Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua
2017-01-01
Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981–2014 and detailed observed data of spring wheat from 1981–2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change. PMID:29099842
Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua
2017-01-01
Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.
USDA-ARS?s Scientific Manuscript database
Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing
2016-08-01
Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.
Gas exchange and water relations responses of spring wheat to full-season infrared warming
USDA-ARS?s Scientific Manuscript database
Gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semi-arid desert region of the Southwest USA. A Temperature Free-Air Controlled Enhancement (T-FACE) ap...
USDA-ARS?s Scientific Manuscript database
Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...
Han, Qiaoxia; Kang, Guozhang; Guo, Tiancai
2013-02-01
Following three-day exposure to -5 °C simulated spring freeze stress, wheat plants at the anther connective tissue formation phase of spike development displayed the drooping and wilting of leaves and markedly increased rates of relative electrolyte leakage. We analysed freeze-stress responsive proteins in wheat leaves at one and three days following freeze-stress exposure, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results indicate that out of 75 protein spots successfully identified under freeze-stress conditions 52 spots were upregulated and 18 were downregulated. These spring freeze-stress responsive proteins were involved in signal transduction, stress/defence/detoxification, protein metabolism (i.e. translation, processing, and degradation), photosynthesis, amino acid metabolism, carbohydrate metabolism, and energy pathways, and may therefore be functionally relevant for many biological processes. The enhanced accumulation of signal transduction proteins such as a C2H2 zinc finger protein, stress/defence/detoxification proteins including LEA-related COR protein, disease resistance protein, Cu/Zn superoxide dismutase, and two ascorbate peroxidases may play crucial roles in the mechanisms of response to spring freeze stress in wheat plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
When a wheat endosperm is crushed the force profile shows viscoelastic response and the modulus of elasticity is an important parameter that might have substantial influence on wheat milling. An experiment was performed to model endosperm crush response profile (ECRP) and to determine the modulus o...
USDA-ARS?s Scientific Manuscript database
The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during...
USDA-ARS?s Scientific Manuscript database
Protein elongation factors, EF-Tu and EF-1a, have been implicated in cell response to heat stress. In spring wheat, EF-Tu displays chaperone activity and reduces thermal aggregation of Rubisco activase. Similarly, in mammalian cells, EF-1a displays chaperone-like activity and regulates the expressio...
USDA-ARS?s Scientific Manuscript database
The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...
Gas Exchange and Water Relations Responses of Spring Wheat to Full-Season Infrared Warming
USDA-ARS?s Scientific Manuscript database
Gas exchange and water relations were evaluated under full-season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free-air controlled enhancement (T-FACE) apparatus u...
Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong
2015-01-01
In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.
LACIE: Wheat yield models for the USSR
NASA Technical Reports Server (NTRS)
Sakamoto, C. M.; Leduc, S. K.
1977-01-01
A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.
Al-Issawi, Mohammed; Rihan, Hail Z; Woldie, Wondwossen Abate; Burchett, Stephen; Fuller, Michael P
2013-02-01
Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
Olesen, J E; Børgesen, C D; Elsgaard, L; Palosuo, T; Rötter, R P; Skjelvåg, A O; Peltonen-Sainio, P; Börjesson, T; Trnka, M; Ewert, F; Siebert, S; Brisson, N; Eitzinger, J; van Asselt, E D; Oberforster, M; van der Fels-Klerx, H J
2012-01-01
The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model projections according to the observed dependencies on temperature and day length. The results showed advancements of sowing date of spring cereals by 1-3 weeks depending on climate model and region within Europe. The changes were largest in Northern Europe. Timing of flowering and maturity were projected to advance by 1-3 weeks. The changes were largest for grain maize and smallest for winter wheat, and they were generally largest in the western and northern part of the domain. There were considerable differences in predicted timing of sowing, flowering and maturity between the two climate model projections applied.
Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop
USDA-ARS?s Scientific Manuscript database
Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...
USDA-ARS?s Scientific Manuscript database
This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...
Separability study of wheat and small grains
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Marquina, N. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.
USDA-ARS?s Scientific Manuscript database
Wheat is traditionally divided into winter and spring wheat that either has or lacks a vernalization requirement. In this study, a doubled haploid (DH) population derived from a cross between two spring tetraploid wheat (Triticum turgidum L.) genotypes, durum ‘Lebsock’ and Persian wheat accession PI...
USDA-ARS?s Scientific Manuscript database
Spring wheat (Triticum aestivum L.) growers and industry value adapted wheat cultivars with high quality attributes, essential criteria for maintaining wheat as a competitive crop in the spring wheat growing region of the United States. To address this goal, the breeding program at North Dakota Sta...
Hyperspectral imaging to identify salt-tolerant wheat lines
NASA Astrophysics Data System (ADS)
Moghimi, Ali; Yang, Ce; Miller, Marisa E.; Kianian, Shahryar; Marchetto, Peter
2017-05-01
In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricultural production systems. Traditional measurement methods of this stress, such as biomass retention, are labor intensive, environmentally influenced, and often poorly correlated to salinity stress alone. In this study, hyperspectral imaging, as a non-destructive and rapid method, was utilized to expedite the process of identifying relatively the most salt tolerant line among four wheat lines including Triticum aestivum var. Kharchia, T. aestivum var. Chinese Spring, (Ae. columnaris) T. aestivum var. Chinese Spring, and (Ae. speltoides) T. aestivum var. Chinese Spring. To examine the possibility of early detection of a salt tolerant line, image acquisition was started one day after stress induction and continued on three, seven, and 12 days after adding salt. Simplex volume maximization (SiVM) method was deployed to detect superior wheat lines in response to salt stress. The results of analyzing images taken as soon as one day after salt induction revealed that Kharchia and (columnaris)Chinese Spring are the most tolerant wheat lines, while (speltoides) Chinese Spring was a moderately susceptible, and Chinese Spring was a relatively susceptible line to salt stress. These results were confirmed with the measuring biomass performed several weeks later.
NASA Technical Reports Server (NTRS)
Phinney, D. E. (Principal Investigator)
1980-01-01
An algorithm for estimating spectral crop calendar shifts of spring small grains was applied to 1978 spring wheat fields. The algorithm provides estimates of the date of peak spectral response by maximizing the cross correlation between a reference profile and the observed multitemporal pattern of Kauth-Thomas greenness for a field. A methodology was developed for estimation of crop development stage from the date of peak spectral response. Evaluation studies showed that the algorithm provided stable estimates with no geographical bias. Crop development stage estimates had a root mean square error near 10 days. The algorithm was recommended for comparative testing against other models which are candidates for use in AgRISTARS experiments.
Hot spots of wheat yield decline with rising temperatures.
Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B
2017-06-01
Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.
Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.
Rincón, Bárbara; Heaven, Sonia; Salter, Andrew M; Banks, Charles J
2016-10-14
Anaerobic digestion of wheat was investigated under batch conditions. The article compares the potential net energy yield between a winter wheat (sown in the autumn) and a spring wheat (sown in the spring) grown in the same year and harvested at the same growth stage in the same farm. The spring wheat had a slightly higher biochemical methane potential and required lower energy inputs in cultivation, but produced a lower dry biomass yield per hectare, which resulted in winter wheat providing the best overall net energy yield. The difference was small; both varieties gave a good net energy yield. Spring sowing may also offer the opportunity for growing an additional over-winter catch crop for spring harvest, thus increasing the overall biomass yield per hectare, with both crops being potential digester feedstocks.
Kosová, Klára; Prášil, Ilja Tom; Vítámvás, Pavel; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčik, Jakub; Pešek, Bedřich; Trávničková, Alena; Gaudinová, Alena; Galiba, Gabor; Janda, Tibor; Vlasáková, Eva; Prášilová, Pavla; Vanková, Radomíra
2012-04-15
Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period. Copyright © 2012 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
ZakERA8 is a unique mutant line selected from mutagenized soft white spring 'Zak' that has increased seed dormancy as a result of enhanced responsiveness to the plant hormone abscisic acid (ABA) during germination. This germplasm was developed by USDA-ARS, Pullman, WA in collaboration with Washingt...
USDA-ARS?s Scientific Manuscript database
The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...
NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat
USDA-ARS?s Scientific Manuscript database
Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...
USDA-ARS?s Scientific Manuscript database
Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...
USDA-ARS?s Scientific Manuscript database
Providing wheat (Triticum aestivum L.) growers and industry with adapted wheat cultivars with high-quality attributes is essential for maintaining wheat as a competitive crop in the spring-wheat growing region of the USA. Therefore, our breeding program aims to develop modern wheat cultivars using b...
Wu, Guohai; Wilen, Ronald W.; Robertson, Albert J.; Gusta, Lawrence V.
1999-01-01
Superoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively. Northern blots indicated that MnSOD genes were drought inducible and decreased after rehydration. In contrast, Cu/ZnSOD mRNA was not drought inducible but increased after rehydration. In both spring and winter wheat seedlings exposed to 2°C, MnSOD transcripts attained maximum levels between 7 and 49 d. Transcripts of Cu/ZnSOD mRNA were detected sooner in winter than in spring wheat; however, they disappeared after 21 d of acclimation. Transcripts of both classes of SOD genes increased during natural acclimation in both spring and winter types. Exposure of fully hardened plants to three nonlethal freeze-thaw cycles resulted in Cu/Zn mRNA accumulation; however, MnSOD mRNA levels declined in spring wheat but remained unchanged in winter wheat. The results of the dehydration and freeze-thaw-cycle experiments suggest that winter wheat has evolved a more effective stress-repair mechanism than spring wheat. PMID:10364402
Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop
USDA-ARS?s Scientific Manuscript database
Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...
Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop
USDA-ARS?s Scientific Manuscript database
Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...
USDA-ARS?s Scientific Manuscript database
Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...
NASA Astrophysics Data System (ADS)
Lu, Y.
2016-12-01
Wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Understanding whether the Community Land Model (CLM) appropriate response to elevated CO2 and different levels of nitrogen fertilization and irrigation is a crucial question. We participated the AgMIP-wheat project and run 72 simulations at Maricopa spring wheat FACE sites and five winter wheat sites in North America forcing with site observed meteorology data. After calibration on the phenology, carbon allocation, and soil hydrology parameters, wheat in CLM45 has reasonable response to irrigation and elevated CO2. However, wheat in CLM45 has no response to low or high N fertilization because the low amount of N fertilization is sufficient for wheat growth in CLM45. We plan to further extend the same simulations for CLM5 (will release in Fall 2016), which has substantial improvements on soil hydrology (improved soil evaporation and plant hydraulic parameterization) and nitrogen dynamics (flexible leaf CN ratio and Vcmax25, plant pays for carbon to get nitrogen). We will evaluate the uncertainties of wheat response to nitrogen fertilization, irrigation, CO2 due to model improvements.
Gao, Qinglu; Xue, Xiang; Wu, Yu; Ru, Zhengang
2003-10-01
Spike differentiation processes and freezing damage of three wheat varieties were studied by sowing in different stages. The results showed that under the condition of weather changing warm, the time of entering each stage of spike differentiation of wheat of strong spring variety was earlier than that of wheat of spring variety and semi-winter variety. Sowing times had more effects on durative time of the elongation stage, single-prism stage and two-prism stage of the spike differentiation. Under sowing early, the stronger the springness of wheat was, the quicker it developed, the higher spike differentiation phases it reached before winter, and the more serious freezing damage it suffered in wintering. According to this, the semi-winter varieties of wheat should be adopted first and arranged in pairs with spring varieties in wheat production, and the sowing times should not be too early as the weather becoming warm.
Weigt, Dorota; Kiel, Angelika; Nawracała, Jerzy; Pluta, Mateusz; Łacka, Agnieszka
2016-01-01
Solid-stemmed spring wheat cultivars ( Triticum aestivum L.) are resistant to the stem sawfly ( Cephus cinctus Nort.) and lodging. Anthers of 24 spring wheat cultivars with varying content of pith in the stem were used in the experiment. All were classified into three groups: solid, medium-solid and hollow stems. There was considerable influence of the cultivar on callus formation and green plant regeneration. The highest efficiency of green plant regeneration (24%) was observed for the solid-stemmed AC Abbey cultivar. There was no regeneration from the explants of four cultivars: CLTR 7027, Alentejano, Marquis and Bombona. Principal component analysis showed no differences between the cases under observation (callus induction and green plant regeneration) in their response to pre-treatment temperatures (4 and 8°C). The examination of the effects of various auxin types in the induction medium on callus formation and green plant regeneration revealed that the strongest stimulation of these processes was observed in the C17 medium with 2,4-D and dicamba. The efficiency of callus formation and green plant regeneration was greater in solid-stemmed cultivars than in hollow-stemmed cultivars.
Mapping QTL for resistance to stripe rust in spring wheat PI 192252 and winter wheat Druchamp
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. High-temperature adult-plant (HTAP) resistance has proven to be durable, but may not be adequate. Spring wheat PI 192252 and winter wheat Druchamp have high-levels of HTAP resistance. To elucidate...
USDA-ARS?s Scientific Manuscript database
Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...
Chlorophenoxy herbicides are widely used in the U.S. and Western Europe for broadleaf weed control in grain farming and park maintenance. Most of the spring and durum wheat produced in the U.S. is grown in Minnesota, Montana, North Dakota, and South Dakota, with over 85% of the a...
Registration of 'UI Stone' spring wheat
USDA-ARS?s Scientific Manuscript database
Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...
Response of winter and spring wheat grain yields to meteorological variation
NASA Technical Reports Server (NTRS)
Feyerherm, A. M.; Kanemasu, E. T.; Paulsen, G. M.
1977-01-01
Mathematical models which quantify the relation of wheat yield to selected weather-related variables are presented. Other sources of variation (amount of applied nitrogen, improved varieties, cultural practices) have been incorporated in the models to explain yield variation both singly and in combination with weather-related variables. Separate models were developed for fall-planted (winter) and spring-planted (spring) wheats. Meteorological variation is observed, basically, by daily measurements of minimum and maximum temperatures, precipitation, and tabled values of solar radiation at the edge of the atmosphere and daylength. Two different soil moisture budgets are suggested to compute simulated values of evapotranspiration; one uses the above-mentioned inputs, the other uses the measured temperatures and precipitation but replaces the tabled values (solar radiation and daylength) by measured solar radiation and satellite-derived multispectral scanner data to estimate leaf area index. Weather-related variables are defined by phenological stages, rather than calendar periods, to make the models more universally applicable.
Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D
2016-02-01
Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Hard Spring Wheat Technical Committee 2016 Crop
USDA-ARS?s Scientific Manuscript database
Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...
Evaluation of hard red spring wheat quality using four different roller mills
USDA-ARS?s Scientific Manuscript database
Domestic and overseas buyers pay premium price for hard red spring (HRS) wheat due to high protein content and excellent milling and baking performances. For efficient quality identification of wheat samples, a wheat quality laboratory needs an objective and simple experimental milling procedure and...
Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.
Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr
2018-02-01
Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The Hard Red Spring Wheat Uniform Regional Nursery (HRSWURN) was planted for the 86th year in 2016. The nursery contained 26 entries submitted by 8 different scientific or industry breeding programs, and 5 checks (Table 1). Trials were conducted as randomized complete blocks with three replicates ...
Evaluation of spring wheat cultivars to fungicide application for control of stripe rust in 2016
USDA-ARS?s Scientific Manuscript database
To evaluate spring wheat cultivars grown in the U.S. Pacific Northwest to fungicide application for control of stripe rust and assess their yield loss caused by the disease, this study was conducted in a field near Pullman, WA. Spring wheat genotype ‘Avocet S’ (AvS) was used as a susceptible check, ...
USDA-ARS?s Scientific Manuscript database
The Hard Red Spring Wheat Uniform Regional Nursery (HRSWURN) was planted for the 84th year in 2014. The nursery contained 26 entries submitted by 6 different scientific or industry breeding programs, and 5 checks (Table 1). Trials were conducted as randomized complete blocks with three replicates ex...
USDA-ARS?s Scientific Manuscript database
Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... Investigation and Countervailing Duty Investigation of Hard Red Spring Wheat From Canada: Notice of Court... of Appeals for the Federal Circuit (``CAFC''), in Canadian Wheat Board v. United States, 2010-1083 (Fed. [[Page 44575
USDA-ARS?s Scientific Manuscript database
The spring wheat (Triticum aestivum L.) industry and growers usually value adapted wheat cultivars with high quality attributes, an essential criteria for maintaining wheat as a competitive commodity at the national and international levels. Therefore, the goal of the breeding program is to develop ...
Kiszonas, Alecia M; Fuerst, E Patrick; Morris, Craig F
2015-07-01
Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. Potential flavor differences among varieties can be examined using consumption discrimination of the house mouse (Mus musculus L.) as a model system. This study examines consistency and repeatability of the mouse model and potentially, wheat grain flavor. A single elimination tournament design was used to measure relative consumption preference for hard red spring and hard white spring varieties across all 3 experiments in combination with 2 mouse cohorts. Fifteen replicate mice were used in 24-h trials to examine differences in preference among paired wheat varieties until an overall "winner" was established as the most highly preferred variety of wheat. In all 3 experiment-cohort combinations, the same varieties were preferred as the "winner" of both the hard red spring and hard white spring wheat varieties, Hollis and BR 7030, respectively. Despite the consistent preference for these varieties across experiments, the degree (magnitude) to which the mice preferred these varieties varied across experiments. For the hard white spring wheat varieties, the small number of varieties and confounding effects of experiment and cohort limited our ability to accurately gauge repeatability. Conversely, for the hard red spring wheat varieties, consumption preferences were consistent across experiments and mice cohorts. The single-elimination tournament model was effective in providing repeatable results in an effort to more fully understand the mouse model system and possible flavor differences among wheat varieties. The mouse model system used here is effective in identifying wheat varieties that may be more or less desirable to humans in whole wheat foods. The system identifies consistent differences across different mouse cohorts and crop years. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Registration of 'Rollag' spring wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...
Mu, Cheng-ying; Yang, Xiao-guang; Yang, Jie; Li, Ke-nan; Zheng, Dong-xiao
2015-10-01
The relationships between mortality rate and low temperature for different cultivars of winter-spring wheat during mid-winter period were identified through two-year outdoor potting experiments and indoor manually controlled freezing experiments. We defined the lethally critical temperature and the density of antifreeze capability when the mortality rate reached 10%, 20% and 50% for different cultivars of winter-spring wheat during mid-winter period. The strong-winterness wheat (Yanda 1817 and Jing 411) showed the best freezing resistance and the 50%-lethal temperatures (LT50) of these two cultivars were -21.5 °C and -21.2 °C, respectively. The freezing resistance of winterness wheat and weak-winternes wheat were worse than that of strong-winterness wheat. The LT50 of winterness wheat cultivars Nongda 211 and Nongda 5363 were -21.1 °C and -20.3 °C, while that of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 were -18.5 °C and -18.4 °C , respectively. Springness wheat (Zheng 9023 and Yanzhan 4110) showed the worst freezing resistance, and the LT50 were -15.4 °C and -14.7 °C, respectively. When temperature declined to freezing injury occurred, mortality rate increment for weak-winterness wheat was the highest for each 1 °C decrease. The mortality rates of weak-winterness wheat cultivars Zheng 366 and Ping' an 8 increased by 16.8% and 25.8%, and that of winterness wheat cultivars Nongda 211 and Nongda 5363 increased by 14.7% and 18.9%. The mortality rate of strong-winterness wheat cultivars Yanda 1817 and Jing 411 increased by 15.4% and 13.1%, and that of springiness wheat cultivas Zheng 9023 and Yanzhan 4110 increased by 13.8% and 15.1%. Comparatively, if temperature decreased continuously after the occurrence of freezing injury, the weak-winterness wheat would suffer greater risk.
MORTALITY FROM ACUTE MYOCARDIAL INFRACTION IN SPRING AND WINTER WHEAT PRODUCING U. S. STATES
Introduction: Chlorophenoxy herbicides are widely used in the U.S. for maintenance of home lawns, parks, road sides, and for broadleaf weed control in wheat farming. Approximately 90% of spring wheat acreage is treated with predominantly chlorophenoxy herbicides, in contrast to...
Adhikari, Subodh; Seipel, Tim; Menalled, Fabian D; Weaver, David K
2018-03-26
Cephus cinctus infestation causes $350 million in annual losses in the Northern Great Plains. We compared infestation and parasitism of C. cinctus in spring (including Kamut; Triticum turgidum ssp. turanicum) and winter wheat cultivars grown in organic and conventional fields in Montana, USA. In the greenhouse, we compared C. cinctus preference and survival in Kamut, Gunnison, and Reeder spring wheat cultivars. Stems cut by C. cinctus varied by farming system and the seasonality of the wheat crop. No stems of Kamut in organic fields were cut by C. cinctus, but 1.5% [±0.35% standard error (SE)] of stems in conventional spring wheat, 5% (±0.70% SE) of stems in organic winter wheat, and 20% (±0.93% SE) of stems in conventional winter wheat fields were cut by C. cinctus. More larvae of C. cinctus were parasitized in organic (27 ± 0.03% SE) compared with conventional (5 ± 0.01% SE) winter wheat fields. Cephus cinctus oviposition, survival, and the number of stems cut were lowest in Kamut compared with Gunnison and Reeder. Cephus cinctus infestation was more common in winter wheat than in spring wheat. Organic fields with fewer cut stems also supported more parasitoids. Kamut is a genetic resource for developing C. cinctus-resistant cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Lentil (Lens culinaris Medikus CV. Indianhead) used to replace fallow in spring-wheat (Triticum aestivum) rotation in the semi-arid Eastern Montana USA, may improve soil quality. We evaluate the 14 years influence of continuous wheat under no-tillage (WNT), fallow-wheat under conventional tillage (F...
USDA-ARS?s Scientific Manuscript database
Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...
Modeling of cumulative ash curve in hard red spring wheat
USDA-ARS?s Scientific Manuscript database
Analysis of cumulative ash curves (CAC) is very important for evaluation of milling quality of wheat and blending different millstreams for specific applications. The aim of this research was to improve analysis of CAC. Five hard red spring wheat genotype composites from two regions were milled on...
VRN1 genes variability in tetraploid wheat species with a spring growth habit.
Konopatskaia, Irina; Vavilova, Valeriya; Kondratenko, Elena Ya; Blinov, Alexandr; Goncharov, Nikolay P
2016-11-16
Vernalization genes VRN1 play a major role in the transition from vegetative to reproductive growth in wheat. In di-, tetra- and hexaploid wheats the presence of a dominant allele of at least one VRN1 gene homologue (Vrn-A1, Vrn-B1, Vrn-G1 or Vrn-D1) determines the spring growth habit. Allelic variation between the Vrn-1 and vrn-1 alleles relies on mutations in the promoter region or the first intron. The origin and variability of the dominant VRN1 alleles, determining the spring growth habit in tetraploid wheat species have been poorly studied. Here we analyzed the growth habit of 228 tetraploid wheat species accessions and 25 % of them were spring type. We analyzed the promoter and first intron regions of VRN1 genes in 57 spring accessions of tetraploid wheats. The spring growth habit of most studied spring accessions was determined by previously identified dominant alleles of VRN1 genes. Genetic experiments proof the dominant inheritance of Vrn-A1d allele which was widely distributed across the accessions of Triticum dicoccoides. Two novel alleles were discovered and designated as Vrn-A1b.7 and Vrn-B1dic. Vrn-A1b.7 had deletions of 20 bp located 137 bp upstream of the start codon and mutations within the VRN-box when compared to the recessive allele of vrn-A1. So far the Vrn-A1d allele was identified only in spring accessions of the T. dicoccoides and T. turgidum species. Vrn-B1dic was identified in T. dicoccoides IG46225 and had 11 % sequence dissimilarity in comparison to the promoter of vrn-B1. The presence of Vrn-A1b.7 and Vrn-B1dic alleles is a predicted cause of the spring growth habit of studied accessions of tetraploid species. Three spring accessions T. aethiopicum K-19059, T. turanicum K-31693 and T. turgidum cv. Blancal possess recessive alleles of both VRN-A1 and VRN-B1 genes. Further investigations are required to determine the source of spring growth habit of these accessions. New allelic variants of the VRN-A1 and VRN-B1 genes were identified in spring accessions of tetraploid wheats. The origin and evolution of VRN-A1 alleles in di- and tetraploid wheat species was discussed.
He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian
2014-07-30
Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.
Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035
USDA-ARS?s Scientific Manuscript database
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...
Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’
USDA-ARS?s Scientific Manuscript database
As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...
NASA Technical Reports Server (NTRS)
Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat;
2017-01-01
The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.
Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping
2016-03-16
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.
Kalapos, Balázs; Novák, Aliz; Dobrev, Petre; Vítámvás, Pavel; Marincs, Ferenc; Galiba, Gábor; Vanková, Radomira
2017-01-01
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties. PMID:29238355
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the Unites States Department of Agr...
USDA-ARS?s Scientific Manuscript database
The development of adapted wheat germplasm is essential so that breeding programs can develop superior cultivars, which was the objective of this research. ND 803 is hard red spring wheat (HRSW; Triticum aestivum L.) line that was developed at North Dakota State University (NDSU) and released by the...
NASA Astrophysics Data System (ADS)
Tang, Jianzhao; Wang, Jing; He, Di; Huang, Mingxia; Pan, Zhihua; Pan, Xuebiao
2016-12-01
The aim of this study is to compare the impacts of climate change on the potential productivity and potential productivity gaps of sunflower ( Helianthus annuus), potato (Solanum tuberosum), and spring wheat ( Triticumaestivum Linn) in the agro-pastoral ecotone (APE) of North China. A crop growth dynamics statistical method was used to calculate the potential productivity affected by light, temperature, precipitation, and soil fertility. The growing season average temperature increased by 0.47, 0.48, and 0.52°C per decade ( p < 0.05) for sunflower, potato, and spring wheat, respectively, from 1981 to 2010. Meanwhile, the growing season solar radiation showed a decreasing trend ( p < 0.05) and the growing season precipitation changed non-significantly across APE. The light-temperature potential productivity increased by 4.48% per decade for sunflower but decreased by 1.58% and 0.59% per decade for potato and spring wheat. The climate-soil potential productivity reached only 31.20%, 27.79%, and 20.62% of the light-temperature potential productivity for sunflower, potato, and spring wheat, respectively. The gaps between the light-temperature and climate-soil potential productivity increased by 6.41%, 0.97%, and 1.29% per decade for sunflower, potato, and spring wheat, respectively. The increasing suitability of the climate for sunflower suggested that the sown area of sunflower should be increased compared with potato and spring wheat in APE under future climate warming.
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
7 CFR 457.102 - Wheat or barley winter coverage endorsement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...
Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu
2017-12-01
A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.
[Genetic diversity of modern Russian durum wheat cultivars at the gliadin-coding loci].
Kudriavtsev, A M; Dedova, L V; Mel'nik, V A; Shishkina, A A; Upelniek, V P; Novosel'skaia-Dragovich, A Iu
2014-05-01
The allelic diversity at four gliadin-coding loci was examined in modern cultivars of the spring and winter durum wheat Triticum durum Desf. Comparative analysis of the allelic diversity showed that the gene pools of these two types of durum wheat, having different life styles, were considerably different. For the modern spring durum wheat cultivars, a certain reduction of the genetic diversity was observed compared to the cultivars bred in the 20th century.
Dobrotvorskaia, T V; Martynov, S P
2011-07-01
The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.
Zhang, Jun-Feng; Xu, Yong-Qing; Dong, Jia-Min; Peng, Li-Na; Feng, Xu; Wang, Xu; Li, Fei; Miao, Yu; Yao, Shu-Kuan; Zhao, Qiao-Qin; Feng, Shan-Shan; Hu, Bao-Zhong
2018-01-01
Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response. PMID:29596529
Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C
2009-12-01
Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.
USDA-ARS?s Scientific Manuscript database
There have been substantial breeding efforts in North Dakota to produce wheat cultivars that are well adapted to weather conditions and are disease resistant. In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed with regard to how they cluster in terms...
USDA-ARS?s Scientific Manuscript database
Free asparagine in wheat is known to be a precursor for the formation of acrylamide which is unacceptable to consumers due to its potential risks to human health. This research was performed to determine variation of free asparagine concentration (FAC) in hard red spring (HRS) wheat grown in North ...
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over eight years in the State of Washington. ...
USDA-ARS?s Scientific Manuscript database
There have been substantial breeding efforts in North Dakota to produce wheat cultivars that are well adapted to weather conditions and disease resistance. In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed with regard to how they cluster in terms of...
Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun
2008-07-01
Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.
Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang
2015-06-01
A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.
Canadian crop calendars in support of the early warning project
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Hodges, T. (Principal Investigator)
1980-01-01
The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.
USDA-ARS?s Scientific Manuscript database
As atmospheric trace gas concentrations and global temperatures climb, scientists are challenged to determine how microbial communities may mediate plant response to future climate change. To this end, a Temperature Free-Air Controlled Enrichment (T-FACE) experiment was implemented in a spring wheat...
Crop status evaluations and yield predictions
NASA Technical Reports Server (NTRS)
Haun, J. R.
1975-01-01
The growth-environment relationships for greenhouse and field conditions are compared, and the development of growth-prediction models for spring wheat is discussed along with the development of models for predicting the date for spring wheat emergence in North Dakota.
USDA-ARS?s Scientific Manuscript database
Kernel vitreousness is an important grading characteristic for segregation of sub-classes of hard red spring (HRS) wheat in the U.S. This research investigated the protein molecular weight distribution (MWD), and flour and baking quality characteristics of different HRS wheat market sub-classes. T...
Poisoning of Canada geese in Texas by parathion sprayed for control of Russian wheat aphid
Flickinger, Edward L.; Juenger, Gary; Roffe, Thomas J.; Smith, Milton R.; Irwin, Roy J.
1991-01-01
Approximately 200 Canada geese (Branta canadensis) died at a playa lake in the Texas Panhandle shortly after a winter wheat field in the basin adjacent to the lake was treated with parathion to control newly invading Russian wheat aphids (Diuraphis noxia). No evidence of infectious disease was diagnosed during necropsies of geese. Brain ChE activities were depressed up to 77% below normal. Parathion residues in GI tract contents of geese ranged from 4 to 34 ppm. Based on this evidence, parathion was responsible for the goose mortalities. Parathion applications to winter wheat will undoubtedly increase if parathion is applied for control of both Russian wheat aphids and greenbugs (Schizaphis graminum). Geese may potentially be exposed to widespread applications of parathion from fall to spring, essentially their entire wintering period.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Malila, W. A.; Gleason, J. M.
1977-01-01
The author has identified the following significant results. LANDSAT data from seven 5 by 6 segments having crop type information were analyzed to determine the potential for spectral separation of spring wheat from other small grains as an alternative to the primary LACIE procedure for estimating spring wheat acreage. Within segment field-center, classification accuracies for spring wheat vs. barley tended to be best in mid-July when crop color changes were in progress. When correlations were made for differences in atmospheric haze, data from several segments could be aggregated, and results that approached within segment accuracies were obtained for selected dates. LACIE field measurement spectral reflectance data provided information on both wheat development patterns and the importance of various agronomic factors on wheat reflectance, the most important being availability of soil moisture. To investigate early season detection for winter wheat, reflectance of developing wheat patterns was simulated through reflectance modeling and was analyzed along with field measured reflectance from a Kansas site. The green component development of the wheat field was analyzed as a function of data throughout the season. A selected threshold was not crossed by all fields until mid-April. These reflectance data were shown to be consistent actual LANDSAT data.
Registration of 'Prevail' hard red spring wheat
USDA-ARS?s Scientific Manuscript database
Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...
NASA Technical Reports Server (NTRS)
French, V.
1983-01-01
A comparison was made among the CEAS crop reporting district (CRD), agrophysical unit (APU), and state level multiple regression yield models for corn and soybeans in Iowa and barley and spring wheat in North Dakota. The best predictions were made by the state model for North Dakota spring wheat, by the APU models for barley, by the CRD models for Iowa soybeans, and by APU covariance models for Iowa corn. Because of this lack of consistency of model performance, CRD models would be recommended due to the availability of the data.
Recommended data sets, corn segments and spring wheat segments, for use in program development
NASA Technical Reports Server (NTRS)
Austin, W. W. (Principal Investigator)
1981-01-01
The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.
Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao
2018-01-01
Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104
NASA Technical Reports Server (NTRS)
Tubiello, F. N.; Rosenzweig, C.; Volk, T.
1995-01-01
A new growth subroutine was developed for CERES-Wheat, a computer model of wheat (Triticum aestivum) growth and development. The new subroutine simulates canopy photosynthetic response to CO2 concentrations and light levels, and includes the effects of temperature on canopy light-use efficiency. Its performance was compared to the original CERES-Wheat V-2 10 in 30 different cases. Biomass and yield predictions of the two models were well correlated (correlation coefficient r > 0.95). As an application, summer growth of spring wheat was simulated at one site. Modeled crop responses to higher mean temperatures, different amounts of minimum and maximum warming, and doubled CO2 concentrations were compared to observations. The importance of irrigation and nitrogen fertilization in modulating the wheat crop climatic responses were also analyzed. Specifically, in agreement with observations, rainfed crops were found to be more sensitive to CO2 increases than irrigated ones. On the other hand, low nitrogen applications depressed the ability of the wheat crop to respond positively to CO2 increases. In general, the positive effects of high CO2 on grain yield were found to be almost completely counterbalanced by the negative effects of high temperatures. Depending on how temperature minima and maxima were increased, yield changes averaged across management practices ranged from -4% to 8%.
Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed
2015-07-22
Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.
Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge
2018-05-16
Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.
Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique
2017-11-01
Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better represented regions dominated by wheat crops. Integr Environ Assess Manag 2017;13:992-1006. © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Rabinovich, S V; Fedak, G; Lukov, O
2000-01-01
The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.
Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly
2014-05-01
The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.
Gao, Liangliang; Turner, M Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A
2016-01-01
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20-30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26-30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24-34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.
Breeding value of primary synthetic wheat genotypes for grain yield
USDA-ARS?s Scientific Manuscript database
To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...
Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C
2010-06-01
Transgenic wheat (Triticum aestivum L.) with improved agronomic traits is currently being field-tested. Gene flow in space is well-documented, but isolation in time has not received comparable attention. Here, we report the results of a field experiment that investigated reductions in intraspecific gene flow associated with temporal isolation of flowering between T. aestivum conspecifics. Pollen-mediated gene flow (PMGF) between an imazamox-resistant (IR) volunteer wheat population and a non-IR spring wheat crop was assessed over a range of volunteer emergence timings and plant population densities that collectively promoted flowering asynchrony. Natural hybridization events between the two populations were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) lines. Based on the examination of >545,000 seedlings, we identified a hybridization window in spring wheat approximately 125 growing degree-days (GDD) in length. We found a sizeable reduction (two- to four-fold) in gene flow frequencies when flowering occurred outside of this window. The hybridization window identified in this research also will serve to temporally isolate neighboring wheat crops. However, strict control of volunteer populations or spatial isolation of neighbouring crops emerging within a 125 GDD hybridization window will be necessary to maintain low frequencies of PMGF in spring wheat fields. The model developed herein also is likely to be applicable to other wind-pollinated species.
Evaluation of transition year Canadian test sites. [Saskatchewan Province
NASA Technical Reports Server (NTRS)
Payne, R. W. (Principal Investigator)
1980-01-01
The author has identified the following significant results. The spring small grain proportion accuracy in 15 Saskatchewan test sites was found to be comparable to that of the Large Area Crop Inventory Experiment Phase 3 and Transition Year results in the U.S. spring wheat states. Spring small grain labeling accuracy was 94%, and the direct wheat labeling accuracy was 89%, despite the low barley separation accuracy of 30%.
LACIE: Wheat yield models for the United States, revision A
NASA Technical Reports Server (NTRS)
1977-01-01
For abstract, see volume 1 N77-30577. The enclosed maps indicate the areal coverage of the various models for spring (durum and other spring) and winter wheat. The given regions are the combination of several climatic divisions and many times comprise an entire state.
USDA-ARS?s Scientific Manuscript database
Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...
NASA Technical Reports Server (NTRS)
Gonzalez, P.; Jones, C. (Principal Investigator)
1980-01-01
Data previously compiled on the year to year variability of spectral profile crop growth parameters for spring and winter wheat in Kansas, Oklahoma, and the Dakotas were used with a profile model to develop graphs illustrating spectral profile crop growth curves for a number of years and a number of spring and winter wheat segments. These curves show the apparent variability in spectral profiles for wheat from one year to another within the same segment and from one segment to another within the same year.
End-use quality of soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota
NASA Technical Reports Server (NTRS)
Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.
East Europe Report, Economic and Industrial Affairs, No. 2410.
1983-06-13
high culture. Spring wheat of the Jara variety was developed at CSRS. Its features are: a very high grain production, low sensitivity to powdery ... mildew and rust, it can be harvested sooner than any presently grown varieties of Spring wheats in our country. It is adaptable for cultivation in wheat ...has great hope for the Polon variety. Its char- acteristics are: good yield, good resistance to powdery mildew and mottle disease, and what is also
Spring wheat gliadins: Have they changed in 100 years?
USDA-ARS?s Scientific Manuscript database
There have been many hard red spring (HRS) wheat cultivars released in North Dakota during the last 100 years. These cultivars have been improved for various characteristics such as, adaptation to weather conditions, high yield, and good milling and baking quality. The objectives of this study wer...
Genetic analysis without replications: Model evaluation and application in spring wheat
USDA-ARS?s Scientific Manuscript database
Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...
USDA-ARS?s Scientific Manuscript database
The soil-dwelling larvae of click beetles (wireworms) (Coleoptera: Elateridae) are serious pests of several agricultural crops worldwide. Hypnoidus bicolor and Limonius californicus are two major wireworm species damaging to spring wheat, particularly in the Golden Triangle, an important cereal-grow...
USDA-ARS?s Scientific Manuscript database
Thirty hard red spring wheat cultivars released between 1910 and 2013 were studied to determine the changes in quality characteristics that occurred over time, and to determine their association with protein composition. Significant positive correlations (P = 0.01) were found between release year a...
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...
Phosphorobacterin and Its Effectiveness,
1986-01-30
Spring wheat. (10). Barley . (11). 12)• Vine mesquite. (13). Maize (grain). (14). Potatoes. (15). Average/mean addition on all cultures. Page 67. In...34. * (6). Spring wheat. (7). Vine mesquite. (8). Winter wheat. (9). I [I " Barley . ~~~~~ ~~ ~ ~ .(1) Oas (11) Bukha.(2. oaos 1) flpoa, m . ua 22 3,0 1.0 2...effect was somewhat abovE. But if we discard not the instilling confidence the data about the barley , then an average/mean increase in the crop of
USDA-ARS?s Scientific Manuscript database
This research was initiated to investigate the association between flour breadmaking traits and mixing characteristics and empirical dough rheological property under thermal stress. Flour samples from 30 hard spring wheat were analyzed by a mixolab standard procedure at optimum water absorptions. Mi...
Release of ‘UI Platinum’ hard white spring wheat
USDA-ARS?s Scientific Manuscript database
‘UI Platinum’ (Reg. No. CV------, PI 672533) hard white spring wheat (Triticum aestivum L.) was developed by the Idaho Agricultural Experiment Station and released in 2014. UI Platinum was derived from the cross ‘Blanca Grande’ x ‘Jerome’ and tested under experimental numbers A01178S, IDO694, and I...
Breeding for CLEARFIELD Herbicide Tolerance: Registration of ‘ND901CL’ Spring Wheat
USDA-ARS?s Scientific Manuscript database
‘ND901CL’ (Reg. No. CV-1029, PI 655233) hard red spring wheat (HRSW) (Triticum aestivum L.) was developed at NorthDakota State University (NDSU) and released by the North Dakota Agricultural Experiment Station (NDAES). ND901CLwas released in 2008 primarily for its tolerance to imadazolinone herbicid...
Report of the 2008 Uniform Regional Scab Nursery for Spring Wheat Parents
USDA-ARS?s Scientific Manuscript database
The Uniform Regional Scab Nursery for Spring Wheat Parents (URSN) was grown for the 14th year in 2008. Five mist-irrigated locations at Brookings, SD; St. Paul, and Crookston, MN; Langdon, ND; and Glenlea, Manitoba, Canada, were planted. A total of 36 entries were included in the 2008 URSN, includin...
USDA-ARS?s Scientific Manuscript database
This research was performed to determine variation of protein molecular weight distribution (MWD) parameters using size exclusion HPLC and their associations with quality characteristics and free asparagine concentration (FAC) using eleven hard red spring (HRS) wheat genotypes grown at three locatio...
Chu, C-G; Tan, C T; Yu, G-T; Zhong, S; Xu, S S; Yan, L
2011-12-01
Vernalization genes determine winter/spring growth habit in temperate cereals and play important roles in plant development and environmental adaptation. In wheat (Triticum L. sp.), it was previously shown that allelic variation in the vernalization gene VRN1 was due to deletions or insertions either in the promoter or in the first intron. Here, we report a novel Vrn-B1 allele that has a retrotransposon in its promoter conferring spring growth habit. The VRN-B1 gene was mapped in a doubled haploid population that segregated for winter-spring growth habit but was derived from two spring tetraploid wheat genotypes, the durum wheat (T. turgidum subsp. durum) variety 'Lebsock' and T. turgidum subsp. carthlicum accession PI 94749. Genetic analysis revealed that Lebsock carried the dominant Vrn-A1 and recessive vrn-B1 alleles, whereas PI 94749 had the recessive vrn-A1 and dominant Vrn-B1 alleles. The Vrn-A1 allele in Lebsock was the same as the Vrn-A1c allele previously reported in hexaploid wheat. No differences existed between the vrn-B1 and Vrn-B1 alleles, except that a 5463-bp insertion was detected in the 5'-UTR region of the Vrn-B1 allele. This insertion was a novel retrotransposon (designated as retrotrans_VRN), which was flanked by a 5-bp target site duplication and contained primer binding site and polypurine tract motifs, a 325-bp long terminal repeat, and an open reading frame encoding 1231 amino acids. The insertion of retrotrans_VRN resulted in expression of Vrn-B1 without vernalization. Retrotrans_VRN is prevalent among T. turgidum subsp. carthlicum accessions, less prevalent among T. turgidum subsp. dicoccum accessions, and rarely found in other tetraploid wheat subspecies.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.
Sainju, Upendra M; Lenssen, Andrew; Caesar-Thonthat, Thecan; Waddell, Jed
2006-01-01
Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha(-1)) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha(-1)) and C content (0.96 Mg ha(-1)) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha(-1)) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg(-1) SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0- to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.
Karunaratne, N D; Abbott, D A; Hucl, P J; Chibbar, R N; Pozniak, C J; Classen, H L
2018-05-16
Wheat is the primary grain fed to poultry in western Canada, but its nutritional quality, including the nature of its starch digestibility, may be affected by wheat market class. The objectives of this study were to determine the rate and extent of starch digestibility of wheat market classes in broiler chickens, and to determine the relationship between starch digestibility and wheat apparent metabolizable energy (AME). In vitro starch digestion was assessed using gastric and small intestinal phases mimicking the chicken digestive tract, while in vivo evaluation used 468 male broiler chickens randomly assigned to dietary treatments from 0 to 21 d of age. The study evaluated 2 wheat cultivars from each of 6 western Canadian wheat classes: Canadian Prairie Spring (CPS), Canadian Western Amber Durum (CWAD), CW General Purpose (CWGP), CW Hard White Spring (CWHWS), CW Red Spring (CWRS), and CW Soft White Spring (CWSWS). All samples were analyzed for relevant grain characteristics. Data were analyzed as a randomized complete block design and cultivars were nested within market class. Pearson correlation was used to determine relationships between measured characteristics. Significance level was P ≤ 0.05. The starch digestibility range and wheat class rankings were: proximal jejunum - 23.7 to 50.6% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); distal jejunum - 63.5 to 76.4% (CWHWSc, CPSbc, CWSWSbc, CWRSab, CWGPa, CWADa); proximal ileum - 88.7 to 96.9% (CWSWSc, CPSbc, CWHWSbc, CWRSb, CWGPb, CWADa); distal ileum - 94.4 to 98.5% (CWSWSb, CWHWSb, CPSb, CWRSab, CWGPab, CWADa); excreta - 98.4 to 99.3% (CPSb, CWRSb, CWHWSb, CWSWSab, CWGPab, CWADa). Wheat class affected wheat AMEn with levels ranging from 3,203 to 3,411 kcal/kg at 90% DM (CWRSc, CWSWSc, CPSb, CWGPb, CWADa, CWHWSa). Significant and moderately strong positive correlations were observed between in vitro and in vivo starch digestibility, but no correlations were found between AME and starch digestibility. In conclusion, rate and extent of starch digestibility and AME were affected by western Canadian wheat class, but starch digestibility did not predict AME.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.
2014-12-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel
2014-03-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Gao, Liangliang; Turner, M. Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A.
2016-01-01
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays. PMID:26849364
The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese Spring.
Anderson, Olin D; Huo, Naxin; Gu, Yong Q
2013-06-01
The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3' coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.
Chen, Juan; Ma, Zhong Ming; Lyu, Xiao Dong; Liu, Ting Ting
2016-05-01
To establish an optimum combination of water and nitrogen for spring under permanent raised bed (PRB) tillage, a field investigation was carried out to assess effects of irrigation and N application on root growth, yield, irrigation water productivity and N efficiency. The experiment followed a completely randomized split-plot design, taking furrow irrigation 1200 m 3 ·hm -2 (W 1 ), 2400 m 3 ·hm -2 (W 2 ), 3600 m 3 ·hm -2 (W 3 ) as main plot treatments, and N rates (0, 90, 180, 270 kg·hm -2 ) the sub-plot treatments. Our results showed that the root mass density (RWD) was significantly affected by irrigation and N application, the RWD of spring wheat reached a maximum at the filling stage, followed by a slow decline until maturity, while the effect of N on RWD depended on soil water conditions. The application of N 2 produced the maximum RWD under W 2 irrigation, the application of N 1 produced the maximum RWD under W 1 irrigation, and the application of N 3 produced the maximum RWD under W 3 irrigation. The order of irrigation regime effect on RWD of spring wheat was W 2 >W 3 >W 1 . The order of irrigation regime and N rate effect on RWD of spring wheat was irrigation>N>irrigation and N interaction. W 2 N 2 treatment produced the highest RWD value. The root-to-shoot ratio (R/S) descended with the rising of irrigation water and nitrogen amount, and the combined treatment (W 1 N 0 ) produced the maximum R/S. The root system was mainly distributed in the 0-40 cm soil layer, in which the RWD accounted for 85% of the total RWD in 0-80 cm soil depth. There was a significantly positive relationship between RWD in the 0-40 cm and the yield of spring wheat, RWD in the 40-60 cm had higher linear dependence on the yield of spring wheat. W 2 increased the proportion of RWD in the deep soil layer (40-60 cm). The irrigation and N rate had a significant impact on biomass and grain yield of spring wheat, the biomass increased as the N rate and water amount increased, W 2 N 2 treatment produced the highest grain yield, irrigation water productivity descended with increasing the irrigation amount, and the nitrogen agronomic efficiency descended with increasing N rate. It was concluded that the irrigation level W 2 (2400 m 3 ·hm -2 ) and nitrogen level N 2 (180 kg·hm -2 ) could be recommended as the best combination of water and N, which promoted the root growth, improved grain yield, water and nitrogen use efficiencies of spring wheat production under PRB tillage in the experimental area.
NASA Astrophysics Data System (ADS)
Huixia, Wu; Angela, Doherty; Jones, Huw D.
Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.
USDA-ARS?s Scientific Manuscript database
The effects of organic vs. conventional farming practices on wheat functional and nutritional characteristics were compared. Soft white winter wheat and hard red spring wheat were obtained from long-term replicated field plots near Pullman, Washington and Bozeman, Montana. Test weight, kernel weight...
USDA-ARS?s Scientific Manuscript database
The aim of this research was to investigate the effect of variation of flour polymeric proteins on rheological properties of dough under continuous mixing and thermal treatment for hard red spring (HRS) wheat genotypes grown in North Dakota, USA. Flour polymeric proteins were analyzed by size exclus...
Report of the 2013 uniform regional scab nursery for spring wheat parents
USDA-ARS?s Scientific Manuscript database
The Uniform Regional Scab Nursery for Spring Wheat Parents (URSN) was grown for the 18th year in 2013. Three locations (Brookings, SD, and St. Paul and Crookston, MN) were planted. A total of 23 entries were included in the 2013 URSN, in addition the resistant checks 2375, BacUp, and ND2710, and the...
Registration of spring wheat sources of the resistance genes Lr53, Lr56, Lr59 and Lr62
USDA-ARS?s Scientific Manuscript database
Spring wheat (Triticum aestivum L.) germplasm with the alien derived leaf rust (caused by Puccinia triticina Erikss) resistance genes, Lr53, Lr56, Lr59, and Lr62 has been developed with infrastructure and financial support provided consecutively by the University of Stellenbosch (South Africa), the ...
USDA-ARS?s Scientific Manuscript database
Agricultural system models are useful tools to synthesize field experimental data and to extrapolate the results to longer periods of weather and other cropping systems. The objectives of this study were: 1) to quantify the effects of planting date, seeding rate, and tillage on spring wheat producti...
USDA-ARS?s Scientific Manuscript database
In order to investigate suitability of solvent retention capacity (SRC) test for quality assessment of hard red spring (HRS) wheat flour, ten HRS genotypes from six locations in North Dakota State were analyzed for SRC and flour and breadmaking quality characteristics. The SRC values were significa...
Report of the 2016 Uniform Regional Scab Nursery for spring wheat parents
USDA-ARS?s Scientific Manuscript database
The Uniform Regional Scab Nursery for Spring Wheat Parents (URSN) was grown for the 21st year in 2016. Five locations (Brookings, SD, St. Paul and Crookston, MN, Prosper, ND, and Morden, Canada) reported results. A total of 33 entries was included in the 2016 URSN, in addition to the resistant chec...
NASA Technical Reports Server (NTRS)
1978-01-01
The author has identified the following significant results. An accuracy of 90/85 was achieved with the October estimates which had a relative bias of -9.9 percent and a coefficient of variation of 5.2 percent for the total wheat production in the USGP. The probability was 0.9 that the LACIE estimate was within + or - 15 percent of true wheat production for the USGP. The LACIE spring wheat production underestimates in August, September, and October were the results of area underestimates for spring wheat in the USNGP region. The winter wheat blind study showed that the average proportion estimates were significantly different from the average dot-count, ground truth proportions at the USSGP and USGP-7 levels.
Identification of novel QTL for sawfly resistance in wheat
J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert
2010-01-01
The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...
Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge
2015-01-01
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748
Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge
2015-01-20
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. Copyright © 2015 Maccaferri et al.
USDA-ARS?s Scientific Manuscript database
Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in the vernalization genes regulating this requirement has favored wheat adaptation to different environments. The main wheat vernalization genes VRN1, V...
Quality characteristics of U.S. soft white and club wheat
USDA-ARS?s Scientific Manuscript database
U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...
USDA-ARS?s Scientific Manuscript database
Dark, hard, and vitreous kernel content is an important grading characteristic for hard red spring (HRS) wheat in the U.S. This research aimed to determine the associations of kernel vitreousness (KV) with protein molecular weight distribution (MWD) and quality traits that were not biased by quanti...
USDA-ARS?s Scientific Manuscript database
Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...
USDA-ARS?s Scientific Manuscript database
In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed to determine how they cluster in terms of parentage and protein data, analyzed by reverse-phase HPLC (RP-HPLC) of gliadins, and size-exclusion HPLC (SE-HPLC) of unreduced proteins. Dwarfing genes in...
Liu, J; Zhang, F
2000-06-01
The effects of long-term applying fertilizer P and manure on the pools of soil total P and inorganic P and the crop yield in rotation of winter wheat-summer maize-->spring maize were studied. The results showed that the pool of soil total P and inorganic P were increased by applying fertilizer P and manure, and the phosphorus mostly accumulated in soil was inorganic P. The critical amounts of fertilizer P (P2O5) for balancing soil P were 94.7 kg.hm-2 to winter wheat-summer maize and 51.5 kg.hm-2 to spring maize. Based on regression equations, the application rates of fertilizer P (P2O5) for economic optimum and highest yields were 135.8 and 149.8 kg.hm-2 to winter wheat-summer maize, and 88.6 and 95.9 kg.hm-2 to spring maize, respectively.
USDA-ARS?s Scientific Manuscript database
Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...
USDA-ARS?s Scientific Manuscript database
Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...
USDA-ARS?s Scientific Manuscript database
The linear and non-linear rheological properties of the suspensions for the hard red spring wheat (HRS) flour, soft wheat (Pastry) flour, barley flour, as well as the remain residues of HRS flour, Pastry flour, and barley flour after fermentation were investigated. The linear and non-linear rheologi...
USDA-ARS?s Scientific Manuscript database
Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...
Effects of diurnal temperature range and drought on wheat yield in Spain
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.
2017-07-01
This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.
Control of stripe rust of spring wheat with foliar fungicides in 2016
USDA-ARS?s Scientific Manuscript database
The study was conducted in a field with Palouse silt loam soil near Pullman, WA. Stripe rust susceptible ‘Avocet S’ spring wheat was seeded in rows spaced 14-in. apart at 60 lb/A (99% germination rate) with a drill planter on 4 May 2016. Urea fertilizer (46-0-0) was applied at the rate of 100 lb/A o...
Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake
Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva
2010-01-01
In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934
Wheat ABA-insensitive mutants result in reduced grain dormancy
USDA-ARS?s Scientific Manuscript database
This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity t...
NASA Technical Reports Server (NTRS)
Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco;
2017-01-01
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
NASA Technical Reports Server (NTRS)
West, W. L., III (Principal Investigator)
1980-01-01
The state crop calendars for the principal spring wheat producing states within the United States are presented. These crop calendars are an update of those produced for the large area crop inventory experiment multilabeling task during 1978and are compiled for the foreign commodity production forecasting (FCPF) project of the agriculture and resources inventory surveys through aerospace remote sensing program.
Rain-induced spring wheat harvest losses
NASA Technical Reports Server (NTRS)
Bauer, A.; Black, A. L. (Principal Investigator)
1983-01-01
When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.
Reducing shade avoidance responses in a cereal crop
Wille, Wibke; Pipper, Christian B; Rosenqvist, Eva; Andersen, Sven B
2017-01-01
Abstract Several researchers have hypothesized that shade avoidance behaviour is favoured by natural selection because it increases the fitness of individuals. Shade avoidance can be disadvantageous for crops, however, because it reduces allocation of resources to reproductive yield, increases the risk of lodging and reduces weed suppression. One approach to develop varieties with reduced shade avoidance and enhanced agronomic performance is by inducing mutations followed by phenotypic screening. We treated spring wheat seeds with ethyl methanesulfonate and screened the seedlings repeatedly under green filters for plants showing reduced elongation of the first leaf sheath and second leaf lamina. The shade avoidance responses of five promising mutant lines were further compared to non-mutated plants in a climate chamber experiment with added far-red light. Two of the selected lines displayed significantly reduced elongation under all light treatments while two lines showed reduced elongation only in added far-red light. The most promising mutant line did not differ in height from the non-mutated cultivar in neutral light, but elongated 20.6% less in strong far-red light. This traditional forward approach of screening mutagenized spring wheat produced plants with reduced shade avoidance responses. These mutants may generate new molecular handles to modify the reaction of plants to changes in light spectral distribution in traditional and novel cultivation systems. PMID:29071064
THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT
Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...
Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height
NASA Astrophysics Data System (ADS)
Zając, Tomasz; Synowiec, Agnieszka; Oleksy, Andrzej; Macuda, Jan; Klimek-Kopyra, Agnieszka; Borowiec, Franciszek
2017-04-01
Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.
Variability of Root Traits in Spring Wheat Germplasm
Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara
2014-01-01
Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438
17 CFR 150.2 - Position limits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Oats 600 1,400 2,000 Soybeans and Mini-Soybeans 1 600 6,500 10,000 Wheat and Mini-Wheat 1 600 5,000 6... Spring Wheat 600 5,000 6,500 New York Board of Trade Cotton No. 2 300 3,500 5,000 Kansas City Board of Trade Hard Winter Wheat 600 5,000 6,500 1 For purposes of compliance with these limits, positions in the...
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-09-23
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-01-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070
NASA Astrophysics Data System (ADS)
Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua
2015-09-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
NASA Technical Reports Server (NTRS)
Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark
2013-01-01
Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.
Si, Tong; Wang, Xiao; Zhao, Chunzhao; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Jiang, Dong
2018-01-01
Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate–glutathione cycle participate in this systemic wound response. PMID:29593774
Translations on People’s Republic of China, Number 389
1977-08-05
cm., resistant to lodging, early maturing, from germination to maturity about 82 days, resistant to stripe rust, stem rust and powdery mildew ...HSUEH TSA-CHIH, Feb 77).......... 7 AGRICULTURE Three New Spring Wheat Varieties Introduced (K’O-HSUEH SHIH-YEN, Jun 77) 10 Optimum Conditions...7682 CSO: 4008 AGRICULTURE THREE NEW SPRING WHEAT VARIETIES INTRODUCED Peking K’O-HSUEH SHIH-YEN {Scientific Experiment] in Chinese No 1, Jan
USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 85
1978-01-12
OF INVESTIGATION OF SAMPLES OF SPRING WHEAT OF THE WORLD -WIDE COLLECTION OF THE ALL-UNION SCIENTIFIC RESEARCH INSTITUTE...Institute of Agri- culture on about 2,000 specimens of spring wheat from 50 nations of the world taken from the collection of the Ail-Union Scientific...for 2-3 weeks, while leukemoid reactions during other diseases were found much less frequently. In $k.1% of the patients with eosinophilia
Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen
2018-01-01
A wheat-Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1Ss from Ae. searsii, was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1Ss loci of Ae. searsii. Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.
USDA-ARS?s Scientific Manuscript database
Annual cool-season grasses, primarily winter wheat, provide high quality forage for stocker calves during the fall, winter and spring grazing seasons for stocker enterprises in the southern Great Plains. The crude protein (CP) content of winter wheat pasture exceeds the stocker calf’s daily CP requi...
Controlled warming effects on wheat growth and yield: field measurements and modeling
USDA-ARS?s Scientific Manuscript database
Climate warming may raise wheat yields in cooler climates and lower them in warmer. To understand these contrasting effects, infrared heating lamps were used to warm irrigated spring wheat by 1.5 'C (day) and 3.0 'C (night) above unheated controls during different times of the year at Maricopa, AZ. ...
Optimization of hard red spring wheat milling for whole wheat flour production
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effect of seed moisture content (10 to 16%) and rotor speed (6,000 to 15,000 rpm) of a centrifugal mill on quality of whole wheat flour (WWF) and subsequent baking quality. Particle size distribution, flour temperature, flour moisture, and starch dam...
Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan
2015-10-01
Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.
Alderman, Phillip D.; Stanfill, Bryan
2016-10-06
Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less
Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A
2007-09-01
Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.
Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott
2013-01-01
Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a process-based model, APSIM, was modified to incorporate gene effects into estimation of heading time, while minimizing degradation in the predictive capability of the model. Model parameters describing environment responses were replaced with functions of the number of winter and photoperiod (PPD)-sensitive alleles at the three VRN1 loci and the Ppd-D1 locus, respectively. Two years of vernalization and PPD trials of 210 lines (spring wheats) at a single location were used to estimate the effects of the VRN1 and Ppd-D1 alleles, with validation against 190 trials (~4400 observations) across the Australian wheatbelt. Compared with spring genotypes, winter genotypes for Vrn-A1 (i.e. with two winter alleles) had a delay of 76.8 degree days (°Cd) in time to heading, which was double the effect of the Vrn-B1 or Vrn-D1 winter genotypes. Of the three VRN1 loci, winter alleles at Vrn-B1 had the strongest interaction with PPD, delaying heading time by 99.0 °Cd under long days. The gene-based model had root mean square error of 3.2 and 4.3 d for calibration and validation datasets, respectively. Virtual genotypes were created to examine heading time in comparison with frost and heat events and showed that new longer-season varieties could be heading later (with potential increased yield) when sown early in season. This gene-based model allows breeders to consider how to target gene combinations to current and future production environments using parameters determined from a small set of phenotyping treatments. PMID:23873997
Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott
2013-09-01
Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a process-based model, APSIM, was modified to incorporate gene effects into estimation of heading time, while minimizing degradation in the predictive capability of the model. Model parameters describing environment responses were replaced with functions of the number of winter and photoperiod (PPD)-sensitive alleles at the three VRN1 loci and the Ppd-D1 locus, respectively. Two years of vernalization and PPD trials of 210 lines (spring wheats) at a single location were used to estimate the effects of the VRN1 and Ppd-D1 alleles, with validation against 190 trials (~4400 observations) across the Australian wheatbelt. Compared with spring genotypes, winter genotypes for Vrn-A1 (i.e. with two winter alleles) had a delay of 76.8 degree days (°Cd) in time to heading, which was double the effect of the Vrn-B1 or Vrn-D1 winter genotypes. Of the three VRN1 loci, winter alleles at Vrn-B1 had the strongest interaction with PPD, delaying heading time by 99.0 °Cd under long days. The gene-based model had root mean square error of 3.2 and 4.3 d for calibration and validation datasets, respectively. Virtual genotypes were created to examine heading time in comparison with frost and heat events and showed that new longer-season varieties could be heading later (with potential increased yield) when sown early in season. This gene-based model allows breeders to consider how to target gene combinations to current and future production environments using parameters determined from a small set of phenotyping treatments.
Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W; Westerbergh, Anna; Weih, Martin
2013-01-01
Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes.
Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin
2013-01-01
Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754
Janaviciene, Sigita; Mankeviciene, Audrone; Suproniene, Skaidre; Kochiieru, Yuliia; Keriene, Ilona
2018-02-22
Deoxynivalenol (DON) together with two acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) occurs in cereal grains and their products. Co-occurrence of DON and acetylated derivatives in cereal grain is detected worldwide. Until now, DON and its derivatives have been considered equally toxic by health authorities. In this study, we analysed 103 samples of spring wheat grain, originating from the fields of different production systems in Lithuania, for the co-occurrence of type-B trichothecenes (DON, 3-ADON, 15-ADON). The samples were classified according to the production system-organic, sustainable and intensive. Mycotoxin levels in the spring wheat grain samples were determined by the HPLC method with UV detection. The type-B trichothecenes were found to be present at higher concentrations in the grain from the intensive production system. Eighty-one percent of the spring wheat grain samples from the intensive production system were co-contaminated with a combination of DON+3-ADON+15-ADON, 1% with DON+3-ADON. Additionally, DON+15-ADON and DON were found in 5% and 10% of the tested samples, respectively. Two percent of the samples were free from mycotoxins. In the grain samples from the sustainable production system, DON and a combination of DON+3-ADON showed a higher incidence - 47% and 23%, respectively. The samples with a combination of DON+3-ADON+15-ADON accounted for 18%. Completely different results were obtained from the analyses of organic grain samples. A large number of the organic spring wheat grain samples were contaminated with DON+3-ADON (55%) or DON (36%). The combination of DON+3-ADON+15-ADON was not present, while DON+15-ADON was present in 9% of the samples tested. The production systems did not lead to significant differences in mycotoxin levels, although a trend toward higher incidence and higher contamination was observed for the samples from the intensive and sustainable production systems.
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Resistant cultivars are the preferred means of control. The spring wheat germplasm ‘PI 178759’ originating from Iraq showed effective resistance to stripe rust in fie...
Genetic characterization of stem rust resistance in a global spring wheat germplasm collection
USDA-ARS?s Scientific Manuscript database
Stem rust is considered one of the most damaging diseases of wheat. The recent emergence of the stem rust Ug99 race group poses a serious threat to world wheat production. Utilization of genetic resistance in cultivar development is the optimal way to control stem rust. Here we report association ma...
USDA-ARS?s Scientific Manuscript database
Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...
The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.
1983-01-01
Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year.
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Bauer, M. E.; Crecelius, D. W.; Hixson, M. M. (Principal Investigator)
1980-01-01
The effects of available soil moisture, planting date, nitrogen fertilization, and cultivar on reflectance of spring wheat (Triticum aestivum L.) canopies were investigated. Spectral measurements were acquired on eight dates throughout the growing season, along with measurements of crop maturity stage, leaf area index, biomass, plant height, percent soil cover, and soil moisture. Planting date and available soil moisture were the primary agronomic factors which affected reflectance of spring wheat canopies from tillering to maturity. Comparisons of treatments indicated that during the seedling and tillering stages planting date was associated with 36 percent and 85 percent of variation in red and near infrared reflectances, respectively. As the wheat headed and matured, less of the variation in reflectance was associated with planting date and more with available soil moisture. By mid July, soil moisture accounted for 73 percent and 69 percent of the variation in reflectance in red and near infrared bands, respectively. Differences in spectral reflectance among treatments were attributed to changes in leaf area index, biomass, and percent soil cover. Cultivar and N fertilization rate were associated with very little of the variation in the reflectance of these canopies.
EarthSat spring wheat yield system test 1975, appendix 4
NASA Technical Reports Server (NTRS)
1976-01-01
A computer system is presented which processes meteorological data from both ground observations and meteorologic satellites to define plant weather aspects on a four time per day basis. Plant growth stages are calculated and soil moisture profiles are defined by the system. The EarthSat system assesses plant stress and prepares forecasts of end-of-year yields. The system was used to forecast spring wheat yields in the upper Great Plains states. Hardware and software documentation is provided.
NASA Technical Reports Server (NTRS)
Asrar, G.; Kanemasu, E. T.; Yoshida, M.
1985-01-01
The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III
1979-01-01
Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data.
Sukumaran, Sivakumar; Lopes, Marta; Dreisigacker, Susanne; Reynolds, Matthew
2018-04-01
GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight and grain number. Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten environments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci-6A (85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)-were associated with multiple traits. The study identified two loci that showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79-85 cM) harbored a gene TaGW2-6A. We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.
NASA Technical Reports Server (NTRS)
Otter-Nacke, S.; Godwin, D. C.; Ritchie, J. T.
1986-01-01
CERES-Wheat is a computer simulation model of the growth, development, and yield of spring and winter wheat. It was designed to be used in any location throughout the world where wheat can be grown. The model is written in Fortran 77, operates on a daily time stop, and runs on a range of computer systems from microcomputers to mainframes. Two versions of the model were developed: one, CERES-Wheat, assumes nitrogen to be nonlimiting; in the other, CERES-Wheat-N, the effects of nitrogen deficiency are simulated. The report provides the comparisons of simulations and measurements of about 350 wheat data sets collected from throughout the world.
Modeling light and temperature effects on leaf emergence in wheat and barley
NASA Technical Reports Server (NTRS)
Volk, T.; Bugbee, B.
1991-01-01
Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.
NASA Astrophysics Data System (ADS)
Finnan, J. M.; Burke, J. I.; Jones, M. B.
A comparison of the performance of different ozone indices in exposure-response functions was made using crop yield and ozone monitoring data from spring wheat studies carried out within the framework of the European open-top chamber programme. Indices were calculated for a twelve-hour period (0900-2100 h, local time). An attempt was made to incorporate a measure of absorbed dose into current indices by weighting with simultaneous sunshine hour values. Both linear and Weibull models were fitted to the exposure-response data in order to evaluate index performance. Cumulative indices which employed continuous weighting functions (allometric or sigmoid) or which censored concentrations above threshold values performed best as they attributed increasing weight to higher concentrations. Indices which simply summed concentrations greater than or equal to a threshold value did not perform as well as equal weight was given to all concentrations greater than the threshold value. Model selection was found to be very important in determining the indices that best describe the relationship between exposure and response. In general weighting hourly ozone concentrations with the corresponding sunshine hour values in an attempt to incorporate this proposed measure of plant activity into current indices did not improve index performance. Ozone exposure indices accounted for a large proportion of the variability in data (91%) and it is suggested that a strong link exists between exposure and dose.
Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen
2018-03-01
A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.
Zhang, Ruiqi; Sun, Bingxiao; Chen, Juan; Cao, Aizhong; Xing, Liping; Feng, Yigao; Lan, Caixia; Chen, Peidu
2016-10-01
Powdery mildew resistance gene Pm55 was physically mapped to chromosome arm 5VS FL 0.60-0.80 of Dasypyrum villosum . Pm55 is present in T5VS·5AL and T5VS·5DL translocations, which should be valuable resources for wheat improvement. Powdery mildew caused by Blumeria graminis f. sp. tritici is a major wheat disease worldwide. Exploiting novel genes effective against powdery mildew from wild relatives of wheat is a promising strategy for controlling this disease. To identify novel resistance genes for powdery mildew from Dasypyrum villosum, a wild wheat relative, we evaluated a set of Chinese Spring-D. villosum disomic addition and whole-arm translocation lines for reactions to powdery mildew. Based on the evaluation data, we concluded that the D. villosum chromosome 5V controls post-seedling resistance to powdery mildew. Subsequently, three introgression lines were developed and confirmed by molecular and cytogenetic analysis following ionizing radiation of the pollen of a Chinese Spring-D. villosum 5V disomic addition line. A homozygous T5VS·5AL translocation line (NAU421) with good plant vigor and full fertility was further characterized using sequential genomic in situ hybridization, C-banding, and EST-STS marker analysis. A dominant gene permanently named Pm55 was located in chromosome bin 5VS 0.60-0.80 based on the responses to powdery mildew of all wheat-D. villosum 5V introgression lines evaluated at both seeding and adult stages. This study demonstrated that Pm55 conferred growth-stage and tissue-specific dependent resistance; therefore, it provides a novel resistance type for powdery mildew. The T5VS·5AL translocation line with additional softness loci Dina/Dinb of D. villosum provides a possibility of extending the range of grain textures to a super-soft category. Accordingly, this stock is a new source of resistance to powdery mildew and may be useful in both resistance mechanism studies and soft wheat improvement.
ERIC Educational Resources Information Center
Bakri, Mohammad Saleh
The relationship between agricultural extension agents and wheat farmers in the Medina region, Saudi Arabia, was analyzed, based on each group's perception of the relationship. Participants were 73 randomly selected wheat farmers and 31 of 34 agricultural extension agents working in the region during spring 1990. Farmers were interviewed, and…
USDA-ARS?s Scientific Manuscript database
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the wheat resistance gene pool available for germplasm ...
USDA-ARS?s Scientific Manuscript database
Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...
Ma, Chao-Ying; Gao, Li-Yan; Li, Ning; Li, Xiao-Hui; Ma, Wu-Jun; Appels, Rudi; Yan, Yue-Ming
2012-01-01
The relationship between chromosome deletion in wheat and protein expression were investigated using Chinese Spring and fine deletion line 3BS-8. Through 2-DE (2-D electrophoresis) analysis, no differentially expressed proteins (DEPs) were found in leaf samples; however, 47 DEPs showed at least two-fold abundance variation (p < 0.05) in matured wheat grains and 21 spots were identified by tandem MALDI-TOF/TOF-MS. Among the identified spots, four were cultivar-specific, including three (spots B15, B16, and B21) in Chinese Spring and one in 3BS-8 (spot B10). Among variety-different DEPs between Chinese Spring and 3BS-8, most spots showed a higher express profile in CS; only four spots showed up-regulated expression tendency in 3BS-8. An interesting observation was that more than half of the identified protein spots were involved in storage proteins, of which 11 spots were identified as globulins. According to these results, we can presume that the encoded genes of protein spots B15, B16, and B21 were located on the chromosome segment deleted in 3BS-8. PMID:23202959
Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William
2015-10-01
Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Classification of wheat: Badhwar profile similarity technique
NASA Technical Reports Server (NTRS)
Austin, W. W.
1980-01-01
The Badwar profile similarity classification technique used successfully for classification of corn was applied to spring wheat classifications. The software programs and the procedures used to generate full-scene classifications are presented, and numerical results of the acreage estimations are given.
17 CFR 150.2 - Position limits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Hard Red Spring Wheat 600 12,000 12,000 ICE Futures U.S. Cotton No. 2 300 5,000 5,000 Kansas City Board of Trade Hard Winter Wheat 600 12,000 12,000 1 For purposes of compliance with these limits...
17 CFR 150.2 - Position limits.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Hard Red Spring Wheat 600 12,000 12,000 ICE Futures U.S. Cotton No. 2 300 5,000 5,000 Kansas City Board of Trade Hard Winter Wheat 600 12,000 12,000 1 For purposes of compliance with these limits...
17 CFR 150.2 - Position limits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Hard Red Spring Wheat 600 12,000 12,000 ICE Futures U.S. Cotton No. 2 300 5,000 5,000 Kansas City Board of Trade Hard Winter Wheat 600 12,000 12,000 1 For purposes of compliance with these limits...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Lophopyrum elongatum is a highly salt-tolerant relative of wheat. Its salt tolerance is partially expressed in the amphiploid from a cross between wheat cv. Chinese Spring and L. elongatum. Genetic studies showed that the tolerance of gradually imposed salt stress is controlled by L. elongatum chromosomes 3E, 4E, 5E, and 7E and the tolerance of suddenly imposed salt stress by chromosomes 3E, 5E, 6E, and 7E. In wheat, rye, barley, and Dasypyrum, chromosomes of the same homoeologous groups, 3, 5, 6, and 7, were found to control the tolerance of these stress regimes. To gain insight into the physiological mechanismsmore » of salt tolerance by wheat and L. elongatum, accumulation of Na and K, 20 protein amino acids, glycinebetaine, aminobutyrate, all TCA cycle intermediates, oxalate, glycerol-3-P, glyceraldehyde-3-P, pyruvate, lactate, ornithine, taurine, glucose, sucrose and other sugars was examined in the amphiploid and Chinese Spring by gas chromatography and H-NMR.« less
USDA-ARS?s Scientific Manuscript database
Identifying new QTLs and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a RIL population developed from a cross of an elite wheat line (WCB414) and an exotic genotype with supernumerary spikelets (SS) was used to identify QTLs and n...
Long-term Tillage influences on soil carbon, nitrogen, physical, chemical, and biological properties
USDA-ARS?s Scientific Manuscript database
Long-term tillage influences physical, chemical, and biological properties of the soil environment and thereby crop production and quality. We evaluated the effect of long-term (>20 yrs) tillage no-till, spring till, and fall plus spring till under continuous spring wheat (Triticum aestivum L.) on s...
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Ates, S; Keles, G; Demirci, U; Dogan, S; Ben Salem, H
2017-11-01
Dual-purpose management of winter cereals for grazing and grain production provides highly nutritive forage for ruminants in the spring and may positively affect straw feeding value. A 2-yr study investigated the effect of spring defoliation of triticale, wheat, and rye at the tillering and stem elongation stages on total biomass, grain yields, and straw quality. Furthermore, straws of spring-defoliated and undefoliated (control) cereal crops were evaluated for nutritional value and voluntary intake as a means of assessing the efficiency of dual-purpose management systems from the winter feeding context as well. The feeding study consisted of 9 total mixed rations (TMR), each containing 35% triticale, rye, or wheat straw obtained under 3 spring-defoliation regimens. The TMR were individually fed to fifty-four 1-yr-old Anatolian Merino ewes for 28 d. Defoliation of the crops at tillering did not affect the total biomass production or grain yields. However, biomass and grain yields were reduced ( < 0.01) by 55 and 52%, respectively, in crops defoliated at stem elongation. Straw of spring-defoliated cereals had less NDF and ADF concentrations ( < 0.01) but greater CP ( < 0.01), nonfiber carbohydrates ( < 0.01), and ME concentrations ( < 0.01) compared with straw from undefoliated crops. The increase in the nutritive value of straw led to greater nutrient digestion ( < 0.01) and intake of DM and OM of ewes ( < 0.01). However, sheep live weight gain did not differ among treatments ( > 0.77). This study indicated that straw feeding value and digestibility can be increased through spring defoliation.
van den Broeck, Hetty C; van Herpen, Teun WJM; Schuit, Cees; Salentijn, Elma MJ; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J; Smulders, Marinus JM; Gilissen, Ludovicus JWJ; van der Meer, Ingrid M
2009-01-01
Background Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD). Results The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. Conclusion The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties. PMID:19351412
Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao
2015-11-04
Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.
CANCER MORTALITY IN FOUR NORTHERN WHEAT PRODUCING STATES
Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of s...
Registration of 'Norden' hard red spring wheat
USDA-ARS?s Scientific Manuscript database
Grain yield, protein content, and straw strength are the three primary traits that growers consider when selecting wheat cultivars in the Red River Valley region of Minnesota and North Dakota. ‘Norden’ (PI 665250) was released by the University of Minnesota Agricultural Experiment Station in 2012 b...
Changes in land use as a possible factor in Mourning Dove population decline in Central Utah
Ostrand, William D.; Meyers, P.M.; Bissonette, J.A.; Conover, M.R.
1998-01-01
Mourning Dove (Zenaida macroura) population indices for the western United States have declined significantly since 1966. Based on data collected in 1951-1952, in Fillmore, Utah, we examined whether there had been a local decline in the dove population index since the original data were collected. We then determined whether habitat had been altered, identified which foraging habitats doves preferred, and assessed whether changes in land use could be responsible, in part, for a decline in the local population index. We found that dove population indices declined 72% and 82% from 1952-1992 and 1952-1993, respectively. The most dramatic change in habitat was an 82% decline in land devoted to dry land winter wheat production and a decline in livestock feed pens. Doves foraged primarily in harvested wheat fields, feed pens, and weedy patches. We hypothesize that a decrease in wheat availability during the spring and the consolidation of the livestock industry have contributed to a population decline of Mourning Doves in central Utah.
NASA Technical Reports Server (NTRS)
Cheffin, R. E.; Woolley, S. K. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The estimates of developmental stage dates from the LACIE adjustable crop calendar (ACC) winter wheat model was somewhat more accurate than the historical crop calendar after jointing. The ACC winter wheat model was not so accurate for the Texas Panhandle as it was for the other areas of the USPG-7 because dry soil conditions delayed fall planting in the Panhandle. Since the LACIE ACC winter wheat model does not contain a moisture term and it was started with historical planting dates, lengthy delays in planting mean that the ACC model will probably be started early and will estimate the developmental growth stages to occur too early in the season. The LACIE ACC spring wheat model was also started early in most areas because of late planting due to fields wet from melting snow and rain. The starter model used to estimate spring planting dates was not accurate under these wet soil conditions and tended to predict the developmental stages to occur earlier than the dates observed in the fields.
Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun
2009-12-01
Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.
Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France.
Ben-Ari, Tamara; Boé, Julien; Ciais, Philippe; Lecerf, Remi; Van der Velde, Marijn; Makowski, David
2018-04-24
In 2016, France, one of the leading wheat-producing and wheat-exporting regions in the world suffered its most extreme yield loss in over half a century. Yet, yield forecasting systems failed to anticipate this event. We show that this unprecedented event is a new type of compound extreme with a conjunction of abnormally warm temperatures in late autumn and abnormally wet conditions in the following spring. A binomial logistic regression accounting for fall and spring conditions is able to capture key yield loss events since 1959. Based on climate projections, we show that the conditions that led to the 2016 wheat yield loss are projected to become more frequent in the future. The increased likelihood of such compound extreme events poses a challenge: farming systems and yield forecasting systems, which often support them, must adapt.
Grazing management for fall-grown oat forages
USDA-ARS?s Scientific Manuscript database
Fall forage production of oat generally will out-yield winter wheat or cereal rye by about a 2:1 ratio, regardless of weather conditions or harvest date because oat plants will joint, elongate, and produce a seedhead before winter, while winter wheat or cereal rye will remain vegetative until spring...
Hamblin, John; Stefanova, Katia; Angessa, Tefera Tolera
2014-01-01
Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.
Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha
2016-07-01
Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.
Muleta, Kebede T; Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael
2017-01-01
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding.
Bulli, Peter; Rynearson, Sheri; Chen, Xianming; Pumphrey, Michael
2017-01-01
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding. PMID:28591221
Response of microRNAs to cold treatment in the young spikes of common wheat.
Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying
2017-02-28
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.
The pangenome of hexaploid bread wheat.
Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David
2017-06-01
There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Dolatabadian, Aria; Sanavy, Seyed Ali Mohammad Modarres; Gholamhoseini, Majid; Joghan, Aydin Khodaei; Majdi, Mohammad; Kashkooli, Arman Beyraghdar
2013-04-01
The response of photosynthesis parameters, catalase, superoxide dismutase and peroxidase activity, malondialdehyde, proline, chlorophyll, yield and yield components to foliar application of calcium and simulated acid rain in wheat were investigated. Foliar treatment of calcium led to significant increases in the photosynthesis rate, transpiration rate, stomatal conductance, proline, chlorophyll, yield and yield components in plants subjected to acid rain. Antioxidant enzyme activity and lipid peroxidation in the wheat leaves decreased because of calcium foliar application. Calcium hindered degradation of the rubisco subunits under acid rain treatment compared with water-treated plants. Results suggest that acid rain induces the production of free radicals resulting in lipid peroxidation of the cell membrane so that significant increase in antioxidant enzyme activity was observed. In addition, photosynthetic parameters i.e. photosynthesis rate, transpiration rate and stomatal conductance were drastically suppressed by acid rain. The cellular damage caused by free radicals might be reduced or prevented by a protective metabolism including antioxidative enzymes and calcium. We report that foliar application of calcium before acid rain may ameliorate the adverse effects of acid rain in wheat plants.
Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai
2016-01-01
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.
Kumar, Ranjeet R; Goswami, Suneha; Shamim, Mohammed; Mishra, Upama; Jain, Monika; Singh, Khushboo; Singh, Jyoti P; Dubey, Kavita; Singh, Shweta; Rai, Gyanendra K; Singh, Gyanendra P; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly
2017-01-01
Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis ( Rub and Rca ) and starch biosynthesis pathway ( AGPase, SSS and SBE ) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.
Influence of soil amendments made from digestate on soil physics and the growth of spring wheat
NASA Astrophysics Data System (ADS)
Dietrich, Nils; Knoop, Christine; Raab, Thomas; Krümmelbein, Julia
2016-04-01
Every year 13 million tons of organic wastes accumulate in Germany. These wastes are a potential alternative for the production of energy in biogas plants, especially because the financial subventions for the cultivation of renewable resources for energy production were omitted in 2014. The production of energy from biomass and organic wastes in biogas plants results in the accumulation of digestate and therefore causes the need for a sustainable strategy of the utilization of these residues. Within the scope of the BMBF-funded project 'VeNGA - Investigations for recovery and nutrient use as well as soil and plant-related effects of digestate from waste fermentation' the application of processed digestate as soil amendments is examined. Therefore we tested four different mechanical treatment processes (rolled pellets, pressed pellets, shredded compost and sieved compost) to produce soil amendments from digestate with regard to their impact on soil physics, soil chemistry and the interactions between plants and soil. Pot experiments with soil amendments were performed in the greenhouse experiment with spring wheat and in field trials with millet, mustard and forage rye. After the first year of the experiment, preliminary results indicate a positive effect of the sieved compost and the rolled pellets on biomass yield of spring wheat as compared to the other variations. First results from the Investigation on soil physics show that rolled pellets have a positive effect on the soil properties by influencing size and distribution of pores resulting in an increased water holding capacity. Further ongoing enhancements of the physical and chemical properties of the soil amendments indicate promising results regarding the ecological effects by increased root growth of spring wheat.
Elliott, Norman C; Brewer, Michael J; Giles, Kristopher L
2018-04-12
Winter wheat is Oklahoma's most widely grown crop, and is planted during September and October, grows from fall through spring, and is harvested in June. Winter wheat fields are typically interspersed in a mosaic of habitats in other uses, and we hypothesized that the spatial and temporal composition and configuration of landscape elements, which contribute to agroecosystem diversity also influence biological control of common aphid pests. The parasitoid Lysiphlebus testaceipes (Cresson; Hymenoptera: Aphidiinae) is highly effective at reducing aphid populations in wheat in Oklahoma, and though a great deal is known about the biology and ecology of L. testaceipes, there are gaps in knowledge that limit predicting when and where it will be effective at controlling aphid infestations in wheat. Our objective was to determine the influence of landscape structure on parasitism of cereal aphids by L. testaceipes in wheat fields early in the growing season when aphid and parasitoid colonization occurs and later in the growing season when aphid and parasitoid populations are established in wheat fields. Seventy fields were studied during the three growing seasons. Significant correlations between parasitism by L. testaceipes and landscape variables existed for patch density, fractal dimension, Shannon's patch diversity index, percent wheat, percent summer crops, and percent wooded land. Correlations between parasitism and landscape variables were generally greatest at a 3.2 km radius surrounding the wheat field. Correlations between parasitism and landscape variables that would be expected to increase with increasing landscape diversity were usually positive. Subsequent regression models for L. testaceipes parasitism in wheat fields in autumn and spring showed that landscape variables influenced parasitism and indicated that parasitism increased with increasing landscape diversity. Overall, results indicate that L. testaceipes utilizes multiple habitats throughout the year depending on their availability and acceptability, and frequently disperses among habitats. Colonization of wheat fields by L. testaceipes in autumn appears to be enhanced by proximity to fields of summer crops and semi-natural habitats other than grasslands.
NASA Technical Reports Server (NTRS)
Blanchard, B. J.; Mcfarland, M. J.; Theis, S.; Richter, J. G.
1981-01-01
Electrical scanning microwave radiometer brightness temperature, meteorological data, climatological data, and winter wheat crop information were used to estimate that soil moisture content in the Great Plains region. Results over the predominant winter wheat areas indicate that the best potential to infer soil moisture occurs during fall and spring. These periods encompass the growth stages when soil moisture is most important to winter wheat yield. Other significant results are reported.
The 1980 US/Canada wheat and barley exploratory experiment, volume 1
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.
1983-01-01
The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.
Utility of seasonal climate forecasts in management of winter-wheat grazing
USDA-ARS?s Scientific Manuscript database
Winter wheat in the southern Great Plains is a dual crop that produces livestock forage in the fall and winter and a grain crop in the spring. Forage production is highly dependent upon climatic variability, but stocking rate purchasing decisions must generally be made shortly after the fall planti...
Effectiveness of herbicides for control of hairy vetch (Vicia villosa) in winter wheat
USDA-ARS?s Scientific Manuscript database
We conducted a field experiment in 2009-10 at Pennsylvania and Maryland locations, and repeated it in 2010-11, to test the effectiveness of post-emergent herbicides applied at fall and spring timings on seeded hairy vetch in winter wheat. We tested 16 herbicide treatment combinations that included ...
USDA-ARS?s Scientific Manuscript database
Water availability is commonly the most limiting factor to crop production. This study was conducted to map quantitative trait loci (QTL) involved in drought tolerance in wheat (Triticum aestivum L.) to enable their use for marker assisted selection (MAS) in breeding. Using amplified fragment leng...
USDA-ARS?s Scientific Manuscript database
Northern areas of the western United States are one of the most productive wheat growing regions in the United States. Increasing productivity through breeding is hindered by several biotic stresses which slow and constrain targeted yield improvement. In order to understand genetic variation for str...
USDA-ARS?s Scientific Manuscript database
Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....
USDA-ARS?s Scientific Manuscript database
Root rot caused by Rhizoctonia species is an economically important soilborne disease of spring planted wheat in growing regions of the Pacific Northwest (PNW). The main method of controlling the disease currently is through tillage, which deters farmers from adopting the benefits of minimal tillage...
Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035
Krishnan, Vandhana; Jiwan, Derick; Chen, Xianming; Skinner, Daniel Z.; See, Deven R.
2017-01-01
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL) for stripe rust resistance in PI 480035. A spring wheat, “Avocet Susceptible” (AvS), was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL). The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40) of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52) indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance. PMID:28542451
Phillips, Hannah N.; Delate, Kathleen; Turnbull, Robert
2017-01-01
Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye. PMID:29099863
Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert
2017-01-01
Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.
Jia, Aolin; Ren, Yan; Gao, Fengmei; Yin, Guihong; Liu, Jindong; Guo, Lu; Zheng, Jizhou; He, Zhonghu; Xia, Xianchun
2018-05-01
Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.
Spring Small Grains Area Estimation
NASA Technical Reports Server (NTRS)
Palmer, W. F.; Mohler, R. J.
1986-01-01
SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.
Turuspekov, Yerlan; Baibulatova, Aida; Yermekbayev, Kanat; Tokhetova, Laura; Chudinov, Vladimir; Sereda, Grigoriy; Ganal, Martin; Griffiths, Simon; Abugalieva, Saule
2017-11-14
Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.
1982-02-28
in March and potted in April. Seed sowing will ta..-e place in mid-May. The species sown will include a grass. wheat, lettuce and radish and C... effects varied. Soe started negativeLy, and became positive; others remained negative ( radish ), and others were positive aLl the time (wheat). ALL...agronomic plants selected were radish (Webb’s French Break- fast), lettuce (Paris White), wheat (spring), red fescue (Merlin) and ryegrass (S24). Each
Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.
Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean
2012-12-01
Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.
Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg
2011-01-01
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low. PMID:21829479
Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg
2011-01-01
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.
Zhang, Ai; Li, Ning; Gong, Lei; Gou, Xiaowan; Wang, Bin; Deng, Xin; Li, Changping; Dong, Qianli; Zhang, Huakun
2017-01-01
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops. PMID:28821592
USDA-ARS?s Scientific Manuscript database
Soil-borne pathogens of the Pacific Northwest decrease yields in both spring and winter wheat. Pathogens of economic importance include Fusarium culmorum, Pratylenchus neglectus, P. thornei, and Rhizoctonia solani AG8. Few options are available to growers to manage these pathogens and reduce yield l...
Chlorophenoxy herbicides which have endocrine disrupting properties, are used widely both in cereal grain agriculture and in non-agricultural settings, such as right-of-ways, lawns, and parks. Most of the spring and durum wheat produced in the U.S. is grown in four northern stat...
USDA-ARS?s Scientific Manuscript database
The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG-8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these cond...
USDA-ARS?s Scientific Manuscript database
Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...
USDA-ARS?s Scientific Manuscript database
Celiac disease (CD) is prevalent in 0.5 to 1.26% of adolescents and adults. The disease develops in genetically susceptible individuals as a result of ingestion of gluten forming proteins found in cereals such as, wheat (Triticum aestivum L.), rye (Secale cereale L.) and barley (Hordeum sativum L.)...
MALFORMATIONS AND OTHER ADVERSE PERINATAL OUTCOMES IN FOUR U.S. WHEAT-PRODUCING STATES
ABSTRACT
Chlorophenoxy herbicides are widely used in the U.S. and Western Europe in
grain agriculture and for weed control. Most of the spring and durum wheat
produced in the U.S. is grown in Minnesota, Montana, North Dakota, and
South Dakota, with over 85% of th...
USDA-ARS?s Scientific Manuscript database
The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these condi...
ERIC Educational Resources Information Center
Kandel, Herman J.; Ransom, Joel K.; Torgerson, David A.; Wiersma, Jochum J.
2010-01-01
Wheat and soybean producers pay a small amount per bushel produced as a check-off. Funds are used for research, outreach, and crop promotion. Commodity organizations and Extension joined forces to develop multi-state educational outreach on spring wheat and soybean production. Participatory planning involved producers in developing these…
The use of organic soil amendments for winter wheat production in Kentucky
USDA-ARS?s Scientific Manuscript database
Most animal manures are land-applied in the fall and spring after crops have been harvested or prior to planting. Surface application of manures in the fall have more potential for nitrogen (N) loss when applied to fallow land compared to land cropped to winter wheat. This study was conducted to d...
NASA Technical Reports Server (NTRS)
Palmer, W. F.; Magness, E. R. (Principal Investigator)
1981-01-01
The reformatted spring small grains labeling procedure is designed to be used for assigning crop identification labels to a predetermined and selected number of dots. The development and description of this procedure is presented.
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.
NASA Astrophysics Data System (ADS)
Astafurova, T.; Zotikova, A.; Morgalev, Yu; Verkhoturova, G.; Postovalova, V.; Kulizhskiy, S.; Mikhailova, S.
2015-11-01
When wheat is cultivated in the media contaminated with platinum nanoparticles, the change in the morphological and physiological indexes of wheat seedlings depends on the physico-chemical parameters of the germination substrate. The changes become less pronounced with the decreasing bioaccessability of the nanomaterial in the following order: water suspension - luvisols - phaeozems. Contamination with nanoparticles affects the height parameters and activates the mechanisms protecting the plant from stress. When using wheat seedlings as test organisms for biotesting the environmental safety of NPs, it is advisable to use the following parameters: weight of roots, weight of aerial part, leaf area, and flavonoid content.
Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).
Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian
2017-01-01
Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.
Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.)
Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian
2017-01-01
Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding. PMID:28955354
A meteorologically-driven yield reduction model for spring and winter wheat
NASA Technical Reports Server (NTRS)
Ravet, F. W.; Cremins, W. J.; Taylor, T. W.; Ashburn, P.; Smika, D.; Aaronson, A. (Principal Investigator)
1983-01-01
A yield reduction model for spring and winter wheat was developed for large-area crop condition assessment. Reductions are expressed in percentage from a base yield and are calculated on a daily basis. The algorithm contains two integral components: a two-layer soil water budget model and a crop calendar routine. Yield reductions associated with hot, dry winds (Sukhovey) and soil moisture stress are determined. Input variables include evapotranspiration, maximum temperature and precipitation; subsequently crop-stage, available water holding percentage and stress duration are evaluated. No specific base yield is required and may be selected by the user; however, it may be generally characterized as the maximum likely to be produced commercially at a location.
Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J
2014-06-01
Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.
Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace
USDA-ARS?s Scientific Manuscript database
Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed b...
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes...
Suitability of spring wheat varieties for the production of best quality pizza.
Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan
2014-08-01
The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.
Delaney, Kevin J; Weaver, David K; Peterson, Robert K D
2010-04-01
The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.
Net returns from segregating dark northern spring wheat by protein concentration during harvest
USDA-ARS?s Scientific Manuscript database
In-line, optical sensing has been developed for on-combine measurement and mapping of grain protein concentration (GPC). The objective of this study was to estimate changes in costs and net returns from using this technology for segregation of the dark northern spring (DNS) subclass of hard red whe...
Growing wheat in Biosphere 2 under elevated CO2: observations and modeling
NASA Technical Reports Server (NTRS)
Tubiello, F. N.; Mahato, T.; Morton, T.; Druitt, J. W.; Volk, T.; Marino, B. D.
1999-01-01
Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.
Identification of USSR Indicator Regions
NASA Technical Reports Server (NTRS)
Disler, J.; Breigh, H. (Principal Investigator)
1980-01-01
Potential indicator regions were determined by comparing the statistics for barley and wheat at the lowest administrative levels for which published statistics were available. Fourteen were selected for review based on their relative abundances of wheat and barely. These potential indicator regions were grouped according to three conditions that could affect labeling and classification accuracies: (1) high-barley content; (2) presence of barley and spring wheat; and (3) presence of barley and winter wheat. Each region was further evaluated based on the availability of crop calendars, LANDSAT acquisitions, and ancillary data. Based on the relative abundance of wheat and barley and the availability of data, three indicator regions were recommended. Within each region, individual oblasts and/or krays were selected according to segment availability and segment acquisition histories for potential barley separation.
NASA Astrophysics Data System (ADS)
Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.
2017-12-01
Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.
NASA Astrophysics Data System (ADS)
Wen, Y.
2017-12-01
Combining mulch and irrigation scheduling may lead to an increase of crop yield and water use efficiency (WUE = crop yield/evapotranspiration) with limited irrigation water, especially in arid regions. Based on 2 years' field experiments with ten irrigation-mulching treatments of spring wheat (Triticum aestivum L.) in the Shiyang River Basin Experiment Station in Gansu Province of Northwest China, a simulation-based optimization model for deficit irrigation scheduling of plastic mulching spring wheat was used to analyze an optimal irrigation scheduling for different deficit irrigation scenarios. Results revealed that mulching may increase maximum grain yield without water stress by 0.4-0.6 t ha-1 in different years and WUE by 0.2-0.3 kg m-3 for different irrigation amounts compared with no mulching. Yield of plastic mulching spring wheat was more sensitive to water stress in the early and development growth stages with an increase of cumulative crop water sensitive index (CCWSI) by 42%, and less sensitive to water stress in the mid and late growth stages with a reduction of CCWSI by 24%. For a relative wet year, when irrigation water is only applied once it should be at the mid to end of booting growth stage. Two irrigations should be applied at the beginning of booting and heading growth stages. The irrigation date can be extended to the beginning of jointing and grain formation growth stages with more water available for irrigation. For a normal or a dry year, the first irrigation should be applied 5-8 days earlier than the wet year. The highest WUE of 3.6 kg m-3 was achieved with 180 mm of irrigation applied twice for mulching in a wet year. Combining mulch and an optimal deficit irrigation scheduling is an effective way to increase crop yield and WUE in arid regions.
Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.
Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H
2013-07-08
The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.
USDA-ARS?s Scientific Manuscript database
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are causing large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using...
USDA-ARS?s Scientific Manuscript database
Over time, many single, all-stage resistance genes to stripe rust (Puccinia striiformis f. sp. tritici) in wheat (Triticum aestivum L.) are circumvented by race changes in the pathogen. In contrast, high-temperature, adult-plant resistance (HTAP), which only is expressed during the adult-plant stag...
USDA-ARS?s Scientific Manuscript database
Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years a...
USDA-ARS?s Scientific Manuscript database
The emergence and spread of the Ug99 race group of the stem rust pathogen in the past decade has exposed the vulnerability of wheat to this disease. Discovery of novel and effective sources of resistance is vital to reduce losses. The experimental breeding line MN06113-8 and cultivar RB07 developed ...
USDA-ARS?s Scientific Manuscript database
Parastagonospora nodorum is a necrotrophic pathogen of wheat, causing Septoria nodorum blotch (SNB) affecting both the leaf and glume. P. nodorum is the major leaf blotch pathogen on spring wheat in Norway. Resistance to the disease is quantitative, but several host-specific interactions between nec...
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) is a mycotoxin found in wheat that is infected with Fusarium fungus. DON may also be converted to a type of "masked mycotoxin," named deoxynivalenol-3-glucoside (D3G), as a result of detoxification process of the plant. Both DON and D3G are known to be toxic. Due to the lack o...
2010-01-01
Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426 Survey sequences of TaEXPB11ws and TsEXPB11 are provided request. PMID:20507562
Improving farming practices reduces the carbon footprint of spring wheat production.
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P
2014-11-18
Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.
Improving farming practices reduces the carbon footprint of spring wheat production
NASA Astrophysics Data System (ADS)
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.
2014-11-01
Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha-1 per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.
Improving farming practices reduces the carbon footprint of spring wheat production
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.
2014-01-01
Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging −256 kg CO2 eq ha−1 per year. For each kg of wheat grain produced, a net 0.027–0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production. PMID:25405548
Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.
2016-01-01
Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292
Development of a winter wheat adjustable crop calendar model
NASA Technical Reports Server (NTRS)
Baker, J. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. After parameter estimation, tests were conducted with variances from the fits, and on independent data. From these tests, it was generally concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson's triquadratic form, in general use for spring wheat, was found to show promise for winter wheat, but special techniques and care were required for its use. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with daily environmental values as independent variables.
1986-09-23
southern regions has already arrived and in central regions this treatment should be carried out during the first 10-day period of June. POWDERY MILDEW ...resolved to obtain good results. Much has already been done. Beets on all 200,000 hectares follow better predecessors — winter wheat , bare fallow and...than 5 million hectares and spring wheat over an area of 11 million hectares were grown using these technologies, which enabled an additional 16
NASA Astrophysics Data System (ADS)
Shirokikh, I. G.; Kozlova, L. M.; Shirokikh, A. A.; Popov, F. A.; Tovstik, E. V.
2017-07-01
The population density and structure of complexes of soil microscopic fungi in the rhizosphere and rhizoplane of spring wheat ( Triticum aestivum L.), plant damage by root rot and leaf diseases, and crop yield were determined in a stationary field experiment on a silty loamy soddy-podzolic soil (Albic Retisol (Loamic, Aric)) in dependence on the soil tillage technique: (a) moldboard plowing to 20-22 cm and (b) non-inversive tillage to 14-16 cm. The results were treated with the two-way ANOVA method. It was shown that the number of fungal propagules in the rhizosphere and rhizoplane of plants in the variant with non-inversive tillage was significantly smaller than that in the variant with plowing. Minimization of the impact on the soil during five years led to insignificant changes in the structure of micromycete complexes in the rhizosphere of wheat. The damage of the plants with root rot and leaf diseases upon non-inversive tillage did not increase in comparison with that upon plowing. Wheat yield in the variant with non-inversive tillage was insignificantly lower than that in the variant with moldboard plowing. The application of biopreparations based on the Streptomyces hygroscopicus A4 and Pseudomonas aureofaciens BS 1393 resulted in a significant decrease of plant damage with leaf rust.
Future crop production threatened by extreme heat
NASA Astrophysics Data System (ADS)
Siebert, Stefan; Ewert, Frank
2014-04-01
Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.
Smillie, R M; Hetherington, S E
1983-08-01
The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by F(R), the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for F(R) to decrease by 50% in leaves at 0 degrees C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, F(R) decreased very slowly in cucumber leaves at 10 degrees C or in chilling-tolerant cabbage leaves at 0 degrees C. Long-term changes in F(R) of barley, wheat, and rye leaves kept at 0 degrees C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0 degrees C under N(2). Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in F(R) than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in F(R) in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured.
EarthSat spring wheat yield system test 1975
NASA Technical Reports Server (NTRS)
1976-01-01
The results of an operational test of the EarthSat System during the period 1 June - 30 August 1975 over the spring wheat regions of North Dakota, South Dakota, and Minnesota are presented. The errors associated with each sub-element of the system during the operational test and the sensitivity of the complete system and each major functional sub-element of the system to the observed errors were evaluated. Evaluations and recommendations for future operational users of the system include: (1) changes in various system sub-elements, (2) changes in the yield model to affect improved accuracy, (3) changes in the number of geobased cells needed to develop an accurate aggregated yield estimate, (4) changes associated with the implementation of future operational satellites and data processing systems, and (5) detailed system documentation.
Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A
2018-02-14
Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Oiestad, A J; Martin, J M; Cook, J; Varella, A C; Giroux, M J
2017-07-01
The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS. Copyright © 2017 Crop Science Society of America.
Fadeev, V S; Shimshilashvili, Kh R; Gaponenko, A K
2008-09-01
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4 degrees C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10-14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.
Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.
Jankielsohn, Astrid
2016-04-01
Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.
2014-01-01
Background As both abiotic stress response and development are under redox control, it was hypothesised that the pharmacological modification of the redox environment would affect the initial development of flower primordia and freezing tolerance in wheat (Triticum aestivum L.). Results Pharmacologically induced redox changes were monitored in winter (T. ae. ssp. aestivum cv. Cheyenne, Ch) and spring (T. ae. ssp. spelta; Tsp) wheat genotypes grown after germination at 20/17°C for 9 d (chemical treatment: last 3 d), then at 5°C for 21 d (chemical treatment: first 4 d) and subsequently at 20/17°C for 21 d (recovery period). Thiols and their disulphide forms were measured and based on these data reduction potentials were calculated. In the freezing-tolerant Ch the chemical treatments generally increased both the amount of thiol disulphides and the reduction potential after 3 days at 20/17°C. In the freezing-sensitive Tsp a similar effect of the chemicals on these parameters was only observed after the continuation of the treatments for 4 days at 5°C. The applied chemicals slightly decreased root fresh weight and increased freezing tolerance in Ch, whereas they increased shoot fresh weight in Tsp after 4 days at 5°C. As shown after the 3-week recovery at 20/17°C, the initial development of flower primordia was accelerated in Tsp, whereas it was not affected by the treatments in Ch. The chemicals differently affected the expression of ZCCT2 and that of several other genes related to freezing tolerance and initial development of flower primordia in Ch and Tsp after 4 d at 5°C. Conclusions Various redox-altering compounds and osmotica had differential effects on glutathione disulphide content and reduction potential, and consequently on the expression of the flowering repressor ZCCT2 in the winter wheat Ch and the spring wheat Tsp. We propose that the higher expression of ZCCT2 in Ch may be associated with activation of genes of cold acclimation and its lower expression in Tsp with the induction of genes accelerating initial development of flower primordia. In addition, ZCCT2 may be involved in the coordinated control of the two processes. PMID:24708599
Gulyás, Zsolt; Boldizsár, Akos; Novák, Aliz; Szalai, Gabriella; Pál, Magda; Galiba, Gábor; Kocsy, Gábor
2014-04-07
As both abiotic stress response and development are under redox control, it was hypothesised that the pharmacological modification of the redox environment would affect the initial development of flower primordia and freezing tolerance in wheat (Triticum aestivum L.). Pharmacologically induced redox changes were monitored in winter (T. ae. ssp. aestivum cv. Cheyenne, Ch) and spring (T. ae. ssp. spelta; Tsp) wheat genotypes grown after germination at 20/17°C for 9 d (chemical treatment: last 3 d), then at 5°C for 21 d (chemical treatment: first 4 d) and subsequently at 20/17°C for 21 d (recovery period). Thiols and their disulphide forms were measured and based on these data reduction potentials were calculated. In the freezing-tolerant Ch the chemical treatments generally increased both the amount of thiol disulphides and the reduction potential after 3 days at 20/17°C. In the freezing-sensitive Tsp a similar effect of the chemicals on these parameters was only observed after the continuation of the treatments for 4 days at 5°C. The applied chemicals slightly decreased root fresh weight and increased freezing tolerance in Ch, whereas they increased shoot fresh weight in Tsp after 4 days at 5°C. As shown after the 3-week recovery at 20/17°C, the initial development of flower primordia was accelerated in Tsp, whereas it was not affected by the treatments in Ch. The chemicals differently affected the expression of ZCCT2 and that of several other genes related to freezing tolerance and initial development of flower primordia in Ch and Tsp after 4 d at 5°C. Various redox-altering compounds and osmotica had differential effects on glutathione disulphide content and reduction potential, and consequently on the expression of the flowering repressor ZCCT2 in the winter wheat Ch and the spring wheat Tsp. We propose that the higher expression of ZCCT2 in Ch may be associated with activation of genes of cold acclimation and its lower expression in Tsp with the induction of genes accelerating initial development of flower primordia. In addition, ZCCT2 may be involved in the coordinated control of the two processes.
Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared
NASA Astrophysics Data System (ADS)
Olinger, Jill M.; Griffiths, Peter R.
1989-12-01
Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9
Spectral behavior of wheat yield variety trials
NASA Technical Reports Server (NTRS)
Hatfield, J. L.
1981-01-01
Little variation between varieties is seen at jointing, but the variability is found to increase during grain filling and decline again at maturity. No relationship is found between spectral response and yield, and when yields are segregated into various classes the spectral response is the same. Spring and winter nurseries are found to separate during the reproductive stage because of differences in dates of heading and maturity, but they exhibit similar spectral responses. The transformed normalized difference is at a minimum after the maximum grain weight occurs and the leaves begin to brown and fall off. These data of 100% ground cover demonstrate that it is not possible to predict grain yield from only spectral data. This, however, may not apply when reduced yields are caused by less-than-full ground cover
NASA Astrophysics Data System (ADS)
Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.
2016-12-01
The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.
Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar
2017-12-01
Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.
Effect of warming temperatures on US wheat yields.
Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier
2015-06-02
Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.
Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen
2005-05-01
To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.
NASA Astrophysics Data System (ADS)
Juszczak, Radoslaw; Sakowska, Karolina; Ziemblinska, Klaudia; Uzdzicka, Bogna; Strozecki, Marcin; Polmanska, Daria; Chojnicki, Bogdan; Urbaniak, Marek; Augustin, Juergen; Necki, Jarek; Olejnik, Janusz
2014-05-01
Greenhouse gases fluxes were measured with chambers on the selected plots of the experimental arable station of Poznan University of Life Sciences in Brody (52o26'N, 16o18'E), Poland. This is a long term experiment, where the same crops are cultivated under the same fertilization treatment schemes (eleven combinations) since 1957. At the blocks of the full 7-year rotation, there are cultivated in permanent rotation: winter wheat ->winter rye -> potato ->spring barley -> triticale and alfalfa (till the second year). GHG fluxes have been measured on plots with the same fertilization level (Nmin-90kg, K2O-120 kg/ha, P2O5-60 kg/ha and Ca), which is very close to the average amount of mineral fertilization applied in western Poland. No catch crops were cultivated between the main crops. The soil was classified as Albic Luviosols according to FAO 2006 classification. CO2 fluxes have been measured monthly since March 2011, while N2O and CH4 fluxes since March 2012 (weekly) and measurements were continued till October 2013. CO2 fluxes were measured with dynamic chambers, while N2O and CH4 fluxes were measured with both static and dynamic chambers approaches (using LOSGATOS gas analyser). Carbon net ecosystem exchange (NEE) and ecosystem respiration (Reco) have been modelled for the entire period based on the measured fluxes (different management treatments were included in the model), while N2O and CH4 fluxes were linearly interpolated between campaigns. Taking into account the accumulation periods between 15th of October and 14th of October of the next year the cumulated NEE was negative only in case of alfalfa, winter rye and winter wheat, reaching in average -3.5 tCO2-C ha-1 for alfalfa and winter rye fields and around -0.4 tCO2-C ha-1 for winter wheat in seasons 2011-2012 and 2012-2013. While, cumulated NEE for spring crops (potato and spring barley) was positive for the same periods and reached in average 1.1 tCO2-C ha-1 and 2.5 tCO2-C ha-1 for spring barley and potatoes, respectively. The fields with spring crops have positive NEE, and hence negative climatic impact, because by more than half of the year the soil was bared and no catch crops were cultivated between main crops. For the entire 12-months period the highest N2O emission rates were recorded at plots of winter wheat and winter rye and reached 2.2 kgN2O-N ha-1 and 2.0 kgN2O-N ha-1, respectively. At plots of alfalfa and potatoes the emission rates were close to 1.5 kgN2O-N ha-1, while at spring barley plots the emission did not exceed 1.1 kgN2O-N ha-1. At the same time, the yearly CH4 uptake reached from -0.9 kgCH4-C ha-1 at plots of alfalfa, -1.5 kgCH4-C ha-1 at plots of winter wheat to around -1.7 kgCH4-C ha-1 at winter rye, potato and spring barley plots.
Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.
Greger, Maria; Landberg, Tommy
2015-01-01
Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.
Mapping Croplands in Morocco and Tunisia using MAGE
NASA Astrophysics Data System (ADS)
McGaughey, K.; Purcell, B.; Tetrault, R. L.; Wasko, C.
2017-12-01
Morocco and Tunisia are both net-wheat importing countries, which experience fluctuations in production due to drought. Knowledge of food supply is critical for the local governments' understanding of food security and to re-assure the population regarding food availability. Tunisia was the epicenter for the event known as the "Arab Spring." Although the Arab Spring had several societal components, chronic uncertainty in the governments' reliability raised concerns about food supply and food availability despite the government's policy responses. Due to its importance for geopolitical as well as market opportunity reasons, in March and April of 2017, analysts from the USDA Foreign Agricultural Service (FAS) traveled to Morocco and Tunisia to conduct crop assessment. Fieldwork data collection is necessary for us as crop analysts to use our convergence of evidence approach, which includes ground information, satellite imagery, meteorological information and reports from our offices abroad. During this trip, analysts used the new mobile application from the National Geospatial Intelligence Agency (NGA) called MAGE to collect fieldwork data for crop classification. Using the several thousand training data collected through the mobile application and by leveraging satellite data within Google Earth Engine, an in-season crop mask was created. The final product was delivered to the team just a few days after returning to USDA Washington and was used in the first wheat production estimate of the season released May 10, 2017. The final product helps analysts determine an experimental in-season area estimation and to focus our other remote sensing tools and products on our areas of interest. The US Department of Agriculture's International Production Assessment Division is responsible for publishing monthly production, area and yield estimates for 17 commodities in over 150 countries.
Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans
2016-11-01
Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.
Hormonal regulation of wheat growth during hydroponic culture
NASA Technical Reports Server (NTRS)
Wetherell, Donald
1988-01-01
Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.
Super Dwarf Wheat for Growth in Confined Spaces
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2011-01-01
USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as <0.4 m tall) wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.
Simonov, A V; Pshenichnikova, T A
2012-11-01
The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.
Bird use of agricultural fields under reduced and conventional tillage in the Texas Panhandle
Flickinger, Edward L.; Pendleton, G.W.
1994-01-01
We conducted bird surveys in reduced-tillage and conventional tillage fields in spring, summer, fall, and winter from 1987 to 1991 in the Texas Panhandle. Eastern meadowlarks, longspurs, and savannah sparrows were more common in reduced-tillage (sorghum and wheat stubble) fields than in conventionally tilled (plowed) fields in at least 1 season. Other species also had patterns suggestive of greater abundance in reduced-tillage fields. Hornedlarks, which prefer habitat with sparse vegetation, were more abundant in plowed fields in all seasons except summer. Bird diversity was greater in reduced-tillage fields than in conventionally tilled fields in summer. Cover density and height were greater in reduced tillage fields in all seasons except spring. Cover density and height rather than cover composition (e.g.,grain stubble or live plants) seemed to be the important factors affecting bird distribution. Patterns of bird abundance between sorghum and wheat stubble fields also were dependent on cover. Herbicide use was not greater in reduced-tillage fields than in conventionally tilled fields. Reduced-tillage agriculture for sorghum and wheat farming should be encouraged in the southern Great Plains as a means of improving the attractiveness of agricultural land to many bird species.
Draeger, Tracie; Moore, Graham
2017-09-01
Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
NASA Astrophysics Data System (ADS)
Dong, Chen; Chu, Zhengpei; Wang, Minjuan; Qin, Youcai; Yi, Zhihao; Liu, Hong; Fu, Yuming
2018-03-01
Minimizing nitrogen (N) consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. Plants cultivated in the controlled environments are sensitive to the low recyclable N (such as from the urine). The purpose of this study is to investigate the effects of nitrogen fertilizer (NH4+-N and NO3--N) disturbance on growth, photosynthetic efficiency, antioxidant defence systems and biomass yield and quality of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 4 controlled groups,Ⅰ: NO3--N: NH4+-N = 7:1 mmol L-1; Ⅱ: NO3--N: NH4+-N = 14:0.5 mmol L-1; Ⅲ: NO3--N: NH4+-N = 7:0.5 mmol L-1 and CK: NO3--N: NH4+-N = 14:1 mmol L-1, and other salt concentrations were the same. The results showed that heading and flowering stages in spring wheat are sensitive to low N concentration, especially NO3--N in group Ⅰ and Ⅲ. NO3- is better to root growth than to shoot growth. The plants were spindling and the output was lower 21.3% when spring wheat was in low N concentration solution. Meanwhile, photosynthetic rate of low N concentrations is worse than that of CK. The soluble sugar content of the edible part of wheat plants is influenced with NO3-: NH4+ ratio. In addition, when N concentration was lowest in group Ⅲ, the lignin content decreased to 2.58%, which was more beneficial to recycle substances in the processes of the environment regeneration.
Evaluation of the Williams-type spring wheat model in North Dakota and Minnesota
NASA Technical Reports Server (NTRS)
Leduc, S. (Principal Investigator)
1982-01-01
The Williams type model, developed similarly to previous models of C.V.D. Williams, uses monthly temperature and precipitation data as well as soil and topological variables to predict the yield of the spring wheat crop. The models are statistically developed using the regression technique. Eight model characteristics are examined in the evaluation of the model. Evaluation is at the crop reporting district level, the state level and for the entire region. A ten year bootstrap test was the basis of the statistical evaluation. The accuracy and current indication of modeled yield reliability could show improvement. There is great variability in the bias measured over the districts, but there is a slight overall positive bias. The model estimates for the east central crop reporting district in Minnesota are not accurate. The estimate of yield for 1974 were inaccurate for all of the models.
Crop weather models of barley and spring wheat yield for agrophysical units in North Dakota
NASA Technical Reports Server (NTRS)
Leduc, S. (Principal Investigator)
1982-01-01
Models based on multiple regression were developed to estimate barley yield and spring wheat yield from weather data for Agrophysical units(APU) in North Dakota. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for Crop Reporting Districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU models show sight improvements in some of the statistics of the models, e.g., explained variation. These models are to be independently evaluated and compared to the previously evaluated CRD models. The comparison will indicate the preferred model area for this application, i.e., APU or CRD.
Dababat, Abdelfattah A; Ferney, Gomez-Becerra Hugo; Erginbas-Orakci, Gul; Dreisigacker, Susanne; Imren, Mustafa; Toktay, Halil; Elekcioglu, Halil I; Mekete, Tesfamariam; Nicol, Julie M; Ansari, Omid; Ogbonnaya, Francis
2016-12-01
To identify loci linked to nematode resistance genes, a total of 126 of CIMMYT advanced spring wheat lines adapted to semi-arid conditions were screened for resistance to Heterodera avenae , Pratylenchus neglectus , and P. thornei , of which 107 lines were genotyped with 1,310 DArT. Association of DArT markers with nematode response was analyzed using the general linear model. Results showed that 11 markers were associated with resistance to H. avenae (pathotype Ha21), 25 markers with resistance to P. neglectus , and 9 significant markers were identified to be linked with resistance to P. thornei . In this work we confirmed that chromosome 4A (~90-105 cM) can be a source of resistance to P. thornei as has been recently reported. Other significant markers were also identified on chromosomal regions where no resistant genes have been reported for both nematodes species. These novel QTL were mapped to chromosomes 5A, 6A, and 7A for H. avenae ; on chromosomes 1A, 1B, 3A, 3B, 6B, 7AS, and 7D for P. neglectus ; and on chromosomes 1D, 2A, and 5B for P. thornei and represent potentially new loci linked to resistance that may be useful for selecting parents and deploying resistance into elite germplasm adapted to regions where nematodes are causing problem.
Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming
2018-06-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.
Population ecology of house mice in unstable habitats
Stickel, L.F.
1979-01-01
(1) The relationships between habitat change and house mouse populations were studied by monthly live trapping in a corn-wheat-hay rotation on a small Maryland farm. (2) Population density reached 53.0/ha in a wheat/hay field in October and 25.4/ha in corn in September. Populations increased by immigration as wheat or corn grew and ripened and decreased by emigration as hay became tall and dense. (3) Survival rates were high in winter in the relatively stable habitat of the wheat/hay field; they were Iow throughout the summer in both fields, and were reduced by corn harvest, less so by wheat harvest. If they were related to population density or increase, or to breeding condition, the relationships were obscured by the overriding influence of habitat change. (4) In the spring, when the population in the hay field 'crashed,' essentially the entire population moved from long-established ranges in the hay field to the field of ripening wheat, where new ranges were established. In the new field, fewer than 30% of the old associations between individuals persisted. (5) Individual mice maintained home ranges (88.1 + 6.1 m in length) in the same general area during their residence in a field. Ranges shifted from month to month, perhaps in response to changes in populations and habitat; exploratory travels and other movements also modified home range behaviour. (6) Minimum life expectancy (residence time) was greater from November (4-5 months) than from June/July (1-2 months). Maximum individual age was 17 months. (7) The demographic pattern fell at the r extreme of the r-K continuum. Mice bred from May to October matured and produced litters rapidly, produced several litters in a season, and had a high turnover rate. (8) It was concluded that migration was a primary mechanism of population regulation in the cropfield mosaic and that it was driven by habitat change, a system in contrast to those described for house mice in confined conditions.
NASA Astrophysics Data System (ADS)
Fischer, M. L.; Billesbach, D. P.; Riley, W. J.; Berry, J. A.; Torn, M. S.
2004-12-01
Accurate prediction of the regional responses of carbon and water fluxes to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal and inter-annual time scales. In particular, modelers predicting fluxes for un-irrigated agriculture are posed with the additional challenge of characterizing the onset and severity of water stress. We report results from three years of an ongoing series of measurement campaigns that quantify the spatial heterogeneity of land surface-atmosphere exchanges of carbon dioxide, water, and energy. Eddy covariance flux measurements were made in pastures and dominant crop types surrounding the US-DOE Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma (36.605 N, 97.485 W). Ancillary measurements included radiation budget, meteorology, soil moisture and temperature, leaf area index, plant biomass, and plant and soil carbon and nitrogen content. Within a given year, the dominant spatial variation in fluxes of carbon, water, and energy are caused by variations of land cover due to the distinct phenology of winter-spring (winter wheat) versus summer crops (e.g., pasture, sorghum, soybeans). Within crop and yearly variations were smaller. In 2002, variations in net ecosystem carbon exchange (NEE), for three closely spaced winter wheat fields was 10-20%. Variations between years for the same crop types were also large. Net primary production (NPP) of winter wheat in the spring of 2003 versus 2002 increased by a factor of two, while NEE increased by 35%. The large increase in production and NEE are positively correlated with precipitation, integrated over the previous summer-fall periods. We discuss the implications of these results by extracting and comparing factors relevant for parameterization of land surface models and by comparing crop yield with historic variations in yield at the landscape scale.
NASA Astrophysics Data System (ADS)
Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.
2017-12-01
Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than in no-till. Moving forward, our clustered and paired EC towers can provide insights into the effects of tillage and different grazing management practices on CO2 dynamics in winter wheat and the effects of tillage on CO2 dynamics in canola production systems.
Beres, B L; Cárcamo, H A; Bremer, E
2009-12-01
Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.
NASA Astrophysics Data System (ADS)
Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.
2017-12-01
Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (P<0.01). The Wild and Old genotype had a more positive response to compost for root length and diameter, N-cycling enzyme activities, microbial biomass, and soil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts should consider incorporating root traits of older genotypes to better support the beneficial interactions between crop roots and their rhizosphere microbiome.
NASA Technical Reports Server (NTRS)
Aase, J. K.; Siddoway, F. H.; Millard, J. P.
1984-01-01
An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.
NASA Technical Reports Server (NTRS)
Baker, J. R. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Least squares techniques were applied for parameter estimation of functions to predict winter wheat phenological stage with daily maximum temperature, minimum temperature, daylength, and precipitation as independent variables. After parameter estimation, tests were conducted using independent data. It may generally be concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson triquadratic form, in general use for spring wheat, yielded good results, but special techniques and care are required. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with averaged daily environmental values as independent variables.
Planting data and wheat yield models. [Kansas, South Dakota, and U.S.S.R.
NASA Technical Reports Server (NTRS)
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A variable date starter model for spring wheat depending on temperature was more precise than a fixed date model. The same conclusions for fall-planted wheat were not reached. If the largest and smallest of eight temperatures were used to estimate daily maximum and minimum temperatures; respectively, a 1-4 F bias would be introduced into these extremes. For Kansas, a reduction of 0.5 bushels/acre in the root-mean-square-error between model and SRS yields was achieved by a six fold increase (7 to 42) in the density of weather stations. An additional reduction of 0.3 b/A was achieved by incorporating losses due to rusts in the model.
2012-01-01
Background Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. PMID:22857656
Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R
2005-11-01
Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.
Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation
NASA Astrophysics Data System (ADS)
Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina
This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.
Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui
2017-09-20
Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.
LACIE - An application of meteorology for United States and foreign wheat assessment
NASA Technical Reports Server (NTRS)
Hill, J. D.; Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.
1980-01-01
This paper describes the overall Large Area Crop Inventory Experiment technical approach utilizing the global weather-reporting network and the Landsat satellite to make a quasi-operational application of existing research results, and the accomplishments of this cooperative experiment in utilizing the weather information. Global weather data were utilized in preparing timely yield estimates for selected areas of the U.S. Great Plains, the U.S.S.R. and Canada. Additionally, wheat yield models were developed and pilot tested for Brazil, Australia, India and Argentina. The results of the work show that heading dates for wheat in North America can be predicted with an average absolute error of about 5 days for winter wheat and 4 days for spring wheat. Independent tests of wheat yield models over a 10-year period for the U.S. Great Plains produced a root-mean-square error of 1.12 quintals per hectare (q/ha) while similar tests in the U.S.S.R. produced an error of 1.31 q/ha. Research designed to improve the initial capability is described as is the rationale for further evolution of a capability to monitor global climate and assess its impact on world food supplies.
Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.
Sinha, R N; Tuma, D; Abramson, D; Muir, W E
1988-01-01
The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.
Tuma, D; Sinha, R N; Muir, W E; Abramson, D
1989-05-01
Western hard red spring wheat, stored at 20 and 25% moisture contents for 10 months during 1985-86, was monitored for biotic and abiotic variables in 10 unheated bins in Winnipeg, Manitoba. The major odor volatiles identified were 3-methyl-1-butanol, 3-octanone and 1-octen-3-ol. The production of these volatiles was associated and correlated with microfloral infection. Ventilation, used for cooling and drying of grain, disrupted microfloral growth patterns and production of volatiles. The highest levels of 3-methyl-1-butanol occurred in 25% moisture content wheat infected with bacteria, Penicillium spp. and Fusarium spp. In non-ventilated (control) bins with 20% moisture content wheat, 3-methyl-1-butanol was correlated with infection by members of the Aspergillus glaucus group and bacteria. In control bins, 1-octen-3-ol production was correlated with infection of wheat of both moisture contents by Penicillium spp. The fungal species, isolated from damp bin-stored wheat and tested for production of odor volatiles on wheat substrate, included Alternaria alternata (Fr.) Keissler, Aspergillus repens (Corda) Saccardo, A. flavus Link ex Fries, A. versicolor (Vuill.) Tiraboschi, Penicillium chrysogenum Thom, P. cyclopium Westling, Fusarium moniliforme Sheldon, F. semitectum (Cooke) Sacc. In the laboratory, fungus-inoculated wheat produced 3-methyl-1-butanol; 3-octanone and 1-octen-3-ol were also produced, but less frequently. Two unidentified bacterial species isolated from damp wheat and inoculated on agar produced 3-methyl-1-butanol.
The water factor in harvest-sprouting of hard red spring wheat
NASA Technical Reports Server (NTRS)
Bauer, A.; Black, A. L. (Principal Investigator)
1983-01-01
Sprouting in unthreshed, ripe, hard red spring wheat (Triticum aestivum L.) is induced by rain, but sprouting does not necessarily occur because the crop is wetted. The spike and grain water conditions conducive to sprouting were determined in a series of laboratory experiments. Sprouting did not occur in field growing wheat wetted to 110% water concentration until the spike water concentration was reduced to 12% and maintained at this concentration for 2 days before wetting. When cut at growth stage 11.3, Feekes scale, Saratovskaya 20 (USSR) sprouted after 4 days drying, Olaf and Alex between 7 and 15 days drying and Columbus, recognized for its resistance to harvest time sprouting, after more than 15 days drying. Sprouting potential was enhanced after 4 wetting drying cycles in which any wetted interval was too brief to permit sufficient water imbibition to initiate sprouting. At harvest ripeness, grain water concentration exceeded spike water concentration by 0.7 percentage units. Following 6 months storage, 20% of the kernels in 300 spike bundles (simulating windrows) sprouted within 28 hrs after initiation of wetting to saturation (150% water concentration). Ninety percent sprouting occurred within 8 days in bundles maintained at 75% water concentration and higher, but less sprouting occurred in bundles dried to 50% water concentration before resaturation.
NASA Technical Reports Server (NTRS)
Aase, J. K.; Millard, J. P.; Siddoway, F. H. (Principal Investigator)
1982-01-01
Radiance measurements from handheld (Exotech 100-A) and air-borne (Daedalus DEI 1260) radiometers were related to wheat (Triticum aestivum L.) stand densities (simulated winter wheat winterkill) and to grain yield for a field located 11 km northwest of Sidney, Montana, on a Williams loam soil (fine-loamy, mixed Typic Argiborolls) where a semidwarf hard red spring wheat cultivar was needed to stand. Radiances were measured with the handheld radiometer on clear mornings throughout the growing season. Aircraft overflight measurements were made at the end of tillering and during the early stem extension period, and the mid-heading period. The IR/red ratio and normalized difference vegetation index were used in the analysis. The aircraft measurements corroborated the ground measurements inasmuch as wheat stand densities were detected and could be evaluated at an early enough growth stage to make management decision. The aircraft measurements also corroborated handheld measurements when related to yield prediction. The IR/red ratio, although there was some growth stage dependency, related well to yield when measured from just past tillering until about the watery-ripe stage.
Spring-staging ecology of midcontinent greater white-fronted geese
Krapu, G.L.; Reinecke, K.J.; Jorde, Dennis G.; Simpson, S.G.
1995-01-01
A major part of the midcontinent greater white-fronted goose (Anser albifrons) population stages for several weeks in spring in the Rainwater Basin Area (RBA) of south-central Nebraska where substantial mortality from disease occurs periodically. Effective management of this population requires better data on use of habitat, vulnerability to disease, and the role of staging areas in migration and reproduction. We studied use of habitat, foods, nutrient dynamics, and effect of changes in agriculture on food availability and habitat needs in spring 1979-80. During daylight, geese were observed primarily in harvested cornfields (76%) and growing winter wheat (23%). Corn grain and winter wheat shoots composed 90 and 9%, respectively, of foods consumed by collected geese (n = 42). Feeding activity did not vary among post-harvest cornfield treatments except that little feeding occurred (P 0.05) of temporal variation in calcium content. Adult geese storing 14.2 g of fat per day deposited approximately 582 g of fat between 22 February and 8 April. Energy requirements for thermal regulation were small compared with requirements for fat synthesis and probably had little effect on nutrient deposition. The 34,000 white-fronted geese present on the Harvard Marsh and Prairie Dog Marsh study areas in March 1980 probably used <20% of the corn available within a 5-km radius. We believe that midcontinent white-fronted geese arrive on Arctic breeding grounds with larger and less variable fat reserves than prior to modern agricultural development. We attribute this response to increased food availability on staging areas where the net effect of agricultural changes has been an increase in corn availability. Waterfowl managers can increase dispersion of geese and provide favorable foraging conditions by maintaining well-distributed wetland roosting habitat and by working with private landowners to ensure access to grain in the vicinity of wetlands.
NASA Astrophysics Data System (ADS)
Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.
2017-06-01
Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.
Global adaptation patterns of Australian and CIMMYT spring bread wheat.
Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark
2007-10-01
The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.
Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min
2012-08-01
A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.
Lv, Geng-Yin; Guo, Xiao-Guang; Xie, Li-Ping; Xie, Chang-Gen; Zhang, Xiao-Hong; Yang, Yuan; Xiao, Lei; Tang, Yu-Ying; Pan, Xing-Lai; Guo, Ai-Guang; Xu, Hong
2017-01-01
Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4–9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions. PMID:28659962
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...
Perennial plan establishment and productivity can be influenced by previous annual crops
USDA-ARS?s Scientific Manuscript database
Developing efficient, economical methods of perennial mixture establishment is needed for grazing and conservation purposes. Study objectives were to evaluate different perennial monocultures and mixtures planted into spring wheat (Triticum aestivum L.), corn (Zea mays L.), soybean (Glycine max L. ...
Application of wheat yield model to United States and India. [Great Plains
NASA Technical Reports Server (NTRS)
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.
Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu
2013-08-20
Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.
da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen
2017-04-01
Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.)
Kasarda, Donald D.; Bernardin, John E.; Qualset, Calvin O.
1976-01-01
The synthesis of the A-gliadin protein fraction derived from the endosperm of the grain of hexaploid bread wheats (Triticum aestivum L.), which is toxic in celiac disease, was associated with the α arm of the 6A chromosome through use of the substitution lines of “Cheyenne” chromosomes in “Chinese Spring”. The association was made through the use of ditelocentric stocks of Chinese Spring. The synthesis of many other gliadin components in the gel electrophoretic patterns of these two varieties could be associated with particular chromosomes as well. All genes detected were located in the chromosomes of homoeologous groups 1 and 6. It is possible to remove some of the proteins toxic to people with celiac disease from wheat (flour) by chromosome manipulation. If the toxic factor is not widely distributed among the storage protein components, it may be possible to produce a wheat that would be safe for celiac patients to eat. Images PMID:16592355
Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji
2013-09-01
The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.
Endler, Peter Christian; Matzer, Wolfgang; Reich, Christian; Reischl, Thomas; Hartmann, Anna Maria; Thieves, Karin; Pfleger, Andrea; Hofäcker, Jürgen; Lothaller, Harald; Scherer-Pongratz, Waltraud
2011-01-01
The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found. PMID:22125426
Climate change increases deoxynivalenol contamination of wheat in north-western Europe.
van der Fels-Klerx, H J; Olesen, J E; Madsen, M S; Goedhart, P W
2012-01-01
Climate change will affect the development of cereal crops and the occurrence of mycotoxins in these crops, but so far little research has been done on quantifying the expected effects. The aim of this study was to assess climate change impacts on the occurrence of deoxynivalenol in wheat grown in north-western Europe by 2040, considering the combined effects of shifts in wheat phenology and climate. The study used climate model data for the future period of 2031-2050 relative to the baseline period of 1975-1994. A weather generator was used for generating synthetic series of daily weather data for both the baseline and the future periods. Available models for wheat phenology and prediction of deoxynivalenol concentrations in north-western Europe were used. Both models were run for winter wheat and spring wheat, separately. The results showed that both flowering and full maturation of wheat will be earlier in the season because of climate change effects, about 1 to 2 weeks. Deoxynivalenol contamination was found to increase in most of the study region, with an increase of the original concentrations by up to 3 times. The study results may inform governmental and industrial risk managers to underpin decision-making and planning processes in north-western Europe. On the local level, deoxynivalenol contamination should be closely monitored to pick out wheat batches with excess levels at the right time. Using predictive models on a more local scale could be helpful to assist other monitoring measures to safeguard food safety in the wheat supply chain.
Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M
2017-03-01
The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.
Crop calendars for the US, USSR, and Canada in support of the early warning project
NASA Technical Reports Server (NTRS)
Hodges, T.; Sestak, M. L.; Trenchard, M. H. (Principal Investigator)
1980-01-01
New crop calendars are produced for U.S. regions where several years of periodic growth stage observations are available on a CRD basis. Preexisting crop calendars from the LACIE are also collected as are U.S. crop calendars currently being created for the Foreign Commodities Production Forecast project. For the U.S.S.R. and Canada, no new crop calendars are created because no new data are available. Instead, LACIE crop calendars are compared against simulated normal daily temperatures and against the Robertson wheat and Williams barley phenology models run on the simulated normal temperatures. Severe inconsistencies are noted and discussed. For the U.S.S.R., spring and fall planting dates can probably be estimated accurately from satellite or meteorological data. For the starter model problem, the Feyerherm spring wheat model is recommended for spring planted small grains, and the results of an analysis are presented. For fall planted small grains, use of normal planting dates supplemented by spectral observation of an early stage is recommended. The importance of nonmeteorological factors as they pertain to meteorological factors in determining fall planting is discussed. Crop calendar data available at the Johnson Space Center for the U.S., U.S.S.R., Canada, and other countries are inventoried.
Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun
2014-09-01
Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.
Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace.
Babiker, E M; Gordon, T C; Chao, S; Newcomb, M; Rouse, M N; Jin, Y; Wanyera, R; Acevedo, M; Brown-Guedira, G; Williamson, S; Bonman, J M
2015-04-01
A new gene for Ug99 resistance from wheat landrace PI 374670 was detected on the long arm of chromosome 7A. Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed by crossing PI 374670 and the susceptible line LMPG-6. The parents and progeny were evaluated for seedling resistance to Pgt races TTKSK, MCCFC, and TPMKC. The DH lines were tested in field stem rust nurseries in Kenya and Ethiopia. The DH lines were genotyped with the 90K wheat iSelect SNP genotyping platform. Goodness-of-fit tests indicated that a single dominant gene in PI 374670 conditioned seedling resistance to the three Pgt races. The seedling resistance locus mapped to the long arm of chromosome 7A and this result was verified in the RIL population screened with the flanking SNP markers using KASP assays. In the same region, a major QTL for field resistance was detected in a 7.7 cM interval and explained 34-54 and 29-36% of the variation in Kenya and Ethiopia, respectively. Results from tests with specific Pgt races and the csIH81 marker showed that the resistance was not due to Sr22. Thus, a new stem rust resistance gene or allele, either closely linked or allelic to Sr15, is responsible for the seedling and field resistance of PI 374670 to Ug99.
NASA Technical Reports Server (NTRS)
Austin, W. W. (Principal Investigator)
1981-01-01
The same software programs used to classify spring wheat are applied to the classification of corn in 26 segments in the corn belt. Numerical results of the acreage estimation are given. Potential problem areas defined in an earlier application are examined.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm-2 mm-1, 2.07 kg hm-2 mm-1 and 1.92 kg hm-2 mm-1 during 2011-2040, 2041-2070 and 2071-2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.
NASA Technical Reports Server (NTRS)
Welker, J.
1981-01-01
A histogram analysis of average monthly precipitation over 30 and 84 year periods for both Maryland and Kansas was made and the results compared. A second analysis, a statistical assessment of the effect of average monthly precipitation on Kansas winter wheat yield was made. The data sets covered the three periods of 1941-1970, 1887-1970, and 1887-1921. Analyses of the limited data sets used (only the average monthly precipitation and temperature were correlated against yield) indicated that fall precipitation values, especially those of September and October, were more important to winter wheat yield than were spring values, particularly for the period 1941-1970.
NASA Astrophysics Data System (ADS)
Challinor, A. J.
2010-12-01
Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two standard deviations below the mean comes from alleviation of heat stress. The socio-economic analysis suggests that adaptation is also possible through measures such as greater investment. India. The simulations of groundnut in India identified regions where heat stress will play an increasing role in limiting crop yields, and other regions where crops with greater thermal time requirement will be needed. The simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. USA. Analysis of spring wheat in the USA showed that at +2oC of local warming, 87% of the 2711 varieties examined, and all of the five most common varieties, could be used to maintain the crop duration of the current climate (i.e. successful adaptation to mean warming). At +4o this fell to 54% of all varieties, and two of the top five. 4. Future research. The results, and the limitations of the study, suggest directions for research to link climate and crop models, socio-economic analyses and crop variety trial data in order to prioritise adaptation options such as capacity building, plant breeding and biotechnology.
Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum).
Lu, Ping; Liang, Yong; Li, Delin; Wang, Zhengzhong; Li, Wenbin; Wang, Guoxin; Wang, Yong; Zhou, Shenghui; Wu, Qiuhong; Xie, Jingzhong; Zhang, Deyun; Chen, Yongxing; Li, Miaomiao; Zhang, Yan; Sun, Qixin; Han, Chenggui; Liu, Zhiyong
2016-03-01
Spot blotch disease resistance gene Sb3 was mapped to a 0.15 centimorgan (cM) genetic interval spanning a 602 kb physical genomic region on chromosome 3BS. Wheat spot blotch disease, caused by B. sorokiniana, is a devastating disease that can cause severe yield losses. Although inoculum levels can be reduced by planting disease-free seed, treatment of plants with fungicides and crop rotation, genetic resistance is likely to be a robust, economical and environmentally friendly tool in the control of spot blotch. The winter wheat line 621-7-1 confers immune resistance against B. sorokiniana. Genetic analysis indicates that the spot blotch resistance of 621-7-1 is controlled by a single dominant gene, provisionally designated Sb3. Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Sb3 is located on chromosome arm 3BS linked with markers Xbarc133 and Xbarc147. Seven and twelve new polymorphic markers were developed from the Chinese Spring 3BS shotgun survey sequence contigs and 3BS reference sequences, respectively. Finally, Sb3 was mapped in a 0.15 cM genetic interval spanning a 602 kb physical genomic region of Chinese Spring chromosome 3BS. The genetic and physical maps of Sb3 provide a framework for map-based cloning and marker-assisted selection (MAS) of the spot blotch resistance.
Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds.
Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana
2017-10-03
The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.
Morris, Craig F; Fuerst, E Patrick; McLean, Derek J; Momont, Kathleen; James, Caleb P
2014-11-01
Wheat (Triticum aestivum L.) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus L.) to determine feeding preferences as a prelude to extending results to human sensory analysis. Here, we examine the application of a single-elimination tournament design to the analysis of consumption preferences of a set of hard red and hard white spring wheat varieties. A single-elimination tournament design in this case pairs 2 wheat varieties and only 1 of the 2 is advanced to further tests. Preferred varieties were advanced until an overall "winner" was identified; conversely, less desirable varieties were advanced such that an overall "loser" was identified. Hollis and IDO702 were the winner and loser, respectively, for the hard red varieties, and Clear White 515 and WA8123 were the winner and loser, respectively, for the hard white varieties. When using the more powerful protocol of 14 mice and a 4-d trial, differences in mean daily consumption preferences of 2 varieties were separated at P-values as small as 2 × 10(-8) . The single-elimination tournament design is an efficient means of identifying the most and least desirable varieties among a larger set of samples. One application for identifying the 2 extremes in preference within a group of varieties would be to use them as parents of a population to identify quantitative trait loci for preference. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Muleta, Kebede T; Bulli, Peter; Zhang, Zhiwu; Chen, Xianming; Pumphrey, Michael
2017-11-01
Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm collections through predicting the genomic estimated breeding values (GEBVs) for all traits that have been measured. Here, we evaluated the effects of various scenarios of population genetic properties and marker density on the accuracy of GEBVs in the context of applying GS for wheat ( L.) germplasm use. Empirical data for adult plant resistance to stripe rust ( f. sp. ) collected on 1163 spring wheat accessions and genotypic data based on the wheat 9K single nucleotide polymorphism (SNP) iSelect assay were used for various genomic prediction tests. Unsurprisingly, the results of the cross-validation tests demonstrated that prediction accuracy increased with an increase in training population size and marker density. It was evident that using all the available markers (5619) was unnecessary for capturing the trait variation in the germplasm collection, with no further gain in prediction accuracy beyond 1 SNP per 3.2 cM (∼1850 markers), which is close to the linkage disequilibrium decay rate in this population. Collectively, our results suggest that larger germplasm collections may be efficiently sampled via lower-density genotyping methods, whereas genetic relationships between the training and validation populations remain critical when exploiting GS to select from germplasm collections. Copyright © 2017 Crop Science Society of America.
Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye
2017-06-01
Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.
Sukumaran, Sivakumar; Crossa, Jose; Jarquin, Diego; Lopes, Marta; Reynolds, Matthew P
2017-02-09
Developing genomic selection (GS) models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flowering (TTF) in 18 international environments (year-location combinations) in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1), and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2). Genomic prediction models, including genotype × environment (G×E) interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31), GN (0.32), GW (0.45), and TTF (0.27). For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38), GN (0.43), GW (0.63), and TTF (0.53). Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials. Copyright © 2017 Sukumaran et al.
Final Environmental Assessment Demolition of Alpha Ramp, Grand Forks Air Force Base, North Dakota
2007-01-01
including spring wheat, barley, sunflowers, potatoes, and sugar beets. Uncultivated lands are generally used for pasture and hay, urban...Forks, ND 58203 Jack HOURS; Adul* Mon.-Sat. 12 noon - 6pm Main www.gfpets.com (next to Dairy Queen) Emerado, ND 58228 * Competitive prices & Monthly
Integrating sheep grazing into cereal-based crop rotations: spring wheat yields and weed communities
USDA-ARS?s Scientific Manuscript database
Crop diversification and integration of livestock into cropping systems may improve the economic and environmental sustainability of agricultural systems. However, few studies have examined the integration of these practices in the semiarid areas of the Northern Great Plains (NGP). A 3-yr experiment...
Variability in Arabinoxylan, Xylanase activity and Xylanase inhibitor levels in hard spring wheat
USDA-ARS?s Scientific Manuscript database
Arabinoxylans (AX), xylanase, and xylanase inhibitors have an important role in many cereal food processing applications. The effect of genotype (G), growing location (L), and their interaction (G*L) on AX, apparent xylanase and apparent xylanase inhibition activities of Triticum aestivum xylanase i...
Adapting the nitrogen replacement approach to dryland spring wheat in the Pacific Northwest
USDA-ARS?s Scientific Manuscript database
Grain quality analyzers have become commercially available for combine harvesters to enable on-the-go mapping of grain protein levels across farm fields. A map of grain protein is potentially useful for post-harvest assessments of N management programs and development of future fertilizer N recomme...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and po...
Introgression lines of Triticum aestivum x Aegilops tauschii: Agronomic and nutritional value
USDA-ARS?s Scientific Manuscript database
Eighty-five single homozygous substitution lines (SLs) of the Aegilops tauschii D genome in Chinese Spring (CS) hexaploid wheat (Triticum aestivum L.) genetic background were evaluated for agronomic, phenotypic and ionome profiles during three years of field experiments. An augmented design with a r...
From field to region yield predictions in response to pedo-climatic variations in Eastern Canada
NASA Astrophysics Data System (ADS)
JÉGO, G.; Pattey, E.; Liu, J.
2013-12-01
The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%
Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.
Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan
2016-01-01
Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular mechanism of wheat in response to Bgt. The proteomic analysis can significantly narrow the field of potential defense-related protein-species, and is conducive to recognize the critical or effector protein under Bgt infection more precisely. Taken together, large amounts of high-throughput data provide a powerful platform for further exploration of the molecular mechanism on wheat-Bgt interactions. Copyright © 2015 Elsevier B.V. All rights reserved.
Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav
2018-03-06
Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment
Ercoli, Laura; Masoni, Alessandro; Pampana, Silvia; Mariotti, Marco; Arduini, Iduna
2014-01-01
Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L.), maize (Zea mays L.), sunflower (Helianthus annuus L.), and bread wheat (Triticum aestivum L.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno. PMID:25401153
Representing winter wheat in the Community Land Model (version 4.5)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
Representing winter wheat in the Community Land Model (version 4.5)
NASA Astrophysics Data System (ADS)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.
2017-05-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.
Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján
2015-01-01
The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368
Representing winter wheat in the Community Land Model (version 4.5)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; ...
2017-05-05
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji
2013-01-01
The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9–9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that ‘Purple Straw’ and ‘Tohoku 118’ were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a. PMID:24273426
High throughput SNP discovery and genotyping in hexaploid wheat.
Rimbert, Hélène; Darrier, Benoît; Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre; Paux, Etienne
2018-01-01
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.
Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads
NASA Astrophysics Data System (ADS)
Liang, Li; Guo, Yuming
One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.
2010-01-01
Background MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants. Results To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA. Conclusions Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses. PMID:20573268
Diseases Which Challenge Global Wheat Production - The Cereal Rusts
USDA-ARS?s Scientific Manuscript database
The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...
Absence of individual chromosomes and radiation sensitivity of bread wheat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagathesan, D.; Swaminathan, M. S.
Seeds of twenty different monosomics of bread wheat of the variety Chinese Spring were treated with different doses of x rays to determine LD-50. Dormant seeds with an embryo moisture content of 4 to 5% were irradiated with doses from 5000 to 50000 r. The seeds were sown immediately after irradiation. Germination and survival counts were made 15 days after sowing. The LD-50 rates found are tabulated and show that the monosomics are more radiosensitive than the disonics. Monosomtics for D genome chromosomes have generally a higher LD-50 dosage in comparison with A and B genomes. (J.S.R.)
USDA-ARS?s Scientific Manuscript database
The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environme...
Comparative analysis of protein-protein interactions in the defense response of rice and wheat.
Cantu, Dario; Yang, Baoju; Ruan, Randy; Li, Kun; Menzo, Virginia; Fu, Daolin; Chern, Mawsheng; Ronald, Pamela C; Dubcovsky, Jorge
2013-03-12
Despite the importance of wheat as a major staple crop and the negative impact of diseases on its production worldwide, the genetic mechanisms and gene interactions involved in the resistance response in wheat are still poorly understood. The complete sequence of the rice genome has provided an extremely useful parallel road map for genetic and genomics studies in wheat. The recent construction of a defense response interactome in rice has the potential to further enhance the translation of advances in rice to wheat and other grasses. The objective of this study was to determine the degree of conservation in the protein-protein interactions in the rice and wheat defense response interactomes. As entry points we selected proteins that serve as key regulators of the rice defense response: the RAR1/SGT1/HSP90 protein complex, NPR1, XA21, and XB12 (XA21 interacting protein 12). Using available wheat sequence databases and phylogenetic analyses we identified and cloned the wheat orthologs of these four rice proteins, including recently duplicated paralogs, and their known direct interactors and tested 86 binary protein interactions using yeast-two-hybrid (Y2H) assays. All interactions between wheat proteins were further tested using in planta bimolecular fluorescence complementation (BiFC). Eighty three percent of the known rice interactions were confirmed when wheat proteins were tested with rice interactors and 76% were confirmed using wheat protein pairs. All interactions in the RAR1/SGT1/ HSP90, NPR1 and XB12 nodes were confirmed for the identified orthologous wheat proteins, whereas only forty four percent of the interactions were confirmed in the interactome node centered on XA21. We hypothesize that this reduction may be associated with a different sub-functionalization history of the multiple duplications that occurred in this gene family after the divergence of the wheat and rice lineages. The observed high conservation of interactions between proteins that serve as key regulators of the rice defense response suggests that the existing rice interactome can be used to predict interactions in wheat. Such predictions are less reliable for nodes that have undergone a different history of duplications and sub-functionalization in the two lineages.
Liu, Zhenshan; Xin, Mingming; Qin, Jinxia; Peng, Huiru; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin
2015-06-20
Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.
Large Area Crop Inventory Experiment (LACIE). Phase 1: Evaluation report
NASA Technical Reports Server (NTRS)
1976-01-01
It appears that the Large Area Crop Inventory Experiment over the Great Plains, can with a reasonable expectation, be a satisfactory component of a 90/90 production estimator. The area estimator produced more accurate area estimates for the total winter wheat region than for the mixed spring and winter wheat region of the northern Great Plains. The accuracy does appear to degrade somewhat in regions of marginal agriculture where there are small fields and abundant confusion crops. However, it would appear that these regions tend also to be marginal with respect to wheat production and thus increased area estimation errors do not greatly influence the overall production estimation accuracy in the United States. The loss of segments resulting from cloud cover appears to be a random phenomenon that introduces no significant bias into the estimates. This loss does increase the variance of the estimates.
Selection of USSR foreign similarity regions
NASA Technical Reports Server (NTRS)
Disler, J. M. (Principal Investigator)
1982-01-01
The similarity regions in the United States and Canada were selected to parallel the conditions that affect labeling and classification accuracies in the U.S.S.R. indicator regions. In addition to climate, a significant condition that affects labeling and classification accuracies in the U.S.S.R. is the proportion of barley and wheat grown in a given region (based on sown areas). The following regions in the United States and Canada were determined to be similar to the U.S.S.R. indicator regions: (1) Montana agrophysical unit (APU) 104 corresponds to the Belorussia high barley region; (2) North Dakota and Minnesota APU 20 and secondary region southern Manitoba and Saskatchewan correspond to the Ural RSFSR barley and spring wheat region; (3) Montana APU 23 corresponds to he North Caucasus barley and winter wheat region. Selection criteria included climates, crop type, crop distribution, growth cycles, field sizes, and field shapes.
Hyperspectral imaging for detection of black tip damage in wheat kernels
NASA Astrophysics Data System (ADS)
Delwiche, Stephen R.; Yang, I.-Chang; Kim, Moon S.
2009-05-01
A feasibility study was conducted on the use of hyperspectral imaging to differentiate sound wheat kernels from those with the fungal condition called black point or black tip. Individual kernels of hard red spring wheat were loaded in indented slots on a blackened machined aluminum plate. Damage conditions, determined by official (USDA) inspection, were either sound (no damage) or damaged by the black tip condition alone. Hyperspectral imaging was separately performed under modes of reflectance from white light illumination and fluorescence from UV light (~380 nm) illumination. By cursory inspection of wavelength images, one fluorescence wavelength (531 nm) was selected for image processing and classification analysis. Results indicated that with this one wavelength alone, classification accuracy can be as high as 95% when kernels are oriented with their dorsal side toward the camera. It is suggested that improvement in classification can be made through the inclusion of multiple wavelength images.
Replacing fallow with cover crops in a semiarid soil: effects on soil properties
USDA-ARS?s Scientific Manuscript database
Replacement of fallow in crop-fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)-fallow with winter and spring CCs for five years reduced wind and water erosion, increased soil organic carbon (SOC), a...
Replacing fallow with cover crops in a semiarid soil:Effects on soil properties
USDA-ARS?s Scientific Manuscript database
Replacement of fallow in crop–fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)–fallow with winter and spring CCs for 5 years reduced wind and water erosion, increased soil organic carbon (SOC), and ...
Potential for increased use of cereal grain forages on dairy operations
USDA-ARS?s Scientific Manuscript database
Farmers are increasingly using cereal grain cover crops, which allows them to take advantage of additional growing days in early spring and late fall. The use of cereal grain forages, such as rye, wheat, or triticale as cover crops helps to reduce soil and nutrient losses, and also allows for addit...
Rotational Effects of Cuphea on Corn, Spring Wheat, and Soybean
USDA-ARS?s Scientific Manuscript database
Agricultural diversity is lacking in the northern Corn Belt. Adding crop diversity to rotations can give economic and environmental benefits. Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23), which grows well in the northern Corn Belt, is a new oilseed crop and a source of medium...
USDA-ARS?s Scientific Manuscript database
Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...
USDA-ARS?s Scientific Manuscript database
To assess one likely effect of global warming, we experimentally increased the temperature and precipitation of a coleopteran community (mainly Carabidae) of an agro-ecosystem. We simulated climate change on a field of spring wheat by experimentally increasing the temperature by 2°C using infrared h...
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) is a mycotoxin which isproduced by plant pathogens such as Fusarium species. The formation of the "masked" mycotoxin deoxinyvalenol-3-glucoside (D3G) results from a defense mechanism the plant uses for detoxification. These two mycotoxins are important from the food safety poi...
Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.
Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li
2015-04-01
The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.
... the ingestion of gluten (a protein found in wheat, rye and barley) in susceptible individuals. This response ... Malt and Malt Extract Rye Semolina Spelt Triticale Wheat Wheat Germ Wheat Starch Gluten Intolerance Group (GIG) ...
Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats.
Brites, Carla M; Trigo, Maria J; Carrapiço, Belmira; Alviña, Marcela; Bessa, Rui J
2011-04-01
White wheat bread is a poor source of dietary fiber, typically containing less than 2%. A demand exists for the development of breads with starch that is slowly digestible or partially resistant to the digestive process. The utilization of maize flour and resistant starch is expected to reduce the release and absorption of glucose and, hence, lower the glycemic index of bread. This study was undertaken to investigate the hypothesis that a diet of maize bread, as produced and consumed in Portugal, would have beneficial metabolic effects on rats compared to white wheat bread. We also hypothesized that the effect of resistant starch on glycemic response could be altered by the use of different formulations and breadmaking processes for wheat and maize breads. Resistant starch (RS) was incorporated into formulations of breads at 20% of the inclusion rate of wheat and maize flours. Assays were conducted with male Wistar rats (n = 36), divided into four groups and fed either wheat bread, RS-wheat bread, maize bread, and RS-maize bread to evaluate feed intake, body weight gain, fecal pH, and postprandial blood glucose response (glycemic response). Blood triglycerides, total cholesterol concentrations, and liver weights were also determined. The maize bread group presented higher body weight gain and cholesterol level, lower fecal pH, and postprandial blood glucose response than the wheat bread group. The RS-wheat bread group showed significant reductions in feed intake, fecal pH, postprandial blood glucose response, and total cholesterol. The RS-maize group displayed significant reductions of body weight gain, fecal pH, and total cholesterol levels; however, for the glycemic response, only a reduction in fasting level was observed. These results suggest that maize bread has a lower glycemic index than wheat bread, and the magnitude of the effect of RS on glycemic response depends of type of bread. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil'chevskaya, E. V.
2018-04-01
An assessment of the agronomic potential of arable lands in the forest-steppe zone of Russia (by the example of separate soil-agronomic districts) on the basis of the soil-agroclimatic index developed under the supervision of I.I. Karmanov is considered. The agricultural areas (64) separated on the territory of Russia and characterizing soil-agroclimatic conditions for cultivation of major and accompanying crops are differentiated into soil-agronomic districts (SADs) with due account for the administrative division of the country. A large diversity of agroclimatic and agronomical conditions creates the prerequisites for the inclusion of administrative regions into different SADs. The SADs concept implies a detailed analysis of information on the soil properties, geomorphic conditions, and farming conditions. The agronomic potential for major crops in the key SADs in the forest-steppe zone of the East European Plain (Voronezh and Penza oblasts) is high, though it is 25-30% lower than that in the North Caucasus (for winter wheat, sugar beet, sunflower, and spring barley) and in Kaliningrad oblast (for oats). In Western Siberia (Tyumen, Omsk, and Novosibirsk oblasts) and Eastern Siberia (Krasnoyarsk region and Irkutsk oblast), the agronomic potential of spring crops (wheat, barley, and oats) is only utilized by 35-45% in comparison with their European analogues. In the Far East with its monsoon climate and soil conditions (meadow podbels, brown forest soils), the crops characteristic of the European forest-steppe (soybean, rice, sugar beet) and the Trans-Ural forest-steppe (spring wheat) are cultivated. Their biological potential is utilized by only 50-60% in comparison with the European analogues. The materials of this study give us information on the degree of correspondence between the soilagroclimatic potential of the territory and the biological potential of cultivated crops. This is important in the context of improving the natural-agricultural zoning of Russia and its information support.
USDA-ARS?s Scientific Manuscript database
In order to assess the possibility that wheat breeding has been responsible for an increase in the gluten content of U.S. wheat cultivars and thereby responsible for an increase in the incidence of celiac disease, the available data from the 20th century has been analyzed. Although much of the infor...
Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher
2015-01-01
Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties.
Spring-staging ecology of midcontinent greater white-fronted geese
Krapu, G.L.; Reinecke, K.J.; Jorde, Dennis G.; Simpson, S.G.
1995-01-01
A major part of the midcontinent greater white-fronted goose (Anser albifrons) population stages for several weeks in spring in the Rainwater Basin Area (RBA) of south-central Nebraska where substantial mortality from disease occurs periodically. Effective management of this population requires better data on use of habitat, vulnerability to disease, and the role of staging areas in migration and reproduction, We studied use of habitat, foods, nutrient dynamics, and effect of changes in agriculture on food availability and habitat needs in spring 1979-80. During daylight, geese were observed primarily in harvested cornfields (76%) and growing winter wheat (23%). Corn grain and winter wheat shoots composed 90 and 9%, respectively, of foods consumed by collected geese (n = 42). Feeding activity did not vary among post-harvest cornfield treatments except that little feeding occurred (P lt 0.05) in moldboard-plowed fields ( lt 1%). Fat content for all geese increased (P ltoreq 0.01) with Julian date; protein content increased (P = 0.03) only among adult females, and there was no evidence (P gt 0.05) of temporal variation in calcium content. Adult geese storing 14.2 g of fat per day deposited approximately 582 g of fat between 22 February and 3 April. Energy requirements for thermal regulation were small compared with requirements for fat synthesis and probably had little effect on nutrient deposition. The 34,000 white-fronted geese present on the Harvard Marsh and Prairie Dog Marsh study areas in March 1980 probably used lt 20% of the corn available within a 5-km radius. We believe that midcontinent white-fronted geese arrive on Arctic breeding grounds with larger and less variable fat reserves than prior to modern agricultural development. We attribute this response to increased food availability on staging areas where the net effect of agricultural changes has been an increase in corn availability. Waterfowl managers can increase dispersion of geese and provide favorable foraging conditions by maintaining well-distributed wetland roosting habitat and by working with private landowners to ensure access to grain in the vicinity of wetlands.
Effect of wheat stem sawfly damage on yield and quality of selected Canadian spring wheat.
Beres, B L; Cárcamo, H A; Byers, J R
2007-02-01
The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), has reached outbreak status at most locations in the southern Canadian prairies. Solid-stemmed wheat, Triticum aestivum L., cultivars, which are less susceptible to damage, remain the primary management option. This article quantifies the effect of wheat stem sawfly damage on grain yield and quality at harvest and determines how cultivar selection affects harvest losses. Solid-stemmed cultivars were compared with hollow-stemmed cultivars and with blends of a 1:1 ratio of each. The hollow-stemmed cultivars with the exception of'McKenzie', which had intermediate levels of stem cutting, were all significantly more susceptible to stem cutting than solid-stemmed cultivars. Cultivar blends had lower damage but were still significantly higher than the solid-stemmed cultivars. The solid-stemmed 'AC Eatonia' and 'AC Abbey' had the lowest levels of stem cutting and ranked second and third overall for yield in 2001 and 2002. McKenzie ranked first, which reflects its yield potential in combination with its partial resistance to stem cutting. Lower cutting in AC Eatonia, AC Abbey, McKenzie, and the blend of AC Abbey/ McKenzie was significantly correlated with lower grain losses. Grain lost at harvest has major economic implications if sawfly pressure is moderate to high and susceptible cultivars predominate.
NASA Astrophysics Data System (ADS)
Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.
2018-05-01
The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».
Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping
2016-09-01
Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.
Chu, Yen Li; Warren, Cynthia A; Sceets, Christine E; Murano, Peter; Marquart, Len; Reicks, Marla
2011-09-01
Whole-grain intake among children and adolescents is below national recommendations, prompting efforts to increase intake in schools. The purpose of this study was to compare the acceptance of whole-grain pancakes and tortillas to refined grain counterparts when served as part of the school meal. Data were collected at 10 schools in Minnesota and seven schools in Texas during the Spring and Fall semesters of 2009. Three pancake and two tortilla products of varying red or white whole-wheat flour content were each served an average of four times per school. Aggregate plate waste was collected and percent consumption used to assess acceptance. Students rated each product on overall liking, taste, color, and softness on 5-point (elementary schools) or 9-point hedonic scales (middle and high schools). Analysis of covariance was used to compare intake and rating scores of all products. For all children, intake of whole-grain products was substantial (percent consumption ranging from 67% to 75%). No differences were noted in consumption of whole-wheat pancakes compared to refined wheat pancakes, while consumption of whole-wheat tortillas was lower than refined products. In elementary schools, overall liking scores of pancakes made with red whole-wheat and both types of whole-wheat tortillas were lower than refined products. However, in middle and high schools, overall liking scores of 100% red whole-wheat pancakes and 66% white whole-wheat tortillas were similar to refined products. Substituting refined grain with whole-grain options represents a viable approach to increasing consumption of whole-grain products in schools. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Lestina, Jordan; Cook, Maxwell; Kumar, Sunil; Morisette, Jeffrey T.; Ode, Paul J.; Peirs, Frank
2016-01-01
Wheat stem sawfly (Cephus cinctus Norton, Hymenoptera: Cephidae) has long been a significant insect pest of spring, and more recently, winter wheat in the northern Great Plains. Wheat stem sawfly was first observed infesting winter wheat in Colorado in 2010 and, subsequently, has spread rapidly throughout wheat production regions of the state. Here, we used maximum entropy modeling (MaxEnt) to generate habitat suitability maps in order to predict the risk of crop damage as this species spreads throughout the winter wheat-growing regions of Colorado. We identified environmental variables that influence the current distribution of wheat stem sawfly in the state and evaluated whether remotely sensed variables improved model performance. We used presence localities of C. cinctus and climatic, topographic, soils, and normalized difference vegetation index and enhanced vegetation index data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery as environmental variables. All models had high performance in that they were successful in predicting suitable habitat for C. cinctus in its current distribution in eastern Colorado. The enhanced vegetation index for the month of April improved model performance and was identified as a top contributor to MaxEnt model. Soil clay percent at 0–5 cm, temperature seasonality, and precipitation seasonality were also associated with C. cinctus distribution in Colorado. The improved model performance resulting from integrating vegetation indices in our study demonstrates the ability of remote sensing technologies to enhance species distribution modeling. These risk maps generated can assist managers in planning control measures for current infestations and assess the future risk of C. cinctus establishment in currently uninfested regions.
Duba, Adrian; Goriewa-Duba, Klaudia; Wachowska, Urszula
2018-01-01
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonospora nodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat–pathogens interactions which can be used to develop new strategies for controlling fungal diseases. PMID:29642627
Puterka, G J; Nicholson, S J; Brown, M J; Cooper, W R; Peairs, F B; Randolph, T L
2014-06-01
Eight biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov), have been discovered in the United States since 2003. Biotypes are identified by the distinct feeding damage responses they produce on wheat carrying different Russian wheat aphid resistance genes, namely, from Dn1 to Dn9. Each Russian wheat aphid biotype has been named using plant damage criteria and virulence categories that have varied between studies. The study was initiated to compare the plant damage caused by all the eight known Russian wheat aphid biotypes, and analyze the results to determine how Russian wheat aphid virulence should be classified. Each Russian wheat aphid biotype was evaluated on 16 resistant or susceptible cereal genotypes. Plant damage criteria included leaf roll, leaf chlorosis, and plant height. The distribution of chlorosis ratings followed a bimodal pattern indicating two categories of plant responses, resistant or susceptible. Correlations were significant between chlorosis ratings and leaf roll (r(2) = 0.72) and between chlorosis ratings and plant height (r(2) = 0.48). The response of 16 cereal genotypes to feeding by eight Russian wheat aphid biotypes found RWA1, RWA2, RWA6, and RWA8 to differ in virulence, while Russian wheat aphid biotypes RWA3, RWA4, RWA5, and RWA7 produced similar virulence profiles. These biotypes have accordingly been consolidated to what is hereafter referred to as RWA3/7. Our results indicated that the five main biotypes RWA1, RWA2, RWA3/7, RWA6, and RWA8 can be identified using only four wheat genotypes containing Dn3, Dn4, Dn6, and Dn9.
2011-01-01
Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future. PMID:21473757
Kawaura, Kanako; Mochida, Keiichi; Yamazaki, Yukiko; Ogihara, Yasunari
2006-04-01
In this study, we constructed a 22k wheat oligo-DNA microarray. A total of 148,676 expressed sequence tags of common wheat were collected from the database of the Wheat Genomics Consortium of Japan. These were grouped into 34,064 contigs, which were then used to design an oligonucleotide DNA microarray. Following a multistep selection of the sense strand, 21,939 60-mer oligo-DNA probes were selected for attachment on the microarray slide. This 22k oligo-DNA microarray was used to examine the transcriptional response of wheat to salt stress. More than 95% of the probes gave reproducible hybridization signals when targeted with RNAs extracted from salt-treated wheat shoots and roots. With the microarray, we identified 1,811 genes whose expressions changed more than 2-fold in response to salt. These included genes known to mediate response to salt, as well as unknown genes, and they were classified into 12 major groups by hierarchical clustering. These gene expression patterns were also confirmed by real-time reverse transcription-PCR. Many of the genes with unknown function were clustered together with genes known to be involved in response to salt stress. Thus, analysis of gene expression patterns combined with gene ontology should help identify the function of the unknown genes. Also, functional analysis of these wheat genes should provide new insight into the response to salt stress. Finally, these results indicate that the 22k oligo-DNA microarray is a reliable method for monitoring global gene expression patterns in wheat.
Beck, P; Hess, T; Hubbell, D; Hufstedler, G D; Fieser, B; Caldwell, J
2014-03-01
This research was designed to evaluate the effect of monensin (Elanco Animal Health, Greenfield, IN) supplementation via mineral or pressed protein block with or without a growth-promoting implant on performance of steers grazing wheat pasture in Arkansas over 2 yr. Preconditioned steers (n = 360, BW = 238 ± 5.1 kg) grazed 15 1.6-ha wheat pastures in the fall (n = 60 steers each fall, stocking rate of 2.5 steers/ha) or 30 0.8-ha wheat pastures in the spring (n = 120 steers each spring, stocking rate of 5 steers/ha). Steers in each pasture were given free-choice access to nonmedicated mineral (CNTRL; MoorMan's WeatherMaster Range Minerals A 646AAA; ADM Alliance Nutrition, Inc., Quincy, IL), or were supplemented with monensin (Elanco Animal Health, Greenfield, IN) via mineral containing 1.78 g monensin/kg (RMIN; MoorMan's Grower Mineral RU-1620 590AR; ADM Alliance Nutrition, Inc.), or pressed protein block containing 0.33 g monensin/kg (RBLCK; MoorMan's Mintrate Blonde Block RU; ADM Alliance Nutrition, Inc.). Additionally, one-half of the steers in each pasture were implanted (IMPL) with 40 mg trenbolone acetate and 8 mg estradiol (Component TE-G with Tylan; Elanco Animal Health). There was no interaction (P ≥ 0.71) between supplement treatment and growth-promoting implants, and ADG for RMIN and RBLCK were increased (P < 0.01) over CNTRL by 0.07 to 0.09 kg/d, respectively. Implanting steers with Component TE-G increased (P < 0.01) ADG by 0.14 kg/d. The combination of these growth-promoting technologies are a cost-effective means of increasing beef production by 22% without increasing level of supplementation or pasture acreage. Utilizing ionophores and implants together for wheat pasture stocker cattle decreased cost of gain by 26%. Utilizing both IMPL and monensin increased net return by $30 to $54/steer for RMIN or $18 to $43/steer for RBLCK compared with UNIMPL CNTRL at Low and High values of BW gain, respectively.
Climate Change and Dryland Wheat Systems in the US Pacific Northwest
NASA Astrophysics Data System (ADS)
Stockle, C.; Karimi, T.; Huggins, D. R.; Nelson, R.
2015-12-01
A regional assessment of historical and future yields, and components of the water, nitrogen, and carbon soil balance of dryland wheat-based cropping systems in the US Pacific Northwest is being conducted (Regional Approaches to Climate Change project funded by USDA-NIFA). All these elements intertwines and are important to understand the future of these systems in the region. A computer simulation methodology was used based on the CropSyst model and historic and projected daily weather data downscaled to a 4x4 km grid including 14 general circulation models (GCMs) and two representative concentration pathways of future atmospheric CO2 (RCP 4.5 and RCP 8.5). The study region was divided in 3 agro-ecological zones (AEZ) based on precipitation amount: low (<300 mm/year), intermediate (300-460 mm/year) and high (>460 mm/year), with a change from crop-fallow, to transition fallow (crop-crop-fallow) to annual cropping, respectively. Typical wheat-based rotations included winter wheat (WW)-Summer fallow (SF) for the low AEZ, WW-spring wheat (SW)-SF for the intermediate AEZ, and WW-SW-spring peas for the high AEZ, all under conventional and no tillage management. Alternative systems incorporating canola were also evaluated. Results suggest that, in most cases, these dryland systems may fare well in the future (31-year periods centered around 2030, 2050, and 2070), with potential gains in productivity. Also, a trend towards increased fallow in the intermediate AEZ appears possible for higher productivity, and the inclusion of less water demanding crops may help sustain cropping intensity. Uncertainties in these projections arise from large discrepancies among climate models regarding the warming rate, compounded by different possible future CO2 emission scenarios, the degree of change in frequency and severity of extreme events and associated potential damages to crop canopies due to cold weather and grain set reduction due to extreme heat events. Furthermore, there is little understanding of the impact of climate change on pests, diseases and weeds that could affect crop production and management costs. Finally, there is also uncertainty on the speed of technological innovation allowing producers to adapt to changing conditions.
Behavioural responses of wheat stem sawflies to wheat volatiles
D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill
2008-01-01
1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...
Mavrodi, Olga V.; Mavrodi, Dmitri V.; Parejko, James A.; Thomashow, Linda S.
2012-01-01
This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz+ and Phl+ Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz+ bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g−1 of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl+ and Phz+ Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl+ bacteria whereas only 8 to 50% of plants harbored Phz+ bacteria. In addition, Phz+ Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat. PMID:22389379
Hou, Liyuan; Zhang, Xiaojun; Li, Xin; Jia, Juqing; Yang, Huizhen; Zhan, Haixian; Qiao, Linyi; Guo, Huijuan; Chang, Zhijian
2015-07-28
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68-0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.
Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology.
Xie, Quan; Li, Na; Yang, Yang; Lv, Yulong; Yao, Hongni; Wei, Rong; Sparkes, Debbie L; Ma, Zhengqiang
2018-05-01
Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m -2 , grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m -2 , grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m -2 , and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.
High throughput SNP discovery and genotyping in hexaploid wheat
Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre
2018-01-01
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research. PMID:29293495
Analysis of Photoperiod Requirements of Soft Winter Wheat from the Eastern United States
USDA-ARS?s Scientific Manuscript database
Photoperiod response plays a major role in determining the climatic adaptation of wheat, and variation is commonly associated with Ppd loci on group two chromosomes. Seventy-three soft winter wheat (SWW) cultivars from the eastern U.S. were tested for photoperiod response in growth chambers. Floweri...
1982-05-01
wells, springs, and troughs constructed near artesian wells. Cornmeal and molasses production both required specialized equipment. Inf or- mants recall...their own. Blacks relied heavily on cornmeal , while the white population usually maintained stocks of wheat flour. Transportation. River transportation
Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F
2014-12-01
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.
Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion
2018-01-01
The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By testing the association between disease severity and geographical distance from the source of inoculum, we have found higher susceptibility in wild emmer close to the source. Both qualitative and quantitative assays showed a reciprocal resistance pattern in the wheat host and are well aligned with the recent findings of significant differentiation into wild-emmer and domesticated-wheat populations in the pathogen.
Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng
2016-07-01
Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently, the PMS increased the SPAD values in flag leaves of spring wheat, and the capacity of flag leaves for photo energy assimilation and photosynthetic gas exchange were enhanced, caused more photosynthetic energy flowing into photochemical process, as well as decreased the heat dissipation, resulted in the increment of P n and WUE i . Based on the higher P n and LAI, the yield and WUE of PMS increased.
Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G
2017-04-01
Underlying mechanisms of the beneficial health effects of low glycemic index starchy foods are not fully elucidated yet. We varied the wheat particle size to obtain fiber-rich breads with a high and low glycemic response and investigated the differences in postprandial glucose kinetics and metabolic response after their consumption. Ten healthy male volunteers participated in a randomized, crossover study, consuming 13 C-enriched breads with different structures; a control bread (CB) made from wheat flour combined with wheat bran, and a kernel bread (KB) where 85 % of flour was substituted with broken wheat kernels. The structure of the breads was characterized extensively. The use of stable isotopes enabled calculation of glucose kinetics: rate of appearance of exogenous glucose, endogenous glucose production, and glucose clearance rate. Additionally, postprandial plasma concentrations of glucose, insulin, glucagon, incretins, cholecystokinin, and bile acids were analyzed. Despite the attempt to obtain a bread with a low glycemic response by replacing flour by broken kernels, the glycemic response and glucose kinetics were quite similar after consumption of CB and KB. Interestingly, the glucagon-like peptide-1 (GLP-1) response was much lower after KB compared to CB (iAUC, P < 0.005). A clear postprandial increase in plasma conjugated bile acids was observed after both meals. Substitution of 85 % wheat flour by broken kernels in bread did not result in a difference in glucose response and kinetics, but in a pronounced difference in GLP-1 response. Thus, changing the processing conditions of wheat for baking bread can influence the metabolic response beyond glycemia and may therefore influence health.
Gaseous emissions from plants in controlled environments
NASA Technical Reports Server (NTRS)
Dubay, Denis T.
1988-01-01
Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.
Ancient Wheat Diet Delays Diabetes Development in a Type 2 Diabetes Animal Model
Thorup, Anne C.; Gregersen, Søren; Jeppesen, Per B.
2014-01-01
AIM: The main objective was to investigate the physiological effects of ancient wheat whole grain flour diets on the development and progression of type 2 diabetes in Zucker diabetic fatty (ZDF) rats, and specifically to look at the acute glycemic responses. METHODS: An intervention study was conducted, involving 40 ZDF rats consuming one of 5 different diets (emmer, einkorn, spelt, rye and refined wheat) for 9 weeks. Refined wheat flour and whole grain rye flour were included as negative and positive controls, respectively. RESULTS: After 9 weeks of intervention, a downregulation of the hepatic genes PPAR-α, GLUT2, and SREBP-1c was observed in the emmer group compared to the control wheat group. Likewise, expression of hepatic SREBP-2 was lower for emmer, einkorn, and rye compared with the control group. Furthermore, spelt and rye induced a low acute glycemic response. The wheat group had higher HDL- and total cholesterol levels. CONCLUSIONS: Ancient wheat diets caused a downregulation of key regulatory genes involved in glucose and fat metabolism, equivalent to a prevention or delay of diabetes development. Spelt and rye induced a low acute glycemic response compared to wheat. PMID:26177485
Wang, Neng Wei; Ge, Xiu Li; Li, Sheng Dong
2017-03-18
Conservation tillage and the weed diversity are two hot issues in the modern ecological agriculture. Although it is known that the diversity of weed would increase slightly in the farmland under conservation tillage, the interaction effects between the tillage and the nutrient management on the weed community are not clear. In this study, one wheat-maize rotation field located in Ji'nan, Shandong Province, was selected as the studying site. Different tillage methods (no-tillage, deep subsoiling, rotary tillage, deep tillage) and different nutrient managements (farmers routine, 480 kg N hm -2 per year; high production and efficiency, 360 kg N hm -2 per year; optimal management, 300 kg N hm -2 per year) were carried out for 3 years. The characteristics of the spring weed communities under different managements were investigated and compared. The results showed that there were 15 species in the spring weed communities in the test filed and Digitaria sanguinalis and Echinochloa crusgalli were the dominant species. The plots under no-tillage or deep subsoiling had higher weed densities compared with those under the deep tillage or rotary tillage. In terms of the effect of tillage on the weed community diversity, both species richness index and species evenness index were lowest but the community dominance index was highest in the plots under deep tillage. In terms of the effect of the nutrient management, with the increase of fertilizer application, both species richness and evenness index increased under the different tillage methods. The community dominance increased with the increasing fertilizer application under deep tillage or rotary tillage and vice versa under no-tillage, deep subsoiling. In terms of weed biomass, the plots under no-tillage or deep subsoiling had significantly higher weed biomass than those under the other two tillage methods. The plots under routine nutrient management had higher weed biomass than those under the other two nutrient managements. Among all these treatments, the plots under the combination treatment of no-tillage and routine nutrient management had the highest weed biomass. According to these results, it was implied that no-tillage and fertilization would improve species richness index, species evenness index, and the productivity of spring weed community in the wheat-maize farmland.
Uhde, Melanie; Ajamian, Mary; Caio, Giacomo; De Giorgio, Roberto; Indart, Alyssa; Green, Peter H; Verna, Elizabeth C; Volta, Umberto; Alaedini, Armin
2016-12-01
Wheat gluten and related proteins can trigger an autoimmune enteropathy, known as coeliac disease, in people with genetic susceptibility. However, some individuals experience a range of symptoms in response to wheat ingestion, without the characteristic serological or histological evidence of coeliac disease. The aetiology and mechanism of these symptoms are unknown, and no biomarkers have been identified. We aimed to determine if sensitivity to wheat in the absence of coeliac disease is associated with systemic immune activation that may be linked to an enteropathy. Study participants included individuals who reported symptoms in response to wheat intake and in whom coeliac disease and wheat allergy were ruled out, patients with coeliac disease and healthy controls. Sera were analysed for markers of intestinal cell damage and systemic immune response to microbial components. Individuals with wheat sensitivity had significantly increased serum levels of soluble CD14 and lipopolysaccharide (LPS)-binding protein, as well as antibody reactivity to bacterial LPS and flagellin. Circulating levels of fatty acid-binding protein 2 (FABP2), a marker of intestinal epithelial cell damage, were significantly elevated in the affected individuals and correlated with the immune responses to microbial products. There was a significant change towards normalisation of the levels of FABP2 and immune activation markers in a subgroup of individuals with wheat sensitivity who observed a diet excluding wheat and related cereals. These findings reveal a state of systemic immune activation in conjunction with a compromised intestinal epithelium affecting a subset of individuals who experience sensitivity to wheat in the absence of coeliac disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Uhde, Melanie; Ajamian, Mary; Caio, Giacomo; De Giorgio, Roberto; Indart, Alyssa; Green, Peter H; Verna, Elizabeth C; Volta, Umberto; Alaedini, Armin
2016-01-01
Objective Wheat gluten and related proteins can trigger an autoimmune enteropathy, known as coeliac disease, in people with genetic susceptibility. However, some individuals experience a range of symptoms in response to wheat ingestion, without the characteristic serological or histological evidence of coeliac disease. The aetiology and mechanism of these symptoms are unknown, and no biomarkers have been identified. We aimed to determine if sensitivity to wheat in the absence of coeliac disease is associated with systemic immune activation that may be linked to an enteropathy. Design Study participants included individuals who reported symptoms in response to wheat intake and in whom coeliac disease and wheat allergy were ruled out, patients with coeliac disease and healthy controls. Sera were analysed for markers of intestinal cell damage and systemic immune response to microbial components. Results Individuals with wheat sensitivity had significantly increased serum levels of soluble CD14 and lipopolysaccharide (LPS)-binding protein, as well as antibody reactivity to bacterial LPS and flagellin. Circulating levels of fatty acid-binding protein 2 (FABP2), a marker of intestinal epithelial cell damage, were significantly elevated in the affected individuals and correlated with the immune responses to microbial products. There was a significant change towards normalisation of the levels of FABP2 and immune activation markers in a subgroup of individuals with wheat sensitivity who observed a diet excluding wheat and related cereals. Conclusions These findings reveal a state of systemic immune activation in conjunction with a compromised intestinal epithelium affecting a subset of individuals who experience sensitivity to wheat in the absence of coeliac disease. PMID:27459152
Climatically driven yield variability of major crops in Khakassia (South Siberia)
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.
2018-06-01
We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.
Climatically driven yield variability of major crops in Khakassia (South Siberia)
NASA Astrophysics Data System (ADS)
Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.
2017-12-01
We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.
Hystad, S M; Martin, J M; Graybosch, R A; Giroux, M J
2015-08-01
Characterized novel mutations present at Ppo loci account for the substantial reduction of the total kernel PPO activity present in a putative null Ppo - A1 genetic background. Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time-dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous Ppo genes, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels. To date, wheat noodle color improvement efforts have focused on breeding cultivars containing Ppo-D1 and Ppo-A1 alleles conferring reduced PPO activity. A major impediment to wheat quality improvement is a lack of additional Ppo alleles conferring reduced kernel PPO. In this study, a previously reported very low PPO line, 07OR1074, was found to contain a novel allele at Ppo-A2 and null alleles at the Ppo-A1 and Ppo-D1 loci. To examine the impact of each mutation upon kernel PPO, populations were generated from crosses between 07OR1074 and the hard white spring wheat cultivars Choteau and Vida. Expression analysis using RNA-seq demonstrated no detectable Ppo-A1 transcripts in 07OR1074 while Ppo-D1 transcripts were present at less than 10% of that seen in Choteau and Vida. Novel markers specific for the Ppo-D1 and Ppo-A2 mutations discovered in 07OR1074, along with the Ppo-A1 STS marker, were used to screen segregating populations. Evaluation of lines indicated a substantial genotypic effect on PPO with Ppo-A1 and Ppo-D1 alleles contributing significantly to total PPO in both populations. These results show that the novel mutations in Ppo-A1 and Ppo-D1 present in 07OR1074 are both important to lowering overall wheat seed PPO activity and may be useful to produce more desirable and marketable wheat-based products.
Chen, Liang; Phillips, Andrew L.; Condon, Anthony G.; Parry, Martin A. J.; Hu, Yin-Gang
2013-01-01
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12. PMID:23658622
Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan
2014-03-01
Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat.
Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan
2014-01-01
Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat. PMID:24424323
AgRISTARS: Supporting research. Spring small grains planting date distribution model
NASA Technical Reports Server (NTRS)
Hodges, T.; Artley, J. A. (Principal Investigator)
1981-01-01
A model was developed using 996 planting dates at 51 LANDSAT segments for spring wheat and spring barley in Minnesota, Montana, North Dakota, and South Dakota in 1979. Daily maximum and minimum temperatures and precipitation were obtained from the cooperative weather stations nearest to each segment. The model uses a growing degree day summation modified for daily temperature range to estimate the beginning of planting and uses a soil surface wetness variable to estimate how a fixed number of planting days are distributed after planting begins. For 1979, the model predicts first, median, and last planting dates with root mean square errors of 7.91, 6.61, and 7.09 days, respectively. The model also provides three or four dates to represent periods of planting activity within the planting season. Although the full model was not tested on an independent data set, it may be suitable in areas other than the U.S. Great Plains where spring small grains are planted as soon as soil and air temperatures become warm enough in the spring for plant growth.
Cao, Hong-Xing; Zhang, Zheng-Bin; Sun, Cheng-Xu; Shao, Hong-Bo; Song, Wei-Yi; Xu, Ping
2009-09-18
The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUE(p) = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUE(l) showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUE(P), PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.
Mackay, I; Horwell, A; Garner, J; White, J; McKee, J; Philpott, H
2011-01-01
Historical datasets have much to offer. We analyse data from winter wheat, spring and winter barley, oil seed rape, sugar beet and forage maize from the UK National List and Recommended List trials over the period 1948-2007. We find that since 1982, for the cereal crops and oil seed rape, at least 88% of the improvement in yield is attributable to genetic improvement, with little evidence that changes in agronomy have improved yields. In contrast, in the same time period, plant breeding and changes in agronomy have contributed almost equally to increased yields of forage maize and sugar beet. For the cereals prior to 1982, contributions from plant breeding were 42, 60 and 86% for winter barley, winter wheat and spring barley, respectively. These results demonstrate the overwhelming importance of plant breeding in increasing crop productivity in the UK. Winter wheat data are analysed in more detail to exemplify the use of historical data series to study and detect disease resistance breakdown, sensitivity of varieties to climatic factors, and also to test methods of genomic selection. We show that breakdown of disease resistance can cause biased estimates of variety and year effects, but that comparison of results between fungicide treated and untreated trials over years may be a means to screen for durable resistance. We find the greatest sensitivities of the winter wheat germplasm to seasonal differences in rainfall and temperature are to summer rainfall and winter temperature. Finally, for genomic selection, correlations between observed and predicted yield ranged from 0.17 to 0.83. The high correlation resulted from markers predicting kinship amongst lines rather than tagging multiple QTL. We believe the full value of these data will come from exploiting links with other experiments and experimental populations. However, not to exploit such valuable historical datasets is wasteful.
Morphological Analyses of Spring Wheat (CIMMYT cv. PCYT-10) Somaclones
NASA Technical Reports Server (NTRS)
Campbell, W. F.; Carman, J. G.; Hashim, Z. N.
1990-01-01
The objectives of this study were to induce callus from single immature wheat embryos, produce multiple seedlings from the induced callus, and analyse the somaclonal regenerants for potential grain production in a space garden. Immature wheat, Triticum aestivum L. (cv. PCYT-10), embryos were excised 10 to 12 days post-anthesis and cultured on modified Murashige and Skoog's inorganic salts. Embryos cultured on medium containing kinetin (6-furfurylaminopurine) at 0.5mg/l plus 2 or 3mg/l dicamba (1-methoxy-3,6- dichlorobenzoic acid) or 0.2mg/l 2,4-dichlorophenoxyacetic acid produced calli from which 24, 35 and 39% of the explant tissue exhibited regenerants, respectively. The size of flag leaves, plant heights, tillers per plant, spike lengths, awn lengths, and seeds per spike were significantly different in regenerants of two-selfed recurrent generations (SC(sub 1), SC(sub 2)) than in parental controls. However, there were no significant differences in spikelets per spike between the SC(sub 2) and parental controls. Desirable characteristics that were obtained included longer spikes, more seeds per spike, supernumerary spikelets, and larger flag leaves, variants that should be useful in wheat improvement programs.
Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C
2015-10-23
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence variation within intron regions. The genome-specific primers developed will enable future characterization of natural and induced variation in EPSPS sequence and expression. This can be useful in investigating new causes of glyphosate herbicide resistance.
NASA Technical Reports Server (NTRS)
Payne, R. W. (Principal Investigator)
1981-01-01
The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.
Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils.
Jiang, Lei; Yang, Yi; Jia, Lin Xian; Lin, Jing Ling; Liu, Ying; Pan, Bo; Lin, Yong
2016-05-01
The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0mgkg(-1) simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8mgkg(-1) to 8.0mgkg(-1), simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat
Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna
2015-01-01
We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID:25837893
Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands
NASA Technical Reports Server (NTRS)
Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.
1991-01-01
Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.
Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands
NASA Astrophysics Data System (ADS)
Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.
1991-03-01
Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.
USDA-ARS?s Scientific Manuscript database
Knowledge of the differences in quality traits among individual flour mill streams (FMS) provides more precise blending techniques that would meet customer’s flour specifications. The aim of this study was to evaluate differences in dough rheology and breadmaking traits among FMS and their relations...
USDA-ARS?s Scientific Manuscript database
Cultivar ‘Soft Svevo’, a new non-GMO soft durum cultivar with soft kernel texture, was developed through a 5DS(5BS) chromosomal translocation from event. cv. Chinese Spring, and subsequently used to create new soft durum germplasm. The development of Soft Svevo featured the Ph1b-mediated homoeologou...
An analysis of haze effects on LANDSAT multispectral scanner data
NASA Technical Reports Server (NTRS)
Johnson, W. R.; Sestak, M. L. (Principal Investigator)
1981-01-01
Early season changes in optical depth change brightness, primarily along the soil line; and during crop development, changes in optical depth change both greenness and brightness. Thus, the existence of haze in the imagery could cause an unsuspecting analyst to interpret the spectral appearance as indicating an episodal event when, in fact, haze was present. The techniques for converting LANDSAT-3 data to simulate LANDSAT-2 data are in error. The yellowness and none such computations are affected primarily. Yellowness appears well correlated to optical depth. Experimental evidence with variable background and variable optical depth is needed, however. The variance of picture elements within a spring wheat field is related to its equivalent in optical depth changes caused by haze. This establishes the sensitivity of channel 1 (greenness) pixels to changes in haze levels. The between field picture element means and variances were determined for the spring wheat fields. This shows the variability of channel data on two specific dates, emphasizing that crop development can be influenced by many factors. The atmospheric correction program ATCOR reduces segment data from LANDSAT acquisitions to a common haze level and improves the results of analysis.
Negative impacts of climate change on cereal yields: statistical evidence from France
NASA Astrophysics Data System (ADS)
Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel
2017-05-01
In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.
LACIE--An Application of Meteorology for United States and Foreign Wheat Assessment.
NASA Astrophysics Data System (ADS)
Hill, Jerry D.; Strommen, Norton D.; Sakamoto, Clarence M.; Leduc, Sharon K.
1980-01-01
The development of a critical world food situation during the early 1970's was the background leading to the Large Area Crop Inventory Experiment (LACIE). The need was to develop a capability for timely monitoring of crops on a global scale. Three U.S. Government agencies, NASA, NOAA and USDA, undertook the task of developing technology to extract the crop-related information available from the global weather-reporting network and the Landsat satellite. This paper describes the overall LACIE technical approach to make a quasi-operational application of existing research results and the accomplishments of this cooperative experiment in utilizing the weather information.Using available agrometeorological data, techniques were implemented to estimate crop development, assess relative crop vigor and estimate yield for wheat, the crop of principal interest to the experiment. Global weather data were utilized in preparing timely yield estimates for selected areas of the U.S. Great Plains, the U.S.S.R. and Canada. Additionally, wheat yield models were developed and pilot tested for Brazil, Australia, India and Argentina. The results of the work show that heading dates for wheat in North America can be predicted with an average absolute error of about 5 days for winter wheat and 4 days for spring wheat. Independent tests of wheat yield models over a 10-year period for the U.S. Great Plains produced a root-mean-square error of 1.12 quintals per hectare (q ha1) while similar tests in the U.S.S.R. produced an error of 1.31 q ha1. Research designed to improve the initial capability is described as is the rationale for further evolution of a capability to monitor global climate and assess its impact on world food supplies.
Hou, Liyuan; Zhang, Xiaojun; Li, Xin; Jia, Juqing; Yang, Huizhen; Zhan, Haixian; Qiao, Linyi; Guo, Huijuan; Chang, Zhijian
2015-01-01
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68–0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs. PMID:26225967
New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.
Francki, M G; Shankar, M; Walker, E; Loughman, R; Golzar, H; Ohm, H
2011-11-01
Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.
NASA Astrophysics Data System (ADS)
Lu, C.; Cao, P.; Yu, Z.
2017-12-01
The United States has a century-long history of managing anthropogenic nitrogen (N) fertilizer to booster the crop production. Accurate characterization of N fertilizer use history could provide essential implications for N use efficiency (NUE) enhancement and N loss reduction. However, a spatially explicit time-series data remains lacking to describe how N fertilizer use varied among crop types, regions, and time periods. In this study, we therefore developed long-term gridded N management maps depicting N fertilizer application rate, timing, and ratio of fertilizer forms in nine major crops (i.e. corn, soybean, winter wheat, spring wheat, cotton, sorghum, rice, barley, and durum wheat) in the contiguous U.S. at a resolution of 1 km × 1 km during 1850-2015. We found that N application rates of the U.S. increased by approximately 34 times since 1940. Nonetheless, spatial analysis revealed that N-use hotspots have shifted from the West and Southeast to the Midwest and the Great Plains since 1900. Specifically, corn of the Corn Belt region received the most intensive N input in spring, followed by large N application amount in fall, implying a high N loss risk in this region. Moreover, spatiotemporal patterns of NH4+/NO3- ratio varied largely among regions. Generally, farmers have increasingly favored NH4+-form fertilizers over NO3- fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess the N addition impacts, and improve N management to alleviate environmental problems.
Dutta, Summi; Kumar, Dhananjay; Jha, Shailendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal
2017-11-01
A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.
Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis
2016-11-01
Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.
Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry
2016-03-01
In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.
Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion
2018-01-01
The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal (Bgt), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum) and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides)]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By testing the association between disease severity and geographical distance from the source of inoculum, we have found higher susceptibility in wild emmer close to the source. Both qualitative and quantitative assays showed a reciprocal resistance pattern in the wheat host and are well aligned with the recent findings of significant differentiation into wild-emmer and domesticated-wheat populations in the pathogen. PMID:29527213
Abd_Allah, Elsayed Fathi; Nauman, Mohd; Asif, Ambreen; Hashem, Abeer; Alqarawi, Abdulaziz A.
2017-01-01
Productivity of wheat (Triticum aestivum) is markedly affected by high temperature and nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were grown in control conditions, and under a combined stress of high temperature (32 °C) and low nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins. Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants altered their protein expression as an adaptive means to maintain growth. This response varied with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better understanding of its mechanism. PMID:29186028
Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu
2015-01-01
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress. PMID:26442087
Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu
2015-01-01
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.
Crop status evaluations and yield predictions
NASA Technical Reports Server (NTRS)
Haun, J. R.
1975-01-01
A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.
NASA Astrophysics Data System (ADS)
Vaishlya, O. B.; Osipov, N. N.; Guseva, N. V.
2015-09-01
We conducted pre-sowing seed treatment of spring wheat carbon nanotubes modified with thionyl chloride, ethylene diamine, azobenzole, and dodecylamine. CNTs did not disrupt the structure of the crop, but the activity of extracellular enzymes in the rhizosphere of plants in the flowering stage changed: laccase works more poorly in the variant of the CNTs with the amino groups exochitinase and phosphatase activity increased in the case of chlorinated CNTs, OH and COOH groups on the surface of the nanotubes twice accelerate work β-glucosidase. The changes observed in the biogeochemical cycles in the rhizosphere are a possible cause of the effect of nanotubes on the development of epidemic diseases of wheat.
Heaton, K W; Marcus, S N; Emmett, P M; Bolton, C H
1988-04-01
When normal volunteers ate isocaloric wheat-based meals, their plasma insulin responses (peak concentration and area under curve) increased stepwise: whole grains less than cracked grains less than coarse flour less than fine flour. Insulin responses were also greater with fine maizemeal than with whole or cracked maize grains but were similar with whole groats, rolled oats, and fine oatmeal. The peak-to-nadir swing of plasma glucose was greater with wheat flour than with cracked or whole grains. In vitro starch hydrolysis by pancreatic amylase was faster with decreasing particle size with all three cereals. Correlation with the in vivo data was imperfect. Oat-based meals evoked smaller glucose and insulin responses than wheat- or maize-based meals. Particle size influences the digestion rate and consequent metabolic effects of wheat and maize but not oats. The increased insulin response to finely ground flour may be relevant to the etiology of diseases associated with hyperinsulinemia and to the management of diabetes.
USDA-ARS?s Scientific Manuscript database
Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...
USDA-ARS?s Scientific Manuscript database
Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...
Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F
2016-09-28
Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P < 0.0001), and created denser products (P < 0.0001), especially for white bran supplemented extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P < 0.0001). Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P < 0.0001) compared to purple bran supplemented extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®
The Role of Natural Enemy Foraging Guilds in Controlling Cereal Aphids in Michigan Wheat
Safarzoda, Shahlo; Bahlai, Christine A.; Fox, Aaron F.; Landis, Douglas A.
2014-01-01
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies. PMID:25473951
Hussein, L; Abbassy, M; Arafa, A; Morcos, S R
1979-12-01
The amino acid analysis revealed that wheat grains, white and dark flour, baladi bread prepared from white or dark flour, bread prepared from formulae enriched with gluten and biscuits are poor in lysine with chemical scores ranging between 20 and 49. The assessment of the protein quality of wheat and related products was done by slope ratio bioassay. Results based on slopes relative to those of reference casein + methionine ranked bread prepared from dark flour and cooked wheat (belila) as the highest in their protein quality, followed by their parent; wheat (RNV = 44). Dietetic bread with gluten had RNV = 20-24; owing to its high protein content (38%), its utilizable protein approached that of good proteins (8%). Very high significant correlation existed between the two measures of response; gain in weight and net increase in body water as response of nitrogen intake.
Photosynthetic and Biochemical Changes in Response to Short Interval High ``g'' Exposure in Wheat
NASA Astrophysics Data System (ADS)
Dixit, Jyotsana; Vidyasagar, Pandit; Jagtap, Sagar; Kamble, Shailendra
We have investigated the effect of short interval post imbibition high “g” exposure on wheat seeds (Triticum aestivum var.Lok-1) by evaluating the photosynthetic performance, chlorophyll “a” fluorescence biochemical indices and antioxidant response. Imbibed wheat seeds were exposed to high “g” ranging from 500 g to 2500 g for 10 min, allowed to germinate and grown for 5 days under normal gravity i.e. 1 g. Chlorophyll “a” fluorescence transient was examined in wheat seedling raised from hyper gravity treated seeds. Fv/Fm, PI, Fv/Fo decreased in high “g” treated seeds compared to control. Photosynthetic performance indices such as Transpiration rate, Stomatal conductance, Net photosynthetic rate, Intracellular CO2 concentration, Intrinsic water use efficiency also declined in wheat seedlings raised from High “g” treated seeds suggesting that high g reduces efficiency of photosynthesis in wheat seedlings. Results of Biochemical analysis showed reduced alpha- amylase activity in wheat seeds subjected to high “g” ranging from 500 g to 2500 g in a magnitude dependent manner. Decline in enzyme activity was positively correlated with higher starch content and lower reducing sugars in high “g” exposed wheat seeds. This possibly explains the reduced percent germination and growth in response to high “g”. Antioxidant enzyme activity (CAT and POX) significantly increased as a result of hypergravity exposure In conclusion, short interval high “g” exposure results in reduced growth and photosynthetic activity in wheat seedlings.
Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.
Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian
2018-06-01
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.
Low quality roughages for steers grazing wheat pasture. I. Effect on weight gains and bloat.
Mader, T L; Horn, G W; Phillips, W A; McNew, R W
1983-05-01
The effect of feeding low quality roughages (LQR) on live and carcass weight gains and the incidence and severity of bloat of stocker cattle grazed on wheat pasture was evaluated in a 3 yr study. One hundred eighty-five steer calves (172 kg mean initial weight) grazed clean-tilled wheat pasture and were either fed no LQR or had ad libitum access to wheat straw (WS) or sorghum-Sudan hay (SS). Grazing periods were (I) fall grazing, (II) winter grazing, (III) period of lush spring growth of wheat forage and (IV) period of advancing forage maturity and declining quality. Mean dry matter (DM), crude protein and acid detergent fiber (ADF) content (percentage of DM) of wheat forage averaged across years ranged, respectively, from 23.8 to 33.0, 19.8 to 26.4 and 21.5 to 27.7. Mean daily consumption (kg DM/head) of WS and SS by steers ranged from .076 to .100 and .199 to .248, respectively. Live and carcass weight gains of steers during Periods I through III (i.e., the usual wheat pasture grazing period) were not influenced (P greater than .05) by treatments. Carcass weight gains were about 74% of live weight gains. Bloat was observed only during the last 2 wk of Period III of the first year. The incidence (steer days of bloat) and severity (bloat score) of control, WS- and SS-fed steers were 9.5 and 1.2, .5 and .5 and 2.0 and 1.0, and were not different (P greater than .05) among treatments. Intake of WS and SS [g/body weight (BW).75kg] during Periods I to III was, respectively, only about 5 and 12% of roughage intakes (i.e., 37.5 g/BW.75kg) reported in the literature to "effectively control" or aid the prevention of bloat. It seems unlikely that LQR consumed to amounts similar to those of this study would control bloat of stocker cattle on wheat pasture.
Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Bergès, Hélène; Mzid, Rim; Bouzayen, Mondher
2014-12-01
As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry
1992-01-01
The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191
Investigating the role of ABA signaling in wheat drought tolerance
USDA-ARS?s Scientific Manuscript database
Allohexaploid wheat (Triticum aestivum L.) is one of the three major cereal crops supporting human nutrition. Because wheat is often grown under dryland conditions, it is subject to losses as a result of drought stress. This study examines the role of the plant hormone ABA is wheat responses to wate...
National Plant Genome Initiative
2005-01-01
lines that do not require vernalization to fl ower. The capacity of temperate cereals like wheat and barley to generate spring forms through...the potential to modify fl owering time of different cereals for specifi c climates. 10 Progress Reported in 2004 • Bioinformatics The NPGI...developing an open source genome annotation pipeline as well as tools to present and manage information about natural variation in cereal varieties
The wheat chloroplastic proteome.
Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee
2013-11-20
With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies provide interesting results leading to a better understanding of the photosynthesis and identifying the stress-responsive proteins. In reality, our studies aspired at resolving the photosynthesis pathway in wheat. Proteomic analysis united two complementary approaches such as Tricine SDS-PAGE and 2-DE methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be highlighted. This article is part of a Special Issue entitled: Translational Plant Proteomics. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Zhu, Ye; Saraike, Tatsunori; Yamamoto, Yuko; Hagita, Hiroko; Takumi, Shigeo; Murai, Koji
2008-11-01
Homeotic transformation of stamens into pistil-like structures (pistillody) can occur in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) that have the cytoplasm of the related species, Aegilops crassa. Previously we showed that pistillody results from altered patterns of expression of class B MADS-box genes mediated by mitochondrial gene(s) in the Ae. crassa cytoplasm. The wheat cultivar Chinese Spring does not show pistillody when Ae. crassa cytoplasm is introduced. The absence of an effect is due to a single dominant gene (designated Rfd1) located on the long arm of chromosome 7B. To identify the mitochondrial gene involved in pistillody induction, we performed a subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. We found that mitochondrial cDNA clone R04 was abundant in the young spikes of the pistillody line but was down-regulated in the normal line that carried nuclear Rfd1. Sequencing of the full-length cDNA corresponding to clone R04 showed that two genes were present, cox I (cytochrome c oxidase subunit I) and orf260(cra). orf260(cra) shows high sequence similarity to orf256, the T. timopheevii mitochondrial gene responsible for cytoplasmic male sterility (CMS). orf260(cra) was also present in the cytoplasms of Ae. juvenalis and Ae. vavilovii, which induce pistillody, but not in the cytoplasms of other species not associated with pistillody. Furthermore, Western blot analysis revealed that the ORF260cra protein was more abundant in the pistillody line than in the normal line. We suggest therefore that orf260(cra) is associated with pistillody induction.
Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I
2006-01-01
Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring.
Zhang, Yulan; Zhang, Lili; Chen, Lijun; Wu, Zhijie
2004-06-01
This paper studied the response of soil urease, phosphatase, arylsulphatase and dehydrogenase to 200 micromol x mol(-1) CO2 elevation under rice-wheat rotation. The results showed that under CO2 elevation, the urease activity in 0-10 cm soil layer was decreased at the early growth stages of wheat but increased at its booting stage; the activity increased at the early growth stages of rice but decreased at its ripening stage. Phosphatase activity was increased during the whole growth period of wheat; the activity increased at the tillering stage of rice but decreased at its later growth stages. Arylsulphatase activity was decreased at the over-wintering and booting stages of wheat but increased at its tillering and ripening stages. Dehydrogenase activity was decreased at the early growth stages of wheat and rice, but increased at their late growth stages.
2011-01-01
Background Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. Results Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. Conclusions This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression. PMID:21314956
Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response
2014-01-01
While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597
Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan
2014-12-01
Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.
Tang, Lichuan; Zhao, Guangyao; Zhu, Mingzhu; Chu, Jinfang; Sun, Xiaohong; Wei, Bo; Zhang, Xiangqi; Jia, Jizeng; Mao, Long
2011-01-01
Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat. PMID:22174904
Kobayashi, Fuminori; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Wu, Jianzhong; Katayose, Yuichi; Handa, Hirokazu
2016-03-01
A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; "varieties in the Hokkaido area", "modern varieties in the northeast part of Japan", "modern varieties in the southwest part of Japan" and "classical varieties including landraces". This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, "days to heading in autumn sowing", "days to heading in spring sowing" and "culm length". We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.
Teleconnected food supply shocks
NASA Astrophysics Data System (ADS)
Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
2016-03-01
The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
Finnegan, E Jean; Ford, Brett; Wallace, Xiaomei; Pettolino, Filomena; Griffin, Patrick T; Schmitz, Robert J; Zhang, Peng; Barrero, Jose M; Hayden, Matthew J; Boden, Scott A; Cavanagh, Colin A; Swain, Steve M; Trevaskis, Ben
2018-06-01
The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi-spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non-Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FT-B1. Deletion of FT-B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs. © 2018 John Wiley & Sons Ltd.
Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.
Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk
2017-01-01
The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.
Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies
Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan
2017-01-01
The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene. PMID:28846721
Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (Triticum aestivum L.).
Beecher, Brian S; Carter, Arron H; See, Deven R
2012-05-01
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.
Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat.
Lu, Ping; Qin, Jinxia; Wang, Guoxin; Wang, Lili; Wang, Zhenzhong; Wu, Qiuhong; Xie, Jingzhong; Liang, Yong; Wang, Yong; Zhang, Deyun; Sun, Qixin; Liu, Zhiyong
2015-08-01
By applying comparative genomics analyses, a high-density genetic linkage map of the Wax 1 ( W1 ) locus was constructed as a framework for map-based cloning. Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, the wax on leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Wax1 (W1) is located on chromosome arm 2BS between markers Xgwm210 and Xbarc35. By applying comparative genomics analyses, colinearity genomic regions of the W1 locus on wheat 2BS were identified in Brachypodium distachyon chromosome 5, rice chromosome 4 and sorghum chromosome 6, respectively. Four STS markers were developed using the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. W1 was mapped into a 0.93 cM genetic interval flanked by markers XWGGC3197 and XWGGC2484, which has synteny with genomic regions of 56.5 kb in Brachypodium, 390 kb in rice and 31.8 kb in sorghum. The fine genetic map can serve as a framework for chromosome landing, physical mapping and map-based cloning of the W1 in wheat.
Effect of organic waste compost on the crop productivity and soil quality
NASA Astrophysics Data System (ADS)
Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait
2017-04-01
Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase compared to the unfertilized control plot. In the case lowest compost rate (200 kg N ha-1) yield increase was 19% (Figure 1). Second year residual effect of compost use to spring wheat grain yield was already smaller (8-17%) and statistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In third growing season after application the effect is not significant but it still important to consider, especially if we take in account cumulative yield increase trough all crop rotation. Additionally changes in selected soil parameters (SOC %, pH, PK concentration) will be presented.
Kamran, A; Iqbal, M; Navabi, A; Randhawa, H; Pozniak, C; Spaner, D
2013-08-01
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregg, Jay S.; Izaurralde, Roberto C.
2010-08-26
Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less
Shan, Tianlei; Rong, Wei; Xu, Huijun; Du, Lipu; Liu, Xin; Zhang, Zengyan
2016-07-01
The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat.