by redeposition from beaches and nearshore benches, but that the tuffs represent the distal portions of large submarine pyroclastic eruptions that may have attended the landslide. We report electron probe microanalyses of basaltic glass, olivine, Cr-spinel, palagonite and secondary minerals in the tuffs supporting the shipboard interpretation. In particular, the glass compositions from individual thin sections match precisely the range of compositions obtained from numerous samples of coarse volcaniclastic breccia sampled from the steep flanks of landslide blocks in the moat (2). This includes somewhat higher SiO2 and lower total iron as FeO(T) at given MgO than similar basaltic glasses from other Hawaiian volcanoes, a distinctive attribute of tholeiitic basalt from Oahu's Ko`olau volcano. Key attributes of the glasses in the tuffs and the minerals in them are that they are poly-compositional and they are strongly differentiated, with a range of compositions typical of those erupted from modern Hawaiian volcanic rift systems supplied by lateral diking from central conduits. The finer-grained tuffs at Site 1223 thus are indeed a distal pyroclastic facies that seemingly tapped much of the suddenly exposed, magma-inflated, deep flanking rift system of Ko`olau volcano. Over-steepening of the NE flank of the volcano coupled with internal weakening provided by near saturation of its rift system with magma may have triggered the landslide. This was almost immediately followed by massive submarine pyroclastic eruptions of magma mainly at submarine levels in the rift that, accelerated by steep downslope descent, were directed all the way to the ENE in rapidly-moving debris flows. These sorted themselves by size (mass) with the coarsest material plastering the sides of the landslide blocks, and the finer grained material, mainly glass and olivine grains, reaching the crest of the Hawaiian arch. The palagonite is compositionally-modified glass that probably formed by leaching in response to lateral migration of warm hydrothermal fluids from beneath thicker and still hot proximal pyroclastic material that was abruptly deposited in the moat to the west following the landslide. (1)Shipboard Scientific Party, 2003. Site 1223. In Stephen, R.A., Kasahara, J., Acton, G.D., et al., Proc. ODP, Init. Rept. 200 [CD-ROM], College Station, TX (Ocean Drill. Prog), 1-159. (2)Clague, D.A., Moore, J.G., and Davis, A.S., 2002. In Takahashi, E.,Lipman, P., Garcia, M.O., and Aramaki, S., (Eds.), Geophys. Monog. 128: Washington (AGU), 279-296.

  6. Early postcaldera rhyolite and structural resurgence at Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew

    2017-04-01

    After the 767-ka caldera-forming eruption of 650 km3 of rhyolite magma as the Bishop Tuff, 90-100 km3 of similar rhyolite erupted in the west-central part of Long Valley caldera in as many as 40 batches spread over the 110,000-year interval from 750 ka to 640 ka. Centrally, this Early Rhyolite (ER) is as thick as 622 m, but it spread radially to cover much of the caldera floor, where half its area is now concealed by post-ER sediments and lavas. At least 75% of the ER is aphyric rhyolite tuff. Drillholes encountered 22 (altered) ER lava flows intercalated in the pyroclastic pile, and another 11 units of (largely fresh) ER lava are exposed on the caldera's resurgent dome and at Lookout Mountain. Exposed units have been distinguished, mapped, studied petrographically and chemically, and radioisotopically dated; each is described in detail. Their phenocryst contents range from 0 to 2.5 wt%. All the phyric units have plagioclase, orthopyroxene, and ilmenite; most have biotite and rare tiny magnetite, and a few contain rare zircon. The compositional range of fresh obsidians is narrow-74.3-75.0% SiO2, 1.21-1.37% FeO*, and 5.12-5.26% K2O, but wider variations in Ti, Ba, Sr, and Zr permit distinction of individual units and eruptive groups. The limited chemical and petrographic variability shown by so many ER batches released episodically for 110,000 years suggests a thermally buffered and well-stirred reservoir. The ER central area, where ER eruptions had taken place, was uplifted 400 m to form a structural dome 10 km in diameter. Most of the inflation is attributable to 10 sills of ER that intrude the Bishop Tuff beneath the uplift, but other processes potentially contributing to resurgence are also considered. As shown by erratics of Mesozoic rocks ice-rafted from the Sierra Nevada and dropped on ER lavas, much of the ER had erupted early enough and at low enough elevation to be inundated by the intracaldera lake and was only later lifted by the resurgence that also raised clusters of the erratics hundreds of meters higher than any shoreline. Most of the uplift was over by 570 ka, but dome-crossing faults that exhibit normal throw of 10-30 m cut lavas as young as 175-125 ka. For most elements, chemical ranges of the ER lie within those of the zoned Bishop Tuff, which had erupted earlier from the same place. Only Ba, Zr, Hf, and Eu/Eu* extend to ranges outside those of the Bishop Tuff, nominally to less evolved compositions. Initial 87Sr/86Sr values of ER are likewise within the range of the Bishop Tuff, but ER ratios of 143Nd/144Nd and 206Pb/204Pb extend beyond those of the Bishop Tuff to values slightly more influenced by upper-crustal contributions. FeTi-oxide geothermometry yields 752°-844 °C for ER, compared to 700°-820 °C for the Bishop Tuff. ER fO2 values are 0.5-1.0 log units more reduced than those of the T-fO2 array of the Bishop Tuff. The postcaldera reduction may reflect reaction with graphite from the black lithics of Paleozoic graphitic metapelite so abundant in the Bishop Tuff. Much of the pumice emplaced during the later half of the Bishop Tuff eruption has 10-25 wt% phenocrysts, dominantly quartz and sanidine, but the 100 km3 of ER has only 0-2.5 wt% and completely lacks quartz and sanidine. Postcaldera processes, including mixing, volatile ascent, and crystal resorption, as well as potential contaminants and magmatic inputs, are all considered.

  7. Storage, Ascent, and Release of Silicic Magma in Caldera-forming Eruptions

    NASA Astrophysics Data System (ADS)

    Myers, Madison Logan

    The mechanisms and timescales associated with the triggering of caldera-forming eruptions remain ambiguous and poorly constrained. Do such eruptions start vigorously, then escalate, or can there be episodicity? Are they triggered through internal processes (e.g. recharge, buoyancy), or can external modulations play an important role? Key to answering these questions is the ability to reconstruct the state of the magma body immediately prior to eruption. My dissertation research seeks to answer these questions through detailed investigation of four voluminous caldera-forming eruptions: (1) 650 km3, 0.767 Ma Bishop Tuff, Long Valley, (2) 530 km3, 25.4 ka Oruanui eruption, Taupo, (3) 2,500 km3, 2.08 Ma Huckleberry Ridge Tuff, Yellowstone and (4) 250 km3, 26.91 Ma Cebolla Creek Tuff, Colorado. The main techniques I applied integrated glass geochemistry (major, trace and volatile), diffusion modeling, and detailed field sampling. In chapters two, three, and four these methods are applied to the initial fall deposits of three supereruptions (Bishop, Oruanui and Huckleberry Ridge) that preserve field-evidence for different opening behaviors. These behaviors range from continuous deposition of fall deposits and ignimbrite (Bishop), to repetitive start/stop behavior, with time breaks between eruptive episodes on the order of weeks to months (Oruanui, Huckleberry Ridge). To reconstruct the timescales of opening activity and relate this to conduit processes, I used two methods that exploit diffusion of volatiles through minerals and melt, providing estimates for the rate at which magmas ascended to the surface. This knowledge is then integrated with the pre-eruptive configuration of the magma body, based on melt inclusion chemistry, to interpret what triggered these systems into unrest. Finally, in chapter five I take a different approach by integrating geochemical data for melt inclusions and phenocryst minerals to test whether the mechanism of heat and volatile recharge often called upon to trigger crystal-rich dacitic magmas (the so-called monotonous intermediates), is applicable to the Cebolla Creek Tuff. This dissertation includes both previously published and unpublished co-authored material, and three online supplementary excel files.

  8. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and 250 MPa.

  9. Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Pande, Kanchan

    2014-04-01

    Post-K-Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone. Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps, including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and "intertrappean" sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow marine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2σ) and 62.9 ± 0.2 Ma (2σ) for samples taken from two separate outcrops of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism was at least 8-9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly even 62 Ma, and could not have formed by 65-64 Ma as concluded in a recent study.

  10. Water quality of selected springs and public-supply wells, Pine Ridge Indian Reservation, South Dakota, 1992-97

    USGS Publications Warehouse

    Heakin, Allen J.

    2000-01-01

    This report presents results of a water-quality study for the Pine Ridge Indian Reservation, South Dakota. The study was a cooperative effort between the U.S. Geological Survey and the Water Resources Department of the Oglala Sioux Tribe. Discharge and water-quality data were collected during 1992-97 for 14 contact springs located in the northwestern part of the Reservation. Data were collected to evaluate potential alternative sources of water supply for the village of Red Shirt, which currently obtains water of marginal quality from a well completed in the Inyan Kara aquifer. During 1995-97, water-quality data also were collected for 44 public-supply wells that serve about one-half of the Reservation's population. Quality-assurance sampling was used to evaluate the precision and accuracy of environmental samples. Ten of the springs sampled contact the White River Group, and four contact the Pierre Shale. Springs contacting the White River Group range from calcium bicarbonate to sodium bicarbonate water types. Two springs contacting the Pierre Shale have water types similar to this; however, sulfate is the dominant anion for the other two springs. In general, springs contacting the White River Group are shown to have better potential as alternative sources of water supply for the village of Red Shirt than springs contacting the Pierre Shale. Nine of the springs with better water quality were sampled repeatedly; however, only minor variability in water quality was identified. Six of these nine springs, of which five contact the White River Group, probably have the best potential for use as water supplies. Discharge from any of these six springs probably would provide adequate water supply for Red Shirt during most periods, based on a limited number of discharge measurements collected. Concentrations of lead exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 ?g/L for three of these six springs. Five of these six springs also had arsenic concentrations that exceeded 10 ?g/L, which could be problematic if the current maximum contaminant level (MCL) is lowered. Blending of water from one or more springs with water from the existing Inyan Kara well may be an option to address concerns regarding both quantity and quality of existing and potential sources. All nine springs that were sampled for indicator bacteria had positive detections on one or more occasions during presumptive tests. Although USEPA standards for bacteria apply only to public-water supplies, local residents using spring water for domestic purposes need to be aware of the potential health risks associated with consuming untreated water. One spring contacting the White River Group and two springs contacting the Pierre Shale exceeded 15 pCi/L for gross alpha; these values do not necessarily constitute exceedances of the MCL, which excludes radioactivity contributed by uranium and radon. Additional sampling using different analysis techniques would be needed to conclusively determine if any samples exceeded this MCL. Nine springs were sampled for selected pesticides and tritium. The pesticides atrazine, carbaryl, and 2,4-D were not detected in any of the samples. The nine springs were analyzed for tritium in order to generally assess the age of the water and to determine if concentrations exceeded the MCL established for gross beta-particle activity. Tritium results indicated two springs are composed primarily of water recharged prior to atmospheric testing of nuclear bombs and two other springs have a relatively large percentage of test-era water. The remaining five springs had tritium values that indicated some percentage of test-era water; however, additional sampling would be needed to determine whether water is predominantly pre- or post-bomb age. Of the 44 public-supply wells sampled, 42 are completed in the Arikaree aquifer, one is completed in an alluvial aquifer, and one is completed in the Inyan Kara aquifer. Water

  11. The Strengthening Effect of Ice on Two Extraterrestrial Analogs: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Atkinson, J.; Durham, W. B.; Seager, S.

    2016-12-01

    Sample retrieval from extraterrestrial bodies and in situ resource utilization (ISRU) activities have been identified as some of the most important scientific endeavors of the coming decade. With the failure of Rosetta's Philae lander to penetrate the surface of comet 67P and obtain a sample due to the high compressive strength of the surface, it is becoming obvious that knowledge of the mechanical properties of materials that might be encountered in such environments and under such conditions is critical to future mission success. Two comet/asteroid analogs (Indiana limestone and Bishop tuff), selected based on their contrasting mechanical properties and porosities, were tested under constant displacement to failure (in most cases) at low temperatures (295 K to 77 K) and low confining pressures (1 to 5 MPa). The compressive strength of both materials was determined under varied conditions of saturation, from oven-dried ( 0% water content) to fully saturated, and both brittle and ductile behavior was observed. The saturated limestone increased in strength from 30 MPa (at 295 K) to >200 MPa (at 77 K), while the Bishop tuff increased in strength from 13 MPa at 295 K to 165 MPa at 150 K. The results of this study will be useful to future sample retrieval missions or ISRU maneuvers. The large increase in compressive strength of these saturated materials at cryogenic temperatures means that future missions will need to prepare technology that has the energetic and mechanical capability to penetrate very hard substrates as they are likely to encounter.

  12. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma. Mapping of fault scarps and unfaulted deposits along the Grand Valley fault system shows that latest Quaternary fault scarps are restricted to the portion farthest from the eastern SRP, the southern part of the Star Valley fault. Surface displacements estimated from scarp profiles and deposit ages estimated from soil development suggest a latest Quaternary displacement rate of 0.6-1.2 mm/yr for the southern portion of the Star Valley fault. Morphologic evidence suggests that this displacement rate persisted on the Star Valley fault throughout most of the Quaternary. The latest Quaternary displacement rate calculated for the southern portion of the Star Valley fault is similar to the rate calculated for Swan Valley during the interval from 2.0 to 4.4 Ma. This similarity, together with evidence for a low Quaternary displacement rate on the fault system in Swan Valley, suggests that the location of the highest displacement rate has migrated away from the eastern SRP. Other normal faults in southeastern Idaho, northwestern Wyoming, and southwestern Montana, while less well described than the Grand Valley fault system, exhibit a similar outward migrating pattern of increased fault activity followed by quiescence. Furthermore, a temporal and spatial relationship between fault activity and the 3.5 cm/yr northeastward track of the Yellowstone hotspot is observable on the Grand Valley fault system and on other north-northwest trending late Cenozoic faults that border the eastern SRP. The temporal and spatial relationship of Miocene to present high displacement rates for other circumeastern SRP faults and the observable outwardly migrating pattern of fault activity suggest that a similar parabolic distribution of seismicity and high displacement rates was symmetrically positioned about the former position of the hotspot. Moreover, the tandem migration of the hotspot and the parabolic distribution of increased fault activity and seismicity are closely followed by a parabolic-shaped "collapse shadow," or region of fault inactivity and aseismicity. We suggest that the outwardly migrating pattern of increased fault activity (active region) results from reduced integrated lithospheric strength caused by thermal effects of the hotspot. Conversely, the outwardly propagating quiescent region is the result of a reduction or "collapse" of crustal extension rates caused by increased integrated lithospheric strength. Lithospheric strength in this region is increased by addition of mafic materials at the base of the crust and at midcrustal levels. Although the strength of the mantle portion of the lithosphere is reduced, the increased strength of the crust results in a total integrated increase in lithospheric strength. Paradoxically, the surface heat flow data suggest that the region within the interior parabola has a higher heat flow (after accounting for the cooling effects of the eastern SRP aquifer) than the adjacent regions, yet the interior region exhibits significantly lower extension rates. It appears that in this region the surface heat flow is not a good predictor of rates of lithospheric extension.

  13. Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements

    USGS Publications Warehouse

    Tizzani, Pietro; Battaglia, Maurizio; Zeni, Giovanni; Atzori, Simone; Berardino, Paolo; Lanari, Riccardo

    2009-01-01

    The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic field includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fluid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest.

  14. Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Siebe, C.

    1994-01-01

    The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.

  15. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  16. Green-tuff landslide areas are beneficial for rice nutrition in Japan.

    PubMed

    Tazaki, Kazue

    2006-12-01

    Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.

  17. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  18. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  19. Miocene calc-alkaline magmatism, calderas, and crustal extension in the Kofa and Castle Dome Mountains, southwestern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubensky, M.J.; Bagby, W.C.

    1990-11-10

    Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less

  20. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  1. Substorm wave base felsic hydroclastic deposits in the Archean Lac des Vents volcanic complex, Abitibi belt, Canada

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf; Chown, E. H.; Potvin, Robin

    1994-05-01

    Volcaniclastic deposits of the 2.3-km-thick Archean Lac des Vents volcanic complex are an integral part of major submarine volcanic construction. The volcanic edifice, which formed on a subaqueous basalt plain, is comparable to modern seamounts resting on the ocean floor. The initial 770 m of the mafic-felsic edifice, subject of this study, is composed of massive, brecciated and pillowed basalts, massive to brecciated felsic lava flows and abundant felsic fragmental rocks of hydroclastic origin. Four distinct volcaniclastic lithofacies constitute the latter: (1) the pumice lapilli-tuff lithofacies; (2) the lapilli-tuff breccia lithofacies characterized by two sublithofacies; (3) the turbidite tuff and tuff-breccia lithofacies; and (4) the volcanic sandstone and breccia lithofacies. These four volcaniclastic lithofacies are considered to be the result of explosive and non-explosive hydrovolcanic fragmentation processes operating at depths below storm wave base (> 200 m). Primary deposition or limited remobilization of unconsolidated hydroclastic debris is shown by the preservation of delicate clasts and volcanic textures, and heat retention structures. The principal transport agents are high-concentration sediment gravity flows occurring under laminar and turbulent flow conditions. High- and low-density turbiditic tuffs and fine-grained tuff fallout deposits, are related to either the dissipating stages of volcanic eruptions or slumping of syneruptive volcanic debris on the flanks of a subaqueous volcanic edifice. Ubiquitous interstratification of volcaniclastic turbidites, shale, and pillowed basalt flows with the felsic lava flows and fragmental debris favours subaqueous deposition. These features combined with the absence of wave-induced sedimentary structures, imply deposition in water depths in excess of 200 m. Viscous feldspar-phyric massive and brecciated felsic flows, and associated volcaniclastics cross cut by felsic dykes, suggest vent proximity. The abundance of breccia-size hydroclastic debris is consistent with this interpretation. Collectively, these criteria argue for subaqueous fragmentation and deposition of volcaniclastics of inferred hydroclastic origin close to the central vent area at depths below storm wave base.

  2. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  3. Neogene Fallout Tuffs from the Yellowstone Hotspot in the Columbia Plateau Region, Oregon, Washington and Idaho, USA

    PubMed Central

    Nash, Barbara P.; Perkins, Michael E.

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16–4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas. PMID:23071494

  4. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    PubMed

    Nash, Barbara P; Perkins, Michael E

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.

  5. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.

  6. In defense of Magnetite-Ilmenite Thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs

    USGS Publications Warehouse

    Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno

    2016-01-01

    Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780‎°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush, and introducing enough CO2 (0.4-1.4 wt%, mostly contained in the exsolved fluid phase) to significantly lower H2O-activity in the system.

  7. Mega-features at the Table Rock phreatomagmatic complex in Christmas Valley, Oregon; Law of original horizontality need not apply

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Clarke, A.

    2006-12-01

    The Table Rock Complex (TRC; Pliocene-Pleistocene), first documented and described by (Heiken, 1971, J. Geophy Res, 76, 5615-5626) is a large and well exposed phreatomagmatic complex in the Fort Rock- Christmas Lake Valley Basin, south-central Oregon. It is ~7 by 5 km and contains two large phreatomagmatic edifices; a large southern tuff cone with a capping lava lake (TRC1), and a large broad tuff ring in the northeast (TRC2). At least five additional, smaller tuff rings were identified along the flanks of the complex, yielding a complicated network of tuff ring-tuff cone deposits. Based on the low accidental component and evidence for a lake during this time, the cause of the explosive eruptions is interpreted to be due to interaction of magma with shallow standing water. The TRC1 consists of fining-up sequences, large erosive channel scour and fill deposits, massive tuff breccias, and abundant soft sediment deformation, which suggests deposition within a standing body of water. Subaerial TRC1 deposits are found south of the edifice, but are not exposed in the north. A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by a wave-cut terrace and 25-50 cm of diatomitic lake sediments. TRC2 produced multiple, extremely erosive pyroclastic surges, which cut and scour the TRC1 deposits. Surge deposits consist of 50-200 m wavelength cross-beds, in some areas form large U-shaped features (10-100 m deep), and can be seen plastering up and around large obstacles from previous vents. The surge-deposits blanket all other sequences and create a hummocky topography around the edifice. This suggests that TRC2 was the last eruption in the sequence. The weight of the TRC2 sediments caused the water-saturated TRC1 sediments to plastically deform into large ball and pillow features and overturned slump blocks on the order of 20-50 m thick. The smaller flank tuff-ring eruptions likely occurred sometime between the TRC1 and TRC2 events. The inner-craters of these vents are well exposed and show features such as near-vertical plastered beds, large-scale convolute bedding, and in some places deformed and folded slump blocks up to 20-120 m thick. The features observed in both TRC deposits and in the smaller flank tuff rings (e.g., large-scale soft sediment deformation, plastered-vertical bedding, accretionary/armored lapilli) are consistent with a high water-magma ratio. The highly erosive surge beds of TRC2 represent the most energetic pulse of the eruptions.

  8. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit. The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Recent (2003-05) water quality of Barton Springs, Austin, Texas, with emphasis on factors affecting variability

    USGS Publications Warehouse

    Mahler, Barbara J.; Garner, Bradley D.; Musgrove, MaryLynn; Guilfoyle, Amber L.; Rao, Mohan V.

    2006-01-01

    From 2003 to 2005, the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, collected and analyzed water samples from the four springs (orifices) of Barton Springs in Austin, Texas (Upper, Main, Eliza, and Old Mill Springs), with the objective of characterizing water quality. Barton Springs is the major discharge point for the Barton Springs segment of the Edwards aquifer. A three-pronged sampling approach was used: physicochemical properties (including specific conductance and turbidity) were measured continuously; samples were collected from the four springs routinely every 2 weeks (during August-September 2003) to 3 weeks (during June 2004-June 2005) and analyzed for some or all major ions, nutrients, trace elements, soluble pesticides, and volatile organic compounds; and samples were collected from the four springs at more closely spaced intervals during the 2 weeks following two storms and analyzed for the same suite of constituents. Following the two storms, samples also were collected from five of the six major streams that provide recharge to Barton Springs. Spring discharge during both sample collection periods was above average (60 cubic feet per second or greater). Barton Springs was found to be affected by persistent low concentrations of atrazine (an herbicide), chloroform (a drinking-water disinfection by-product), and tetrachloroethene (a solvent). Increased recharge from the major recharging streams resulted in increased calcium, sulfate, atrazine, simazine, and tetrachloroethene concentrations and decreased concentrations of most other major ions, nitrate, and chloroform at one or more of the springs. These changes in concentration demonstrate the influence of water quality in recharging streams on water quality at the springs even during non-stormflow conditions. The geochemical compositions of the four springs indicate that Upper Spring is more contaminated and is influenced by a contributing flow path that is separate from those leading to other springs under all but stormflow conditions. Main, Eliza, and Old Mill Springs share at least one common flow path that contributes contaminants to the three springs. Old Mill Spring, however, is less affected by anthropogenic contaminants than the other springs and receives a greater component of water from a flow path whose geochemistry is influenced by water from the saline zone of the aquifer. At Main Spring, atrazine, simazine, chloroform, and tetrachloroethene concentrations increased following storms, describing breakthrough curves that peaked 2 days following rainfall; at Upper Spring, atrazine and simazine concentrations described breakthrough curves that peaked 1 day following rainfall. At both Main and Upper Springs, additional anthropogenic compounds were detected following storms. The geochemical response of the springs to recharge indicates that much of the transport occurs through conduits. When there is no flow in the recharging streams, ground water advects from the aquifer matrix into the conduits and is transported to the springs. When there is flow in the streams, recharge through the streambeds directly enters the conduit system and is transported to the springs. Following storms, surface runoff recharges through both interstream recharge features and streambeds, delivering runoff-related contaminants to Barton Springs.

  10. Fracture and matrix hydrologic characteristics of tuffaceous materials from Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.R.; Klavetter, E.A.; Hall, I.J.

    1984-12-01

    The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less

  11. Humans thrived in South Africa through the Toba eruption about 74,000 years ago

    NASA Astrophysics Data System (ADS)

    Smith, Eugene I.; Jacobs, Zenobia; Johnsen, Racheal; Ren, Minghua; Fisher, Erich C.; Oestmo, Simen; Wilkins, Jayne; Harris, Jacob A.; Karkanas, Panagiotis; Fitch, Shelby; Ciravolo, Amber; Keenan, Deborah; Cleghorn, Naomi; Lane, Christine S.; Matthews, Thalassa; Marean, Curtis W.

    2018-03-01

    Approximately 74 thousand years ago (ka), the Toba caldera erupted in Sumatra. Since the magnitude of this eruption was first established, its effects on climate, environment and humans have been debated. Here we describe the discovery of microscopic glass shards characteristic of the Youngest Toba Tuff—ashfall from the Toba eruption—in two archaeological sites on the south coast of South Africa, a region in which there is evidence for early human behavioural complexity. An independently derived dating model supports a date of approximately 74 ka for the sediments containing the Youngest Toba Tuff glass shards. By defining the input of shards at both sites, which are located nine kilometres apart, we are able to establish a close temporal correlation between them. Our high-resolution excavation and sampling technique enable exact comparisons between the input of Youngest Toba Tuff glass shards and the evidence for human occupation. Humans in this region thrived through the Toba event and the ensuing full glacial conditions, perhaps as a combined result of the uniquely rich resource base of the region and fully evolved modern human adaptation.

  12. Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Whitfield, M.S.; Eshom, E.P.; Thordarson, William; Schaefer, D.H.

    1985-01-01

    Test well USW H-4 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 m were volcanic tuffs of Tertiary age. Hydraulic coefficients calculated from pumping test data indicate that transmissivity ranged from 200 to 790 sq m/day. A radioactive tracer, borehole flow survey indicated that the two most productive zones during this borehole flow survey occurred in the upper part of the Bullfrog Member of the Crater Flat Tuff, depth interval from 721 to 731.5m, and in the underlying part of the Tram Member, depth interval from 864 to 920m. The water is predominantly a sodium biocarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by carbon-14 date of 17,200 years before present. (USGS)

  13. Hydrology, Water Quality, and Aquatic Communities of Selected Springs in the St. Johns River Water Management District, Florida

    USGS Publications Warehouse

    Walsh, Stephen J.; Knowles, Leel; Katz, Brian G.; Strom, Douglas G.

    2009-01-01

    Hydrologic, physicochemical, and aquatic community data were collected and compiled by the U.S. Geological Survey for selected springs within the St. Johns River Water Management District from January 2004 to October 2007. Nine springs were included in this study: Alexander, Apopka, Bugg, De Leon, Gemini, Green, Rock, Silver Glen, and Wekiwa. Urban lands increased in Alexander, Apopka, De Leon, Gemini, Green, and Wekiwa springsheds between 1973 and 2004, accompanied by a loss of forested and/or agricultural lands in most springsheds. Forested cover increased and open surface waters and wetlands decreased in the Bugg and Rock springsheds. Although rainfall did not change significantly over time in each springshed, spring discharge decreased significantly in De Leon, Fern Hammock, Rock, Silver, and Wekiwa Springs. Nitrate concentrations increased significantly with time in Apopka, Fern Hammock, Gemini Springs run, and Juniper Springs, and decreased significantly in Alexander Spring, Bugg Spring run, Rock Springs, and Wekiwa Springs. Phosphorus increased significantly with time in Juniper Springs and decreased significantly in Apopka, De Leon, Rock, Silver Glen, and Wekiwa Springs. Benthic macroinvertebrate communities ranged from relatively low diversity assemblages (Green Spring) to assemblages with high taxonomic richness, diversity, and dominance (Rock and De Leon Springs). Shannon-Wiener diversity index averages among samples pooled by spring were lowest for Apopka Spring and greatest for Rock, Bugg, and Silver Glen Springs. Mean Stream Condition Index for pooled samples per spring was lowest for De Leon and Gemini Springs and highest for Rock and Wekiwa Springs. Mean percentages of very tolerant taxa were lowest for Alexander Spring and highest for Bugg and Green Springs. Fish community richness was lowest for Green Spring, and greatest for Alexander Spring run and Silver Glen Springs. Forty five fish species representing 35 genera and 23 families were collected or observed from all springs in this study. Samples were dominated by centrarchids, cyprinids, fundulids, atherinopsids, and poeciliids.

  14. Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.

  15. Organochlorine pesticides in plasma of migrating peregrine falcons at Padre Island, Texas, Spring 1978-80 vs. Spring 1984

    USGS Publications Warehouse

    Henny, C.J.; Riddle, K.E.; Hulse, C.S.

    1985-01-01

    A spring concentration of migrating Peregrine Falcons (Falco peregrinus) was first discovered at Padre Island, Texas, in April 1978. The birds were first captured and blood-sampled for monitoring residue burdens and trends in the late 1970' s. Only 29 Peregrines were sampled in 1978 and 1979, but 111 were sampled in 1980. The initial investigation showed that DDE in the plasma of spring migrants returning from Latin America for the first time declined significantly during the study (through 1980). In the spring of 1984, 48 Peregrines were captured at Padre Island with blood samples again collected. This report will compare plasma residue data from the earlier study with residues obtained in 1984.

  16. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average consumption of water is 520,000 gallons per day--all supplied by one well. This supply well and a standby well have a production capability of 1.6 million gallons per day--adequate for present needs. Water in the welded-tuff aquifer is of the sodium bicarbonate type. Dissolved-solids content of the water in Jackass Flats is in the general range 230 milligrams per liter in the western part to 890 milligrams per liter in the eastern part.

  17. Temperature data from wells in Long Valley Caldera, California

    USGS Publications Warehouse

    Farrar, Christopher; DeAngelo, Jacob; Williams, Colin; Grubb, Frederick; Hurwitz, Shaul

    2010-01-01

    The 30-by-20-km Long Valley Caldera (LVC) in eastern California (fig.1) formed at 0.76 Ma in a cataclysmic eruption that resulted in the deposition of 600 km? of Bishop Tuff outside the caldera rim (Bailey, 1989). By approximately 0.6 Ma, uplift of the central part of the caldera floor and eruption of rhyolitic lava formed the resurgent dome. The most recent eruptive activity in the area occurred approximately 600 yr ago along the Mono-Inyo craters volcanic chain (Bailey, 2004; Hildreth, 2004). LVC hosts an active hydrothermal system that includes hot springs, fumaroles, mineral deposits, and an active geothermal well field and power plant at Casa Diablo along the southwestern boundary of the resurgent dome (Sorey and Lewis, 1976; Sorey and others, 1978; Sorey and others, 1991). Electric power generation began in 1985 with about 10 Mwe net capacity and was expanded to about 40 Mwe (net) in 1991 (Campbell, 2000; Suemnicht and others, 2007). Plans for further expansion are focused mainly on targets in the caldera?s western moat (Sass and Priest, 2002) where the most recent volcanic activity has occurred (Hildreth, 2004). LVC has been the site of extensive research on geothermal resources and volcanic hazards (Bailey and others, 1976; Muffler and Williams, 1976; Miller and others, 1982; Hill and others 2002). The first geothermal exploratory drilling was done in the shallow (< 200 m deep) hydrothermal system at Casa Diablo in the 1960?s (McNitt, 1963). Many more boreholes were drilled throughout the caldera in the 1970?s and 1980?s by private industry for geothermal exploration and by the U.S. Geological Survey (USGS) and Sandia National Laboratory for volcanic and geothermal research and exploration. Temperature logs were obtained in some of these wells during or immediately following drilling, before thermal equilibration was complete. Most of the temperature logs, however, were obtained weeks, months, or years after well completion and are representative of dynamic thermal equilibrium. The maximum reservoir temperature for LVC is estimated to be about 220?C on the basis of chemical geothermometers (Fournier and Truesdell, 1973) using analytical results from water samples collected from a large number of wells and springs across the caldera and around its periphery (Lewis, 1974; Mariner and Wiley, 1976; Farrar and others, 1985, 1987, 1989, White and Peterson, 1991). The deepest well in LVC (~3 km) is the Long Valley Exploratory Well (LVEW) drilled in the 1990?s with funding from the U.S. Department of Energy to investigate the potential for near-magmatic-temperature energy extraction and the occurrence of magma under the central part of the resurgent dome (Finger and Eichelberger, 1990; Finger and Jacobsen, 1999; Sackett and others, 1999). However, temperatures beneath the resurgent dome have proved disappointingly low and in LVEW reach a maximum of only 102 degrees C in a long isothermal section (2,100 to 3,000 m) in Mesozoic basement rocks (Farrar and others, 2003). Temperature data from well logs and geothermometry reveal that the highest temperatures in LVC are beneath the western moat. The hottest temperatures measured in LVC exceed 200 degrees C in two wells (44-16 and RDO-8) located in the western moat. Well 44-16 was drilled through the entire thickness of post-caldera volcanic fill and bottomed in Mesozoic basement. Well RDO-8 was drilled through post-caldera volcanic rocks and 305 m into the Bishop Tuff (Wollenberg and others, 1986). Temperatures in the hydrothermal system decrease toward the east by processes of conduction and dilution from cold groundwater recharge that occurs mostly around the caldera margin and beneath the resurgent dome. Reservoir temperatures at Casa Diablo (fig.1) are about 170?C (for example, MBP-3 and Mammoth-1), decreasing to about 100 degrees C in wells near Hot Creek Gorge (for example, MW-4 and CH-10B), and are generally less than 50?C in thermal springs near Lake

  18. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  19. The Bossoroca Complex, São Gabriel Terrane, Dom Feliciano Belt, southernmost Brazil: Usbnd Pb geochronology and tectonic implications for the neoproterozoic São Gabriel Arc

    NASA Astrophysics Data System (ADS)

    Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo

    2016-10-01

    Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.

  20. Genesis of the post-caldera eastern Upper Basin Member rhyolites, Yellowstone, WY: from volcanic stratigraphy, geochemistry, and radiogenic isotope modeling

    NASA Astrophysics Data System (ADS)

    Pritchard, Chad J.; Larson, Peter B.

    2012-08-01

    An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom's Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134-0.7185) than groundmass and whole-rock ratios (0.7099-0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.

  1. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  2. Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications for the oceanic mantle below Hawaii.

    USGS Publications Warehouse

    Clague, D.A.; Frey, F.A.

    1982-01-01

    These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.

  3. Dynamic tunable notch filters for the Antarctic Impulsive Transient Antenna (ANITA)

    NASA Astrophysics Data System (ADS)

    Allison, P.; Banerjee, O.; Beatty, J. J.; Connolly, A.; Deaconu, C.; Gordon, J.; Gorham, P. W.; Kovacevich, M.; Miki, C.; Oberla, E.; Roberts, J.; Rotter, B.; Stafford, S.; Tatem, K.; Batten, L.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Chen, Y.; Clem, J. M.; Cremonesi, L.; Dailey, B.; Dowkontt, P. F.; Hsu, S.; Huang, J.; Hupe, R.; Israel, M. H.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Ludwig, A. B.; Matsuno, S.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Prohira, S.; Rauch, B. F.; Ripa, J.; Romero-Wolf, A.; Russell, J.; Saltzberg, D.; Seckel, D.; Shiao, J.; Stockham, J.; Stockham, M.; Strutt, B.; Varner, G. S.; Vieregg, A. G.; Wang, S.; Wissel, S. A.; Wu, F.; Young, R.

    2018-06-01

    The Antarctic Impulsive Transient Antenna (ANITA) is a NASA long-duration balloon experiment with the primary goal of detecting ultra-high-energy (> 1018eV) neutrinos via the Askaryan Effect. The fourth ANITA mission, ANITA-IV, recently flew from Dec 2 to Dec 29, 2016. For the first time, the Tunable Universal Filter Frontend (TUFF) boards were deployed for mitigation of narrow-band, anthropogenic noise with tunable, switchable notch filters. The TUFF boards also performed second-stage amplification by approximately 45 dB to boost the ∼ μV-level radio frequency (RF) signals to ∼ mV-level for digitization, and supplied power via bias tees to the first-stage, antenna-mounted amplifiers. The other major change in signal processing in ANITA-IV is the resurrection of the 90 ° hybrids deployed previously in ANITA-I, in the trigger system, although in this paper we focus on the TUFF boards. During the ANITA-IV mission, the TUFF boards were successfully operated throughout the flight. They contributed to a factor of 2.8 higher total instrument livetime on average in ANITA-IV compared to ANITA-III due to reduction of narrow-band, anthropogenic noise before a trigger decision is made.

  4. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesner, C.A.; Rose, W.I.; Drake, R.

    1991-03-01

    Single-grain laser-fusion {sup 40}Ar/{sup 39}Ar analyses of individual sanidine phenocrysts from the two youngest Toba (Indonesia) tuffs yield mean ages of 73{plus minus}4 and 501{plus minus}5 ka. In addition, glass shards from Toba ash deposited in Malaysia were dated at 68{plus minus}7 ka by the isothermal plateau fission-track technique. These new determinations, in conjunction with previous ages for the two oldest tuffs at Toba, establish the chronology of four eruptive events from the Toba caldera complex over the past 1.2 m.y. Ash-flow tuffs were erupted from the complex every 0.34 to 0.43 m.y., culminating with the enormous (2500-3000 km{sup 3})more » Youngest Toba tuff eruption, caldera formation, and subsequent resurgence of Samosir Island. Timing of this last eruption at Toba is coincident with the early Wisconsin glacial advance. The high-precision {sup 40}Ar/{sup 39}Ar age eruption of such magnitude may provide an important marker horizon useful as a baseline for research and modeling of the worldwide climatic impact of exceptionally large explosive eruptions.« less

  5. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  6. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    USGS Publications Warehouse

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  7. Virgin Valley opal district, Humboldt County, Nevada

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  8. Age of the Xalnene Ash, Central Mexico and Archeological Implications

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Feinberg, J. M.; Waters, M. R.; Cabrales, J. A.; Castillo, P. O.; Campa, M. P.; Knight, K. B.

    2005-12-01

    Human footprints ~40 ka old have been reported from the Toloquilla quarry near Valsequillo Reservoir, ca. 15 km south of the city of Puebla in central Mexico (http://www.mexicanfootprints.co.uk/default.htm). If correct, this would be important evidence for early peopling of the Americas. The indentations interpreted as footprints and other ichnofossils occur on the surface of an indurated basaltic lapilli tuff within a several meter thick sequence of thinly bedded (1-10 cm) tuffs of similar character, lacking paleosols, erosional features or interlayered sediments, informally known as the Xalnene ash. A sample was collected at 18°55.402` N latitude and 098°09.375` W longitude from the surface on which the purported footprints occur. Lapilli were separated and analyzed by incremental heating 40Ar/39Ar methods, yielding 9 indistinguishable plateau ages averaging 1.30 ±0.03 Ma (2σ) for single lapilli (N=6) and multiple lapilli (N=3) subsamples. Though some minor discordance (presumably due to 39Ar recoil) is manifest in 5 of the age spectra, all plateaux comprise >60% of the 39Ar released and 4 or more consecutive steps. Paleomagnetic data from azimuthally unoriented bulk samples of 11.25 cm3 reveal a reverse polarity (I = -32.1°) thermoremanent component carried by titanomagnetite and a normal polarity component carried by goethite. Measurements on individual matrix-free lapilli lack the goethite component, which is presumed to be associated with the clay-rich cement. Consistency of the reverse component implies deposition of the lapilli at supra-Curie temperatures, with no postdepositional reworking. Reverse polarity is consistent with deposition during chron C1r.2r (1.77 to 1.07 Ma) as indicated by the 40Ar/39Ar data. If the features observed on the tuff are indeed footprints, their 1.3 Ma antiquity would be truly remarkable, predating by far any other evidence for human presence in the Americas and in fact predating the evolutionary emergence of Homo sapiens (in Africa) by more than 1 Ma. We conclude that the identification of these features as syn-depositional human footprints is likely erroneous.

  9. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap

  10. Chemical-abrasion SIMS dating of zircon from the Eocene Caetano caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Watts, K. E.; John, D. A.; Henry, C. D.; Coble, M. A.; Vazquez, J. A.

    2012-12-01

    The Eocene Caetano caldera in northern Nevada formed during eruption of ~1100 km3 of crystal-rich rhyolite. Miocene extension cut the caldera into a set of fault blocks that expose minor pre-caldera volcanic rocks, two units of intracaldera Caetano Tuff up to 4 km thick, ash-flow tuff feeder dikes and ring-fracture intrusions, caldera collapse breccias, and post-collapse resurgent intrusions. Single-crystal 40Ar/39Ar sanidine dates on all parts of the caldera system overlap, yielding a 34.01 ± 0.05 Ma (n=17, Fish Canyon sanidine = 28.201 Ma) age for the eruption. 40Ar/39Ar dating also documents several preceding episodes of magmatism: 35.69 ± 0.06 Ma (sanidine, n =13) rhyolite dikes in the nearby Cortez gold district, 35.21 ± 0.18 Ma (plagioclase, n=1) andesite lava underlying Caetano Tuff, and a 38.90 ± 0.11 Ma (biotite, n=1), dacite dike in the northeastern caldera wall. Extensive U-Pb SHRIMP dating of zircon from both the Cortez dikes and all phases of the Caetano system suggests continuous magmatism from 40-34 Ma. However, all samples contain at least some—sometimes many—zircons with U-Pb ages younger than the 34.0 Ma argon age. To determine if anomalously young zircon ages are due to Pb-loss, we analyzed representative samples of the upper Caetano Tuff and the Redrock Canyon resurgent pluton with and without chemical abrasion to mitigate Pb-loss. Bulk zircon separates were annealed at 850°C for 48 hours, then chemically abraded with 10:1 HF/HNO3 vapor in a Parr bomb at 225°C for 8 hours, based on protocols outlined by Mattinson (2005). Both treated and untreated zircons from the same sample were mounted in epoxy and polished to their midsections, then imaged on the SEM using BSE and CL. The SHRIMP-RG at Stanford University was used to determine U-Pb ages and trace element concentrations in single spots for ~25 to 30 individual zircons per sample, using a round-robin procedure and two zircon age standards (R33 and 080) to monitor external precision. Analyses revealed distinctly different age populations for the abraded and untreated zircons. The chemically abraded populations yielded unimodal zircon age distributions with mean ages that overlap with the 40Ar/39Ar age. Untreated zircon populations yielded mean ages 0.9-1.5 Ma younger than the 40Ar/39Ar. In the untreated populations, 50-60% of zircon ages are younger than 34.0 Ma at 1σ, versus 15-20% in the chemically abraded populations. Comparison of trace element data from treated and untreated populations indicates that trace element concentrations are apparently unaffected by the chemical abrasion procedure. Further experiments are underway, but we tentatively conclude that chemical abrasion is effective for removing damaged Pb-loss portions of zircons while still enabling high spatial resolution U-Pb dating and trace element analysis. It appears to be a relatively fast and low-cost way to improve the accuracy of SIMS dating of large populations of zircon from Tertiary and older plutonic and volcanic rocks where Pb-loss is frequently an issue.

  11. Experimental Evidence of Volcanic Earthquakes Induced by Different Fluid Types

    NASA Astrophysics Data System (ADS)

    Clarke, J. A.; Adam, L.; Sarout, J.; van Wijk, K.; Dautriat, J. D.; Kennedy, B.

    2017-12-01

    Low Frequency volcanic seismicity has long been associated with resonance in fluid-filled cracks or conduits driven by pressure perturbations at depth. In volcano monitoring, fluid movement, fracturing and the conduit geometry are interpreted based on field observations, laboratory experiments, and numerical models. Fluids in a volcanic environment include gasses, brine and magmas with different viscosities. Magma viscosity is a key influence on eruptive behaviour. For example, increasing magma viscosity is known to favour explosive eruptions. How different fluids affect volcano seismicity is not well understood. Here, we explore the effects of fluid type on volcano seismic signals. Frequency content in the signal, frequency of the events, source mechanism and quality factor are studied. We simulate volcano tectonic (fracturing) and volcano seismic (fluid movement) signatures in a controlled laboratory environment using a range of rock samples, fluid types and pressure conditions. The viscosity of the fluids spans six orders of magnitude, representing realistic volcanic fluids. Microseismicity is generated by venting pressurised fluids through pre-generated fracture networks in cylindrical rock core samples and detected by an array of 18 ultrasonic transducers. We fracture samples of two lithologies: 1) low porosity impermeable granite samples and 2) a permeable volcanic ash tuff sample. Permeability and porosity in the granites are due to a fracture network, while in the tuff a high porosity matrix ( 40 %) and a fracture network interact. The fluids used are nitrogen gas, water, and mixtures of water and glycerol. We generate and detect a myriad of seismic event types, some of which resemble well-known families of volcano-tectonic, low-frequency, hybrid and tremor-type seismicity. Samples with fluids of lower density and viscosity generate a higher number of seismic events. We will present an integrated analysis of the event types, frequency content, source locations and mechanisms. In addition, we explore the importance of seismic wave attenuation by studying the relationship between wave path and event frequency content.

  12. Geologic map of the northern White Hills, Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.

    2017-07-10

    IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.

  13. Contamination investigation in a karst region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentowski, J.E.

    1993-03-01

    A series of springs in the karst region of north central Kentucky appeared to have been contaminated. These springs are within 1/2 mile of two sinkholes which were filled-in as permitted landfills for inert waste and then developed into an industrial park. A pre-remedial site inspection was performed under the authority of the Superfund laws in late 1989. A preliminary site visit included site reconnaissance and geologic field work to locate the springs. A review of historical serial photos aided in the planning the investigation program consisting of magnetic and soil gas surveys and the taking environmental soil and watermore » samples. The soil gas survey indicated potential soil sampling locations. Seventeen surface and subsurface soil samples were taken. Eleven water samples were taken from various springs, rivers and the local public water supply. The analytical results from soil samples taken over the largest sinkhole matched nine inorganic and eleven volatile organic compounds also found in the spring water and sediment samples. The springs are roughly on strike with major fracture systems reported in the literature. The success of this investigation emphasizes the importance of proper geologic consideration for contaminant monitoring in karst regions.« less

  14. The Pioneer Ultramafic Complex of the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Cooper, M. R.; Byerly, G. R.; Lowe, D. R.; Thompson, M. E.

    2005-12-01

    The 3.55-3.22 Ga Barberton Greenstone Belt is an approximately 100km x 30km northeast trending, isoclinally folded, volcanic and sedimentary succession surrounded by intrusive granitic rocks. It is perhaps Earth's best preserved mid-Archean supracrustal sequence and also among the most magnesian, making it an ideal location for studying compositionally distinct rocks of the Archean, such as komatiites. The Pioneer Ultramafic Complex has been interpreted as a komatiitic intrusion but we argue that it is a sequence of layered komatiitic flows and interbedded tuffs correlative with other komatiitic extrusive units of the 3.29 Ga Weltevreden Formation, the uppermost formation of the Onverwacht Group. The Pioneer Ultramafic Complex contains at least 900m of section in the study area, including at least 5 flow sets, with individual flows up to 100 m thick, sections of tuff up to 100m thick and additional thinner tuff units. The base of the sequence is in fault contact with the Sawmill Ultramafic Complex, which is similar to and perhaps correlative with the Pioneer. The top of the sequence is bounded by the Moodies Fault and slightly younger sedimentary rocks of the Fig Tree and Moodies Groups. Typical flows of the Pioneer have highly serpentinized olivine-rich cumulate bases, fresh olivine bearing peridotitic lithologies in central portions, and increasing pyroxene content, pyroxene size, and elongation of grains toward the flow tops. Three of the five flows are capped with random and/or oriented spinifex layers. The tuffs within this and other layered ultramafic complexes of the Barberton Greenstone Belt are mostly fine grained, slaty serpentinites that were previously interpreted as bedding horizontal zones of shearing. However, rare preservation of angular and vesicular lapilli, and more commonly cross-stratification in finer grained layers, provide strong evidence that these layers represent tuffs. High chromium and other trace element contents suggest they are komatiitic tuffs likely co-magmatic with the interbedded komatiitic lava flows. Compositions of fresh olivines range between 91 to 93 percent forsterite, indicating a komatiitic melt composition. In addition to olivine phenocrysts, fresh chromite, orthopyroxene, pigeonite, and augite are all present as smaller intercumulus crystals or microphenocrysts. The pyroxenes have Mg numbers up to 89 and Al/Ti ratios approximately 10-15. The latter are consistent with the Al/Ti ratios of 20-30 found within the komatiites and tuffs analyzed thus far. These ratios indicate the flows belong to the aluminium undepleted group of komatiites. The rock and mineral chemistry of these flows allow us to determine melt compositions and explore correlations and relationships with other komatiitic flows and layered ultramafic complexes of the Barberton Greenstone Belt. Field studies of these flows help characterize an Archean igneous complex believed to represent shallow marine deposition of komatiitic tuffs and coeval emplacement of thick vertically differentiated komatiitic flows.

  15. HIGH EXPLOSIVE CRATER STUDIES: TUFF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, B.F.

    1961-04-01

    Spherical charges of TNT, each weighing 256 pounds, were exploded at various depths in tuff to determine apparent crater dimensions in a soft rock. No craters were obtained for depths of burst equal to or greater than 13.3 feet. It was deduced that rock fragments were sufficiently large that charges of greater magnitude should be employed for crater experiments intended as models of nuclear explosions. (auth)

  16. The effect of dilatancy on the unloading behavior of Mt. Helen tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attia, A.V.; Rubin, M.B.

    1993-11-01

    In order to understand the role of rock dilatancy in modeling the response of partially saturated rock formations to underground nuclear explosions, we have developed a thermodynamically consistent model for a porous material, partially saturated with fluid. This model gives good predictions of the unloading behavior of dry, partially saturated, and fully saturated Mt. Helen tuff, as measured by Heard.

  17. Calibration of the Permo-Triassic Magnetostratigraphic Time Scale: Constraints from the Dewey Lake Formation, West Texas

    NASA Astrophysics Data System (ADS)

    Chang, S.; Knight, K. B.; Renne, P. R.

    2005-12-01

    Magnetostratigraphy is potentially a powerful tool for deciphering the high resolution chronostratigraphy of events across the Permo-Triassic boundary, but few well-dated polarity reversals exist to serve as calibration. Red beds of the Dewey Lake Formation (DLF) of West Texas span three reversed polarity intervals (Steiner, 2001) in a section of the DLF at Caprock Canyons State Park, where two tuffs occur. Sanidine separated from these tuffs was analyzed by 40Ar/39Ar methods. Single crystal laser fusion 40Ar/39Ar analyses of 40 grains from the upper tuff yield a weighted mean age of 249.9 ± 2.4 Ma (2σ errors here and throughout). The clustering of single crystal data provides some assurance against xenocrystic contamination. Two age spectra from multigrain sanidine separates from the lower tuff yielded integrated ages of 248.9 ± 2.8 Ma and 249.7 ± 2.8 Ma and consistent plateau ages of 249.2 ± 2.4 Ma and 249.6 ± 2.4 Ma. Two age spectra from multigrain upper tuff sanidines lack strict plateaus but with overall flat age spectra, with integrated ages of 249.7 ± 2.8 Ma and 250.3 ± 2.8 Ma and plateau-like segments (>70% of 39Ar released) with ages of 249.9 ± 2.6 Ma and 249.9 ± 2.6 Ma, respectively. These results, compared with 40Ar/39Ar data (using the same FCs = 28.02 Ma standard calibration) from the GSSP section at Meishan, China, suggest that the Permo-Triassic boundary (249.8 Ma; recalculated from Renne et al., 1995) definitely occurs within the lower Dewey Lake Formation. The two tuffs, which bracket a normal to reverse geomagnetic polarity transition polarity (Steiner, 2001), have indistinguishable ages. The age of this Permo-Triassic polarity transition is thus best represented by the weighed average of their ages, ca. 249.7 Ma (based on accepted calibrations of the 40Ar/39Ar system). Further such constraints will facilitate high-resolution comparison of terrestrial and marine records across this critical time interval.

  18. Revised stratigraphy of Area 123, Koobi Fora, Kenya, and new age estimates of its fossil mammals, including hominins.

    PubMed

    Gathogo, Patrick N; Brown, Francis H

    2006-11-01

    Recent geologic study shows that all hominins and nearly all other published mammalian fossils from Paleontological Collection Area 123, Koobi Fora, Kenya, derive from levels between the KBS Tuff (1.87+/-0.02 Ma) and the Lower Ileret Tuff (1.53+/-0.01 Ma). More specifically, the fossils derive from 53 m of section below the Lower Ileret Tuff, an interval in which beds vary markedly laterally, especially those units containing molluscs and algal stromatolites. The upper Burgi Member (approximately 2.00-1.87 Ma) crops out only in the southwestern part of Area 123. Adjacent Area 110 contains larger exposures of the member, and there the KBS Tuff is preserved as an airfall ash in lacustrine deposits and also as a fluvially redeposited ash. We observed no mammalian fossils in situ in this member in Area 123, but surface specimens have been documented in some monographic treatments. Fossil hominins from Area 123 were attributed to strata above the KBS Tuff in the 1970s, but later they were assigned to strata below the KBS Tuff (now called the upper Burgi Member). This study definitively places the Area 123 hominins in the KBS Member. Most of these hominins are between 1.60 and 1.65 myr in age, but the youngest may date to only 1.53 Ma, and the oldest, to 1.75 Ma. All are 0.15-0.30 myr younger than previously estimated. The new age estimates, in conjunction with published taxonomic attributions of fossils, suggest that at least two species of Homo coexisted in the region along with A. boisei until at least 1.65 Ma. Comparison of crania KNM-ER 1813 and KNM-ER 1470, which were believed to be of comparable age, is at the focus of the debate over whether Homo habilis sensu lato is in fact composed of two species: Homo habilis and Homo rudolfensis. These two crania are separated in time by approximately 0.25 myr, and therefore, arguments for their conspecificity no longer need to confront the issue of unusually high contemporaneous variation within a single species.

  19. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    PubMed Central

    Hu, QH; Zavarin, M; Rose, TP

    2008-01-01

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of 99Tc and 237Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain. PMID:19077277

  20. Rhyolitic tephra record of the Gona region, southern Afar Rift, Ethiopia: Characteristics correlation and chronology

    NASA Astrophysics Data System (ADS)

    Dunbar, N. W.; Brown, F. H.; Levin, N. E.; McIntosh, W. C.; Rogers, M.; Semaw, S.; Simpson, S. W.; Stinchcomb, G. E.

    2016-12-01

    The Gona region, on the western flank of the southern Afar Rift, in Ethiopia, contains a rich and complex tephra record that provides insight into structural evolution of the region and chronological controls on the local record of human evolution. Despite lack of source volcanoes in the Gona region, thick (up to 80 cm), fine-grained (20-500 µm), fresh, pure, glassy distal tephra layers, which are discontinuous and appear to have undergone significant secondary thickening shortly after deposition, are present in sediments deposited in the last two million years. Altered tephra are present in older sediments. New data are consistent with those reported by Quade et al. (2008), showing that tephra from Gona are typically rhyolitic, consistent with derivation from large, but distant volcanic eruptions. Significant geochemical variation is observed between different tephra layers, particularly with respect to FeO (ranging between 2 and 7.5 wt.% in different rhyolitic tephra), Ca, Mn, and Cl. Elements Na and K are variable, consistent with alkali mobility during glass hydration. Although some tephra layers contain feldspar and are thus datable using the 40Ar/39Ar, others are not directly datable, so must be geochemically linked to dated source eruptions. A unit of particular focus is the widespread marker tuff known locally as the Boolihinan tuff, which is associated with significant hominin fossils and artifacts. This locally aphyric unit, which consists of highly expanded rhyolitic glass, exhibits some geochemical variability, particularly with respect to SiO2 (74-78 wt.%), but yields a robust compositions with respect to Fe, Ca, Mn, and Cl. The Boolihinan tuff was previously tentatively correlated to a 1.6 Ma tephra found in DSDP core DEM-4-1. However, we suggest here a more robust correlation to two samples of an unwelded ignimbrite with 40Ar/39Ar ages of 1.281±0.061 and 1.253±0.041 (27-01 and 27-05 of Morgan et al., 2012) from the Melka Kunture area, which is over 300 km from the Gona field area. The Boolihinan tuff is interpreted to be the ashfall equivalent of the unwelded ignimbrite. This correlation provides a chronological marker which in turn provides improved age constraints to the fossils and artifacts at Gona that are found in association with this tephra.

  1. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    USGS Publications Warehouse

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When considered together, evidence from water-level, specific conductance, major-ion concentration, and isotope data indicated that groundwater at Bell Springs and the UFA well was a mixture of surface water and groundwater from the upper confining unit, and that groundwater at White and Suwannee Springs was a mixture of surface water, groundwater from the upper confining unit, and groundwater from the Upper Floridan aquifer. Higher concentrations of magnesium in groundwater samples at the UFA well than in samples at Bell Springs might indicate less mixing with surface water at the UFA well than at Bell Springs. Characteristics of surface-water recharge, such as residence time at the surface, apparent age, and recharge water temperature, were estimated on the basis of isotopic ratios, and dissolved concentrations of gases such as argon, tritium, and sulfur hexafluoride. Oxygen and deuterium isotopic ratios were consistent with rapid recharge by rainwater for samples collected in 2012, and longer residence time at the surface (ponding) for samples collected in 2013. Apparent ages of groundwater samples, computed on the basis of tritium activity and sulfur hexafluoride concentration, indicated groundwater recharge occurred after the late 1980s; however, the estimated apparent ages likely represent the average of ages of multiple sources. Recharge since the 1980s is consistent with groundwater from shallow sources, such as the upper confining unit and Upper Floridan aquifer. Recharge water temperature computed for the three springs and UFA well averaged 20.1 degrees Celsius, which is similar to the mean annual air temperature of 20.6 degrees Celsius at a nearby weather station for 1960–2014.

  2. Low-(18)O Silicic Magmas: Why Are They So Rare?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 valuesmore » between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.« less

  3. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar

    2006-12-01

    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  4. Geochemistry, strontium isotope data, and potassium-argon ages of the andesite-rhyolite association in the Padang area, West Sumatra

    USGS Publications Warehouse

    Leo, G.W.; Hedge, C.E.; Marvin, R.F.

    1980-01-01

    Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ?? 0.12 to 0.83 ?? 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ?? 0.12 m.y. Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 - 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown. The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression. ?? 1980.

  5. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    PubMed

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pleistocene hydrovolcanism in the Tule Lake Basin, N. E. California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavine, A.

    1993-04-01

    The Prisoners Rock and The Peninsula tuff cones and the North Crater tuff ring, located in the Tule Lake Basin of northeastern California formed along a north-trending fissure approximately 270 ka when basaltic magma interacted with abundant groundwater or shallow lake water, resulting in phreatomagmatic eruptions. Diatomite inclusions in the tuff ring and correlations with the corresponding depth and diatoms in a drill core taken in the center of the basin, 2.5 km to the west of the cones, indicate shallow, marshy or shallow, alkaline-open conditions at Tule Lake around 270 ka. Deposits at Prisoners Rock and The Peninsula indicatemore » subaerial emplacement, which allowed the deposits to lithify with little erosion by the lake. Subsequent wave erosion caused undercutting and breaking off of large blocks along mainly north-trending fractures forming vertical cliff faces on the east and west sides of the cones. The cones are elongated north-south with a greater thickness of deposits on the north and northeast, probably due to prevailing southwesterly winds at the time of eruptions. Deposits of the tuff cones at Prisoners Rock and The Peninsula resulted from deep explosions caused by water-magma ratios of around 3:1. The deposits are mainly inversely graded planar surge beds, ranging in thickness from 5 to 30 cm, and grading from very fine ash to 2 cm-diameter accretionary lapilli. Emplacement by highly steam-saturated, poorly inflated pyroclastic surges is indicated by the abundance of accretionary lapilli, vesiculated tuffs, soft-sediment deformation structures, steep bedding angles (20 to 40 degrees) lack of structures beneath country rock inclusions, massive bedding, and cementation of the deposits by alteration of basaltic glass to calcite, zeolites, clays, and chlorite.« less

  7. A tuff cone erupted under frozen-bed ice (northern Victoria Land, Antarctica): linking glaciovolcanic and cosmogenic nuclide data for ice sheet reconstructions

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.

    2018-01-01

    The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.

  8. Paleogeographic insights based on new U-Pb dates for altered tuffs in the Miocene Barstow Formation, California

    USGS Publications Warehouse

    Miller, David; Rosario, Jose E.; Leslie, Shannon R.; Vazquez, Jorge A.

    2013-01-01

    The type section of the Barstow Formation in the Mud Hills, north of Barstow, is a reference section for early to middle Miocene paleontology, magnetostratigraphy, and dated volcanic episodes. Thanks to this robust chronologic framework, much of the interpretation of the paleogeography of the region from about 18 Ma to 13 Ma is based on study of the rocks in the Mud Hills. Eastward from the type section, the Barstow Formation typically is altered and structurally complex, and therefore it is hard to fit into the patterns inferred for sedimentation at the type section. We have studied ten tuff beds in five locations, extracting zircons that are partly eruptive components of the volcanic ash and partly detrital. Ion microprobe dating of the zircons associated with the ashes allows us to improve stratigraphic correlations. Dated tuffs range from 19.3 Ma to ~14.8 Ma. In several of the sections, we dated tuffs in the range 16.2-16.5 Ma, about the same age as the ~16.3 Ma Rak Tuff in the type section. The beginning of lacustrine limestone, shale, and siltstone deposition varies significantly, from ~16.3 Ma in the type section to ~18.5 Ma in hills to the east and the Calico Mountains, and greater than 19.3 Ma at Harvard Hill. At ~16.3 Ma, the sedimentary rocks ranged (west to east) from silty sandstone and limestone, to mudstone with gypsum, to massive mudstone, and then to sandstone. If the sections have not been greatly shuffled by subsequent faulting, the picture that emerges is one of a broad basin whose center near the Yermo Hills was occupied by a lake that was much longer lived and deeper than to the east and west.

  9. Hydrology and Water Quality near Bromide Pavilion in Chickasaw National Recreation Area, Murray County, Oklahoma, 2000

    USGS Publications Warehouse

    Andrews, William J.; Burrough, Steven P.

    2002-01-01

    The Bromide Pavilion in Chickasaw National Recreation Area drew many thousands of people annually to drink the mineral-rich waters piped from nearby Bromide and Medicine Springs. Periodic detection of fecal coliform bacteria in water piped to the pavilion from the springs, low yields of the springs, or flooding by adjacent Rock Creek prompted National Park Service officials to discontinue piping of the springs to the pavilion in the 1970s. Park officials would like to resume piping mineralized spring water to the pavilion to restore it as a visitor attraction, but they are concerned about the ability of the springs to provide sufficient quantities of potable water. Pumping and sampling of Bromide and Medicine Springs and Rock Creek six times during 2000 indicate that these springs may not provide sufficient water for Bromide Pavilion to supply large numbers of visitors. A potential problem with piping water from Medicine Spring is the presence of an undercut, overhanging cliff composed of conglomerate, which may collapse. Evidence of intermittent inundation of the springs by Rock Creek and seepage of surface water into the spring vaults from the adjoining creek pose a threat of contamination of the springs. Escherichia coli, fecal coliform, and fecal streptococcal bacteria were detected in some samples from the springs, indicating possible fecal contamination. Cysts of Giardia lamblia and oocysts of Cryptosporidium parvum protozoa were not detected in the creek or the springs. Total culturable enteric viruses were detected in only one water sample taken from Rock Creek.

  10. Comparison of the microflora on organically and conventionally grown spring mix from a California processor.

    PubMed

    Phillips, Christie A; Harrison, Mark A

    2005-06-01

    Considerable speculation has occurred concerning the potential for higher numbers of foodborne pathogens on organically grown produce compared with produce not grown organically. The microflora composition of spring mix or mesclun, a mixture of multiple salad ingredients, grown either by organic or conventional means was determined. Unwashed or washed spring mix was obtained from a commercial California fresh-cut produce processor who does not use manure in their cultivation practices. Fifty-four samples of each type of product were supplied over a 4-month period. Analysis included enumeration of total mesophiles, psychrotrophs, coliforms, generic Escherichia coli, lactic acid bacteria, yeasts, and molds. In addition, spring mix was analyzed for the presence of Salmonella and Listeria monocytogenes. The mean populations of mesophilic and psychrotrophic bacteria, yeasts, molds, lactic acid bacteria, and coliforms on conventionally grown spring mix were not statistically different (P > 0.05) from respective mean populations on organically grown spring mix. The mean population of each microbial group was significantly higher on unwashed spring mix compared with the washed product. Of the 14 samples found to contain E. coli, eight were from nonwashed conventional spring mix, one was from washed conventional spring mix, and four were from nonwashed organic spring mix. Salmonella and L. monocytogenes were not detected in any of the samples analyzed.

  11. On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.

    1990-06-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments will be needed.

  12. Plio-Pleistocene synsedimentary fault compartments, foundation for the eastern Olduvai Basin paleoenvironmental mosaic, Tanzania.

    PubMed

    Stollhofen, Harald; Stanistreet, Ian G

    2012-08-01

    Normal faults displacing Upper Bed I and Lower Bed II strata of the Plio-Pleistocene Lake Olduvai were studied on the basis of facies and thickness changes as well as diversion of transport directions across them in order to establish criteria for their synsedimentary activity. Decompacted differential thicknesses across faults were then used to calculate average fault slip rates of 0.05-0.47 mm/yr for the Tuff IE/IF interval (Upper Bed I) and 0.01-0.13 mm/yr for the Tuff IF/IIA section (Lower Bed II). Considering fault recurrence intervals of ~1000 years, fault scarp heights potentially achieved average values of 0.05-0.47 m and a maximum value of 5.4 m during Upper Bed I, which dropped to average values of 0.01-0.13 m and a localized maximum of 0.72 m during Lower Bed II deposition. Synsedimentary faults were of importance to the form and paleoecology of landscapes utilized by early hominins, most traceably and provably Homo habilis as illustrated by the recurrent density and compositional pattern of Oldowan stone artifact assemblage variation across them. Two potential relationship factors are: (1) fault scarp topographies controlled sediment distribution, surface, and subsurface hydrology, and thus vegetation, so that a resulting mosaic of microenvironments and paleoecologies provided a variety of opportunities for omnivorous hominins; and (2) they ensured that the most voluminous and violent pyroclastic flows from the Mt. Olmoti volcano were dammed and conduited away from the Olduvai Basin depocenter, when otherwise a single or set of ignimbrite flows might have filled and devastated the topography that contained the central lake body. In addition, hydraulically active faults may have conduited groundwater, supporting freshwater springs and wetlands and favoring growth of trees. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Geologic map of the Gila Hot Springs 7.5' quadrangle and the Cliff Dwellings National Monument, Catron and Grant Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Gaskill, David L.; Chappell, James R.

    2014-01-01

    The Gila Hot Springs quadrangle is of geologic interest with respect to four major features, which are: 1)\tThe caves of the Gila Cliff Dwellings National Monument 2)\tThe hot springs associated with the faults of the Gila Hot Springs graben 3)\tThe Alum Mountain rhyolite dome and eruptive center 4)\tA proposed segment of the southeastern wall of the Gila Cliff Dwellings caldera The Gila Cliff Dwellings National Monument consists of two tracts. The caves that were inhabited by the Mogollon people in the 14th century are in the main tract near the mouth of Cliff Dweller Canyon in the Little Turkey Park 7.5' quadrangle adjoining the northwest corner of the Gila Hot Springs quadrangle. The second tract includes the Cliff Dwellings National Monument Visitor Center at the confluence of the West and Middle Forks of the Gila River in the northwest corner of the Gila Hot Springs quadrangle. Both quadrangles are within the Gila National Forest and the Gila Wilderness except for a narrow corridor that provides access to the National Monument and the small ranching and residential community at Gila Center in the Gila River valley. The caves in Cliff Dweller Canyon were developed in the Gila Conglomerate of probable Miocene? and Pleistocene? age in this area by processes of lateral corrosion and spring sapping along the creek in Cliff Dweller Canyon. The hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben, which cuts diagonally northwest-southeast across the central part of the quadrangle. Some of the springs provide domestic hot water for space heating and agriculture in the Gila River valley and represent a possible thermal resource for development at the Cliff Dwellings National Monument. The Alum Mountain rhyolite dome and eruptive center in the southwestern part of the quadrangle is a colorful area of altered and mineralized rocks that is satellitic to the larger Copperas Canyon eruptive center, both being part of the composite Copperas Creek volcano, or volcanic complex in the Copperas Peak quadrangle to the south. The altered rocks of the Alum Mountain eruptive center have been prospected by means of several short adits, or tunnels, for alum, a mixture of the iron and aluminum sulfate minerals: alunite and halotrichite. A fault on the west side of the Gila River, opposite the hot springs in the south-central part of the map area, just north of Alum Mountain, is tentatively interpreted as a segment of the wall of the Gila Cliff Dwellings caldera. The fault, which dips about 55 degrees northwest, has a footwall of the andesitic and dacitic lava flows and flow breccias of Gila Flat. The hanging wall consists of Bloodgood Canyon Tuff overlain by Bearwallow Mountain Andesite flows. However, these rocks are not faulted against the older rocks, but apparently abut and locally overlap the footwall. These are the major geologic features of the quadrangle, about three quarters of which is covered by Bearwallow Mountain Andesite lava flows and overlying volcaniclastic rocks of the Gila Conglomerate.

  14. Apparent CFC and 3H/ 3He age differences in water from Floridan Aquifer springs

    NASA Astrophysics Data System (ADS)

    Happell, James D.; Opsahl, Stephen; Top, Zafer; Chanton, Jeffrey P.

    2006-03-01

    The apparent CFC-11, -12 and -113 ages of Upper Floridan Aquifer water discharged from 31 springs located in Florida and Georgia ranged from 11 to 44 years when samples were collected in 2002 and 2003. Apparent 3H/ 3He ages in these springs ranged from 12 to 66 years. Some of the springs sampled did not yield valid CFC ages because one or more of the CFCs were contaminated by non-atmospheric sources. Of the 31 springs sampled, six were contaminated with all three CFCs and nine were contaminated with one or two CFCs. Of the remaining 16 springs, the CFC distributions of four could be modeled assuming a single source of water, and 11 were best modeled by assuming two sources of water, with one of the water sources >60 years old. The CFC and 3H/ 3He apparent ages and the simple mixing models applied to these ages suggest that past impacts to the water quality of water recharging the sampled springs may take anywhere from 0 to ˜60 years or more to appear in the discharging spring water. In 27 springs where both 3H/ 3He ages and CFC ages were available, five springs gave similar results between the two techniques, while in the other 22 cases the 3H/ 3He apparent ages were 8-40 years greater than the CFC ages. Large excesses of 4He were observed in many of the springs, consistent with a source of older water. This older water may also carry an additional and unaccounted for source of 3He, which may be responsible for the greater 3H/ 3He ages relative to the CFC ages. We believe that the large excess 3He and 4He values and apparent age differences are related to regional climate variations because our samples were obtained at the end of a 4-year drought.

  15. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less

  16. Trondhjemite and metamorphosed quartz keratophyre tuff of the Ammonoosuc volcanics (Ordovician), western New Hampshire and adjacent Vermont and Massachusetts.

    USGS Publications Warehouse

    Leo, G.W.

    1985-01-01

    These volcanic rocks consist of a lower, mainly mafic unit of hornblende-plagioclase amphibolite and an upper, mainly felsic metamorphosed quartz keratophyre tuff. They are intruded by sills, dykes and plugs of trondhjemite; which is highly silicic (SiO2, 73-81%), low in Al2O3 (11.3-13.5%) and generally contains <1% K2O. Both trondhjemite and volcanics are calc-alkaline. The major- and minor-element geochemistry of the trondhjemites is closely similar to that of the quartz keratophyre tuff. These rocks were probably produced by partial melting of basaltic source rocks, rather than by fractional crystallization, in view of the virtually bimodal nature of the Ammonoosuc assemblage. The generation of the felsic rocks occurred at deeper levels along a subduction zone dipping eastward.-L.C.H.

  17. [sup 40]Ar/[sup 39]Ar ages of Challis volcanic rocks and the initiation of Tertiary sedimentary basins in southwestern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M'Gonigle, J.W.; Dalrymple, G.B.

    1993-10-01

    [sup 40]Ar/[sup 39]Ar ages on single sanidine crystals from rhyolitic tuffs and ash flow tuffs within the uppermost and lowermost parts of the volcanic sequence of the Horse Prairie and Medicine Lodge topographic basins, southwestern Montana, show that these volcanic rocks were emplaced between about 48.8[+-]0.2 Ma and 45.9[+-]0.2 Ma, and are correlative with the Eocene Challis Volcanic Group of central Idaho. Sanidine ages on tuffs at the base of the Tertiary lacustrine, paludal, and fluvial sedimentary sequence, which unconformably overlies the volcanic sequence, suggest that sedimentation within an ancestral sedimentary basin that predated the development of the modern Horsemore » Prairie and Medicine Lodge basins began in the middle Eocene. 22 refs., 3 figs., 2 tabs.« less

  18. The Laramide Mesa formation and the Ojo de Agua caldera, southeast of the Cananea copper mining district, Sonora, Mexico

    USGS Publications Warehouse

    Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.

    2006-01-01

    The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.

  19. Origin and characteristics of discharge at San Marcos Springs based on hydrologic and geochemical data (2008-10), Bexar, Comal, and Hays Counties, Texas

    USGS Publications Warehouse

    Musgrove, MaryLynn; Crow, Cassi L.

    2012-01-01

    The Edwards aquifer in south-central Texas is a productive and important water resource. Several large springs issuing from the aquifer are major discharge points, popular locations for recreational activities, and habitat for threatened and endangered species. Discharges from Comal and San Marcos Springs, the first and second largest spring complexes in Texas, are used as thresholds in groundwater management strategies for the Edwards aquifer. Comal Springs is generally understood to be supplied by predominantly regional groundwater flow paths; the hydrologic connection of San Marcos Springs with the regional flow system, however, is less understood. During November 2008–December 2010, a hydrologic and geochemical investigation of San Marcos Springs was conducted by the U.S. Geological Survey (USGS) in cooperation with the San Antonio Water System. The primary objective of this study was to define and characterize sources of discharge from San Marcos Springs. During this study, hydrologic conditions transitioned from exceptional drought (the dry period, November 1, 2008 to September 8, 2009) to wetter than normal (the wet period, September 9, 2009 to December 31, 2010), which provided the opportunity to investigate the hydrogeology of San Marcos Springs under a wide range of hydrologic conditions. Water samples were collected from streams, groundwater wells, and springs at and in the vicinity of San Marcos Springs, including periodic (routine) sampling (every 3–7 weeks) and sampling in response to storms. Samples were analyzed for major ions, trace elements, nutrients, and selected stable and radiogenic isotopes (deuterium, oxygen, carbon, strontium). Additionally, selected physicochemical properties were measured continuously at several sites, and hydrologic data were compiled from other USGS efforts (stream and spring discharge). Potential aquifer recharge was evaluated from local streams, and daily recharge or gain/loss estimates were computed for several local streams. Local rainfall and recharge events were compared with physicochemical properties and geochemical variability at San Marcos Springs, with little evidence for dilution by local recharge.

  20. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  1. Removal and recovery of p-phenylenediamines developing compounds from photofinishing lab-washwater using clinoptilolite tuffs from Greece.

    PubMed

    Vlessidis, A G; Triantafillidis, C S; Evmiridis, N P

    2001-04-01

    Clinoptilolite tuffs from areas in Thrace region of Greece are compared with synthetic zeolites NaY and NH4Y for the uptake of N4-ethyl-N4-(2-methansulphonamidoethyl)-2-methyl-1,4-phenylenediamin (sesquisulphate, monohydrate) with the trade name CD-3 for the purpose to be used for clean-up and recycling photo-finishing and photo-developing washwaters. The cation-exchange capacity is found to be 6.15-11.1 mg/g for zeoliferous tuffs at equilibrium concentration of 50 ppm CD-3 in aqueous solution compared to 65.0 mg/g of NaY and 48.2 mg/g for NH4Y synthetic zeolites corresponding to the removal of CD-3 from 120 to 2001 of 50 ppm aqueous solution per kg of natural zeoliferous tuff; this capacity is only 6-10 times lower than type-Y synthetic zeolite. Initial rates of uptake are 20.8 mg/l/min for natural and 38.5 mg/l/min for synthetic zeolites. Regeneration levels of 55, 23, 35, and 33% are obtained for MCH, SF, NaY, and NH4Y, respectively. The rapid and almost complete uptake of CD-3 from its aqueous solutions at low CD-3 concentrations by the natural zeolites is promising for such an application.

  2. Sonication Enables Effective Iron Leaching from Green Tuff at Low Temperature

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-07-01

    Ultrasound irradiation (28 and 200 kHz) was applied to iron leaching from green tuff into a low temperature solution (20 °C) using oxalic acid. Ultrasound irradiation increased the amount of iron leached from the green tuff and was greater than that leached by stirring. It is thought that the jet flow caused by the collapse of cavities during ultrasound irradiation prevents and strips the deposits of iron oxalate from the green tuff particles. The extraction of iron at 28 kHz displayed better performance than that at 200 kHz for three reasons. The first is that the jet flow generated by cavitation bubble collapse at 28 kHz is thought to be stronger than that at 200 kHz. The second is that the crushing action of ultrasound irradiation at 28 kHz is greater than that at 200 kHz. The third is that 200 kHz irradiation generates OH radicals, which prevents the generation of FeH(C2O4)+ and oxidizes FeH(C2O4)+ to Fe(C2O4), creating a cover layer on the surface of the stone. Thus, to leach iron from the ore, it is effective to use ultrasound irradiation at 28 kHz, which prevents the creation of radicals and breaks down the grain size.

  3. Preliminary evaluation of hydrologic properties of cores of unsaturated tuff, test well USW H-1, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Weeks, E.P.; Wilson, W.E.

    1984-01-01

    Analyses were made on 19 core samples of unsaturated tuff from test well USW H-1. Moisture-characteristic curves relating saturation and moisture tension were developed from results of mercury-injection tests. Ambient moisture tension estimated from these curves generally was 1 to 2 bars. Values of relative permeability ranging from about 0.002 to 0.1 were determined by fitting an analytical expression to eight of the moisture-characteristic curves, and then integrating to solve for relative permeability. These values of relative permeability were applied to values of saturated hydraulic conductivity of core from a nearby test well to obtain effective hydraulic conductivities of about 8 x 10 to the minus twelfth power to 7 x 10 to the minus tenth power centimeter per second. If a unit hydraulic-head gradient is assumed, these values convert to a vertial matrix flux of 0.003 to 0.2 millimeter per year. The validity of this assumption was not verified due to the sparseness of data and uncertainties in their reliability. Consequently, the results of this study are preliminary and need to be used principally as a guide for future studies. (USGS)

  4. Stable Water Isotope Climate Archives in Springs from the Olympic Mountains, Washington

    EPA Science Inventory

    The 18O and 2H (HDO) compositions are summarized for sampled springs (n = 81) within the Elwha watershed (≈ 692 km2) on the northern Olympic Peninsula. Samples, collected during 2001–2009, of springs (n = 158), precipitation (n = 520), streams (n...

  5. Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.

    1991-01-01

    Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases, took place in the upper part of the ejecta, mostly in the fallout layers. The permeability difference between the ash-flow tuff and the overlying coarse dacite fallout was a critical factor in promoting the abrupt gradients in temperature, pressure, and fO2 that resulted in deposition of minerals from the fumarolic gases. The permeability difference between nonwelded ash-flow tuff and overlying fine-grained fall layers in the lower VTTS is less pronounced. The total mass of fumarolically deposited minerals appears large at first glance owing to the conspicuous coloration by Fe minerals; the mass is appreciably less than is apparent, however, because most incrustations are composed largely of ejecta coated or cemented by fine-grained fumarolic minerals. A large mass of unstable incrustation minerals, mainly chlorides and sulfates, reported during the 1917-1919 studies have since been removed by dissolution and weathering. In the vent region, argillic alteration that followed high-temperature degassing is localized along arcuate subsidence fractures in fallback ejecta. At widely scattered residual orifices, fumarolic gases presently are near-neutral steam, and temperatures are as hot as 90??C. ?? 1991.

  6. 40Ar/39Ar ages for the fossil-bearing Gyeongsang Supergroup in South Korea

    NASA Astrophysics Data System (ADS)

    Chang, S. C.; Hemming, S. R.

    2016-12-01

    Since the 1970s, abundant vertebrate fossils have been documented from the Cretaceous Gyeongsang Supergroup in the Gyeongsang Basin and some small nearby basins of the Korean Peninsula, including dinosaurs, pterosaurs, crocodilians, turtles and fish. In addition to body fossils, well-preserved dinosaur, bird and pterosaur tracks have been found from these formations. Well-preserved and extensive vertebrate ichnofaunas from the Gyeongsang Supergroup represent the largest known concentration of Cretaceous vertebrate track sites reported from the Asian continent. Determining the age of the Gyeongsang Supergroup is critical to understanding several fundamental questions related to evolution and paleo-biogeography. However, limited radioisotopic studies for the Gyeongsang Supergroup have been previously reported. Additionally, the large uncertainties of previous data and the incomplete stratigraphic description of the samples limit their value for high-resolution chronostratigraphy. In this study, we aim to establish high-precision 40Ar/39Ar ages for two well-known tuffs from the middle and the upper part of the Gyeongsang Supergroup, and one rhyolite from the uppermost Gyeongsang Supergroup. Our preliminary 40Ar/39Ar data for the Kusandong Tuff indicates that the middle part of the Gyeongsang Supergroup is 78-82 Ma. This is consistent with the hypothesized extension of the Jehol biota into Korea and the preliminary results suggest that refinement of the time scale for these strata is a practical goal. The Gyeongsang Supergroup sample has great potential for substantially increasing our knowledge of Mesozoic terrestrial ecosystems.

  7. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.

    2003-01-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

  8. Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001

    USGS Publications Warehouse

    Monroe, Stephen A.; Antweiler, Ronald C.; Hart, Robert J.; Taylor, Howard E.; Truini, Margot; Rihs, John R.; Felger, Tracey J.

    2005-01-01

    Springs flowing from the south rim of Grand Canyon are an important resource of Grand Canyon National Park, offering refuge to endemic and exotic terrestrial wildlife species and maintaining riparian areas. Population growth on the Coconino Plateau has increased the demand for additional development of ground-water resources, and such development could reduce spring discharge and affect the sustainability of riparian areas within the park. In addition, springs are an important source of drinking water for hikers and are culturally and economically important to Native Americans living in the region. Water samples were collected from May 2000 to September 2001 from 20 spring and creek sites that discharge water from the Redwall-Muav Limestone aquifer along the south rim of Grand Canyon. Sample collection sites were described and samples were analyzed for major ions, nutrients, trace elements, radioactivity, and selected isotopes, and potential sources of ground-water flow to the springs. Rock samples representing the major stratigraphic units of Grand Canyon were collected near the Bright Angel Fault and analyzed for mineralogy, strontium-87/strontium-86, and carbon-13/carbon-12. The chemical composition of water samples collected from a given spring did not vary appreciably over the course of the study. Although water at each spring had a temporally constant composition, the composition was chemically distinct from that of every other spring sampled, indicating spatial variability in the ground-water composition. Most samples had a calcium magnesium bicarbonate composition; a few had a substantial sulfate component. Concentrations of arsenic, nitrate, selenium, uranium, and gross alpha approached or exceeded U.S. Environmental Protection Agency Maximum Contaminant Levels in water discharging from some springs. Oxygen and hydrogen isotopic compositions varied little among samples, and for most sites the isotopic data plot close to the global meteoric water line or below the local meteoric water line. Isotopic enrichment indicates fractionation due to evaporation occurs at some sites. The evaporative process may occur prior to recharge or post-discharge. Flow paths are differentiated between the eastern part of the study area where strontium-87/strontium-86 values for water from springs and creeks are more radiogenic than strontium-87/strontium-86 values for water that discharges from sites farther west. Tritium and carbon isotope analyses indicate that residence time of ground-water discharge from springs and creeks ranges from less than 50 years to about 3,400 years. Water with a residence time of less than 50 years is absent at several sites. Discharge of most springs and creeks is a mixture of younger and older waters.

  9. Drill-back studies examine fractured, heated rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less

  10. Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir

    2015-02-01

    Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.

  11. Influence of temperature on the adsorption of α-tocopherol from ethanol solutions on acid-activated clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.

    2014-08-01

    Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.

  12. Diatreme evolution during the phreatomagmatic eruption of the Songaksan tuff ring, Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Go, S. Y.; Kim, G. B.; Jeong, J. O.; Sohn, Y. K.

    2017-03-01

    The Songaksan tuff ring, Jeju Island, Korea, which erupted ca. 3.7 ka BP in a coastal setting, provides an unusual opportunity to study the processes of phreatomagmatic eruption and the formation of a diatreme because of the exceptionally well-preserved ejecta beds and well-known subsurface geology. The tuff sequence can be divided into four units (A to D), which have distinctly different accidental componentry (quartz-rich vs. quartz-poor), grain surface features (abraded and ash-coated vs. unabraded and uncoated), and chemical compositions of juvenile particles. The basal tephra bed of unit A, which probably erupted after the removal of the relatively hard shallow-level (<120 m deep) substrate by initial cratering, comprises only unabraded and uncoated grains and contains abundant relatively deep-derived (>120 m deep) accidental grains, suggesting that the early erupted tephra had not yet experienced recycling and pre-eruption mixing in the diatreme. On the other hand, the overlying tephra beds of units A, B, and D contain an abundance of abraded and ash-coated juvenile/accidental grains, suggesting that the tephra comprised significant proportions of "recycled" or "premixed" materials from previous eruptions or subsurface explosions, which participated in the explosion-driven mixing in the diatreme before eventual ejection from the diatreme. Unit C is unusual in that it comprises extremely rare accidental grains and ash-coated juvenile/accidental grains. We interpret that the supply of solid materials, either accidental or juvenile, to the diatreme was greatly reduced because of temporary stabilization of the diatreme and the reduction in magma flux to the diatreme. The diatreme is therefore envisaged to have been filled with a water-saturated slurry, in which particle abrasion and adhesion were inhibited. We also infer that the diatreme fill was temporarily removed by a powerful explosion before eruption of unit C on the basis of the near absence of the tephra grains from earlier eruptions throughout the tephra beds of unit C. The ratio of tachylite to sideromelane grains generally increases up-section of the tuff sequence with two abrupt drops across the tuff unit boundaries. These variations are coincident with the changes in the chemical composition of juvenile particles, suggesting an overall decrease in magma flux punctuated by brief increases in magma flux associated with the arrival of new magma batches. The textural and compositional variations of the Songaksan tuff ring suggest that there can be significant variability in diatreme processes even during a purely phreatomagmatic eruption of a tuff ring, including removal and renewal of the diatreme fill, and that there is still much room for further investigation of the diatreme processes from the ejecta beds in order to make the current diatreme model more robust.

  13. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring. During August–October 1999, several field trips were conducted in the vicinity of Anderson Springs to continue monitoring and sampling the thermal manifestations. The new fumarolic area had increased in temperature and in discharge intensity since 1998, and a zone of dead trees had developed on the steep bank directly west of the fumaroles. Ground temperatures and diffuse flow of CO2 flow through soils were measured in the area surrounding the main spring and new fumaroles and in the zone of tree-kill.

  14. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  15. Rare earth element content of thermal fluids from Surprise Valley, California

    DOE Data Explorer

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  16. Results of the Level-1 Water-Quality Inventory at the Pinnacles National Monument, June 2006

    USGS Publications Warehouse

    Borchers, James W.; Lyttge, Michael S.

    2007-01-01

    To help define baseline water quality of key water resources at Pinnacles National Monument, California, the U.S. Geological Survey collected and analyzed ground water from seven springs sampled during June 2006. During the dry season, seeps and springs are the primary source of water for wildlife in the monument and provide habitat for plants, amphibians, and aquatic life. Water samples were analyzed for dissolved concentrations of major ions, trace elements, nutrients, stable isotopes of hydrogen and oxygen, and tritium. In most cases, the concentrations of measured water-quality constituents in spring samples were lower than California threshold standards for drinking water and Federal threshold standards for drinking water and aquatic life. The concentrations of dissolved arsenic in three springs were above the Federal Maximum Contaminant Level for drinking water (10 g/L). Water-quality information for samples collected from the springs will provide a reference point for comparison of samples collected from future monitoring networks and hydrologic studies in the Pinnacles National Monument, and will help National Park Service managers assess relations between water chemistry, geology, and land use.

  17. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.

  18. 40Ar/(39)Ar dating of the Kapthurin Formation, Baringo, Kenya.

    PubMed

    Deino, Alan L; McBrearty, Sally

    2002-01-01

    The(40)Ar/(39)Ar radiometric dating technique has been applied to tuffs and lavas of the Kapthurin Formation in the Tugen Hills, Kenya Rift Valley. Two variants of the(40)Ar/(39)Ar technique, single-crystal total fusion (SCTF) and laser incremental heating (LIH) have been employed to date five marker horizons within the formation: near the base, the Kasurein Basalt at 0.61+/-0.04 Ma; the Pumice Tuff at 0.543+/-0.004 Ma; the Upper Kasurein Basalt at 0.552+/-0.015 Ma; the Grey Tuff at 0.509+/-0.009 Ma; and within the upper part of the formation, the Bedded Tuff at 0.284+/-0.012 Ma. The new, precise radiometric age determination for the Pumice Tuff also provides an age for the widespread Lake Baringo Trachyte, since the Pumice Tuff is the early pyroclastic phase of this voluminous trachyte eruption. These results establish the age of fossil hominids KNM-BK 63-67 and KNM-BK 8518 at approximately 0.510-0.512 Ma, a significant finding given that few Middle Pleistocene hominids are radiometrically dated. The Kapthurin hominids are thus the near contemporaries of those from Bodo, Ethiopia and Tanzania. A flake and core industry from lacustrine sediments in the lower part of the formation is constrained by new dates of 0.55-0.52 Ma, a period during which the Acheulian industry, characterized by handaxes, is known throughout East Africa. Points, typical of the Middle Stone Age (MSA), are found in Kapthurin Formation sediments now shown to date to between 0.509+/-0.009 Ma and 0.284+/-0.012 Ma. This date exceeds previous estimates for the age of the MSA elsewhere in East Africa by 49 ka, and establishes the age of Acheulian to MSA transition for the region. Evidence of the use of the Levallois technique for the manufacture of both small flakes and biface preforms, the systematic production of blades, and the use and processing of red ochre also occurs in this interval. The presence of blades and red ochre at this depth is important as blades signify a high degree of technical competence and red ochre suggests symbolic behavior. Copyright 2002 Academic Press.

  19. Natural fluoride levels in some springs and streams from the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of south eastern Nigeria.

    PubMed

    Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S

    1999-09-01

    The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.

  20. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    USGS Publications Warehouse

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium, and sulfate show statistically significant differences between the median values of base-flow and stormflow samples. While variations in these constituents do not degrade water quality, the differences do provide evidence of variability in the factors controlling water quality of the hot springs and show that water quality is influenced by the locally derived, cold-water component of flow to the springs. Water temperature was measured continuously (3-minute intervals) between August 2000 and October 2002 at four hot springs. Continuous water-temperature data at the springs provide no indication of persistent long-term change in water temperature through time. Short time-scale water-temperature decreases occur in response to mixing of hot-springs water with locally derived recharge after storm events; the magnitude of these decreases varied inversely with the amount of rainfall. Maximum decreases in water temperature for specific storms had a non-linear relation with the amount of precipitation measured for the events. Response time for water temperature to begin decreasing from baseline temperature as a result of storm recharge was highly variable. Some springs began decreasing from baseline temperature as quickly as 1 hour after the beginning of a storm; one spring had an 8-hour minimum response time to show a storm-related temperature decrease. Water-quality, water-temperature, isotopic, and radiochemical data provide multiple lines of evidence supporting the importance of the contribution of cold-water recharge to hot springs. All the springs sampled indicated some measure of influence from local recharge. Binary mixing models using silica and total dissolved solids indicate that cold-water recharge from stormflow contributes an estimated 10 to 31 percent of the flow of hot springs. Models using water temperature indicate that cold-water recharge from stormflow contributes an estimated 1 to 35 percent of the flow of the various hot springs. Alth

  1. Geology of the Humboldt region and the Iron King mine, Bigbug mining district, Yavapai County, Arizona

    USGS Publications Warehouse

    Creasey, Saville Cyrus

    1951-01-01

    The Humboldt region is in central Yavapai County, Arizona. The intersection of the 112? 15' meridian and the 34? 30' N parallel is in the approximate geographical center of the region, and the Iron King mine is about 2000 feet west-northwest of the intersection. Pre-Cambrian rocks form the bedrock in the Humboldt region. Late Cenozoic unconsolidated river wash and valley fill, including some interbedded basalt, locally mantle the pre-Cambrian rocks, especially in the north-central part of the region (Lonesome Valley). The pre-Cambrian rocks consist of five newly defined metavolcanic formations derived from flows and tuff s, and of six intrusive units ranging in composition from granite to gabbro or perhaps more mafic types. Relic bedding-and pillow structures are locally prominent in the metavolcanics; geopetal structures are uncommon, but where present, generally indicate that the top is toward the west, though the evidence is too meager to be conclusive. Low-grade dynamothermal metamorphism altered the metavolcanics and to a lesser extent the intrusive rocks, forming textures, structures, and mineral assemblages characteristic of low temperature and moderate stress. The Texas Gulch formation, which is the easternmost metavolcanic formation, consists of five lithologic units. Arranged in the general order of their appearance from east to west they are meta-andesite breccia, purple slate, metarhyolite tuff, meta-andesite, and green slate. The boundary between the Texas Gulch formation and the Iron King meta-andesite is apparently gradational. The Iron King meta-andesite consists of three meta-andesite tuff units, two meta-andesite flow units and one metarhyolite tuff and conglomerate unit. The assemblage chlorite-albite-epitode with or without quartz is dominant in the meta-andesites. Mafic intrusive rocks, which may be approximately contemporaneous with metamorphism, may explain the presence of actinolitic hornblende in the central part of the formation. Toward the west the Iron King meta-andesite appears to grade into the Spud Mountain metabreccia through a zone containing beds characteristic of either one formation or the other. The Spud Mountain metabreccia consists of interbedded metabreccia and metatuff beds. The metatuffs are largely andesitic in composition, but a few thin beds of metarhyolite tuff occur. The fragments in the metabreccia beds consist chiefly or porphyritic meta-andesites and the matrix is meta-andesite tuff. Pre-Cambrian faults now marked by dikes separate the Chaparral Gulch metavolcanics, which lie west of the Spud Mountain metabreccia, from underlying and overlying formations. The Chaparral Gulch metavolcanics contain metarhyolite tuff, metarhyolite flow, and meta-andesite tuff that locally was contaminated by rhyolitic detritus. The Indian Hills metavolcanics, which are northeast of the Chaparral Gulch metavolcanics, consist of two broad units, one composed of metarhyolites and the other of meta-andesites. Metamorphosed tuffs and flows are believed to be represented in both units and flow breccia in the meta-andesites. Granite and alaskite; granodiorite and quartz diorite; diorite, mafic quartz diorite, gabbro and diabase; metarhyolite (?); and quartz porphyry comprise the pre-Cambrian intrusive units mapped. They include both deep-seated and hypabyssal types. Dynamothermal metamorphism has foliated the smaller bodies and the margins of the larger masses and partly converted them into mineral assemblages stable under low-grade metamorphic conditions. Planar structures (chiefly foliation) are omnipresent and linear structures are common in the pre-Cambrian meta-volcanic rocks. North-trending planar structures dominate in the Indian Hills metavolcanics, and in the Spud Mountain metabreccia, whereas northeast-trending planar structures are dominant in the Texas Gulch formation, Iron King meta-andesite, and Chaparral Gulch metavolcanics. To a lesser extent northeast-trending st

  2. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    DOEpatents

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  3. MX Siting Investigation. Geotechnical Evaluation. Verification Study - Pahroc Valley, Nevada. Volume I. Synthesis.

    DTIC Science & Technology

    1981-06-30

    Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An

  4. Additional results on palaeomagnetic stratigraphy of the Koobi Fora Formation, east of Lake Turkana (Lake Rudolf), Kenya

    USGS Publications Warehouse

    Hillhouse, J.W.; Ndombi, J.W.M.; Cox, A.; Brock, A.

    1977-01-01

    The magnetostratigraphy of the hominid-bearing sediments exposed east of Lake Turkana has been strengthened by new palaeomagnetic results. Ages obtained from several tuffs by the 40Ar/39Ar method suggest an approxmate match between the observed magnetozones and the geomagnetic polarity time scale; however, the palaeomagnetic results are also compatible with a younger chronology suggested by conventional K-Ar dating of the KBS Tuff. ?? 1977 Nature Publishing Group.

  5. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  6. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  7. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Naeser, C. W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sigé, B.

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times.

  8. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    USGS Publications Warehouse

    Naeser, C.W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sige, B.

    1991-01-01

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times. ?? 1991.

  9. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Deming; Cai Zhonghou; Lai, Barry

    2007-01-19

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  10. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Cai, Zhonghou; Lai, Barry

    2007-01-01

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  11. Rock geochemistry in the Mahd adh Dhahab district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Worl, R.G.; Doebrich, J.L.; Allen, M.S.; Afifi, A.M.; Ebens, R.J.

    1987-01-01

    Anomalous values of gold, silver, lead, and to a lesser extent copper and zinc in surface rock samples clearly delineated the northern mineralized zone in the upper agglomerate, and an east-vein area and west-vein area of the southern mineralized zone in the lower agglomerate. A third geochemically anomalous area occurs farther to the west in the lower agglomerate, suggesting that mineralization may have extended at least to this area along the lower agglomerate-lower tuff contact, and possibly even further to the west.

  12. Springs, streams, and gas vent on and near Mount Adams volcano, Washington

    USGS Publications Warehouse

    Nathenson, Manuel; Mariner, Robert H.

    2013-01-01

    Springs and some streams on Mount Adams volcano have been sampled for chemistry and light stable isotopes of water. Spring temperatures are generally cooler than air temperatures from weather stations at the same elevation. Spring chemistry generally reflects weathering of volcanic rock from dissolved carbon dioxide. Water in some springs and streams has either dissolved hydrothermal minerals or has reacted with them to add sulfate to the water. Some samples appear to have obtained their sulfate from dissolution of gypsum while some probably involve reaction with sulfide minerals such as pyrite. Light stable isotope data for water from springs follow a local meteoric water line, and the variation of isotopes with elevation indicate that some springs have very local recharge and others have water from elevations a few hundred meters higher. No evidence was found for thermal or slightly thermal springs on Mount Adams. A sample from a seeping gas vent on Mount Adams was at ambient temperature, but the gas is similar to that found on other Cascade volcanoes. Helium isotopes are 4.4 times the value in air, indicating that there is a significant component of mantle helium. The lack of fumaroles on Mount Adams and the ambient temperature of the gas indicates that the gas is from a hydrothermal system that is no longer active.

  13. Rejuvenation Stage Volcanics at Laeo Kilauea, Kauai, Hawaii

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Garcia, M.; Wanless, D.; Tagami, T.; Sano, H.

    2005-12-01

    The Plio-Pleistocene Koloa volcanic series represents the rejuvenated volcanism on Kauai, one of the oldest main Hawaiian Islands. The Koloa series is made up of highly alkalic basalt and associated sedimentary rocks that rest unconformably on the shield-building Waimea Canyon volcanic series. Koloa vents are dispersed across the eastern two-thirds of the island and typically consist of scoria or lava cones that fed broad lava flow fields blanketing the marginal lowlands on the south, east and north side of the island. The northernmost subaerial Koloa vents are found at Laeo Kilauea on the north shore of the island. At Laeo Kilauea the volcanic succession is unusual in that it contains the only phreatomagmatic vent structures of the Koloa series. Here an ~2-km-long costal cliff face reveals a bedded phreatomagmatic tephra sequence that is >90-m-thick and represents the remnant of an a much large tuff cone (>2-km in diameter). The tuff cone sequence is characterized by decimeter to meters thick layers, where cross-bedded ash beds alternate with massive and poorly sorted lapilli tuff beds. The cross-bedded deposits were produced by dry and wet surges, whereas the poorly sorted beds represent fall deposits produced by sustained eruption column (i.e. continuous up-rush) or tephra jets (i.e. rooster-tail explosions). The juvenile clast population of the tephra consists of olivine-phyric foidite, but it also contains abundant wall-rock lithics, including fragments of reef-limestone. The base of the tuff cone outcrops at Mokolea point on the east side of the outcrop, where phreatomagmatic tephra rests directly on an older Koloa pahoehoe flow, a olivine- and mellelite-phyric foidite lava. The tephra sequence is cut by an ~1-m-thick olivine-bearing basanite dike, which acted as a feeder for the fountain-fed spatter and lava (up to 100-m-thick) that cap the phreatomagmatic tephra sequence. These units are separated by a 2-3 m thick soil horizon formed by weathering of the tuff. These three formations have been dated by Ar-Ar giving 2.65 +/- 0.35 Ma for the age of the basal foidite lava, 1.68 +/- 0.11 Ma for the tuff cone and 0.69 +/- 0.03 Ma for the overlying fountain-fed basanite lava. Important conclusions that can be drawn from the results of this study include: (1) The characteristics of the phreatomagmatic tephra indicate that at times the tuff cone crater was filled with water implying that the eruption site was submarine and most likely located in shallow coastal waters. The presence of reef-limestone fragments in the tephra supports this notion. On the other hand, the underlying and overlying lava flows, which do extend an unknown distance beyond the current shoreline, were clearly deposited on dry land. This implies that Kauai experienced significant changes in sea level in early to mid Pleistocene times. (2) The eruptions that produced the tuff cone and the overlying fountain-fed basanite lava are one million years apart, yet the dikes that fed these eruptions appear to have followed a similar path to the surface. This indicates that the magma is utilizing preexisting structural weaknesses to reach the surface.

  14. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as mass extinctions.

  15. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    PubMed

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  16. Spring-back simulation of unidirectional carbon/epoxy L- shaped laminate composites manufactured through autoclave processing

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Mezeix, L.; Aminanda, Y.; Seman, M. A.; Rivai, A.; Ali, K. M.

    2016-02-01

    This paper presents an original method in predicting the spring-back for composite aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up samples are fabricated on moulds with different corner angles (30°, 45° and 90°) and the effect on spring-back deformation are observed. Then, the FEA model that was developed in the previous study on flat samples is utilized. The model maintains the physical mechanisms of spring-back such as ply stretching and tool-part interface properties with the additional mechanism in the corner effect and geometrical changes in the tool, part and the tool-part interface components. The comparative study between the experimental data and FEA results show that the FEA model predicts adequately the spring-back deformation within the range of corner angle tested.

  17. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    USGS Publications Warehouse

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and pore geometry are relevant for flow of any fluid through an ignimbritic host.

  18. A Cultural Resources Survey of the Proposed Recreational Development Areas and Wildlife Subimpoundments at the B. Everett Jordan Dam and Lake. Volume 1.

    DTIC Science & Technology

    1984-03-01

    containing flow banding, light-gray felsite, felsic- porphyries , crystal tuffs, and rare mafic porphyries and crystal tuffs (Conley and Bain 1965:12Z). The...goods are also present in the form of glass beads, gunflints, iron axes, copper hawk bells and white clay trade pipes. HISTORICAL BACKGROUND The...points manufactured on two rock types occur most frequently: andesitic felsite in the lower valley and grey latite porphyry in the upper valley. The

  19. U-Pb (SHRIMP) Ages of Be and U-rich Opal in Tuffaceous Breccia at Spor Mountain, Utah: Interpreting a Record of Continuous Opal Formation, Episodic Be-U Mineralization, and Remobilization Events

    NASA Astrophysics Data System (ADS)

    Ayuso, R. A.; Vazquez, J. A.; Foley, N.; Lederer, G.; Jaskula, B.

    2016-12-01

    The Spor Mountain Fm. (SMF, ca. 21 Ma; Lindsey, 1977, Eco. Geol., v. 72, 219-232; Foley et al., 2012, USGS SIR 2010-5070-F, 1-43) hosts the largest deposit of volcanogenic-epithermal Be in the world (proven reserves 15,700 t/contained Be). Ore occurs mainly in cm-to-m-wide irregularly layered nodules of calcite, chalcedony, opal, fluorite, and bertrandite (Be4Si2O7(OH)2) in tuff breccias. U-Pb SHRIMP dating (adapted from Paces et al., 2004, GCA v. 68, 1591-1606; Neymark and Paces, 2013, EPSL v. 361, 98-109) of opal in nodules from SMF yielded 206Pb/238U ages coupled with multi-element analyses, e.g., Be, F, P, Si, Ti, REE, etc. The ages reveal periods of prolonged massive and fracture-filling opal formation that range from 55 Ma to 2 Ma. Age gaps are not prominent (a previous study of bulk samples identified opal ages of 21.8 Ma, 13-16 Ma, 8-9 Ma in SMF and 3.5 Ma in the overlying 6 Ma Topaz Mountain Fm.; Ludwig et al., 1980, EPSL, v. 46, 221-232). High values of Be/Si ( 5,000-20,000), Be/F, Be/P, and Be/U and oldest ages ( 55 to 28 Ma) occur in opal in nodule cores; outward, younger opal layers ( 28 to 7 Ma) decline in Be/Si but also include spikes of >5,000. A prominent U/Si spike (>300) occurs in opal between 6 Ma and 4 Ma, which may establish the age of U mineralization that occurs immediately east of Spor Mountain (the Yellow Chief U deposit). The occurrence of Be-rich opal older than 25 Ma in nodules within the 21 Ma (K-Ar date) tuff suggests that nodule formation may also be associated with older volcanism in the region. Opal that is younger than 21 Ma is thought to have formed by hydrothermal fluid interacting with Be-rich tuff. Geochemical modeling shows leaching of Be and other elements from volcanic glass and deposition of bertrandite upon reaction of the fluid with carbonate clasts in the tuff are viable mechanisms for the observed assemblages. Be concentrations in late nodular opal (<6 Ma) may reflect redistribution of earlier mineralization. The world-class deposits at Spor Mountain likely formed by prolonged magmatic-hydrothermal processes that include multiple Be mineralization and remobilization events.

  20. VS of the uppermost crust structure of the Campi Flegrei caldera (southern Italy) from ambient noise Rayleigh wave analysis

    NASA Astrophysics Data System (ADS)

    Costanzo, M. R.; Nunziata, C.; Strollo, R.

    2017-11-01

    Shear wave velocities (VS) are defined in the uppermost 1-2 km of the Campi Flegrei caldera through the non-linear inversion of the group velocity dispersion curves of fundamental-mode Rayleigh waves extracted from ambient noise cross-correlations between two receivers. Noise recordings, three months long, at 12 seismic stations are cross-correlated between all couples of stations. The experiment provided successful results along 54 paths (inter-stations distance), of which 27 sampled a depth > 1 km. VS contour lines are drawn from 0.06 km b.s.l. to 1 km depth b.s.l. and show difference between the offshore (gulf of Pozzuoli and coastline) and the onshore areas. At 0.06 km b.s.l., the gulf of Pozzuoli and the coastline are characterized by VS of 0.3-0.5 km/s and of 0.5-0.7 km/s, respectively. Such velocities are typical of Neapolitan pyroclastic soils and fractured or altered tuffs. The inland shows VS in the range 0.7-0.9 km/s, typical of Neapolitan compact tuffs. Velocities increase with depth and, at 1 km depth b.s.l., velocities lower than 1.5 km/s are still present in the gulf and along the coastline while velocities higher than 1.9 km/s characterize the eastern sector (grossly coincident with the Neapolitan Yellow Tuff caldera rim), the S. Vito plain and the area between Solfatara and SW of Astroni. Such features are much more evident along two cross-sections drawn in the offshore and onshore sectors by integrating our VS models with literature data. Our models join previous noise cross-correlation studies at greater scale at depths of 0.7-0.8 km, hence the picture of the Campi Flegrei caldera is shown up to a depth of 15 km. VS of about 1.7 km/s, corresponding to compression velocities (VP) of about 3 km/s (computed by using the VP/VS ratio resulted in the inversion), are found at depths of 1.1 km, in the centre of the gulf of Pozzuoli, and at a depth of about 0.7 km b.s.l. onshore. An increment of VS velocity ( 1.9-2.0 km/s) is locally observed onshore which might be attributed to a layer of tuffs and tuffites interbedded with thin lava beds, according to the correlation of VS with stratigraphies in the deep drillings of S. Vito.

  1. Radiogenic Ingrowth of 40CA from Decay of 40K Provides a Powerful Tracer for Understanding the Origins of Felsic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.; Simon, Justin I.; Depaolo, Donald J.; Bachmann, Olivier

    2013-01-01

    Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth's mantle (?Ca=0). Thus, values of ?Cai > 1 indicate a significant crustal contribution to a magma. Values of ?Cai (<1) indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT). The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ?Ca values of 4 and 7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT (?Cai 0.3) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10- 75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ?Cai indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt. New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of ?Cai from 0 to 3. In these samples ?Cai is generally correlated with ?Sri and is broadly negatively correlated with ?Ndi. However, for granites with similar ?Ndi at a given general location ?Cai can vary significantly (1 to 2 epsilon units). In rocks where low ?Ndi could also be due to melting from enriched reservoirs in the mantle lithosphere, the combination of high ?Cai with low ?Ndi clearly identifies crustal melts.

  2. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.

  3. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.

  4. In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.

    2002-12-01

    The nonwelded Bishop Tuff includes matrix-supported massive ignimbrites and clast-supported bedded deposits. Fluid flow through such faulted nonwelded tuff is likely to be influenced by a combination of host rock properties and the presence of deformation features, such as open fractures, mineralized fractures, and fault zones that exhibit comminuted fault rock and clays. Lithologic contacts between fine- and coarse-grained sub-units of nonwelded tuff may induce formation of capillary and/or permeability barriers within the unsaturated zone, potentially leading to down-dip lateral diversion of otherwise vertically flowing fluid. However, discontinuities (e.g., fractures and faults) may lead to preferential sub-vertical fast flow paths in the event of episodic infiltration rates, thus disrupting the potential for both (1) large-scale capillary and/or permeability barriers to form and for (2) redirection of water flow over great lateral distances. This study focuses on an innovative technique for measuring changes in matrix permeability near faults in situ--changes that may lead to enhancement of vertical fluid flow and disruption of lateral fluid flow. A small-drillhole minipermeameter probe provides a means to eliminate extraction of fragile nonwelded tuffs as a necessity for permeability measurement. Advantages of this approach include (1) a reduction of weathering-effects on measured permeability, and (2) provision of a superior sealing mechanism around the gas injection zone. In order to evaluate the effect of faults and fault zone deformation on nonwelded tuff matrix permeability, as well as to address the potential for disruption of lithologic barrier-induced lateral diversion of flow, data were collected from two fault systems and from unfaulted host rock. Two hundred and sixty-seven gas-permeability measurements were made at 89 locations; i.e. permeability measurements were made in triplicate at each location with three flow rates. Data were collected at the first fault and perpendicularly away from it within the hanging wall to a distance of 6 m [20 ft] along one transect, and perpendicular to the fault from the foot wall to the hanging wall for a distance of 6 m [20 ft] along a second transect. Additionally, eight water-permeameter tests were conducted in order to augment the gas-permeability data. Gas-permeability measurements were collected along two transects at the main fault of the second fault system and perpendicularly away from it within the foot wall to a distance of 10.5 m [34 ft], crossing several secondary faults in the process. Data were also collected within the fault gouge of the main fault, and were found to vary therein by an order of magnitude. This Bishop Tuff study supports the U.S. Nuclear Regulatory Commission (NRC) review of hydrologic property studies at Yucca Mountain, Nevada, which are conducted by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  5. Show Me the Mush! - Constraints From Voluminous Rhyolitic Ignimbrites of Bimodal and Calc-alkaline Settings on the Applicability of a Mush Model

    NASA Astrophysics Data System (ADS)

    Streck, M. J.

    2012-12-01

    Mush models have been popular in explaining crystal-poor rhyolites of a variety of settings. The classical mush model requires an abundance of very crystal-rich (>50%), intermediate (dacitic) magmas that upon compaction expel their interstitial liquids that erupt to give rise to rhyolitic lava flows and ignimbrites. In volcanic systems, a critical part in evaluating a mush model rests on providing evidence for the existence of suitable crystal-rich intermediate magmas that are consistent with the petrology of the erupted rhyolites. In my evaluation, I focus on providing constraints of whether or not suitable crystal mushes are likely to have existed and were instrumental in the production of a select series of voluminous (>100 km3) rhyolitic ignimbrites. Furthermore, the volcanic framework of each selected ignimbrite is used for assessing questions of "eruptibility" of magma types. The three main evaluated units representing 'hot-dry-reduced' rhyolites of bimodal settings are the 16-15.4 Ma Dinner Creek Tuff, the 9.7 Ma Devine Canyon Tuff, and 7.1 Ma Rattlesnake Tuff. All three tuffs erupted in eastern Oregon within a basalt-rhyolite suite. The key feature that makes them particularly valuable for this discussion is that each of the tuffs erupted a co-magmatic component that tracks the intermediate to mafic underpinnings to the rhyolitic magma. This allows a direct assessment of what intermediate magmas residing in close spatial proximity to the rhyolites looked like. On the other hand, other characteristics such as degree of chemical zoning, element trends, single or multiple cooling units, etc., vary considerably among the three tuffs thus covering a wide spectrum of rhyolites from bimodal settings. As representative of 'cool-wet-oxidized' rhyolites, I test applicability of the mush model on the tuffs and associated lavas of the Oligocene San Luis caldera system. This system represents strongly confocal and voluminous eruptions that are closely spaced in time at the end of the activity period of the Central Caldera Cluster of the Oligocene San Juan volcanic field, Colorado. Compositional intermediate underpinnings of each of the 'hot-dry-reduced' rhyolites fail geochemical requirements to represent suitable intermediate magmas. In addition, these underpinnings are crystal-poor and this is inconsistent with the required high crystallinity of magma mushes. Remelting scenarios to reduce crystallinities in intermediate magmas are excluded - again on geochemical grounds. Other complications with a model of voluminous crystal mushes beneath such rhyolites are the production of strong trace-element chemical gradation within single magma batches as well as multi-cyclic eruptions of crystal-poor rhyolites from the same system. For the system of 'cold-wet-oxidized' rhyolites, one of the challenges for a mush model is that interstitial melts of crystal-rich intermediate magmas compositionally deviate from erupted rhyolites when abundant amphibole (±sphene) is present, yet both phases are commonly expected phenocrystic phases at crystallinities when extraction of rhyolite from mush can take place.

  6. Ground-water quality and effects of poultry confined animal feeding operations on shallow ground water, upper Shoal Creek basin, Southwest Missouri, 2000

    USGS Publications Warehouse

    Mugel, Douglas N.

    2002-01-01

    Forty-seven wells and 8 springs were sampled in May, October, and November 2000 in the upper Shoal Creek Basin, southwest Missouri, to determine if nutrient concentrations and fecal bacteria densities are increasing in the shallow aquifer as a result of poultry confined animal feeding operations (CAFOs). Most of the land use in the basin is agricultural, with cattle and hay production dominating; the number of poultry CAFOs has increased in recent years. Poultry waste (litter) is used as a source of nutrients on pasture land as much as several miles away from poultry barns.Most wells in the sample network were classified as ?P? wells, which were open only or mostly to the Springfield Plateau aquifer and where poultry litter was applied to a substantial acreage within 0.5 mile of the well both in spring 2000 and in several previous years; and ?Ag? wells, which were open only or mostly to the Springfield Plateau aquifer and which had limited or no association with poultry CAFOs. Water-quality data from wells and springs were grouped for statistical purposes as P1, Ag1, and Sp1 (May 2000 samples) and P2, Ag2, and Sp2 (October or November 2000 samples). The results of this study do not indicate that poultry CAFOs are affecting the shallow ground water in the upper Shoal Creek Basin with respect to nutrient concentrations and fecal bacteria densities. Statistical tests do not indicate that P wells sampled in spring 2000 have statistically larger concentrations of nitrite plus nitrate or fecal indicator bacteria densities than Ag wells sampled during the same time, at a 95-percent confidence level. Instead, the Ag wells had statistically larger concentrations of nitrite plus nitrate and fecal coliform bacteria densities than the P wells.The results of this study do not indicate seasonal variations from spring 2000 to fall 2000 in the concentrations of nutrients or fecal indicator bacteria densities from well samples. Statistical tests do not indicate statistically significant differences at a 95-percent confidence level for nitrite plus nitrate concentrations or fecal indicator bacteria densities between either P wells sampled in spring and fall 2000, or Ag wells sampled in spring and fall 2000. However, analysis of samples from springs shows that fecal streptococcus bacteria densities were statistically smaller in fall 2000 than in spring 2000 at a 95-percent confidence level.Nitrite plus nitrate concentrations in spring 2000 samples ranged from less than the detection level [0.02 mg/L (milligram per liter) as nitrogen] to 18 mg/L as nitrogen. Seven samples from three wells had nitrite plus nitrate concentrations at or larger than the maximum contaminant level (MCL) of 10 mg/L as nitrogen. The median nitrite plus nitrate concentrations were 0.28 mg/L as nitrogen for P1 samples, 4.6 mg/L as nitrogen for Ag1 samples, and 3.9 mg/L as nitrogen for Sp1 samples.Fecal coliform bacteria were detected in 1 of 25 P1 samples and 5 of 15 Ag1 samples. Escherichia coli (E. coli) bacteria were detected in 3 of 24 P1 samples and 1 of 13 Ag1 samples. Fecal streptococcus bacteria were detected in 8 of 25 P1 samples and 6 of 15 Ag1 samples. Bacteria densities in samples from wells ranged from less than 1 to 81 col/100 mL (colonies per 100 milliliters) of fecal coliform, less than 1 to 140 col/100 mL of E. coli, and less than 1 to 130 col/100 mL of fecal streptococcus. Fecal indicator bacteria densities in samples from springs were substantially larger than in samples from wells. In Sp1 samples, bacteria densities ranged from 12 to 3,300 col/100 mL of fecal coliform, 40 to 2,700 col/100 mL of E. coli, and 42 to 3,100 col/100 mL of fecal streptococcus.

  7. New Mapping in the Sand Springs Range of Western Nevada Clarifies and Constrains Regional Deformation Sequences of the Luning-Fencemaker Thrust Belt

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Jarvis, J.; Satterfield, J. I.

    2016-12-01

    The Sand Springs Range in western Nevada exposes Mesozoic through Cenozoic structures of the eastern Sierra Nevada, Luning-Fencemaker Thrust Belt (LFTB), Basin and Range province, and Walker Lane. A recent undergraduate geologic mapping project in the northern Sand Springs Range (nSSR) set out to map igneous intrusions in detail, specifically smaller intrusions which had not been a focus in previous work. This was accomplished using different techniques including mapping at a smaller scale (1:8000 vs. 1:24000), locating contacts and faults using handheld GPS, and focusing on relationships between metamorphic tectonites and igneous units. This revealed key cross-cutting relations between structures and diverse Triassic through Tertiary igneous rocks as well as distinctions between the nSSR and the surrounding LFTB assemblages. During our mapping we identified four metamorphic tectonite map units, Cretaceous granitoid and diorite plutons and sills, Tertiary rhyolite sills and dikes, and interbedded Tertiary basalt and ash flow tuff. The cross-cutting relations of these units overturn previously published sequences of events and constrain the timing of a deformation sequence which differs from the surrounding LFTB assemblages. We found that the nSSR contains three phases of deformation: a pre-LFTB syn-metamorphic event which achieved amphibolite facies that is not described elsewhere in the LFTB (D1), followed by two non-metamorphic folding and thrusting phases characteristic of the LFTB (D2 and D3). Our mapping provided four key timing constraints. First, D1 axial-planar cleavage (S1) deformed Triassic intrusions. Second, Cretaceous granitoid and diorite units cross-cut S1 foliation, D1 folds, and low-angle faults. Third, Cretaceous and Tertiary sills that locally terminate at a low-angle fault actually post-dated faulting. Fourth, cross-cutting relations showed a basaltic lava previously mapped as Jurassic is actually Tertiary. The large Sand Springs Pluton was the only intrusion mapped in detail during previous studies; but our mapping has demonstrated the importance of both small and large intrusions in understanding the overall structural history of a complex area. This project was supported by research grants from Angelo State University and the Southwest Section AAPG.

  8. Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity

    NASA Astrophysics Data System (ADS)

    Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.

    2014-04-01

    The hydrographic properties of the Kongsfjorden-Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along two transects in both fjords, using high-performance liquid chromatography (HPLC)-CHEMTAX pigment fingerprinting, molecular fingerprinting (denaturing gradient gel electrophoresis, or DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. In late spring meltwater input caused stratification of surface waters in both fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.

  9. Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity

    NASA Astrophysics Data System (ADS)

    Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.

    2013-10-01

    The hydrographic properties of the Kongsfjorden - Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along 2 transects in both fjords, using HPLC-CHEMTAX pigment fingerprinting, molecular fingerprinting (DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. During the end of spring, meltwater input had stratified surface waters throughout the fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.

  10. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.

    2017-01-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  11. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  12. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, David J.; McNamee, Michael J.

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  13. Swellable clay minerals in weathering products of volcanic sediments related to landslides by 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Torii, M.

    2016-12-01

    2016 Kumamoto Earthquake triggered numerous landslides in Aso caldera area, Japan and incurred heavy casualties. Landslides occurred not only on steep slopes at the caldera cliffs or the barranco but also on relatively gradual slopes at the side of the central cones in the Aso caldera. The Aso volcano is a volcanic complex with huge caldera formed by catastrophic eruption at approximately 90ka and central cones formed by subsequent activities to recent years. The central cones are volcanic peaks contain various rocks including basaltic, andesitic and rhoyolitic lavas and pyroclastic materials. In this study, we analyzed the samples collected from the bottom surface of landslides occurred at the gradual hillside on the western flank of the Aso central cones. The subsurface geology of the site is Takanoobane rhyolite lava, 51ka, covered by dark silty or pelitic tuffs and black soil strata including Kusasenri pumice layer, 31ka. The bottom plane of the landslides can be seen as flat surfaces at boundaries between units in the Kusasenri pumice or bottom of the Kusasenri pumice on the pelitic tuff with charcoaled plants. The Kusasenri pumice layer is a coarse grained and highly permeable but poorly continuous. X-ray diffraction analysis revealed that the main component of the samples is halloysite (10Å). Halloysite (10Å) is alteration product of fine grained volcanic ash, and swellable clay with interlayer water molecules which bring sticky and deformable characteristics. The landslides caused by 2016 Kumamoto Earthquake occurred without precipitation within a week. Strong earthquake may fluidize swellable clay layers in gradual slopes and triggered heavy landslides.

  14. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  15. Nonmarine facies in the Late Triassic(?) to Early Jurassic Horn Mountain Tuff member of the Talkeetna Formation, Horn Mountain, lower Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.

  16. Evidence for an abrupt transition in the mantle-derived source to the Long Valley Caldera rhyolites after the climactic eruption: from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2014-12-01

    Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ΔNNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (ΔNNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a subduction-modified lithosphere source (Cousens, 1996), the Early Rhyolites may be recording the crustal emplacement of basalts from the asthenosphere before any have yet erupted. If so, the Early Rhyolites may be derived from a greater proportion of crustal sources than calculated from isotopic data on the assumption of a lithospheric mantle source.

  17. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by postdepositional magnetite and maghemite that formed in rocks in which most or all detrital megnetic iron oxide was destroyed. Incipient oxidation of early diagenetic pyrite may have normal polarity Snowshoe Mountain Tuff (26.89 ± 0.0 Ma, 1 δ) and on the normal polarity postcaldera Fisher lava flows (as young as 26.23 ± 0.05 Ma, 1 δ) indicate that deposition of the Creede Formation spanned about 340-660 k.y. The intermittently defined normal polarity magnetization for the caldera-fill sequence, compared with different versions of the geomagnetic polarity time scale, is consistent with the shorter time span.

  18. Water and CO2 content of melt inclusions from the high-silica rhyolite Bandelier Tuff super-eruptions, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Waelkens, C. M.; Gonzalez, C.; Martineau, D.; Goff, F. E.; Stix, J.

    2017-12-01

    Large silicic caldera-forming eruptions are some of the most destructive events on our planet, which makes silicic calderas important systems to study. Volatiles play an important role in determining the nature and behaviour of magmas, and can trigger eruptions when changes in volatile content and exsolution of fluid phases lead to overpressure in the magma chamber. A separate fluid phase will be exsolved if the magma is fluid saturated; whether the magma is fluid saturated depends on its H2O and CO2 content. We measured H2O and CO2 in melt inclusions of the Valles Caldera supervolcano system in New Mexico. This system had super-eruptions at 1.64 Ma and 1.25 Ma, depositing respectively the Lower (Otowi Member) and the Upper (Tshirege Member) Bandelier Tuff. Previous studies have reported H2O values for the Bandelier Tuff and the Cerro Toledo Formation - erupted between the two Bandelier super-eruptions from the same magma reservoir. We expanded this dataset and added CO2 analyses, which gives a more complete image of the volatile saturation state of the magma. Both H2O and CO2 were measured by transmission FTIR on doubly-polished melt inclusions hosted in quartz and feldspar crystals. While we found only limited variation within H2O contents, CO2 values were found to vary strongly. Our preliminary results indicate H2O values of 4 to 6 wt % throughout both the Lower and Upper Bandelier Tuff, consistent with previous studies. In contrast, we found CO2 values vary strongly, from below 50 ppm (maximum measured 60 ppm, minimum 7 ppm, median 33 ppm) in the base of the Lower Bandelier Tuff to 100 - 200 ppm CO2 (maximum measured 234 ppm, minimum 44, median 118 ppm) in the top of the basal Plinian fall deposit (Guaje Pumice). By the end of the Cerro Toledo Rhyolite and beginning of the Upper Bandelier, CO2 values in the magma were low again, around 50 ppm (maximum measured 91 ppm, minimum 23 ppm, median 42 ppm). No substantial difference is observed in H2O and CO2 values between the end of the Cerro Toledo Formation and beginning of the Upper Bandelier Tuff. We hypothesise that these variations in CO2 are related to the input of hotter, CO2-richer magma into the Bandelier magma chamber.

  19. Cape Wanbrow: A stack of Surtseyan-style volcanoes built over millions of years in the Waiareka-Deborah volcanic field, New Zealand

    NASA Astrophysics Data System (ADS)

    Moorhouse, B. L.; White, J. D. L.; Scott, J. M.

    2015-06-01

    Volcanic fields typically include many small, monogenetic, volcanoes formed by single eruptions fed by short-lived magma plumbing systems that solidify after eruption. The Cape Wanbrow coastline of the northeast Otago region in the South Island of New Zealand exposes an Eocene-Oligocene intraplate basaltic field that erupted in Surtseyan style onto a submerged continental shelf, and the stratigraphy of Cape Wanbrow suggests that eruptions produced multiple volcanoes whose edifices overlapped within a small area, but separated by millions of years. The small Cape Wanbrow highland is shown to include the remains of 6 volcanoes that are distinguished by discordant to locally concordant inter-volcano contacts marked by biogenic accumulations or other slow-formed features. The 6 volcanoes contain several lithofacies associations: (a) the dominantly pyroclastic E1 comprising well-bedded tuff and lapilli-tuff, emplaced by traction-dominated unsteady, turbulent high-density currents; (b) E2, massive to diffusely laminated block-rich tuff deposited by grain-dominant cohesionless debris flows; (c) E3, broadly cross-stratified tuff with local lenses of low- to high-angle cross-stratification which was deposited by either subaerial pyroclastic currents or subaqueously by unstable antidune- and chute-and-pool-forming supercritical flows; (d) E4, very-fine- to medium-grained tuff deposited by turbidity currents; (e) E5, bedded bioclast-rich tuff with increasing glaucony content upward, emplaced by debris flows; (f) E6, pillow lava and inter-pillow bioclastic sediment; and (g) E7, hyaloclastite breccia. These lithofacies associations aid interpretation of the eruptive evolution of each separate volcano, which in turn grew and degraded during build-up of the overall volcanic pile. Sedimentary processes played a prominent role in the evolution of the volcanic pile with both syn- and post-eruptive re-mobilization of debris from the growing pile of primary pyroclastic deposits of multiple volcanoes separated by time. An increase in bioclastic detritus upsequence suggests that the stack of deposits from overlapping volcanoes built up into shallow enough waters for colonization to occur. This material was periodically shed from the top of the edifice to form bioclast-rich debris flow deposits of volcanoes 4, 5 and 6. Since the eruption of Surtsey (1963-1965) many studies have been made of the resulting island, but the pre-emergent base remains submarine, unincised and little studied. Eruption-fed density currents that formed deposits of the volcanoes of Cape Wanbrow are inferred to be typical products of submarine processes such as those that built Surtsey to the sea surface.

  20. Holocene noble gas paleothermometry from springs in the Olympic Mountains, Washington.

    EPA Science Inventory

    Noble gas temperature proxies are examined from 52 springs in the Olympic Mountains, Washington. Groundwater flows from seeps to pooled springs at <0.1 L s-1 - 2.5 L s-1 in the Elwha watershed (≈692 km2). About 85% of sampled springs issue from confined fracture reservoirs preser...

  1. Sulfur and Oxygen Isotopic Composition of Sulfate in the Fresh Water, King Sejong Station, King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, I.; Lee, J.; Park, B.; Mayer, B.; Kaufman, A. J.; Park, S.; Kim, G.; Lee, K.

    2008-12-01

    Isotopic compositions of sulfur (δ34S) and oxygen (δ18O) were measured for the sulfate of the fresh water near the King Sejong Station, King George Island, Antarctica. Sejong station is located in the Barton peninsular of the King George Island. The geology around King Sejong station mainly composed of basalt-andesite, quart monzodiorite, and granodiorite. Lapilli tuff, conglomerate, sandstone, and siltstone occur along the southern and eastern shore of the Barton peninsula. Lapilli tuff also occurs on the highland located on southeastern part of the Barton peninsula. The δ34S values of sulfate extracted from fresh water samples at King Sejong Station range from 13.7 to 16.3 per mil excluding 1 sample. These sulfur values are very narrow in their range compared with those from anthropogenic sources. These sulfur values are 5 to 7 per mil lower than those of typical present seawater. Considering the rocks occurring near the King Sejong station, these sulfur isotopic values do not seem to be related to any evaporites of certain age. In Antarctic region the natural source of sulfate dissolved in water could be originated from marine biogenic source (DMS), sea-salt, volcanic source, or other continental sources. Most of the δ34S values of sulfate at King Sejong station seems to indicate the dominance of marine biogenic origin for the source of sulfur. The δ18O values of sulfate extracted from fresh water samples at King Sejong Station range from 1.9 to 6.4 per mil excluding 1 sample. These oxygen isotope values are lower than those of the sulfate in the present seawater by 6 per mil. However, both sulfur and oxygen isotope values strongly represent the influence of the seawater sulfate. One sample have 2.6 and -1.1 per mil in its δ34S and δ18O values, respectively, that are quite different from the isotopic values of other samples. This sample was collected in the highland far from the King Sejong station. Therefore this sample might reflect the composition of rather pure precipitation not affected by seawater sulfate. The atmospheric deposition might have been the major source of dissolved sulfate but it is not clear whether the source materials are from natural and/or anthropogenic origin.

  2. [Isolation of Legionella species from hot springs used for foot-soaking].

    PubMed

    Furuhata, Katsunori; Edagawa, Akiko; Fukuyama, Masafumi

    2012-05-01

    We aimed to investigate the presence of Legionella species in hot-spring baths for feet, which have been rapidly increasing in number in Japan in recent years. The investigations were conducted between March 2009 and November 2011, and hot springs throughout the country were sampled. Legionella isolates were confirmed on the basis of the method described in the "Manual for the countermeasure to legionellosis, 3rd Edition." In this method, the samples were concentrated and smeared on GVPCalpha agar medium after acid treatment and cultured for 7 days at 36 degrees C. Gram-negative rods that required L-cysteine were determined to be Legionella species. After the first identification using Duopath Legionella (Merck Ltd. Japan), isolates were identified on the basis of agglutination reaction of an immune serum or genetic examination. Legionella was isolated from 56 of the 196 samples (28.6%) and was confirmed to widely inhabit hot-spring baths from Hokkaido to Kyushu. The isolation rates were the highest (40.9%) in facilities installed around railway stations, including those on platforms. The average microbial density of Legionella species per 100 ml of hot spring water was 1.0 x 10(1) CFU, with a maximum value of 1.0 x 10(4) CFU, although the microbial density in most of the samples (34 samples; 60.7%) was less than 10(2) CFU. Legionella pneumophila was the dominant strain, and 16 strains (23.9%) of serogroup 1 were isolated. In addition, 7 strains (10.4%) of Legionella londiniensis and 4 strains (6.0%) of Legionella rubrilucens were isolated. Legionella species inhabit approximately 30% of all hot springs for foot-soaking in the country. Although the number of viable organisms is small, the dominant presence of Legionella pneumophila, a major pathogen responsible for legionnaire's disease, raises the possibility of legionnaire's disease in users of these hot springs. Therefore, each institute should understand the present distribution of Legionella species in these hot springs and undertake appropriate sanitary measures.

  3. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    PubMed

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Concentrations of nutrients, pesticides, and suspended sediment in the karst terrane of the Sinking Creek basin, Kentucky, 2004

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty-two percent of the concentrations of total phosphorus at all seven sites exceeded the USEPA?s recommended maximum concentration of 0.1 mg/L. The median concentration of total phosphorus for all sites sampled was 0.09 mg/L. The highest median concentrations of total phosphorus were found in the springs. Median concentrations of orthophosphate followed the same pattern as concentrations of total phosphorus in the springs. Concentrations of orthophosphate ranged from <0.006 to 0.192 mg/L. Concentrations of suspended sediment generally were low throughout the basin; the median concentration of suspended sediment for all sites sampled was 23 mg/L. The highest concentration of suspended sediment (1,486 mg/L) was measured following a storm event at Sinking Creek near Lodiburg, Ky.

  5. Microbial Source Tracking in Adjacent Karst Springs.

    PubMed

    Ohad, Shoshanit; Vaizel-Ohayon, Dalit; Rom, Meir; Guttman, Joseph; Berger, Diego; Kravitz, Valeria; Pilo, Shlomo; Huberman, Zohar; Kashi, Yechezkel; Rorman, Efrat

    2015-08-01

    Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Relative abundance and distribution of fishes and crayfish at Ash Meadows National Wildlife Refuge, Nye County, Nevada, 2007-08

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark

    2011-01-01

    This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red swamp crayfish and western mosquitofish was in water with temperature greater than 26 degrees C near the springhead, and in shallow (depths less than 10 centimeters) grassy marshes. Among 177 sampling stations within the range of Warm Springs Amargosa pupfish, red swamp crayfish were collected at 96 stations and western mosquitofish were collected at 49 stations. Removal of convict cichlid (Amatitlania nigrofasciata) from Fairbanks Spring was followed by a substantial increase in Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) captures from 910 pre-removal to 3,056 post-removal. Red swamp crayfish was continually removed from Bradford 1 Spring, which seemed to cause an increase in the speckled dace population. Restoration of Kings Pool and Jackrabbit Springs promoted the success of native fishes with the greatest densities in restored reaches. Ongoing restoration of Carson Slough and its tributaries, as well as control and elimination of invasive species, is expected to increase abundance and distribution of Ash Meadows' native fish populations. Further analysis of data from this study will help determine the habitat characteristic(s) that promote native species and curtail non-native species.

  7. Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderoni, B.; Cordasco, E. A.; Lenza, P.

    2008-07-08

    Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.

  8. The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap tide tidal periods in Popoh Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Yona, D.; Febriana, R.; Handayani, M.

    2018-04-01

    This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap tides from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap tides due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap tide in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring tide, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring tide, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap tide (0.159 and 0.165 ml/L in spring tide and neap tide, respectively), but in the sediment, the concentration was a little higher during spring tide (0.09 and 0.05 mg/kg during spring and neap tide, respectively). This study shows that water movement during spring and neap tides has significant effect on the distribution of heavy metals.

  9. Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.

    1990-01-01

    Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable

  10. Evening daylight may cause adolescents to sleep less in spring than in winter

    PubMed Central

    Figueiro, Mariana G.; Rea, Mark S.

    2012-01-01

    Sleep restriction commonly experienced by adolescents can stem from greater sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, we hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times and, because of fixed school schedules, would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. We collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of twelve subjects over the course of seven days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially in the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents. PMID:20653452

  11. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand years of the main eruption, and for the next approximately 10 million years sedimentary rocks and distal tuffs sourced from calderas farther west ponded in the caldera basin surrounding low areas nearby. Patterns of tuff deposition indicate that the area was characterized by east-west trending paleovalleys and ridges in the late Eocene and Oligocene, which permitted tuffs to disperse east-west but limited their north-south extent. Although a low-angle fault contact of limited extent separates Cambrian and Ordovician strata in the southwestern part of the study area, there is no evidence that this fault cuts overlying Tertiary rocks. Total extensional strain across the caldera is on the order of 15 percent, and there is no evidence for progressive tilting of 34–25 Ma rocks that would indicate protracted Eocene–Oligocene extension. The caldera appears to have been tilted as an intact block after 25 Ma, probably during the middle Miocene extensional faulting well documented to the north and south of the study area.

  12. Use of porosity to estimate hydraulic properties of volcanic tuffs

    USGS Publications Warehouse

    Flint, L.E.; Selker, J.S.

    2003-01-01

    Correlations of hydraulic properties with easily measured physical properties are useful for purposes of site characterization in heterogeneous sites. Approximately 600 samples of volcanic rocks from Yucca Mountain, Nevada, representing lithologies with a large range of hydraulic properties, were analyzed to develop correlations of effective porosity with saturated hydraulic conductivity and moisture-retention curve-fit parameters that relate to lithologies of varying depositional history and alteration processes. Effective porosity, ??e, defined as the porosity calculated using drying at a relative humidity of -70 MPa, is used in a generalized Kozeny-Carman equation to predict saturated hydraulic conductivity, Ks = b??en, where b and n are constants. The entire dataset has an R2 of 0.36. When samples are grouped according to general lithology, correlations result in an R2 of 0.71 for the crystallized/vitric samples, 0.24 for samples with mineral alteration, and 0.34 for samples with microfractures, thus increasing the predictive capability over that of the total dataset. Published by Elsevier Science Ltd.

  13. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  14. An examination of short-term variations in water quality at a karst spring in Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.; Meiman, J.

    1996-01-01

    Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods. A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time. A phreatic conduit segment,more » calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring. A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water. The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations. Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin.« less

  15. Elongation measurement using 1-dimensional image correlation method

    NASA Astrophysics Data System (ADS)

    Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan

    2016-11-01

    Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.

  16. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a statistical analysis to compare model and field temperatures, and found that heat flow in the block was dominated by conduction.

  17. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less

  18. Calibrating the Cryogenian

    NASA Astrophysics Data System (ADS)

    MacDonald, F. A.; Schmitz, M. D.; Crowley, J. L.; Haam, E.; Huybers, P.; Cohen, P. A.; Johnston, D. T.

    2009-12-01

    The IGCP 512 sub-commission on the Neoproterozoic is currently discussing criteria for the definition of the Cryogenian period. Herein we provide new U/Pb ID-TIMS ages and carbon and oxygen isotope data from Fifteenmile and Mt. Harper Groups in the Yukon Territory that inform the basis for the placement of the basal Cryogenian “golden spike”. Our U/Pb ages are from volcanic tuffs interbedded within glaciogenic, fossiliferous, and carbonate strata. With the current lack of Neoproterozoic index fossils and the paucity of radiogenic age constraints, chemo-stratigraphic correlations are particularly important for tuning the Neoproterozoic timescale. In an effort to move beyond conventional 'wiggle matching', chemostratigraphic correlations are determined using a new statistical method1, which indicates that the resulting chemo-stratigraphic correlations are statistically significant. These results permit us to refine and integrate Neoproterozoic climate, microfossil, and geochemical proxy records both regionally and globally. The newly calibrated microfossil record points to a eukaryotic radiation roughly coincident with the Bitter Springs isotopic stage and a barren interval between the Sturtian and Marinoan glaciations. 1 Haam, E. & Huybers, P., 2009, A test for the presence of covariance between time-uncertain series of data with applications to the Dongge Cave speleothem and atmospheric radiocarbon records, Paleoceanography, in press.

  19. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs, Wash volcanic centers, Southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Noble, Donald C.; Hsu, Liang C.; Spatz, David M.

    1987-01-01

    LANDSAT Thematic Mapper imagery was evaluated over 3 Tertiary calderas in southern Nevada. Each volcanic center derived from a highly evolved silici magmatic system represented today by well exposed diverse lithologies. Distinctive imagery contrast between some of the late ash flows and earlier units follows from the high relative reflectance in longer wavelength bands (bands 5 and 7) of the former. Enhancement techniques provide color composite images which highlight some of the units in remarkable color contrast. Inasmuch as coatings on the tuffs are incompletely developed and apparently largely dependent spectrally on rock properties independent of petrochemistry, it is felt that the distinctive imagery characteristics are more a function of primary lithologic or petrochemical properties. Any given outcrop is backdrop for a variety of cover types, of which coatings, at various stages of maturity, are one. Petrographic and X-ray diffraction analysis of the outer air-interface zone of coatings reveal they are composed chiefly of amorphous compounds, probably with varying proportions of iron and manganese. Observations support an origin for some outer (air-interface) coating constituents exogenous to the underlying host.

  20. Hydrology of Yucca Mountain and vicinity, Nevada-California : investigative results through mid-1983

    USGS Publications Warehouse

    Waddell, R.K.; Robison, J.H.; Blankennagel, R.K.

    1984-01-01

    Yucca Mountain, Nevada, is one of several sites under consideration for construction of the first repository for high-level nuclear waste. The climate is arid; few perennial streams are present in the region. Flash floods occasionally occur. The site is underlain by at least 1,800 meters of volcanic tuffs of Tertiary age; limestones and dolomites of Paleozoic age underlie much of the surrounding region, and, together with alluvial deposits, comprise the major aquifers. Yucca Mountain is in the Alkali Flat-Furnace Creek Ranch ground-water subbasin, which is part of the Death Valley ground-water basin. Discharge occurs at Alkali Flat almost entirely by evapotranspiration, and at Furnace Creek Ranch from small springs and seeps. Beneath Yucca Mountain, depth to water ranges from about 460 to 700 meters; the rock under consideration for construction of the repository is in the unsaturated zone. Rate of recharge at Yucca Mountain is small, perhaps much less than 5 millimeters per year. Within the saturated zone, water movement is principally along fractures. The hydraulic gradient is small east (downgradient) of Yucca Mountain, and increases to the north and west. Lack of effective-porosity data presently precludes accurate calculation of flow velocity and travel times. (USGS)

  1. Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity

    USGS Publications Warehouse

    Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin

    2017-01-01

    Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other magma chambers hosted in continental sedimentary rocks.

  2. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea

    NASA Astrophysics Data System (ADS)

    Ko, Kyoungtae; Kim, Sung Won; Lee, Hong-Jin; Hwang, In Gul; Kim, Bok Chul; Kee, Won-Seo; Kim, Young-Seog; Gihm, Yong Sik

    2017-08-01

    The Cretaceous Beolgeumri Formation is composed of laminated mudstones intercalated with sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environment at the terminal part of a regional strike-slip fault systems on the southwestern Korean Peninsula. The Beolgeumri Formation contains various types of soft sediment deformation (SSD) structures that are characterized by a wide extent (< 4 km), lateral continuity (< 200 m), and vertical repetition. The SSD structures can be classified into six categories based on their morphological features and deformation styles: 1) fold structures, 2) load structures, 3) water-escape structures, 4) rip-down structures, 5) boudin structures, and 6) synsedimentary fault structures. Field examination of SSD structures together with an analysis of the sedimentological records of the Beolgeumri Formation indicate that the SSD structures formed largely by liquefaction and/or fluidization triggered by ground shaking during earthquakes. To constrain the timing of the development of SSD structures in the Beolgeumri Formation, we conducted sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age dating of block sized lithic clasts bearing volcaniclastic deposits that conformably underlie (the Mangryeongbong Tuff) and overlie (the Ttandallae Tuff) the Beolgeumri Formation. The Mangryeongbong and Ttandallae Tuffs have ages of 86.63 ± 0.83 Ma and 87.24 ± 0.36 Ma, respectively, indicating that the Beolgeumri Formation was deposited during a short interval between major volcanic eruptions. The large lithic clasts of volcaniclastic deposits suggest that the Beolgeumri Formation was deposited adjacent to an active volcanic edifice(s). Syndepositional magmatic activities are suggested by the occurrence of a lapilli tuff bed in the Beolgeumri Formation and an igneous intrusion (intermediate sill) that is crosscut by a sand dike, as well as the similar age results of the underlying and overlying volcaniclastic deposits. Thus, we infer that the earthquakes that caused the development of SSD structures in the study area were closely related to syndepositional magmatic activities, as is the case for modern tectonic earthquakes around active volcanoes.

  3. Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Pluhar, C. J.; Lindeman, J. R.

    2014-12-01

    Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that this region of the Mina Deflection has undergone large magnitude clockwise rotation since the emplacement of THC. However, the capping basalt exhibits a magnetic declination of due north, suggesting that this unit experienced little rotation and that rotational deformation in this region had mostly ended by the time of its emplacement at ~3.5 Ma.

  4. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    NASA Astrophysics Data System (ADS)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  5. Nutrients and pesticides in ground water of the Ozark Plateaus in Arkansas, Kansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Adamski, James C.

    1997-01-01

    A total of 229 ground-water samples were collected from 215 sites as part of the Ozark Plateaus study unit of the National Water-Quality Assessment Program. These samples were collected from 1993 through 1995 using a network of springs and wells with three scale-dependent components. The first component, the study-unit survey, consisted of 99 randomly selected springs and domestic wells in the Springfield Plateau and Ozark aquifers. The second component, two land-use studies, consisted of 42 springs and domestic wells in a poultry-dominated agricultural area and 40 springs and domestic wells in a cattle-dominated agricultural area overlying the Springfield Plateau aquifer. The third component, the small-watershed study, consisted of 4 springs, 18 domestic wells, and 11 monitoring wells in a small basin within the poultry land-use study area. Samples were analyzed for major ions, nutrients, dissolved organic carbon, methylene blue active substances, tritium, and 88 pesticides and metabolites.The water-quality data from these samples were analyzed with descriptive and statistical methods. Nitrite plus nitrate, which was detected more often and in greater concentrations than any of the other nutrients, ranged from less than 0.05 to 25 milligrams per liter as nitrogen. Nitrite plus nitrate concentrations positively correlated to percent agricultural land use around each site. Median nitrite plus nitrate concentrations generally were greater in samples from springs than in samples from wells. Concentrations of nitrite, ammonia, and ammonia plus organic nitrogen were also affected by land use and also by concentrations of dissolved oxygen in the ground water. Concentrations of phosphorus and orthophosphate probably were affected by land use and also by phosphorus solubility. Pesticides were detected in 80 of 229 samples from 73 of 215 sites. A total of 20 pesticides were detected with a maximum of 5 pesticides detected in any 1 sample. The most commonly detected pesticides were tebuthiuron, atrazine, prometon, desethylatrazine, and simazine. Maximum concentrations ranged from 0.003 to 1.0 microgram per liter. The occurrence and distribution of pesticides were related to land use. Percent agricultural land use was greater for samples with pesticides detected than for samples with no pesticides detected. Pesticides were detected more often in samples from springs than in samples from wells. The occurrence of pesticides also was related to seasonality and chemical characteristics, such as solubility and persistence, of the compounds.

  6. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Avşar, Ulaş; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Güleç, Nilgün

    2017-10-01

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2-3 m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth's crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from Köycegiz Lake, whereas the highest ones are found in samples from the Dalaman plain. For the first time, we made use of the micro-XRF sediment core scanning (ITRAX Scanner) for exploring the relation between subaqueous geothermal occurrence and chemical properties of the surrounding sediments. The spatial elemental distribution of sea/lake bottom sediments suggests that depending on the surrounding rock units and the temperature of the hot spring, the sediments around the spring can be enriched with certain elements.

  7. Mass transfer constraints on the chemical evolution of an active hydrothermal system, Valles caldera, New Mexico

    USGS Publications Warehouse

    White, A.F.; Chuma, N.J.; Goff, F.

    1992-01-01

    Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the hydrothermal system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other hydrothermal systems in rhyolitic rocks. ?? 1992.

  8. The Nopal 1 Uranium Deposit: an Overview

    NASA Astrophysics Data System (ADS)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  9. OSL dating of a Pleistocene maar: Birket Ram, the Golan heights

    USGS Publications Warehouse

    Shaanan, U.; Porat, N.; Navon, O.; Weinberger, R.; Calvert, A.; Weinstein, Y.

    2011-01-01

    Direct dating of maars and their phreatomagmatic deposits is difficult due to the dominance of lithic (host rock) fragments and glassy particles of the juvenile magma. In this paper we demonstrate that optically stimulated luminescence (OSL) dating can be successfully used for age determination of phreatomagmatic deposits. We studied the tuff deposit of Birket Ram, a basanitic maar located at the northern edge of the Golan heights on the western Arabian plate. The maar is underlain by a thick section of Pleistocene basalts, and currently hosts a small lake. It is filled by approximately 90m of lacustrine sediments with radiocarbon ages extrapolated to 108ka at the base. OSL was applied to quartz grains extracted from tuffs and paleosols in order to set the time frame of the phreatomagmatism at the site. A maximum age constraint of 179??13ka was determined for a paleosol that underlies the maar ejecta. Quartz grains from two layers in the tuff section yielded a direct age of 129??6ka for the phreatomagmatic eruption. A younger age of 104??7ka, which was determined for a tuff layer underlying a basaltic flow, was attributed to thermal resetting during the lava emplacement. This was confirmed by an 40Ar/39Ar age of 101??3ka determined on the overlying basalt. The internal consistency of the OSL ages and the agreement with the 40Ar/39Ar age determination as well as with previous estimates demonstrates the potential of OSL for maar dating. ?? 2010 Elsevier B.V.

  10. Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Rush, F.E.; Waddell, S.J.

    Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less

  11. Noble gas isotopes in mineral springs and wells within the Cascadia forearc, Washington, Oregon, and California

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2017-01-31

    IntroductionThis U.S. Geological Survey report presents laboratory analyses along with field notes for an exploratory study to document the relative abundance of noble gases in mineral springs and water wells within the Cascadia forearc of Washington, Oregon, and California (fig. 1). This report describes 14 samples collected in 2014 and 2015 and complements a previous report that describes 9 samples collected in 2012 and 2013 (McCrory and others, 2014b). Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath sample sites are derived from the McCrory and others (2012) slab model. Some of the springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none of the springs or wells currently has publicly available noble gas data. The helium and neon isotope values and ratios presented below are used to determine the sources and mixing history of these mineral and well waters (for example, McCrory and others, 2016).

  12. A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Hornsby, H.D.

    1998-01-01

    A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer range from 1985 to 1989.

  13. [Spring water quality assessment regarding the problem of endemic fluorosis].

    PubMed

    Leshchenko, D V; Mialo, O A; Beliakova, M B; Beliaeva, E A; Samoukina, A M; Chervinets, Iu V; Ivanova, O V

    2013-01-01

    A possible variant for reducing the consumption of fluoride by population of Tver region is the use of water with low fluoride content, such as spring water. Assessment of drinking suitability of spring water (the content of physiologically important mineral elements and microbial purity) is relevant to our region. Water samples from 6 spring-water source of Tver region were studied during the year. The content of fluoride and calcium were measured by using an ion-selective electrodes. Microbiological purity tested by the presence of total coliform bacteria, thermotolerant coliform bacteria, coliphages and total microbial numbers. The analysis of some mineral components in spring water of Tver region showed that calcium content was in range 33-88 mg/l, that satisfied the recommended value; fluoride concentration is less then 0.5 mg/l. In all spring water samples total coliforms, thermotolerant coliforms and coliphages were absent. The total microbial number was in standard range, except of two spring-water source in the autumn and summer. The data suppose that spring water of Tver region can be used as a component of diet normalizing the fluoride consumption at risk of dental fluorosis in children.

  14. The age of the Tunas formation in the Sauce Grande basin-Ventana foldbelt (Argentina): Implications for the Permian evolution of the southwestern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar; Fildani, Andrea; Weislogel, Amy; Rossello, Eduardo

    2013-08-01

    New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.

  15. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  16. Influence of hydrothermal processes on changes of volcanic rocks (data of physical modelling)

    NASA Astrophysics Data System (ADS)

    Shanina, V. V.; Bychkov, A. Y.

    2009-04-01

    Due to active development of geothermal energy, in middle of the last century have begun papers devoted to experiments, directed on study of transformations of minerals [4] and rocks [1, 2, 5] under action of geothermal processes. But any researcher did not estimate thus change of their physical and physico-mechanical properties. The purpose of job - to study character and dynamics changes of volcanic rocks (to simulate conditions of geothermal transformations). Tasks: creation of the whole series of experiments in autoclavs at various temperatures, pressure and composition of solutions, preparation of samples, study of chemical and mineral composition, structure and properties of rocks and solutions before and after experiments. In 2006 the first similar experiments were begun [3]. Researched rocks basalts, hyaloclasites and obsidian, selected from Iceland and tuffs Payzhetka Geothermal Field, Southern Kamchatka, Russia. Were used autoclavs, consisting from titanic of an alloy ВТ-8, volume 116-119 мл, in each of which was located from 2 up to 4 samples of rocks of the investigated structure and properties. The heating was made in OVEN ТРМ-10 with accuracy + 1 °С, the constancy of temperature was supervised by thermocouples. 15 experiences (temperature 200, 300 and 450 °С; pressure 16, 86 and 1000 bars accordingly now are carried out; 4 solutions (1 alkaline and 3 acid); duration 14, 15, 30 and 60 days). All four groups of the investigated rocks appreciablly react under geothermal influence. The changes are observed in colour of samples (brighten in acid solutions), their microstructure, that for basalts is visible only in raster electronic microscope, and in education of new mineral phases, is especially active in a acid solution, the X-Ray analysis (has executed by Dr. Krupskaya V.V., apparatuses - DRON- UM1) has shown, that 94,2 % is smectite, 3,5 % - kaolinite, 1,2 % - crisrobalite, 1,1 % - diopside (?), in others pores fills chlorite, and in an alkaline solution amorphous silicon. The most appreciable changes of meanings parameters of properties are observed in velocity of longitudinal waves, which for basalts and hyaloclasites raise in both solutions at 300 °С, and at 450 °С, but in tuffs were lowered, as they has cracked, and majority even were disorganized, in a course of experiment; and meanings of a magnetic susceptibility, which for basalts and tuffs raises at influence of an alkaline solution and falls in acid. For obsidian the speed of passage of elastic waves after influence of an alkaline solution is reduced, that is connected to processing of a volcanic glass from a surface and education rind, which thickness for 15 day has 1-2 mm, and for 30 - 2-3 mm. Thus the greatest decrease of velocity of waves occurs on the party with (smallest at samples), where a layer of changes glass greatest concerning length of a sample. If for 30 day Vp decrease on the party a practically no, on c - 0,95 km/sec (18 %), and Vs accordingly 0,55 km/sec (18 %) and 1,25 km/sec (45 %). Changes of a magnetic susceptibility in obsidian to trace practically is not possible, as is primary only tenth shares *10-3 units SI and varies on similar sizes. For hyaloclasites it is difficult to speak about the unequivocal general tendencies because of features of their composition, structure and origin; at the given stage of study it is possible to note, what after a presence in a sour solution during 30 day at 300 С goes increase of speeds of passage of longitudinal waves on 0,35-0,50 km/sec (24-25 %), and the magnetic susceptibility does not change. After an alkaline solution at equality of other parameters - increase of velocity on 0,10-0,40 km/sec (6-22 %), and magnetic susceptibility on 0,3-0,4*10-3 ед. SI. In tuffs the velocity of longitudinal waves decrease (from 0,35 km/sec (14 days, initial solution with pH 4,4) up to 0,54-0,55 km/sec (in a solution with pH 1 or with pH 4,4 after 60 days)). The sizes small, but as initial in the tuffs low (1,55-2,10 km/sec), in the percentage attitude they fall on 18-34 of %. It occurs because of decrease of density and increase of porosity. The magnetic susceptibility practically in all cases is reduced (the average on 0,35-0,70*10-3 ед. SI (9-13,4 %)). The theses of the report are based on materials of the researches which have been carried out at financial support of the Russian Fund of Fundamental Researches (the grant № 07-05-00118а). The authors express gratitude to the dr. Frolova J. V. and other employees of faculty of engineering and ecological geology for the help in realization of experiments.

  17. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  18. Molecular characterization of dissolved organic matter during the Arctic spring melt period

    NASA Astrophysics Data System (ADS)

    Gueguen, C.; Mangal, V.; Shi, Y. X.

    2016-02-01

    The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.

  19. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    USGS Publications Warehouse

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water discharging from 30 of the 46 springs sampled were less than 20 years, including 5 that were 'modern' (0-4 years). Four samples had apparent ages of 22 to 34 years, and two others from thermal springs were 40 years or greater. The remaining ten samples were contaminated with local sources of CFC and could not be dated. Nitrate concentrations and nitrate delta 15 nitrogen (15N) values in water from many springs are similar to those in shallow ground water beneath fertilized fields, and some values are high enough to indicate a probable source from animal-waste components. The nitrogen data reported here highlight the significance of the springs sampled during this study as pathways for nutrient transport in the Chesapeake Bay watershed. Ground-water samples were collected from springs during an unusually high flow period and thus may not be representative of low base-flow conditions. Residence times estimated from plausible ranges of aquifer properties and results of previous age-dating analyses generally corroborate the apparent-age analysis made in the current study and suggests that some residence times could be much longer. The shortest residence times tend to be in the Blue Ridge and northern carbonate areas; however, the data are preliminary and not appropriate for statistical tests of significance or variance. Because the age distributions in the aquifer discharging to the springs are not known, and because the apparent ages of water from the springs are based on various com-binations of CFC criteria, the apparent ages and calculated residence times are compared for illustrative purposes but are considered preliminary until further work is accomplished.

  20. Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, M.S. Jr.; Eshom, E.P.; Thordarson, W.

    This report presents the results of hydraulic testing of rocks penetrated by USW H-4, one of several test wells drilled in the southwestern part of the Nevada Test Site, in cooperation with the US Department of Energy, for investigations related to the isolation of high-level radioactive wastes in volcanic tuffs of Tertiary age. All rocks penetrated by the test well to its total depth of 1219 meters were volcanic. Static water level was at a depth of 519 meters below land surface. Hydraulic-head measurements made at successively lower depths during drilling in this test hole indicate no noticeable head change.more » A radioactive-tracer, borehole-flow survey indicated that the two most productive zones in this borehole occurred in the upper part of the Bullfrog Member, depth interval from 721 to 731.5 meters, and in the underlying upper part of the Tram Member, depth interval from 864 to 920 meters, both in the Crater Flat Tuff. Hydraulic coefficients calculated from pumping-test data indicate that transmissivity ranged from 200 to 790 meters squared per day. The hydraulic conductivity ranged from 0.29 to 1.1 meters per day. Chemical analysis of water pumped from the saturated part of the borehole (composite sample) indicates that the water is typical of water produced from tuffaceous rocks in southern Nevada. The water is predominantly a sodium bicarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by a carbon-14 date to be 17,200 years before present. 24 refs., 10 figs., 8 tabs.« less

  1. The prevalence of deoxynivalenol and its derivatives in the spring wheat grain from different agricultural production systems in Lithuania.

    PubMed

    Janaviciene, Sigita; Mankeviciene, Audrone; Suproniene, Skaidre; Kochiieru, Yuliia; Keriene, Ilona

    2018-02-22

    Deoxynivalenol (DON) together with two acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) occurs in cereal grains and their products. Co-occurrence of DON and acetylated derivatives in cereal grain is detected worldwide. Until now, DON and its derivatives have been considered equally toxic by health authorities. In this study, we analysed 103 samples of spring wheat grain, originating from the fields of different production systems in Lithuania, for the co-occurrence of type-B trichothecenes (DON, 3-ADON, 15-ADON). The samples were classified according to the production system-organic, sustainable and intensive. Mycotoxin levels in the spring wheat grain samples were determined by the HPLC method with UV detection. The type-B trichothecenes were found to be present at higher concentrations in the grain from the intensive production system. Eighty-one percent of the spring wheat grain samples from the intensive production system were co-contaminated with a combination of DON+3-ADON+15-ADON, 1% with DON+3-ADON. Additionally, DON+15-ADON and DON were found in 5% and 10% of the tested samples, respectively. Two percent of the samples were free from mycotoxins. In the grain samples from the sustainable production system, DON and a combination of DON+3-ADON showed a higher incidence - 47% and 23%, respectively. The samples with a combination of DON+3-ADON+15-ADON accounted for 18%. Completely different results were obtained from the analyses of organic grain samples. A large number of the organic spring wheat grain samples were contaminated with DON+3-ADON (55%) or DON (36%). The combination of DON+3-ADON+15-ADON was not present, while DON+15-ADON was present in 9% of the samples tested. The production systems did not lead to significant differences in mycotoxin levels, although a trend toward higher incidence and higher contamination was observed for the samples from the intensive and sustainable production systems.

  2. Stable Isotopes of Tilted Ignimbrite Calderas in Nevada

    NASA Astrophysics Data System (ADS)

    John, D. A.; Watts, K. E.; Hofstra, A. H.; Colgan, J. P.; Henry, C.; Bindeman, I. N.

    2013-12-01

    Mid-Tertiary calderas are exceptionally well exposed in tilted fault blocks of the northern Great Basin, facilitating detailed evolutionary models of their magmatic-hydrothermal systems. The 29.4 Ma Job Canyon caldera, the oldest of 3 overlapping calderas in the Stillwater Range, west-central Nevada, is tilted ~90° exposing a 10-km-thick section of the crust. Large parts of the >7 km-diameter caldera system, including >2 km thickness of intracaldera rhyolitic tuff, lower parts of an ~2 km thick sequence of post-caldera intermediate lavas, and the upper 500 m of the resurgent granodioritic IXL pluton, were pervasively altered to propylitic, argillic, and sericitic assemblages. Sparse quartz×calcite veins cut the tuff. δ18O values of altered whole rock samples range from +4.8 to -9.1‰ but are mostly -6 to -9‰ at paleodepths >2 km. Calculated magmatic δ18O and δD values range from +6.4 to 8.2‰ and ~-70‰, respectively. Calculated fluid compositions using temperatures from fluid inclusions and mineral assemblages are δ18OH2O=-9.5 to -15‰ and δDH2O=-125 to -135‰ (chlorite) and -70 to -80‰ (epidote). Chlorite-whole rock data suggest fluids that were derived from moderately 18O-exchanged meteoric water. Fault blocks in north-central Nevada expose a >5 km upper crustal cross section through the 12-17 x 20 km, 34 Ma Caetano caldera, including >3 km thickness intracaldera rhyolitic Caetano Tuff. Asymmetric caldera subsidence left a depression >1 km deep partly filled with a lake. Magma resurgence and emplacement of shallow granite porphyry plutons drove a hydrothermal system that altered >120 km2 of the caldera to depths >1.5 km. Alteration was focused in an early granite porphyry intrusion and surrounding upper Caetano Tuff and lacustrine sediments. Early pervasive quartz-kaolinite-pyrite alteration grades outward and downward into more restricted quartz-illite/smectite-pyrite alteration. Hematite, quartz, and barite veins and hydrothermal breccias cut early alteration. Whole rock δ18O values of kaolinite-altered tuff and intrusions are +1.7 to +4.7‰. Magmatic δ18O values of Caetano rocks calculated from zircon and major phenocrysts range narrowly from +10.0 to +10.5‰. Calculated fluid compositions from kaolinite are δ18OH2O=-3 to -7‰ and δDH2O=-148 to -160‰, and from quartz and barite veins are δ18OH2O=-4 to -11‰, indicating that hydrothermal fluids also were dominantly 18O-exchanged meteoric water. Compared to the Job Canyon caldera, δDH2O values for Caetano hydrothermal fluids are ~25‰ lower, suggesting that Caetano formed at an elevation about 1 km higher than Job Canyon along the crest of the Nevadaplano. Both calderas hosted vigorous hydrothermal systems driven by heat from magma resurgence that pervasively altered and exchanged 18O and D with 10s to 100s km3 of rock. However, significant assimilation of low-18O hydrothermally altered rocks is not apparent by the exclusively normal-δ18O values of Job Canyon, Caetano, and adjacent younger magmas. Neither caldera is strongly mineralized, probably in part due to low sulfur contents of the hydrothermal fluids. More acidic fluids at Caetano suggest a larger magmatic gas (HCl) input likely resulting from degassing of shallow resurgent magma into the caldera lake.

  3. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact

    PubMed Central

    Haynes, C. Vance; Boerner, J.; Domanik, K.; Lauretta, D.; Ballenger, J.; Goreva, J.

    2010-01-01

    Some of the evidence for the recent hypothesis of an extraterrestrial impact that caused late Pleistocene megafaunal extinctions [Firestone et al. (2007) Proc Natl Acad Sci USA 104:16016–16021] was based upon samples collected at Murray Springs, a Clovis archaeological site in southeastern Arizona. Here we describe sampling and analyses of magnetic separates from within, above, and below the lower Younger Dryas boundary (LYDB) black mat at Murray Springs, as well as radiation measurements from the LYDB at Murray Springs and two other well-stratified Clovis sites. The main magnetic fraction at Murray Springs is maghemite. Magnetic microspherules have terrestrial origins but also occur as cosmic dust particles. We failed to find iridium or radiation anomalies. The evidence for massive biomass burning at Murray Springs is addressed and found to be lacking. We could not substantiate some of the claims by Firestone and others, but our findings do not preclude a terminal Pleistocene cosmic event. PMID:20160115

  4. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact.

    PubMed

    Haynes, C Vance; Boerner, J; Domanik, K; Lauretta, D; Ballenger, J; Goreva, J

    2010-03-02

    Some of the evidence for the recent hypothesis of an extraterrestrial impact that caused late Pleistocene megafaunal extinctions [Firestone et al. (2007) Proc Natl Acad Sci USA 104:16016-16021] was based upon samples collected at Murray Springs, a Clovis archaeological site in southeastern Arizona. Here we describe sampling and analyses of magnetic separates from within, above, and below the lower Younger Dryas boundary (LYDB) black mat at Murray Springs, as well as radiation measurements from the LYDB at Murray Springs and two other well-stratified Clovis sites. The main magnetic fraction at Murray Springs is maghemite. Magnetic microspherules have terrestrial origins but also occur as cosmic dust particles. We failed to find iridium or radiation anomalies. The evidence for massive biomass burning at Murray Springs is addressed and found to be lacking. We could not substantiate some of the claims by Firestone and others, but our findings do not preclude a terminal Pleistocene cosmic event.

  5. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  6. Geochronology, stratigraphy and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia.

    PubMed

    Hall, C M; Walter, R C; Westgate, J A; York, D

    Cindery Tuff is a subalkaline, rhyolitic air-fall deposit that was probably produced by a mixed-magma eruption. It is a distinctive, datable, regional isochronous marker bed within the Pliocene sediments of the Middle Awash district, and is stratigraphically situated between two new fossil hominid discoveries. Based on 40Ar/39Ar analyses of plagioclase, rhyolitic glass and basaltic glass, as well as fission-track analyses of zircons, we estimate its age to be 3.8-4.0 Myr. This implies that associated hominid skull fragments are at least 3.9 Myr old.

  7. Tectonic Setting and Bimodal Magmatic Evolution of Eocene Volcanic Rocks of the Bijgerd-Kuh-e Kharchin area, Uromieh-Dokhtar Zone, Iran

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Khalatbari-Jafari, M.; Babaie, H. A.; Krogstad, E. J.; Mobasher, K.; La Tour, T. E.; Deocampo, D. M.

    2008-12-01

    Geochemical composition and texture of the Middle and Late Eocene volcanic, volcaniclastic, and volcanic- sedimentary rocks in the Bijgerd-Kuh-e Kharchin area, northwest of Saveh, provide significant geochemical and geological clues for the tectonic and magmatic evolution of the Uromieh-Dokhtar volcanic-plutonic zone of Iran. The Middle Eocene volcanic rocks have an intermediate composition and include green tuff and tuffaceous sandstone with intercalated sandstone, sandy tuff, and shale. The shale has lenses of nummulite- bearing limestone with a Middle Eocene detrital age. The time between the Middle and Late Eocene volcanic activities in this area is marked by the presence of andesite and rhyolitic tuff. The Late Eocene succession is distinguished by the presence of four alternating levels (horizons) of intermediate lava and ignimbrite which we designate as Eig. The ignimbrites of the Eig sequence have a rhyolitic composition and include ignimbrite- breccia, ignimbrite-tuff, and ignimbrite-lava pairs. The volume of the felsic volcanic rocks in this sequence far exceeds that of the intermediate rocks, which makes it unlikely that they evolved through the magmatic differentiation of a basaltic magma. The presence of the nummulite-bearing limestone lenses, and sandstone and conglomerate interbeds between the ignimbrites, suggests a shallow marine environment for the pyroclastic deposition and probably the eruptions. The tuff and siltstone of the Est unit that sits above the first ignimbrite may represent deep water, Late Eocene deposit. Oligo-Miocene limestone of the Qom Formation unconformably overlies the uppermost Late Eocene ignimbrite. Washings from red marls give microfossils with Late Eocene age for the Eig sequence, which is synchronous with other paleontological evidence that puts the peak volcanic activity as Late Eocene in the Bijgerd-Kuh-e Kharchin area. Field and petrographic evidence for magma mixing/mingling is given by the presence of mafic- intermediate enclaves in the ignimbrite, hybrid breccias with felsic and mafic clasts, felsic pseudo-flames filled with intermediate lava, heterogeneity in the ignimbrite texture, and sieve texture and oscillatory zoning of plagioclase and opacitization of olivine in the intermediate lava. Geochemical analyses of the major and trace elements (including the REE) and rock texture and assemblages indicate the bimodal magmatic characteristics of the mafic-intermediate lavas and ignimbrites. The tuff and the breccia show a hybrid elemental distribution between those of rhyolite and basalt. The ignimbrites show more enriched compositions than those of the mafic and intermediate rocks on the chondrite-normalized trace element distribution diagram. The higher enrichment of the LREE in the ignimbrites may be due to a crustal contribution. The primitive mantle-normalized elemental distributions show a distinct depletion of Nb and Ti, which suggests a subduction-related volcanism during Eocene.

  8. Chemical evolution of a pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    1981-06-01

    The late Pleistocene caldera complex of the Sierra La Primavera, Jalisco, México, contains well-exposed lava flows and domes, ash-flow tuff, air-fall pumice, and caldera-lake sediments. All eruptive units are high-silica rhyolites, but systematic chemical differences correlate with age and eruptive mode. The caldera-producing unit, the 45-km3 Tala Tuff, is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Hf, Ta, Nb, Sb, HREE, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. The earliest post-caldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, moremafic, ring domes. This sequence of ash-flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Since that time, the lavas that erupted 75,000, 60,000, and 30,000 years ago have become decreasingly peralkaline and progressively enriched only in Si, Rb, Cs, and possibly U. They represent successive eruption of the uppermost magma in the post-95,000-year magma chamber. Eruptive units of La Primavera are either aphyric or contain up to 15% phenocrysts of sodic sanidine ≧quartz >ferrohedenbergite >fayalite>ilmenite±titanomagnetite. Whereas major-element compositions of sanidine, clinopyroxene, and fayalite phenocrysts changed only slightly between eruptive groups, concentrations of many trace elements changed by factors of 5 to 10, resulting in crystal/glass partition coefficients that differ by factors of up to 20 between successively erupted units. The extreme variations in partitioning behavior are attributed to small changes in bulk composition of the melt because major-element compositions of the phenocrysts and temperature, pressure, and oxygen fugacity of the magma all remained essentially constant. Crystal settling and incremental partial melting by themselves appear incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-caldera lavas. Transport of trace metals as volatile complexes within the thermal and gravitational gradient in volatilerich but water-undersaturated magma is considered the dominant process responsible for compositional zonation in the Tala Tuff. The evolution of the post-caldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced trace-metal-site availability in the silicate melt.

  9. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons

    PubMed Central

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.

    2016-01-01

    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  10. Evening daylight may cause adolescents to sleep less in spring than in winter.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2010-07-01

    Sleep restriction commonly experienced by adolescents can stem from a slower increase in sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, the authors hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times, and because of fixed school schedules would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. The authors collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of 12 subjects over the course of 7 days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially during the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents.

  11. Identification and significance of Naegleria fowleri isolated from the hot spring which related to the first primary amebic meningoencephalitis (PAM) patient in Taiwan.

    PubMed

    Tung, Min-Che; Hsu, Bing-Mu; Tao, Chi-Wei; Lin, Wei-Chen; Tsai, Hsiu-Feng; Ji, Dar-Der; Shen, Shu-Min; Chen, Jung-Sheng; Shih, Feng-Cheng; Huang, Yu-Li

    2013-08-01

    Naegleria fowleri can cause primary amoebic meningoencephalitis, a rapidly developing and highly lethal infectious disease. The first confirmed case of primary amoebic meningoencephalitis in Taiwan was reported in November 2011, in which the patient visited a thermal spring recreational area 1 week prior to hospitalisation. Water sampling was performed to verify the presence of Naegleria at the facility. According to our results, 32% and 20% of recreational water samples were contaminated with Naegleria spp. and Acanthamoeba spp., respectively. The genotypes of Naegleria identified at the hot spring included N. fowleri, Naegleria australiensis and Naegleria lovaniensis. Using PCR, it was determined that the strain of N. fowleri in one sample possessed the same genotype 2 as the clinical isolate. Thus, the thermal spring was suggested to be the likely source of infection. This is the first known instance of simultaneously isolating N. fowleri from both a patient as well as from a hot spring in Taiwan. Following this initial study, the pools at the thermal spring recreational area were drained, scrubbed and disinfected, and a follow-up study was performed 1 month later. Naegleria fowleri was not detected in follow-up testing; however, other Naegleria spp. were identified. We postulate that the biofilm in the waterlines may have provided a reservoir for free-living amoebae. The presence/absence of Acanthamoeba and Naegleria spp. did not differ significantly with any measured parameters related to water quality; however, a high percentage of the thermal water pool samples were contaminated with Naegleria or Acanthamoeba. Thus, amoebic contamination may present a serious threat to the health of humans who engage in leisure activities at thermal springs. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Geologic and tributary influences on the chemistry of a headwater stream

    Treesearch

    Alexander C. Wooten; James Preer; Pamela J. Edwards

    1999-01-01

    Water samples were collected weekly from June 12 to August 14, 1995, from Big Spring Run (BSR) in West Virginia. BSR originates in Big Spring Cave, where three stream samples were collected. In addition, 18 BSR sites were sampled downstream from the cave, three from its tributaries, and one above and below the stream?s confluence with Elklick Run. Along its length (653...

  13. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    NASA Astrophysics Data System (ADS)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  14. Water resources of Hot Springs County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Ogle, Kathy Muller

    1994-01-01

    The wells and springs inventoried in Hot Springs County most commonly had been completed in or issued from the Quaternary alluvium, Quaternary terrace deposits, Fort Union and Mesaverde Formations, Cody Shale, and the Frontier and Chugwater Formations. The largest discharges measured were from the Quaternary terrace deposits (400 gallons per minute) and the Phosphoria Formation (1,000 gallons per minute). Discharges from all other geologic units varied, but most wells and springs yielded 50 gallons per minute or less.Water-quality samples collected from springs that issued from the Absaroka Volcanic Supergroup, the Bighorn Dolomite, and the Flathead Sandstone had the lowest dissolved-solids concentrations, which ranged from 58 to 265 milligrams per liter, and the least variable water types. Water from the volcanic rocks was a sodium bicarbonate type; whereas, water from the Flathead Sandstone was a calcium bicarbonate type. Water types for all the other aquifers varied from sampling site to sampling site; however, water samples from the Fort Union Formation and the Cody Shale were consistently of the sodium sulfate type. The effect of oil- and gas-development at Hamilton Dome on thermal spring discharges at Hot Springs State Park near Thermopolis was studied. The estimated drawdown from 1918, when the Hamilton Dome oil field was discovered, to 1988 was made using drill-stem data from previous studies. Drawdown at Big Spring in the Park was estimated to be less than 3 feet on the basis of recent oil- and water-production data, previous modeling studies, and the estimated water-level drawdown of 330 feet in wells at the Hamilton Dome oil field.Streams originating in the Plains region of the county, such as Middle Fork Owl Creek, are ephemeral or intermittent; whereas, streams originating in the mountains, such as Gooseberry Creek, are perennial. Average annual runoff across the county ranges from 0.26 inches at a representative streamflow-gaging station near Worland in the plains region to 5.4 inches in the Owl Creek Mountains and southeastern Absaroka Range.

  15. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA

    USGS Publications Warehouse

    Morgan, L.A.; McIntosh, W.C.

    2005-01-01

    The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a distinct and widespread ignimbrite in the Heise volcanic field, eliminating former confusion resulting from previous discordant K/Ar and fission-track dates. New 40Ar/39Ar determinations, when combined wi th geochemical, lithologic geophysical, and field data, define the volcanic and tectonic history of the Heise volcanic field and surrounding areas. Volcanic units erupted from the Heise volcanic field also provide temporal control for tectonic events associated with late Cenozoic extension in the Snake Range and with uplift of the Teton Range, Wyoming. In the Snake Range, movement of large (???0.10 km3) slide blocks of Mississippian limestone exposed 50 km to the east of the Heise field occurred between 6.3 and 5.5 Ma and may have been catastrophically triggered by the caldera eruption of the 5.51 ?? 0.13-Ma Conant Creek Tuff. This slide block movement of ???300 vertical meters indicates that the Snake Range had significant relief by at least 5.5 Ma. In Jackson Hole, the distribution of outflow facies of the 4.45 ?? 0.05-Ma Kilgore caldera in the Heise volcanic field on the eastern SRP indicates that the northern Teton Range was not a significant topographic feature at this time. ?? 2005 Geological Society of America.

  16. Dacitic ash-flow sheet near Superior and Globe, Arizona

    USGS Publications Warehouse

    Peterson, Donald W.

    1961-01-01

    Remnants of a dacitic ash-flow sheet near Globe, Miama, and Superia, Arizona cover about 100 square miles; before erosion the area covered by the sheet was at least 400 square miles and perhaps as much as 1,500 square miles. Its maximum thickness is about 2,000 feet, its average thickness is about 500 feet, and its original volume was at least 40 cubic miles. It was erupted on an eroded surface with considerable relief. The main part of the deposit was thought by early workers to be a lava flow. Even after the distinctive character of welded tuffs and related rocks was discovered, the nature and origin of this deposit remained dubious because textures did not correspond to those in other welded tuff bodies. Yet a lava flow as silicic as this dacite would be viscous instead of spreading out as an extensive sheet. The purpose of this investigation has been to study the deposit, resolve the inconsistencies, and deduce its origin and history. Five stratigraphic zones are distinguished according to differences in the groundmass. From bottom to top the zones are basal tuff, vitrophyre, brown zone, gray zone, and white zone. The three upper zones are distinguished by colors on fresh surfaces, for each weathers to a similar shade of light reddish brown. Nonwelded basal tuff grades upward into the vitrophyre, which is a highly welded tuff. The brown and gray zones consist of highly welded tuff with a lithoidal groundmass. Degree of welding decreases progressively upward through the gray and the white zones, and the upper white zone is nonwelded. Textures are clearly outlined in the lower part of the brown zone, but upward they become more diffuse because of increasing devitrification. In the white zone, original textures are essentially obliterated, and the groundmass consists of spherulites and microcrystalline intergrowths. The chief groundmass minerals are cristobalite and sanidine, with lesser quartz and plagioclase. Phenocrysts comprise about 40 percent of the rock, and their relative proportions are fairly uniform. Almost three-fourths of the phenocrysts are plagioclase, one-tenth quartz, one-tenth biotite, and the remainder sanidine, magnetite, and hornblende, with accessory sphene, zircon, and appetite. Pumice fragments are nearly equidimensional near the top of the sheet, and downward they become progressively more flattened until they finally disappear. The zones and the pumice fragment flattening ration (ratio of length to height) provide means for recognizing several faults within the sheet. Twelve new chemical analyses are nearly uniform in composition. If named according to chemical composition, the rock would be a quartz latite, but when named according to phenocrysts, it is a dacite. From the field occurrence and the interpretation of relict textures, it is concluded that the deposit is an ash-flow sheet containing large amounts of welded tuff, and that it was emplaced by a type of nuee ardente instead of a lava flow or air-fall shower. The nature of zoning and trend of flattening ratios indicate a series of eruptions in rapid enough succession for the sheet to form a single cooling unit. Except in the lower part of the sheet, original textures were obscured by devitrification and crystallization during cooling. Nearly uniform mineralogy and chemistry suggest a single magnetic source. A nearly circular area, about 3? miles in diameter, of altered dacite and earlier volcanic rocks, bounded by intricately faulted and brecciated older rocks, may be the site of a caldera that represents the source of the eruptions.

  17. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    PubMed

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  18. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog

    PubMed Central

    Sapers, Haley M.; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R.; Whyte, Lyle G.

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site. PMID:29312221

  19. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog.

    PubMed

    Sapers, Haley M; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R; Whyte, Lyle G

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.

  20. Integrated Field Analyses of Thermal Springs

    NASA Astrophysics Data System (ADS)

    Shervais, K.; Young, B.; Ponce-Zepeda, M. M.; Rosove, S.

    2011-12-01

    A group of undergraduate researchers through the SURE internship offered by the Southern California Earthquake Center (SCEC) have examined thermal springs in southern Idaho, northern Utah as well as mud volcanoes in the Salton Sea, California. We used an integrated approach to estimate the setting and maximum temperature, including water chemistry, Ipad-based image and data-base management, microbiology, and gas analyses with a modified Giggenbach sampler.All springs were characterized using GISRoam (tmCogent3D). We are performing geothermometry calculations as well as comparisons with temperature gradient data on the results while also analyzing biological samples. Analyses include water temperature, pH, electrical conductivity, and TDS measured in the field. Each sample is sealed and chilled and delivered to a water lab within 12 hours.Temperatures are continuously monitored with the use of Solinst Levelogger Juniors. Through partnership with a local community college geology club, we receive results on a monthly basis and are able to process initial data earlier in order to evaluate data over a longer time span. The springs and mudpots contained microbial organisms which were analyzed using methods of single colony isolation, polymerase chain reaction, and DNA sequencing showing the impact of the organisms on the springs or vice versa. Soon we we will collect gas samples at sites that show signs of gas. This will be taken using a hybrid of the Giggenbach method and our own methods. Drawing gas samples has proven a challenge, however we devised a method to draw out gas samples utilizing the Giggenbach flask, transferring samples to glass blood sample tubes, replacing NaOH in the Giggenbach flask, and evacuating it in the field for multiple samples using a vacuum pump. We also use a floating platform devised to carry and lower a levelogger, to using an in-line fuel filter from a tractor in order to keep mud from contaminating the equipment.The use of raster imagery on the iPad2 has drastically changed how we plan and conduct our sampling trips. Orthoimagery onto the iPad2 is viewed with GISRoam and we use that imagery to help guide us toward points that we wish to visit. GISRoam was used to plot spatially correlated data points while in the field, estimate latitude and longitude, and record aforementioned data. A key factor to our success is up to the minute collaboration between all participants. Google's suite of services provides phone number for landowners, web site hosting, and the most crucial implementation for sharing data in real time has been the beta google Fusion Table. This spreadsheet allows for the incorporation of images, sample data and GPS location to be displayed as a kml file to be viewed in Google maps. This ability to modify and recognize data points in real time has made us more effective in the field, and in documenting progress in the lab. This workflow has enabled us to sample over 30 springs in 2 months, find 10 new springs, and estimate Tmax for 14 sites.By the end of 3 months we anticipate having water chemistry, isotope samples, gas samples, and Tmax determinations for 30 springs in the two study areas.

  1. Invertebrate Paleontology of the Wilson Grove Formation (Late Miocene to Late Pliocene), Sonoma and Marin Counties, California, with some Observations on Its Stratigraphy, Thickness, and Structure

    USGS Publications Warehouse

    Powell, Charles L.; Allen, James R.; Holland, Peter J.

    2004-01-01

    The Wilson Grove Formation is exposed from Petaluma north to northern Santa Rosa, and from Bennett Valley west to Bodega Bay. A fauna of at least 107 invertebrate taxa consisting of two brachiopods, 95 mollusks (48 bivalves and 46 gastropods), at least eight arthropods, and at least two echinoids have been collected, ranging in age from late Miocene to late Pliocene. Rocks and fossils from the southwest part of the outcrop area, along the Estero de San Antonio, were deposited in a deep-water marine environment. At Meacham Hill, near the Stony Point Rock Quarry, and along the northern margin of the outcrop area at River Road and Wilson Grove, the Wilson Grove Formation was deposited in shallow marine to continental environments. At Meacham Hill, these shallow water deposits represent a brackish bay to continental environment, whereas at River Road and Wilson Grove, fossils suggest normal, euhaline (normal marine salinity) conditions. A few taxa from the River Road area suggest water temperatures slightly warmer than along the adjacent coast today because their modern ranges do not extend as far north in latitude as River Road. In addition, fossil collections from along River Road contain the bivalve mollusks Macoma addicotti (Nikas) and Nuttallia jamesii Roth and Naidu, both of which are restricted to the late Pliocene. The late Miocene Roblar tuff of Sarna-Wojcicki (1992) also crops out northeast of the River Road area and underlies the late Pliocene section at Wilson Grove by almost 300 m. Outcrops in the central part of the region are older than those to the northeast, and presumably younger than deposits to the southwest. The Roblar tuff of Sarna-Wojcicki (1992) occurs at Steinbeck Ranch in the central portion of the outcrop area. At Spring Hill, also in the central part of the outcrop area, the sanddollar Scutellaster sp., cf. S. oregonensis (Clark) has been recently collected. This species, questionably identified here, is restricted to the late Miocene from central California through Oregon. Outcrops at Salmon Creek, northeast of Steinbeck Ranch and also in the central part of the outcrop area, contain Aulacofusus? recurva (Gabb) and Turcica brevis Stewart, which are both restricted to the Pliocene, as well as Lirabuccinum portolaensis (Arnold) known from the early Pliocene of central and northern California and into the late Pliocene in southern California. These data suggest an overall pattern of older rocks and deeper water to the south and west, and younger rocks and shallower water to the east and north. Outcrops to the southwest, south of the Bloomfield fault, are not well dated but presumably are older than the late Miocene Roblar tuff of Sarna-Wojcicki (1992). Fossils in this part of the section are rare and are not useful in determining a precise age or environment of deposition for the lower part of the Wilson Grove Formation. However, sedimentary sequences and structures in the rocks here are useful and suggest probable outer shelf and slope water depths. Lituyapecten turneri (Arnold) which occurs in this part of the section has previously been restricted to the Pliocene, but its occurrence below the Roblar tuff of Sarna-Wojcicki (1992) indicates a revised late Miocene age for this taxon. Three possibly new gastropods (Mollusca) are reported here: Calyptraea (Trochita) n. sp. and Nucella sp., aff. N. lamellosa (Gmelin), both from the Bloomfield Quarry area, and Acanthinucella? n. sp. from the River Road area. These species are not described here because this venue is deemed insufficient for the description of new taxa.

  2. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).

    PubMed

    Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio

    2014-11-01

    This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene.

  3. Volcano-tectonic evolution of the Castle Mountains: 22 to 14 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capps, R.C.

    1993-04-01

    The alkali-calcic Castle Mountains Volcanic rocks (CMV) are host to major gold mineralization. They are located about 100 km south of Las Vegas, Nevada and are on the boundary between the Basin and Range Province and Colorado River extensional corridor (35[degree]18 minutes 45 seconds N, 115[degree]05 minutes 10 seconds W). New data show the following chronology. 22 Ma. A regional rhyolite ash-flow tuff, the Castle Mountain Tuff member, was deposited on a Proterozoic-Paleozoic basement of low relief. <22 Ma - > 17 Ma. Normal faulting (N30--60[degree]W, 60--65[degree]NE) formed half-grabens. Latite and basalt flows, minor ash-flow tuffs, lahars and sediments (Jacksmore » Well member - JW) were deposited unconformably. JW magmas are enriched in light REE compared to the younger CMV. <17 Ma to 15.5 Ma. Oxidizing upper portions (796 C) of a shallowly emplaced silicic melt erupted to form the high-silica rhyolite dome complexes and intrusives (Linder Peak member - LP) of the NNE-striking Castle Mountains. NW-striking transverse structures caused discontinuities in strike direction of the subvolcanic intrusive and domes and helped form a synvolcanic depression. During a hiatus in volcanism, early Hart Peak member (HP) sediments were deposited marginal to the Castle Mountains. Major gold mineralization and widespread hydrothermal alteration occurred at about 15.5 Ma. 16 Ma to 14 Ma. Early HP volcaniclastic sediments, rhyolite pyroclastic-surge tuff, and basaltic flows, were deposited during late hydrothermal alteration and then fractured and displaced by NNE-striking normal faults, especially in the eastern and northeastern CMV. < 14 Ma. Tectonically significant flat-lying boulder conglomerate and unconformably overlying, largely andesitic flows fill depressions in the Castle Mountains and the Piute Range to the east.« less

  4. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Zavarin, M; Rose, T P

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases formore » {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.« less

  6. Possible Tuff Cones In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.

    The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.

  7. Geochemical and Petrological Studies of Peralkaline Rocks from Laborcita de San Javier, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Lozano, J. E.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.

    2013-05-01

    Peralkaline igneous rocks are characterized by a lower total aluminum content in comparison to the total alkalis content (Na + K), and are important to determine the tectonic environment in which they formed. The majority of the volcanic activity in Chihuahua State, northern Mexico, is mostly related to the formation of the Sierra Madre Occidental (SMO), product of the subduction of the Farallon plate. Volcanic activity of Paleogene age (late Oligocene) to the SW of Chihuahua city, specifically in the towns of Laborcita de San Javier and Cusihuiriachic, includes 27.5 M.a. peralkaline tuffs, capping the older rhyolites and andesites of the SMO. This sequence becomes thicker and more prominent towards the west. A volcanic section of more than 1,000 m thick is exposed in the Laborcita area, which ranges in age from 27 to 35 Ma. The oldest (bottom) unit is a calc-alkaline felsic ash-flow tuff and rhyolitic lavas interbedded with flows of mafic to intermediate composition. Overlying this unit, there is a basaltic andesite with an age of 30 to 33 Ma. Right at the top of this sequence, there is the widespread peralkaline ash-flow tuff (27.5 M.a.), focus of this study. Geochemical analyses performed to rhyolitic tuffs by Mauger and Dayvault (1983), have a peralkalinity index ranging from 0.94 to 1.20, while analyses prepared for this project only reach an index of 0.60. The appearance of peralkaline rocks in the Chihuahua State indicates the change of tectonic regime from compression (Farallon plate subduction) to distension (Basin and Range and/or Rio Grande Rift), about 27 M.a. ago.

  8. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, C.J.; Nathenson, M.; Scholl, M.A.

    1994-12-31

    Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal watermore » from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.« less

  9. Trace metal contamination of mineral spring water in an historical mining area in regional Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Martin, Rachael; Dowling, Kim

    2013-11-01

    Significant global consumption of spring and mineral water is fuelled by perceived therapeutic and medicinal qualities, cultural habits and taste. The Central Victorian Mineral Springs Region, Australia comprises approximately 100 naturally effervescent, cold, high CO2 content springs with distinctive tastes linked to a specific spring or pump. The area has a rich settlement history. It was first settled by miners in the 1840s closely followed by the first commercial operations of a health resort 1895. The landscape is clearly affected by gold mining with geographically proximal mine waste, mullock heaps or tailings. Repeated mineral springs sampling since 1985 has revealed elevated arsenic concentrations. In 1985 an arsenic concentration five times the current Australian Drinking Water Guideline was recorded at a popular tourist spring site. Recent sampling and analyses have confirmed elevated levels of heavy metals/metalloids, with higher concentrations occurring during periods of low rainfall. Despite the elevated levels, mineral water source points remain accessible to the public with some springs actively promoting the therapeutic benefits of the waters. In light of our analysis, the risk to consumers (some of whom are likely to be negatively health-affected or health-compromised) needs to be considered with a view to appropriate and verified analyses made available to the public.

  10. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which are not regulatory standards and are not legally enforceable values. All of the contaminants detected in this study were found at concentrations less than available human-health benchmarks. In the source waters sampled in phase 1, 10 contaminants of the approximately 260 measured were detected in samples collected from Eagle Valley, and 4 contaminants were detected in samples from Spanish Springs Valley. The most frequently detected compounds in the Eagle Valley source water were chloroform (a disinfection by-product), which was detected in samples from four wells, and deethylatrazine (a degradation product of the herbicide atrazine), which was detected in samples from three wells. Each of the four contaminants detected in the Spanish Springs Valley source waters was detected in samples from one well. The detection frequencies of VOCs and pesticides in samples from the SWQA wells were similar to those in samples from both shallow and deep monitoring wells in Carson City, Reno, and Spanish Springs. This indicates that the SWQA sampling is representative of the organic chemical compounds likely to be detected in the aquifers sampled. However, more organic compounds were detected at low frequencies and concentrations in samples from the monitoring wells than in samples from SWQA wells. Three contaminants were detected in one finished-water sample collected from Eagle Valley. Comparison of SWQA results in the Nevada Basin and Range Study Unit to results of an SWQA in the larger urban area of Salt Lake City showed that fewer anthropogenic compounds were detected in Eagle and Spanish Springs Valleys and generally at lower concentrations than in the Salt Lake City study.

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Albuquerque NTMS Quadrangle, New Mexico, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, L.W.; Bolivar, S.L.

    1979-06-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less

  12. Representative Sampling: Follow-up of Spring 1972 and Spring 1973 Students. TEX-SIS FOLLOW-UP SC3.

    ERIC Educational Resources Information Center

    Wilkinson, Larry; And Others

    This report presents the findings of a research study, conducted by the College of the Mainland (COM) as a subcontractor for Project FOLLOW-UP, designed to test the accuracy of random sampling and to measure non-response bias in mail surveys. In 1975, a computer-generated random sample of 500 students was drawn from a population of 1,256 students…

  13. Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment.

    PubMed

    Hladik, Michelle L; Bouwer, Edward J; Roberts, A Lynn

    2008-12-01

    Treated drinking water samples from 12 water utilities in the Midwestern United States were collected during Fall 2003 and Spring 2004 and were analyzed for selected neutral degradates of chloroacetamide herbicides, along with related compounds. Target analytes included 20 neutral chloroacetamide degradates, six ionic chloroacetamide degradates, four parent chloroacetamide herbicides, three triazine herbicides, and two neutral triazine degradates. In the fall samples, 17 of 20 neutral chloroacetamide degradates were detected in the finished drinking water, while 19 of 20 neutral chloroacetamide degradates were detected in the spring. Median concentrations for the neutral chloroacetamide degradates were approximately 2-60ng/L during both sampling periods. Concentrations measured in the fall samples of treated water were nearly the same as those measured in source waters, despite the variety of treatment trains employed. Significant removals (average of 40% for all compounds) were only found in the spring samples at those utilities that employed activated carbon.

  14. Compilation of hydrologic data for White Sands pupfish habitat and nonhabitat areas, northern Tularosa Basin, White Sands Missile Range and Holloman Air Force Base, New Mexico, 1911-2008

    USGS Publications Warehouse

    Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.

    2014-01-01

    The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about 19,600 years old. Dissolved-solids concentrations of Lost River samples collected from 1984 to 1999 ranged from 8,930 to 118,000 (estimated) mg/L. Dissolved-solids concentrations in samples from nonhabitat area sites ranged from 1,740 to 54,200 (estimated) mg/L. In general, water collected from pupfish nonhabitat area sites tends to have larger proportions of calcium, magnesium, and sulfate than water from pupfish habitat area sites. Water from springs associated with mounds in pupfish nonhabitat areas was of a similar type (calcium-sulfate) to water associated with mounds in pupfish habitat areas. Alkali Spring had a sodium-chloride water type, but the proportions of sodium-chloride and magnesium-sulfate are unique as compared to samples from other sites.

  15. Effects of septic-tank effluent on ground-water quality in northern Williamson County and southern Davidson County, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1991-01-01

    An investigation of the potential contamination of ground water from septic tank systems blasted in bedrock in Williamson and Davidson Counties, Tennessee, was conducted during 1988-89. Water samples were collected from domestic and observation wells, springs, and surface-water sites in a residential subdivision in the northern part of Williamson County near Nashville. The subdivision has a high density of septic-tank field lines installed into blasted bedrock Water samples also were collected from a well located in an area of Davidson County where field lines were installed in 5 feet of soil. Samples were analyzed for major inorganic constituents, nutrients, total organic carbon, optical brighteners, and bacteria. Although results of analyses of water samples from wells indicate no effect of septic-tank effluent on ground-water quality at these sites, water from two springs located downgradient from the subdivision had slightly larger concentrations of nitrite plus nitrate (2.2 and 2.7 milligrams per liter N), and much larger concentrations of fecal coliform and fecal streptococci bacteria (2,000 to 3,200 and 700 to 900 colonies per 100 milliliters of sample, respectively), than other wells and springs sampled during 1988. Water from one of these springs contained optical brighteners, which indicates that septic-tank effluent is affecting ground-water quality.

  16. Herbaceous vegetation in thinned and defoliated forest stands in north central West Virginia

    Treesearch

    S. L. C. Fosbroke; D. Feicht; R. M. Muzika

    1995-01-01

    Herbaceous vegetation was inventoried in 1992 and 1993 in eight Appalachian mixed hardwood stands ( 50% basal area/acre in oak species) in north central West Virginia. Vegetation was sampled on 20 6-foot radius plots per stand twice each growing season (once during late spring to sample spring ephemeral...

  17. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    USGS Publications Warehouse

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was 1.15 mg/L. Because fewer wells were in rangeland or forested areas, those categories were grouped together. The median concentration for that group was 0.09 mg/L. The ratio of 15N/14N in ground-water samples ranged from -0.5 to 11.5 per mil. The median value for ground-water samples from 35 wells, 4.9 per mil, is near the top of the range that indicates inorganic nitrogen sources. In agricultural areas, the median 15N/14N was 4.8 per mil, indicating mostly inorganic (fertilizer) sources. In urban areas, the median 15N/14N was 5.4 per mil, indicating more influence of organic nitrogen (N) sources. Thus, in both agricultural and urban areas, fertilizer is an important inorganic source of N in ground water (and, therefore, in spring water as well). The influence of organic N is more apparent in urban areas than in agricultural areas. Two distinct 15N/14N values were observed in water from the Main Spring, one indicating an inorganic nitrogen source and the other indicating a mixture of sources with a strong influence of organic nitrogen. Thirty-five wells and three springs of the Silver Springs group (the Main Spring, the Abyss, and the Blue Grotto) were sampled for a suite of 63 compounds common in wastewater. A total of 38 compounds was detected, nearly all in very low concentrations. The most frequently detected compound was the insecticide N,N-diethyl-meta-toluamide (DEET), which was detected in water from 27 wells and all three springs. The presence or absence of DEET in ground-water samples did not seem to be related to land use; however, hydrogeologic conditions at the well sites (confined or unconfined) generally did affect the presence or absence of DEET in the ground water. DEET also appears to be a useful tracer for the presence of reused water. Water samples were collected from the Main Spring and two other springs of the Silver Springs group and analyzed for concentrations of dissolved gasses and for chlorofluorocarbons (CFCs), sulfur hexaflu

  18. Water-quality characteristics and contaminants in the rural karst-dominated Spring Mill Lake watershed, southern Indiana

    USGS Publications Warehouse

    Hasenmueller, N.R.; Buehler, M.A.; Krothe, N.C.; Comer, J.B.; Branam, T.D.; Ennis, M.V.; Smith, R.T.; Zamani, D.D.; Hahn, L.; Rybarczyk, J.P.

    2006-01-01

    The Spring Mill Lake watershed is located in the Mitchell Plateau, a karst area that developed on Mississippian carbonates in southern Indiana. Spring Mill Lake is a reservoir built in the late 1930s and is located in Spring Mill State Park. Within the park, groundwater from subsurface conduits issues as natural springs and then flows in surface streams to the lake. From 1998 to 2002, surface and subsurface hydrology and water quality were investigated to determine the types and sources of potential contaminants entering the lake. Water samples collected during base flow and a February 2000 storm event were analyzed for selected cations, anions, trace elements, selected U.S. Environmental Protection Agency (EPA) primary and secondary drinkingwater contaminants, nitrogen isotopes, suspended solids, Escherichia coli, and pesticides. All of the water samples met the EPA drinking-water standards for inorganic constituents, except those collected at five sites in August 1999 during a drought. Nitrate nitrogen (NO3-N) concentrations were highest during base-flow conditions and displayed a dilutional trend during peak-flow periods. The NO3-N concentrations in water samples collected during the 2001 spring fertilizer applications tended to increase from early to late spring. All of the ??15N values were low, which is indicative of either an inorganic source or soil organic matter. Storm discharge contained increased concentrations of total suspended solids; thus, storms are responsible for most of the sediment accumulation in the lake. E. coli levels in 24% of the samples analyzed contained a most probable number (MPN) greater than 235/100 mL, which is the maximum acceptable level set for recreational waters in Indiana. E. coli does appear to be a potential health risk, particularly at Rubble spring. The sources of E. coli found at this spring may include barnyard runoff from a horse barn or wastes from a wastewater treatment facility. The pesticides atrazine, metolachlor, acetochlor, and simazine were detected during the spring of 2001. Atrazine, metolachlor, acetochlor, and simazine are used to suppress weeds during corn and soybean production. Additional sources of atrazine and simazine may result from application to right-of-ways, orchards, and managed forest areas. ?? 2006 Geological Society of America.

  19. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.

  20. Spring response to precipitation events using δ(18)O and δ(2)H in the Tanour catchment, NW Jordan.

    PubMed

    Hamdan, Ibraheem; Wiegand, Bettina; Toll, Mathias; Sauter, Martin

    2016-12-01

    The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013-2014 and 2014-2015. In addition, spring samples were collected between December 2014 and March 2015. δ(18)O values in rainwater vary from -3.26 to -17.34 ‰ (average: -7.84 ± 3.23 ‰), while δ(2)H values range between -4.4 and -110.4 ‰ (average: -35.7 ± 25.0 ‰). Deuterium excess ranges from 17.8 to 34.1 ‰ (average: 27.1 ± 4.0 ‰). The Local Meteoric Water Line for the study area was calculated to be δ(2)H = 7.66*δ(18)O + 24.43 (R(2) = 0.98). Pre-event spring discharge showed variation in δ(18)O (range -6.29 to -7.17 ‰; average -6.58 ± 0.19 ‰) and δ(2)H values (range -28.8 to -32.7 ‰; average: -30.5 ± 1.0 ‰). In contrast, δ(18)O and δ(2)H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5-11 days.

  1. Recent (2008-10) concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone, south-central Texas, and their potential relation to urban development in the contributing zone

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.

    2011-01-01

    During 2008–10, the U.S. Geological Survey, in cooperation with the City of Austin, the City of Dripping Springs, the Barton Springs/Edwards Aquifer Conservation District, the Lower Colorado River Authority, Hays County, and Travis County, collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge well [YD–58–50–704] and Buda well [LR–58–58–403]), and the main orifice of Barton Springs in Austin, Texas, with the objective of characterizing concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone. The Barton Springs zone is in south-central Texas, an area undergoing rapid growth in population and in land area affected by development, with associated increases in wastewater generation. Over a period of 17 months, during which the hydrologic conditions transitioned from dry to wet, samples were collected routinely from the streams, wells, and spring and, in response to storms, from the streams and spring; some or all samples were analyzed for nitrate, nitrogen and oxygen isotopes of nitrate, and waste­water compounds. The median nitrate concentrations in routine samples from all sites were higher in samples collected during the wet period than in samples collected during the dry period, with the greatest difference for stream samples (0.05 milligram per liter during the dry period to 0.96 milligram per liter for the wet period). Nitrate concentrations in recent (2008–10) samples were elevated relative to concentrations in historical (1990–2008) samples from streams and from Barton Springs under medium- and high-flow conditions. Recent nitrate concentrations were higher than historical concentrations at the Marbridge well but the reverse was true at the Buda well. The elevated concentrations likely are related to the cessation of dry conditions coupled with increased nitrogen loading in the contributing watersheds. An isotopic composition of nitrate (delta nitrogen–15) greater than 8 per mil in many of the samples indicated there was a contribution of nitrate with a biogenic (human and or animal waste, or both) origin. Wastewater compounds measured in routine samples were detected infrequently (3 percent of cases), and concentrations were very low (less than the method reporting level in most cases). There was no correlation between nitrate concentrations and the frequency of detection of wastewater compounds, indicating that wastewater compounds might be undergoing removal during such processes as infiltration through soil. Three potential sources of biogenic nitrate to the contributing zone were considered: septic systems, land application of treated wastewater, and domesticated dogs and cats. During 2001–10, the estimated densities of septic systems and domesticated dogs and cats (number per acre) increased in the watersheds of all five creeks, and the rate of land application of treated wastewater (gallons per day per acre) increased in the watersheds of Barton, Bear, and Onion Creeks. Considering the timing and location of the increases in the three sources, septic systems were considered a likely source of increased nitrate to Bear Creek; land application of treated wastewater a likely source to Barton, Bear, and Onion Creeks; and domestic dogs and cats a potential source principally to Williamson Creek. The results of this investigation indicate that baseline water quality, in terms of nitrate, has shifted upward between 2001 and 2010, even without any direct discharges of treated wastewater to the creeks.

  2. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  3. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons.

    PubMed

    Laloi, G; Montarry, J; Guibert, M; Andrivon, D; Michot, D; Le May, C

    2016-07-15

    Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Hydrogeochemical response of groundwater springs during central Italy earthquakes (24 August 2016 and 26-30 October 2016)

    NASA Astrophysics Data System (ADS)

    Archer, Claire; Binda, Gilberto; Terrana, Silvia; Gambillara, Roberto; Michetti, Alessandro; Noble, Paula; Petitta, Marco; Rosen, Michael; Pozzi, Andrea; Bellezza, Paolo; Brunamonte, Fabio

    2017-04-01

    Co-seismic hydrological and chemical response at groundwater springs following strong earthquakes is a significant concern in the Apennines, a region in central Italy characterized by regional karstic groundwater systems interacting with active normal faults capable of producing Mw 6.5 to 7.0 seismic events. These aquifers also provide water supply to major metropolitan areas in the region. On August 24, 2016, a Mw 6.0 earthquake hit Central Italy in the area where Latium joins Umbria, Marche and Abruzzi; this was immediately followed one hour later by a Mw 5.4 shock. The epicenter of the event was located at the segment boundary between the Mt. Vettore and Mt. Laga faults. On October 26, 2016 and on October 30, 2016, three other big shocks (Mw 5.5, Mw 6.0 and Mw 6.5) ruptured again the Vettore Fault and its NW extension. Immediately after Aug. 24, we sampled springs discharging different aquifers in the Rieti area, including the Peschiera spring, which feeds the aqueduct of Rome. Thermal springs connected with deep groundwater flowpaths were also sampled. These springs, sampled previously in 2014 and 2015, provide some pre-earthquake data. Moreover, we sampled 4 springs along the Mt. Vettore fault system: 3 small springs at Forca di Presta, close to the trace of the earthquake surface ruptures, and two in Castel Sant'Angelo sul Nera. The latter are feeding the Nera aqueduct and the Nerea S.p.A. mineral water plant, which also kindly allowed us to collect bottled water samples from the pre-seismic period. The aim of this study is to evaluate the strong earthquake sequence effects on the hydrochemistry and flow paths of groundwater from different aquifer settings based on analysis before and after seismic events. The comparison between the responses of springs ca. 40 km from the epicenter (Rieti basin) and the springs located near the epicenter (Castelsantangelo sul Nera and Forca di Presta) is especially significant for understanding the resilience of groundwater systems in an active tectonic zone because these springs are located near parallel active fault segments within the same extensional regime. The epicentral springs are subject to the direct effects of the shaking and coseismic fault displacement; the more distal ones to the tectonic displacement of large hydrogeologic structures, which affect the chemical composition and flow path even with late responses, lasting for weeks and months after the mainshocks. Temporal trend analysis, based on pre-earthquake and post-earthquake chemical-physical data, point out alteration of different parameters. For example, the lowering of different trace metals in all areas after the first earthquake. These changes could be due to fluctuations in redox equilibria related to degassing and/or interactions with deeper fluid flow. In the Rieti springs, the EC, alkalinity, and trace metals show small transient responses within 1-3 days following the main shocks, however δ2H vs. δ18O remain stable and plot with previous data, indicating no major change in recharge source. Analysis is ongoing and preliminary results will be presented here.

  5. Geology and ground-water resources of the island of Oahu, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Vaksvik, Knute N.

    1935-01-01

    Oahu, one of the islands of the Hawaiian group, lies in the Mid-Pacific 2,100 miles southwest of San Francisco. The principal city is Honolulu. The Koolau Range makes up the eastern part of the island, and the Waianae Range the western part. Both are extinct basaltic volcanoes deeply dissected by erosion. The Koolau Volcano was the later to become extinct. The Waianae Range is made up of three groups of lavas erupted in Tertiary and possibly in early Pleistocene time. The exposed part of the older lava is nearly 2,000 feet thick and consists largely of thin-bedded pahoehoe. It is separated in most places from the middle lavas by an angular unconformity and talus breccia and in a few places by an erosional unconformity. The middle basalts are about 2,000 feet thick and closely resemble the lower ones except that they contain more aa. The upper lavas reach a thickness of about 2,300 feet and are mostly massive aa flows. The last eruptions produced large cinder cones and some nephelite basalts. The Waianae Volcano, like other Hawaiian volcanoes, produced only small amounts of ash, and the lavas were largely extruded from fissures a few feet wide, now occupied by dikes. The center of activity was near Kolekole Pass, at the head of Lualualei Valley.The Koolau Volcano is made up of two groups of lavas extruded in Tertiary and early Pleistocene (?) time. The older group, the Kailua volcanic series, is greatly altered by hydrothermal action and was extruded from fissures near Lanikai. The flows of the younger group, the Koolau volcanic series, were extruded from fissures about a mile south of the Kailua rift and have an exposed thickness of about 3,000 feet. The Koolau Volcano produced even less ash than the Waianae Volcano, and its flows are thin-bedded pahoehoe and aa. The eruptive center of the Koolau Volcano lies between Kaneohe and Waimanalo. Great amounts of both the Waianae and Koolau Ranges were removed by fluvial and marine erosion during the Pleistocene. The master streams are characterized by deep amphitheater-headed valleys. After this erosion cycle the island was submerged more than 1,200 feet, and these great valleys were drowned and alluviated. Besides this submergence, several strand lines, preserved up to 100 feet above present sea level occur, which may be due to world-wide changes in sea level in response to the withdrawal and restoration of water concurrent with the advances and recessions of the polar ice caps and to accompanying changes in the ocean floor. During this time of shifting ocean levels spasmodic eruptions occurred on the southeast end of the Koolau Range, producing numerous lava flows and tuff cones, most of which are nephelite basalt. The last of these eruptions occurred in Recent time. A description of the climate, rates of run-off, and results of experiments to determine evaporation and transpiration in the areas of high rainfall are given. It was found that the consumptive use decreases materially and becomes a very small percentage of the rainfall in the areas of high precipitation. The lava rocks of the island are very permeable and, because of a rainfall reaching a maximum of 300 inches a year, carry large amounts of ground water, confined and unconfined, basal and perched. The basal ground water floats on salt water because of its lower specific gravity. Consequently for each foot the water table stands above sea level, salt water lies about 42 feet below sea level, in accordance with the sea along the coast as basal ground water. In most places the lava rocks along the shore are overlain by an impermeable or nearly impermeable caprock consisting of submerged lateritic soils and marine noncalcareous sediments. These deposits retard the escape of basal ground water into the sea and give rise to artesian water, but unlike most other artesian systems, this one has no lower restraining formation. The artesian water is the principal source of domestic, municipal, and irrigation supplies. The average annual quantity pumped for the period 1928 to 1933 amounted to about 105,000,000,000 gallons, nearly 90 percent of which came from Koolau hasalt and the remainder from Waianae basalt. There are ten artesian areas in the Koolau Range and two in the Waianae Range. Hydraulic gradients in these basins were found to range from 1.2 to 3 feet to the mile. Because of these extremely flat gradients and the high permeability of the aquifers it is possible to reverse the hydraulic gradients by draft and make the water flow from one artesian area to another. The artesian water levels fluctuate in response to seasonal variations in draft and recharge and in a lesser way to tidal, barometric, and seismic pressures. The water, as shown by chemical analysis, is of excellent quality except where it is contaminated with sea water. Methods have been devised for freshening wells that have gone salty, for detecting leaks, for sealing leaky and defective wells, and for recharging the artesian basins. Owing to the danger of the wells becoming brackish with increased draft, it is believed that further large developments will be more successful if shafts are sunk to sea level in the basalt as far inland as practicable, and tunnels are driven from the bottom of the shafts near the top of the saturated zone. Favorable places for such development exist in Honolulu.In addition to the basal water in the volcanic rocks, water is found in the recent gravel, beach, and dune deposits, and the emerged reef limestone. This water has been recovered by wells and tunnels, and there are favorable localities for developing additional water of this type. The island contains two types of basal springs—those like the Pearl Harbor Springs, which issue from basalt and are supplied by overflow and leakage from the artesian basin, and those which issue from the coastal-plain sediments and are mainly return irrigation water. The total quantity of basal ground water issuing as springs is estimated to be 100,000,000 gallons a day. Ground water occurs at high levels, confined by dikes and perched on tuff, alluvium, and soil beds. These structures give rise to innumerable high-level springs. In the Koolau Range 60 tunnels yield about 33,000,000 gallons daily, of which about 95 percent is obtained from tunnels penetrating the dike complex of the Koolau volcanic series, about 2 percent from tunnels entering post-Koolau ash or tuff deposits, and the remainder from tunnels whose geologic relations are not certainly known. The average daily yield of the tunnels that recover dike water is 2,330 gallons a foot, but the average daily yield of the tunnels in post-Koolau tuff is 450 gallons a foot, and that of the tunnels in alluvium or soil is only 23 gallons a foot. Owing largely to the much lower rainfall on the Waianac Range, its 35 tunnels (not including two new tunnels under construction) yield only about 2,400,000 gallons daily, about 94 percent of which is believed to be obtained from dike systems. The average daily yield of the tunnels in this range that are supplied by dike systems is 581 gallons a foot, as compared to 5 gallons a foot from tunnels in ash or tuff. An extensive tunnel system is proposed to develop a large supply of high-level water for Honolulu from the dike complex of the Koolau series, and high-level water can be recovered by tunnels at many other places. The average daily discharge of all high-level springs in the Koolau Range is about 58,000,000 gallons, of which about 94 percent comes from the Koolau dike complex and about 6 percent from post-Koolau volcanic rocks. The average daily discharge of all high-level springs in the Waianae Range is about 500,000 gallons of which about 81 percent issues from the dike complex.

  6. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  7. Multiple episodes of zeolite deposition in fractured silicic tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.

  8. Fractured Rock Permeability as a Function of Temperature and Confining Pressure

    NASA Astrophysics Data System (ADS)

    Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko

    2015-10-01

    Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.

  9. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  10. Water-quality data collected to determine the presence, source, and concentration of lead in the drinking water supply at Pipe Spring National Monument, northern Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Sharrow, David; Unema, Joel

    2013-01-01

    Pipe Spring National Monument in northern Arizona contains historically significant springs. The groundwater source of these springs is the same aquifer that presently is an important source of drinking water for the Pipe Spring National Monument facilities, the Kaibab Paiute Tribe, and the community of Moccasin. The Kaibab Paiute Tribe monitored lead concentrations from 2004 to 2009; some of the analytical results exceeded the U.S. Environmental Protection Agency action level for treatment technique for lead of 15 parts per billion. The National Park Service and the Kaibab Paiute Tribe were concerned that the local groundwater system that provides the domestic water supply might be contaminated with lead. Lead concentrations in water samples collected by the U.S. Geological Survey from three springs, five wells, two water storage tanks, and one faucet were less than the U.S. Environmental Protection Agency action level for treatment technique. Lead concentrations of rock samples representative of the rock units in which the local groundwater resides were less than 22 parts per million.

  11. Food habits of the hoary bat (LASIURUS CINEREUS) during spring migration through new mexico

    USGS Publications Warehouse

    Valdez, E.W.; Cryan, P.M.

    2009-01-01

    Hoary bats (Lasiums cinernis) exhibit continental patterns of migration that are unique to bats, but details about their behaviors during migration are lacking. We captured 177 hoary bats in spring and early summer 2002 as individuals migrated through the Sandia Mountains of north-central New Mexico. Our results support earlier observations of asynchronous timing of migration between sexes of L. cinernis during spring, with females preceding males by ca. 1 month. We provide the first evidence that hoary bats may travel in dispersed groups, fly below the tree canopy along streams, and feed while migrating during spring. Analysis of guano revealed that diet of L. cinereus consisted mostly of moths, with more than one-half of samples identified as Noctuidae and Geometridae. We observed a late-spring decline in consumption of moths that might be related to seasonal changes in abundance of prey, differential selection of prey by bats, or sampling bias. We suspect that spring migration of L. cinernis through New Mexico temporally coincides with the seasonal abundance of moths.

  12. Site-based data curation based on hot spring geobiology

    PubMed Central

    Palmer, Carole L.; Thomer, Andrea K.; Baker, Karen S.; Wickett, Karen M.; Hendrix, Christie L.; Rodman, Ann; Sigler, Stacey; Fouke, Bruce W.

    2017-01-01

    Site-Based Data Curation (SBDC) is an approach to managing research data that prioritizes sharing and reuse of data collected at scientifically significant sites. The SBDC framework is based on geobiology research at natural hot spring sites in Yellowstone National Park as an exemplar case of high value field data in contemporary, cross-disciplinary earth systems science. Through stakeholder analysis and investigation of data artifacts, we determined that meaningful and valid reuse of digital hot spring data requires systematic documentation of sampling processes and particular contextual information about the site of data collection. We propose a Minimum Information Framework for recording the necessary metadata on sampling locations, with anchor measurements and description of the hot spring vent distinct from the outflow system, and multi-scale field photography to capture vital information about hot spring structures. The SBDC framework can serve as a global model for the collection and description of hot spring systems field data that can be readily adapted for application to the curation of data from other kinds scientifically significant sites. PMID:28253269

  13. Construction, lithologic, and water-level data for wells near the Dickson County landfill, Dickson County, Tennessee, 1995

    USGS Publications Warehouse

    Ladd, D.E.

    1996-01-01

    Organic compounds were detected in water samples collected from Sullivan Spring during several sampling events in 1994. Prior to this, the spring was the drinking-water source for two families in the Dickson, Tennessee area. An investigation was conducted by the U.S. Geological Survey, in cooperation with Dickson County Solid Waste Management, to determine if Sullivan Spring is hydraulically downgradient from the Dickson County landfill. This report describes the data collected during the investigation. Five monitoring wells were installed near the northwestern corner of the landfill at points between the landfill and Sullivan Spring. Water-level measurements were made on June 1 and 2, 1995, at these wells and 13 other wells near the landfill to determine ground- water altitudes in the area. Water-level altitudes in the five new monitoring wells and three other landfill-monitoring wells were higher (750.04 to 800.17 feet) than the altitude of Sullivan Spring (approximately 725 feet). In general, wells in topographically high areas had higher water-level altitudes than Sullivan Spring and wells near streams in lowland areas.

  14. Stratigraphic architecture of hydromagmatic volcanoes that have undergone vent migration: a review of Korean case studies

    NASA Astrophysics Data System (ADS)

    Sohn, Y.

    2011-12-01

    Recent studies show that the architecture of hydromagmatic volcanoes is far more complex than formerly expected. A number of external factors, such as paleohydrology and tectonics, in addition to magmatic processes are thought to play a role in controlling the overall characteristics and architecture of these volcanoes. One of the main consequences of these controls is the migration of the active vent during eruption. Case studies of hydromagmatic volcanoes in Korea show that those volcanoes that have undergone vent migration are characterized by superposition or juxtaposition of multiple rim deposits of partial tuff rings and/or tuff cones that have contrasting lithofacies characteristics, bed attitudes, and paleoflow directions. Various causes of vent migration are inferred from these volcanoes. Large-scale collapse of fragile substrate is interpreted to have caused vent migration in the Early Pleistocene volcanoes of Jeju Island, which were built upon still unconsolidated continental shelf sediments. Late Pleistocene to Holocene volcanoes, which were built upon a stack of rigid, shield-forming lava flows, lack features due to large-scale substrate collapse and have generally simple and circular morphologies either of a tuff ring or of a tuff cone. However, ~600 m shift of the eruptive center is inferred from one of these volcanoes (Ilchulbong tuff cone). The vent migration in this volcano is interpreted to have occurred because the eruption was sourced by multiple magma batches with significant eruptive pauses in between. The Yangpori diatreme in a Miocene terrestrial half-graben basin in SE Korea is interpreted to be a subsurface equivalent of a hydromagmatic volcano that has undergone vent migration. The vent migration here is inferred to have had both vertical and lateral components and have been caused by an abrupt tectonic activity near the basin margin. In all these cases, rimbeds or diatreme fills derived from different source vents are bounded by either prominent or subtle, commonly laterally extensive truncation surfaces or stratigraphic discontinuities. Careful documentation of these surfaces and discontinuities thus appears vital to proper interpretation of eruption history, morphologic evolution, and even deep-seated magmatic processes of a hydromagmatic volcano. In this respect, the technique known as 'allostratigraphy' appears useful in mapping, correlation, and interpretation of many hydrovolcanic edifices and sequences.

  15. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    NASA Astrophysics Data System (ADS)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand years before being erupted contemporaneously along a 30 km long, structurally controlled vent zone related to extracaldera Basin and Range faults. These data highlight the rapidity with which magma can be generated and erupted over large distances at Yellowstone.

  16. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust. ?? 1988 Springer-Verlag.

  17. Geology of the Orcopampa 30 minute quadrangle, southern Peru with special focus on the evolution of the Chinchon and Huayta calderas

    NASA Astrophysics Data System (ADS)

    Swanson, Kirk Edward

    The 30 minute Orcopampa quadrangle, southern Peru, was a site of several episodes of Neogene volcanism, hydrothermal activity and precious-metal mineralization. Lavas of pyroxene andesite and associated silicic tuffs of the early Miocene Santa Rosa volcanics are the remnants of stratovolcanoes overlying an irregular erosional surface developed on a transgressive Mesozoic marine succession. Major ash-flow volcanism then resulted in the 20.1 Ma Manto Tuff and the associated Chinchon caldera. Deep dissection, locally >2 km, has exposed the steep caldera margin, slide blocks and related (19.9 Ma) dikes. Flows and domes of hornblende-biotite dacite comprising the Sarpane volcanics were erupted between about 18.5--19.5 Ma over much of the northern part of the quadrangle. Early Miocene rocks were folded during the Quechua I tectonic event, and related ENE-trending normal faults host the 17.8 Ma Ag-Au veins of the Orcopampa district. Eruption of the ca. 11.6 Ma tuffs of Cerro Huayta and Cerro Hospicio resulted in formation of the Huayta caldera, nested within the northern part of the Chinchon caldera. Caldera formation was associated with, and followed by, the eruption of intermediate lavas of Cerro Sahuarque ( ca. 11.4 Ma) and the emplacement of rhyolite domes. The adularia-sericite type Au-Ag veins of Mina Shila were formed along the southern margin of the Huayta caldera several million years after collapse. The 7.3 Ma tuff of Laguna Pariguanas, erupted from vents northeast of the Huayta caldera, appears to be deformed; however, the 6.2 Ma tuff of Umachulco postdates Quechua II/III tectonism. Flows and domes of the ca. 7.2 Ma andesite of Cerro Aseruta were emplaced within the Huayta caldera, and approximately contemporaneous lavas of silicic to intermediate composition were erupted in the northern part of the quadrangle. A large area of largely barren acid-sulfate alteration (Chuchanne) formed within the Huayta caldera shortly after the eruption of the andesite of Cerro Aseruta. Pliocene volcanic activity included the formation of the Cailloma caldera to the east and the Coropuna caldera southwest of the Orcopampa quadrangle. Lava flows, cinder cones and small shield volcanoes of intermediate composition of the Andagua volcanics were formed from late Pliocene to Holocene time.

  18. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and densities of Escherichia coli became more similar to those of samples from the streams relative to concentrations and densities during the dry period. Geochemical modeling indicated that the proportion of Barton Springs discharge composed of stream recharge increased from about 0-8 percent during the dry period to about 80 percent during the wet period. The transition from exceptional drought to wetter-than-normal conditions resulted in a number of marked changes that highlight factors affecting the fate and transport of nutrients and bacteria and the strong influence of stream recharge on water quality in the Barton Springs segment of the Edwards aquifer and had a pronounced effect on the fate of nitrogen species. Organic nitrogen loaded to and stored in soils during the dry period was nitrified to nitrate when the soils were rewetted, resulting in elevated concentrations of nitrate plus nitrite in streams as these constituents were progressively leached during continued wet weather. Estimated mean monthly loads of organic nitrogen and nitrate plus nitrite in stream recharge and Barton Springs discharge, which were relatively low and constant during the dry period, increased during the wet period. Loads of organic nitrogen, on average, were about six times greater in stream recharge than in Barton Springs discharge, indicating that organic nitrogen likely was being converted to nitrate within the aquifer. Loads of total nitrogen (organic nitrogen plus ammonia and nitrate plus nitrite) in stream recharge (162 kilograms per day) and in Barton Springs discharge (157 kilograms per day) for the period of the investigation were not significantly different. Dilution was not an important factor affecting concentrations of nitrate plus nitrite in the streams or in Barton Springs during the period of this investigation: Concentrations of nitrate plus nitrite did not decrease in streams with increasing stream discharge, and nitrate plus nitrite concentrations measured at Barton

  19. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring.

    PubMed

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-29

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring's outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59-0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring's pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  20. Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coplen, T.B.

    1973-10-01

    Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identifymore » the source of the water in the Mesa geothermal system. (JGB)« less

  1. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    USGS Publications Warehouse

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.

  2. Effect of water stage and tree stand composition on spatiotemporal differentiation of spring water chemistry draining Carpathian flysch slopes (Gorce Mts).

    PubMed

    Jasik, Michał; Małek, Stanisław; Żelazny, Mirosław

    2017-12-01

    The purpose of this study was to identify the factors affecting spring water chemistry in different tree stands and to measure the influence of water stage on the physicochemical parameters of spring waters in a small Carpathian catchment. Water samples were collected three times per year at various stages of the water: after the spring thaw, after a period of heavy rain and after a dry period in 2011 and 2012. Water samples were left in the laboratory to reach room temperature (19-20°C) and analyzed for EC (reference T=25°C) and pH. After filtration through 0.45μm PTFE syringe filters, the water samples were analyzed by means of ion chromatography using a DIONEX ICS 5000 unit. The following ions were analyzed: Ca 2+ , Mg 2+ , Na + , K + , HCO 3 - , SO 4 2- , Cl - , and NO 3 - . Multivariate analysis (PCA) allowed the identification of two factors of spring water chemistry: factor 1, water stage and factor 2 tree stand composition. Seasonal variation of spring water chemistry showed that, higher pH values and mineralization as well as higher concentrations of Ca 2+ and Mg 2+ were measured during low water stage periods while lower EC and pH values were noted after spring snowmelt and rainfall, when higher concentrations of NO 3 - and SO 4 2- were also found. Higher concentrations of Ca 2+ and Mg 2+ and higher pH of spring waters located in beech-fir stands and in those mixed with a large proportion of beech as well as a lower concentration of Ca 2+ , Mg 2+ and HCO 3 - , pH, conductivity and mineralization of these spring waters, in which the alimentation areas were covered by upper subalpine spruce stands were noted. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  4. Thermal Springs and the Search for Past Life on Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.; Farmer, J. D.; Walter, M. R.

    1995-01-01

    Ancient thermal spring sites have several features which make them significant targets in a search for past life. Chemical (including redox) reactions in hydrothermal systems possibly played a role in the origin of life on Earth and elsewhere. Spring waters frequently contain reduced species (sulfur compounds, Fe(sup +2), etc.) which can provide chemical energy for organic synthesis. Relatively cool hydrothermal systems can sustain abundant microbial life (on Earth, at temperatures greater than 110 C). A spring site on Mars perhaps might even have maintained liquid water for periods sufficiently long to sustain surface-dwelling biota had they existed. On Earth, a variety of microbial mat communities can be sampled along the wide range of temperatures surrounding the spring, thus offering an opportunity to sample a broad biological diversity. Thermal spring waters frequently deposit minerals (carbonates, silica, etc.) which can entomb and preserve both fluid inclusions and microbial communities. These deposits can be highly fossiliferous and preserve biological inclusions for geologically long periods of time. Such deposits can cover several square km on Earth, and their distinctive mineralogy (e.g., silica- and/or carbonate-rich) can contrast sharply with that of the surrounding region. As with Martian volcanoes, Martian thermal spring complexes and their deposits might typically be much larger than their counterparts on Earth. Thus Martian spring deposits are perhaps readily detectable and even accessible. Elysium Planitia is an example of a promising region where hydrothermal activity very likely remobilized ground ice and sustained springs.

  5. 1988 Hanford riverbank springs characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similarmore » to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception {sup 90}Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs.« less

  6. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  7. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    USGS Publications Warehouse

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  8. 40 CFR 61.190 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Lewiston, New York; the Weldon Spring Site, Weldon Spring, Missouri; the Middlesex Sampling Plant, Middlesex, New Jersey; the Monticello Uranium Mill Tailings Pile, Monticello, Utah. This subpart does not...

  9. Geologic Reconnaissance of the Antelope-Ashwood Area, North-Central Oregon: With Emphasis on the John Day Formation of Late Oligocene and Early Miocene Age

    USGS Publications Warehouse

    Peck, Dallas L.

    1964-01-01

    This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been derived from vents in an ancestral Cascade Range. The John Day is dated on the basis of a late Oligocene flora near the base of the formation and early Miocene faunas near the top of the formation. The middle Miocene and older rocks in the Antelope-Ashwood area are broadly folded and broken along northeast-trending faults. Over much of the area the rocks dip gently eastward from the crest of a major fold and are broken along a series of steeply dipping antithetic strike faults. Pliocene and Quaternary strata appear to be undeformed. At the Priday agate deposit, chalcedony-filled spherulites (thunder-eggs) occur in the lower part of a weakly welded rhyolitic ash flow. The so-called thunder-eggs are small spheroidal bodies, about 3 inches in average diameter; each consists of a chalcedonic core surrounded by a shell of welded tuff that is altered to radially oriented fibers of cristobalite and alkalic feldspar.

  10. Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy)

    NASA Astrophysics Data System (ADS)

    Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.

    2017-10-01

    Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at the base of the layer could therefore facilitate slope instability. Although our results show that transient exposure to 300 °C does not influence the short-term strength of the tuff, we speculate that the high in-situ temperature could increase the efficiency of brittle and compactant creep and therefore increase the rate of slope deformation. Taken together, our experimental data highlight a potentially important role for the hydrothermal system (that reaches a minimum depth of 1 km) in dictating the DSGSD at Mt. Nuovo. An understanding of this deformation process is not only important for the proximal coastal villages, at risk of engulfment by a large debris avalanche, but also for the towns and cities along the coast of the Gulf of Naples that are at risk to a secondary consequence of such an avalanche - a tsunami wave.

  11. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R.; Peacock, Joseph P.; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A.; Hedlund, Brian P.; Zhang, Chuanlun; Hartnett, Hilairy E.; Dijkstra, Paul; Hungate, Bruce A.

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world. PMID:23326417

  12. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    PubMed

    Hou, Weiguo; Wang, Shang; Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R; Peacock, Joseph P; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A; Hedlund, Brian P; Zhang, Chuanlun; Hartnett, Hilairy E; Dijkstra, Paul; Hungate, Bruce A

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6), high temperature (85.1-89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8) and cooler temperature (55.1-64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.

  13. Prevalence and etiology of subclinical mastitis in dairy ewes in two seasons in Semnan province, Iran.

    PubMed

    Narenji Sani, Reza; Mahdavi, Ali; Moezifar, Melika

    2015-10-01

    Twenty-one dairy ewe flocks selected by stratified random sampling were subjected to study the prevalence and etiology of subclinical intramammary infections and to assess the influence of parity on the prevalence of intramammary infections. Also, spontaneous cure rates were determined over study period. A total of 1192 milk samples were collected at 2 weeks after lambing until tenth-week postpartum. All flocks had hand milking; those which were classified by bacterial culture and California Mastitis Test (CMT) as positive were deemed to have glands with subclinical mastitis (SCM). Of 1192 halves examined, 791 samples were collected during spring and 401 samples were collected during summer. Prevalence rate of SCM in spring was 14.7 %; and spontaneous cure that occurred in this season was 88.8 %; coagulase-negative staphylococci (CNS) were the most common isolates (66.6 %). Samples collected in spring showed higher prevalence rate of SCM than summer samples. This rate was 8.9 % in summer. Spontaneous cure rate in this season was 69.4 %, and Staphylococcus aureus (72.2 %) was the most common isolates. SCM was seen at significantly lower rates in left half than in right one (p < 0.05). Multiparous ewes had significantly higher (p < 0.05) SCM prevalence rates than primiparous ewes. The incidence of clinical mastitis (defined as number of clinical cases per 100 ewe-months) was 0.21 and 0.74 in spring and summer, respectively. The isolates from clinical cases in spring were fungi and, from summer, were S. aureus. Also, S. aureus SCM cases were not significantly severe than other SCM cases. In conclusion, multiparous ewes were most at risk, and severity of infection was higher in summer.

  14. Groundwater quality at Alabama Plating and Vincent Spring, Vincent, Alabama, 2007–2008

    USGS Publications Warehouse

    Bradley, Michael W.; Gill, Amy C.

    2014-01-01

    The former Alabama Plating site in Vincent, Alabama, includes the location where the Alabama Plating Company operated an electroplating facility from 1956 until 1986. The operation of the facility generated waste containing cyanide, arsenic, cadmium, chromium, copper, lead, zinc, and other heavy metals. Contamination resulting from the site operations was identified in groundwater, soil, and sediment. Vincent Spring, used as a public water supply by the city of Vincent, Alabama, is located about ½ mile southwest of the site. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation at Vincent Spring and the Alabama Plating site, Vincent, Alabama, during 2007–2008 to evaluate the groundwater quality and evaluate the potential effect of contaminated groundwater on the water quality of Vincent Spring. The results of the investigation will provide scientific data and information on the occurrence, fate, and transport of contaminants in the water resources of the area and aid in the evaluation of the vulnerability of the public water supply to contamination. Samples were analyzed to evaluate the water quality at the former plating site, investigate the presence of possible contaminant indicators at Vincent Spring, and determine the usefulness of stable isotopes and geochemical properties in understanding groundwater flow and contaminant transport in the area. Samples collected from 16 monitor wells near the plating site and Vincent Spring were analyzed for major constituents, trace metals, nutrients, and the stable isotopes for hydrogen (2H/H) and oxygen (18O/16O). Groundwater collected from Vincent Spring was characterized as a calcium-magnesium-bicarbonate water type with total dissolved solids concentrations ranging from 110 to 120 milligrams per liter and pH ranging from about 7.5 to 7.9 units. Groundwater chemistry at the monitor wells at the Alabama Plating site was highly variable by location and depth. Dissolved solids concentrations ranged from 28 to 2,880 milligrams per liter, and the water types varied from calcium-magnesium-bicarbonate-chloride, to calcium-sulfate or calcium-magnesium-sulfate, to sodium-chloride water types. The stable isotope ratios for hydrogen (2H/H) and oxygen (18O/16O) for water from the monitor wells and from Vincent Spring, based on a single sampling event, can be separated into three groups: (1) Vincent Spring, (2) monitor wells MW03 and MW28, and (3) the remaining Alabama Plating monitor wells. The geochemical and stable isotope analyses indicate that water from Vincent Spring is distinct from water from the Alabama Plating monitor wells; however, this evaluation is based on a single sampling event. Although the water from Vincent Spring, for this sampling event, is different and does not seem to be affected by contaminated groundwater from the Alabama Plating site, additional hydrologic and water-quality data are needed to fully identify flow paths, the potential for contaminant transport, and water-quality changes through time.

  15. Assessment Testing: Analysis and Predictions, Spring-Fall 1985.

    ERIC Educational Resources Information Center

    Harris, Howard L.; Hansson, Claudia J.

    During spring and fall 1985, a study was conducted at Cosumnes River College (CRC) to determine how assessment testing scores related to student persistence and performance. The student history files of a random sample of 498 students who had been tested by the CRC Assessment Center during spring and fall 1985 were examined, yielding the following…

  16. Potential for travertine formation: Fossil Creek, Arizona

    Treesearch

    John Malusa; Steven T. Overby; Roderic A. Parnell

    2003-01-01

    Chemical analyses of water emanating from Fossil Springs in Central Arizona were conducted to predict changes in travertine deposition related to changes in stream discharge caused by diversion for hydroelectric power generation. During spring of 1996, water was sampled at 15 locations during normal seepage flow in a 6.7 km reach below Fossil Springs and at full...

  17. Water quality and aquatic toxicity data of 2002 spring thaw conditions in the upper Animas River watershed, Silverton, Colorado

    USGS Publications Warehouse

    Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.

    2002-01-01

    This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.

  18. Effects of Wintering Environment and Parasite–Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions

    PubMed Central

    Currie, Robert W.

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was associated with colony death as did high SBV for spring-collected samples. PMID:27448049

  19. Helium in soil gases of the Roosevelt Hot Springs Known Geothermal Resource Ares, Beaver County, Utah

    USGS Publications Warehouse

    Hinkle, M.E.; Denton, E.H.; Bigelow, R.C.; Turner, R.L.

    1978-01-01

    Soil samples were collected in two parallel traverses across the Dome fault zone of the Roosevelt Hot Springs Known Geothermal Resource Area. The samples were sealed in air-tight aluminum cans, and the soil gas was allowed to equilibrate with the atmospheric air in the cans. Gas from the cans was analyzed by mass spectrometry. Samples collected over faults contained anomalously high concentrations of helium. Samples collected close to a geothermal well 884 m deep contained more helium than samples collected near another geothermal well 1370 m deep.

  20. Using Hydrogen Isotopes to Distinguish Allochthony and Autochthony in Hot Springs Ecosystems

    NASA Astrophysics Data System (ADS)

    Hungate, J.; DeSousa, T. M.; Ong, J. C.; Caron, M. M.; Brown, J. R.; Patel, N.; Dijkstra, P.; Hedlund, B. P.; Hungate, B. A.

    2013-12-01

    Hot springs are hosts to abundant and diverse microbial communities. Above the temperature threshold for photosynthesis (~73 degrees C), a variety of chemosynthetic organisms support autochthonous primary production in hot springs ecosystems. These organisms are thought to drive the carbon and energy budgets of these ecosystems, but the importance of energy inputs from the surrounding terrestrial environments - allochthonous inputs - is not well known. Here, we tested the efficacy of stable isotopes of hydrogen in distinguishing autochthonous from allochthonous sources of organic matter in hot springs ecosystems. Under laboratory conditions and in pure culture, we grew autotrophic, mixotrophic, and heterotrophic organisms from the Great Boiling Springs in northern Nevada as well as organisms typical of other hot springs environments. We measured the δ2H composition of biomass, water and organic matter sources used by the organisms to produce that biomass. We also surveyed organic matter in and around hot springs in Nevada and in the Tengchong geothermal region in China, sampling terrestrial plants at the hot springs margin, microorganisms (either scraped from surfaces or in the water column), and organic matter in the sediment accruing in the spring itself as an integrative measure of the relative importance of organic matter sources to the spring ecosystem. We found that autotrophic production in culture results in strongly depleted δ2H signatures, presumably because of fractionation against 2H-H2O during chemosynthesis. The observed difference between microbial biomass and water was larger than that typically found for terrestrial plants during photosynthesis, setting the stage for using δ2H to distinguish allochthonous from autochthonous sources of productivity in hot springs. In surveys of natural hot springs, microbial biomass sampled from the water column or from surfaces was often strongly depleted in δ2H, consistent with in situ chemosynthesis. Organic matter in sediments in the springs, however, was substantially higher in δ2H, consistent with a terrestrial origin. These results indicate that hot springs ecosystems are not biogeochemical islands, but rather receive substantial inputs of organic matter and energy produced on land. These external energy sources should be considered in a full understanding of hot springs biology and biogeochemistry.

Top