Relationships among the spruces (Picea, Pinaceae) of southwestern North America
F. Thomas Ledig; Paul D. Hodgskiss; Konstanin V. Krutovskii; David B. Neale; Teobaldo Eguiluz-Piedra
2004-01-01
Numerous populations from six spruce taxa, including four relict endemics, Picea chihuahuana (Chihuahua spruce), P. martinezii (MartÃnez spruce), P. mexicana (Mexican spruce), and P. breweriana (Brewer spruce), and two widespread species, P. engelmannii (Engelmann spruce) and...
Russel G. Mitchell; Kenneth H. Wright; Norman E. Johnson
1990-01-01
Ten species and hybrids of spruce (Picea spp.) were planted and observed annually for 26 years at three coastal locations in Oregon and Washington to evaluate growth rates and susceptibility to the Sitka spruce weevil (= white pine weevil), Pissodes strobi The 10 spruce were: Sitka spruce, Norway spruce, Lutz spruce, black...
White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate
C. Wirth; J.W. Lichstein; J. Dushoff; A. Chen; F.S.III. Chapin
2008-01-01
Local distributions of black spruce (Picea mariana) and white spruce (Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and...
Spruce-fir management and spruce budworm; SAF region VI technical conference
Daniel Schmitt; ed.
1985-01-01
Presents a technical update of the management of spruce-fir forests. Integrated management of eastern spruce budworm is not yet a reality. The ecological, social, and economic knowledge needed to develop an integrated management system is not available. The conference was designed to move individuals to a higher level of spruce budworm management in the eastern spruce-...
Mortality of spruce and fir in Maine in 1976-78 due to the spruce budworm outbreak
Donald W. Seegrist; Stanford L. Arner
1982-01-01
The spruce budworm population in Maine's spruce-fir forests has been at epidemic levels since the early 1970's. Spruce-fir mortality in 1976-78 is compared with predictions of what mortality would have been had the natural mortality rates remained at the levels experienced before the budworm outbreak. It appears that mortality of spruce and fir has increased...
Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production.
Yang, Ming; Xu, Minyuan; Nan, Yufei; Kuittinen, Suvi; Kamrul Hassan, Md; Vepsäläinen, Jouko; Xin, Donglin; Zhang, Junhua; Pappinen, Ari
2018-06-01
This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.
2001-01-01
We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.
Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles
Matsuoka, S.M.; Handel, C.M.
2007-01-01
We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested forest within managed forest landscapes and practice partial harvest of beetle-killed spruce rather than commercial clear-cutting of infested stands in order to sustain breeding bird populations until natural reforestation occurs. Because breeding densities do not always reflect fitness, assessing impacts of a massive natural disturbance should include measuring impacts of changes in vegetation on both reproductive success and predator–prey dynamics.
Allen, J.L.; Wesser, S.; Markon, C.J.; Winterberger, K.C.
2006-01-01
From 1989 to 2003, a widespread outbreak of spruce beetles (Dendroctonus rufipennis) in the Copper River Basin, Alaska, infested over 275,000 ha of forests in the region. During 1997 and 1998, we measured forest vegetation structure and composition on one hundred and thirty-six 20-m ?? 20-m plots to assess both the immediate stand and landscape level effects of the spruce beetle infestation. A photo-interpreted vegetation and infestation map was produced using color-infrared aerial photography at a scale of 1:40,000. We used linear regression to quantify the effects of the outbreak on forest structure and composition. White spruce (Picea glauca) canopy cover and basal area of medium-to-large trees [???15 cm diameter-at-breast height (1.3 m, dbh)] were reduced linearly as the number of trees attacked by spruce beetles increased. Black spruce (Picea mariana) and small diameter white spruce (<15 cm dbh) were infrequently attacked and killed by spruce beetles. This selective attack of mature white spruce reduced structural complexity of stands to earlier stages of succession and caused mixed tree species stands to lose their white spruce and become more homogeneous in overstory composition. Using the resulting regressions, we developed a transition matrix to describe changes in vegetation types under varying levels of spruce beetle infestations, and applied the model to the vegetation map. Prior to the outbreak, our study area was composed primarily of stands of mixed white and black spruce (29% of area) and pure white spruce (25%). However, the selective attack on white spruce caused many of these stands to transition to black spruce dominated stands (73% increase in area) or shrublands (26% increase in area). The post-infestation landscape was thereby composed of more even distributions of shrubland and white, black, and mixed spruce communities (17-22% of study area). Changes in the cover and composition of understory vegetation were less evident in this study. However, stands with the highest mortality due to spruce beetles had the lowest densities of white spruce seedlings suggesting a longer forest regeneration time without an increase in seedling germination, growth, or survival. ?? 2006 Elsevier B.V. All rights reserved.
Development of White and Norway Spruce Trees from Several Seed Sources 29 Years After Planting
James P. King; Paul O. Rudolf
1969-01-01
A 29-year-old test of trees grown from seven white spruce and six Norway spruce seed sources and planted in Wisconsin and Minnesota demonstrates the importance of seed-source selection and indicates that trees from some Norway spruce sources equal or surpass the native white spruce.
Crafting a competitive edge: white spruce regeneration in Alaska.
Jonathan. Thompson
2005-01-01
Over the past two decades, unprecedented levels of disturbance have occurred in the white spruce forests of Alaska. Spruce bark beetles, fires, and timber harvests have left millions of acres of dead spruce with little spruce regeneration. To assist public and private landowners, Pacific Northwest Research (PNW) Station scientists are testing various approaches to...
Putting community data to work: some understory plants indicate red spruce regeneration habitat
Alison C. Dibble; John C. Brissette; Malcolm L. Hunter
1999-01-01
When harvested, red spruce (Picea rubens) at low elevations is vulnerable to temporary displacement by balsam fir (Abies balsamea) and hardwoods. If indicator plants can be found by which to assess spruce regeneration habitat, then biota dependent on red spruce dominance could benefit. Associations between spruce seedlings (0.1-0.5...
R. Justin DeRose; James N. Long; John D. Shaw
2009-01-01
Engelmann spruce forests are structurally and compositionally diverse, occur across a wide range of physiographic conditions, and are the result of varying disturbance histories such as fire, wind and spruce beetle. The spruce beetle is a natural disturbance agent of spruce forests and has population levels that fluctuate from endemic to epidemic. Conceptually,...
Ecosystem development on terraces along the Kugururok River, northwest Alaska
Binkley, Dan; Suarez, F.; Stottlemyer, R.; Caldwell, B.
1997-01-01
Riverside terraces along the Kugururok River in the Noatak National Preserve provided an opportunity to study primary succession, considering general trends that apply across all terraces, and unique events that influence individual terraces. The 30-year-old willow/poplar (Salix spp., Populus balsamifera L.) terrace had no trees taller than 1.5 m; the abundant spruce trees were not tall enough to emerge from the canopy height of the willows and poplars, and moose (Alces alces [Clinton]) browsing limited the canopy height of these plants. The 75-year-old poplar/spruce (Picea glauca [Moench] Voss) terrace had a high density of poplars (> 1000/ha) and low density of spruce (125/ha); heavy browsing by moose reduced the density of poplar by about one-half. The removal of the poplar by moose in this stand resulted in sustained increases in growth of individual spruce trees. The 100-year-old younger spruce/poplar terrace had about twice as many spruce trees (1250/ha) as poplar trees (500/ha), and the spruce trees were larger on average than the poplar trees. In the 220+ year-old older spruce/poplar type, only a few poplars remained (about 25/ha), and the number of spruce trees (600/ha) was only half that of the younger stage, either from lower initial spruce density on this terrace, or increased mortality of spruce. The 240+ year-old spruce type was a second-generation forest, characterized by a high density (1950/ha) of small spruce trees, some of which were tilted, indicating discontinuous permafrost. Plant litterfall mass showed no strong trend with terrace age, although N content of litterfall appeared to decline by about 1/3 in the spruce-dominated stages. Fungal biomass increased with ecosystem age, whereas bacterial biomass and microfauna declined. We found no evidence of declining soil N supply in older stages, but fertilization experiments would be needed to determine if N limitation of productivity changed with ecosystem development. We conclude that the general successional trend of increased spruce dominance is robust for this location, but that unique events play important roles in determining tree densities and the timing of the shift in dominance from poplar to spruce. The arrival of moose in the 1970s accelerated dominance by spruce on young terraces.
Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P
2003-07-01
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.
Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV
Ann M. Lynch
2014-01-01
Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...
Richard A. Werner; Barbara L. Illman
1994-01-01
Mechanical wounding and wounding plus inoculation with a blue-stain fungus, Leptographium abietinum (Peck), associated with the spruce beetle, Dendroctonus rufipennis (Kirby), caused an induced reaction zone or lesion around the wound sites in Lutz spruce, Picea lutzii Little, Sitka spruce, P. sitchensis (Bong.) Carr., and white spruce, P. glauca (Moench) Voss, in...
Ann M. Lynch
2009-01-01
Spruce aphid is an exotic insect recently introduced to the Pinaleno Mountains. It feeds on dormant Engelmann spruce, and possible effects include tree-growth suppression, tree mortality, and reduction in seed and cone production. Potential longer-term effects include changes in forest structure and species composition - primarily through reduction in Engelmann spruce...
R. Justin DeRose; Barbara J. Bentz; James N. Long; John D. Shaw
2013-01-01
The spruce beetle (Dendoctronus rufipennis) is a pervasive bark beetle indigenous to spruce (Picea spp.) forests of North America. In the last two decades outbreaks of spruce beetle have increased in severity and extent. Increasing temperatures have been implicated as they directly control beetle populations, potentially inciting endemic populations to build to...
Messaoud, Yassine; Bergeron, Yves; Asselin, Hugo
2007-05-01
The reproductive potentials of balsam fir and white spruce (co-dominants in mixedwood forests) and black spruce (dominant in coniferous forests) were studied to explain the location of the ecotone between the two forest types in the boreal zone of Quebec. Four sites were selected along a latitudinal gradient crossing the ecotone. Cone crop, number of seeds per cone, percentage filled seeds, and percentage germination were measured for each species. Balsam fir and white spruce cone crops were significantly lower in the coniferous than in the mixedwood forest, while black spruce had greater crop constancy and regularity between both forest types. Mast years were more frequent for black spruce than for balsam fir in both forest types (mast year data not available for white spruce). The number of seeds per cone was more related to cone size than to forest type for all species. Black spruce produced more filled seeds in the coniferous forest than balsam fir or white spruce. The sum of growing degree-days and the maximum temperature of the warmest month (both for the year prior to cone production) significantly affected balsam fir cone production. The climate-related northward decrease in reproductive potential of balsam fir and white spruce could partly explain the position of the northern limit of the mixedwood forest. This could change drastically, however, as the ongoing climate warming might cancel this competitive advantage of black spruce.
R. Justin DeRose; James N. Long
2012-01-01
Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...
SPRUCE S1 Bog and SPRUCE Experiment Location Survey Results, 2015
Griffiths, Natalie A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set provides a record of the horizontal and vertical survey results of SPRUCE experimental infrastructure and measurement locations on the S1-Bog on the Marcell Experimental Forest and the SPRUCE experimental site within the S1-Bog.
Modelling spruce bark beetle infestation probability
Paulius Zolubas; Jose Negron; A. Steven Munson
2009-01-01
Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...
John S. Hard; Ken P. Zogas
2010-01-01
We examined old bark lesions on Lutz spruce in young stands on the Kenai Peninsula, Alaska, to determine their cause. Distribution of these lesions along lower stems was similar to the distribution of spruce beetle attacks during epidemics. These lesions apparently resulted from unsuccessful attacks by spruce beetles during the late 1980s and early 1990s and appear to...
Edward H. Holsten; Richard A. Werner
1993-01-01
Covering stacks of spruce firewood with either clear or black polyethylene sheeting does not raise log temperatures high enough to kill spruce beetle brood in the logs. Based on the results of this study, we do not recommend the use of polyethylene sheeting as a remedial measure for the reduction of spruce beetle brood in infested firewood or log decks in south-central...
Effects of forest management legacies on spruce budworm (Choristoneura fumiferana) outbreaks
Louis-Etienne Robert; Daniel Kneeshaw; Brian R. Sturtevant
2012-01-01
The "silvicultural hypothesis" of spruce budworm (Choristoneura fumiferana Clem.) dynamics postulates that increasing severity of spruce budworm outbreaks over the last century resulted from forest conditions created by past management activities. Yet, definitive tests of the hypothesis remain elusive. We examined spruce budworm outbreak...
Rentch, J.S.; Ford, W. Mark; Schuler, T.S.; Palmer, J.; Diggins, Corinne A.
2016-01-01
Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the results of an understory red spruce release experiment in hardwood-dominated stands that have a small component of understory red spruce. In 2005, 188 target spruce were identified in sample plots at six locations in central West Virginia. We projected a vertical cylinder above the crown of all target spruces, and in 2007, we performed a release treatment whereby overtopping hardwoods were treated with herbicide using a stem injection technique. Release treatments removed 0–10% (Control), 11–50% (Low), 51–89% (Medium), and ≤90% (High) of the basal area of overtopping trees. We also took canopy photographs at the time of each remeasurement in 2007, 2010, and 2013, and compared basal removal treatments and resulting 2010 canopy openness and understory light values. The high treatment level provided significantly greater six-year dbh and height growth than the other treatment levels. Based on these results, we propose that a tree-centered release approach utilizing small canopy gaps that emulate the historical, gap-phase disturbance regime provides a good strategy for red spruce restoration in hardwood forests where overstory spruce are virtually absent, and where red spruce is largely relegated to the understory.
Spruce Budworm in the Eastern United States
Daniel R. Kuceral; Peter W. Orr
The spruce budworm Choristoneura fumiferana (Clemens) is one of the most destructive native insects in the northern spruce and fir forests of the Eastern United States and Canada. Periodic outbreaks of the spruce budworm are a part of the natural cycle of events associated with the maturing of balsam fir.
Spruce aphid in high elevation habitats in the Southwest U.S.
Ann M. Lynch
2003-01-01
Spruce aphid, Elatobium abietinum (Walker) (Homoptera: Aphididae), is a new invasive pest in the interior Southwestern United States. This insect is causing extensive and severe damage on dormant Engelmann spruce, Picea engelmannii Parry, and Colorado blue spruce, P. pungens Engelm., in high elevation forests in...
Growth of white pine and red spruce trees after pruning
Grant Davis
1958-01-01
Are pines the only coniferous trees suitable for pruning in the Northeast, or is it feasible to prune red spruce as well? Although red spruce is an important lumber species in the spruce-fir region, it is seldom pruned because of its relatively slow rate of growth.
Zhang, Meng-tao; Zhang, Qing; Kang, Xin-gang; Yang, Ying-jun; Xu, Guang; Zhang, Li-xin
2015-06-01
Based on the analysis of three forest communities (polar-birch secondary forest, spruce-fir mixed forest, spruce-fir near pristine forest) in Changbai Mountains, a total of 22 factors of 5 indices, including the population regeneration, soil fertility (soil moisture and soli nutrient), woodland productivity and species diversity that reflected community characteristics were used to evaluate the stability of forest community succession at different stages by calculating subordinate function values of a model based on fuzzy mathematics. The results that the indices of population regeneration, soli nutrient, woodland productivity and species diversity were the highest in the spruce-fir mixed forest, and the indices of soil moisture were the highest in the spruce-fir near-pristine forest. The stability of three forest communities was in order of natural spruce-fir mixed forest > spruce-fir near pristine forest > polar-birch secondary forest.
Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens)
Rakesh Minocha; Haarald Kvaalen; Subhash C. Minocha; Stephanie Long
1993-01-01
Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (...
The structure of genetic diversity in Engelmann spruce and a comparison with blue spruce
F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson
2010-01-01
Genetic diversity and genetic structure in Engelmann spruce (Picea engelmannii Parry ex Engelm.) were interpreted with respect to the effects of glacial and interglacial displacement and compared with patterns in blue spruce (Picea pungens Engelm.), which occupies a range well south of the last glacial front. On average,...
Spectral evidence of early-stage spruce beetle infestation in Engelmann spruce
Adrianna C. Foster; Jonathan A. Walter; Herman H. Shugart; Jason Sibold; Jose Negron
2017-01-01
Spruce beetle (Dendroctonus rufipennis (Kirby)) outbreaks cause widespread mortality of Engelmann spruce (Picea engelmannii (Parry ex Engelm)) within the subalpine forests of the western United States. Early detection of infestations could allow forest managers to mitigate outbreaks or anticipate a response to tree mortality and the potential effects on ecosystem...
Gregory Nowacki; Dan Wendt
2010-01-01
The environmental relationships of red spruce (Picea rubens Sarg.) were assessed in east-central West Virginia. Although many significant relationships existed, red spruce was most strongly associated with elevation, climate, and soil moisture factors. Specifically, red spruce was positively associated with elevation, number of frost days, mean...
Spruce beetle-induced changes to Engelmann spruce foliage flammability
Wesley G. Page; Michael J. Jenkins; Justin B. Runyon
2014-01-01
Intermountain Engelmann spruce (Picea engelmannii Parry ex Engelm) stands affected by the spruce beetle (Dendroctonus rufipennis Kirby) represent a unique and growing fuel complex. In this study, we quantified and compared the changes in moisture content, chemistry, and flammability of foliage from trees in three crown condition classes: unattacked (green [G]),...
Nikolova, Petia S; Andersen, Christian P; Blaschke, Helmut; Matyssek, Rainer; Häberle, Karl-Heinz
2010-04-01
The effects of experimentally elevated O(3) on soil respiration rates, standing fine-root biomass, fine-root production and delta(13)C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O(3) under beech and spruce, and was related to O(3)-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O(3) on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O(3) regime. delta(13)C signature of newly formed fine-roots was consistent with the differing g(s) of beech and spruce, and indicated stomatal limitation by O(3) in beech and by drought in spruce. Our study showed that drought can override the stimulating O(3) effects on fine-root dynamics and soil respiration in mature beech and spruce forests. 2009 Elsevier Ltd. All rights reserved.
Hammerbacher, Almuth; Ralph, Steven G.; Bohlmann, Joerg; Fenning, Trevor M.; Gershenzon, Jonathan; Schmidt, Axel
2011-01-01
Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense. PMID:21865488
Hammerbacher, Almuth; Ralph, Steven G; Bohlmann, Joerg; Fenning, Trevor M; Gershenzon, Jonathan; Schmidt, Axel
2011-10-01
Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.
Development of spruce-fir stands following spruce beetle outbreaks
J. M. Schmid; T. E. Hinds
1974-01-01
Logged and unlogged stands of Engelmann spruce-subalpine fir were evaluated in spruce beetle outbreak areas infested about 15, 25, 50, and 100 years ago. Seedling regeneration was generally adequate except in heavily logged areas, although seedlings were often damaged, apparently by animals. Species composition was dramatically altered in favor of fir in the unlogged...
E. Matthew Hansen; Jim C. Vandygriff; Robert J. Cain; David Wakarchuk
2006-01-01
We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we...
Integrated permanent plot and aerial monitoring for the spruce budworm decision support system
David A. MacLean
2000-01-01
Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause severe mortality and growth loss of spruce and fir forest over ranch of eastern North America. The Spruce Budworm Decision Support System (DSS) links prediction and interpretation models to the ARC/1NFO GIS, under an ArcView graphical user interface. It helps forest managers predict...
Spruce budworm returns to Northeast
Lloyd Irland; William H. McWilliams
2014-01-01
Thinking of the Northern Forest brings to mind spruce/fir (S/F) forests, cool climates, and high elevations: not to mention fishing and canoe trips: however, spruce and fir are also very important to the northern timber economy and rural development. Considering new concerns over the spruce budworm, an update on the status of this critically important forest resource...
Aluminum-induced calcium deficiency syndrome in declining red spruce
Walter C. Shortle; Kevin T. Smith
1988-01-01
Prolonged suppression of cambial growth has apparently caused a decline in radial growth in many mature red spruce, Picea rubens. Surveys indicate that this decline occurs in trees throughout the natural range of red spruce and is independent of elevation, tree size, and age class. In addition, crowns of mature red spruce at high elevations across...
Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-09-01
Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).
J.S. Hard; E.H. Holsten
1985-01-01
Thinning is recommended for maintaining vigorous tree growth to minimize losses caused by spruce beetles (Dendroctonus rufipenni Kirby) and windthrow in residual stands of spruce in south-central Alaska. The anatomy of conifer stems, the variation in stem diameter growth, and the variability of tree response to wounding are discussed to explain why...
William John. Mattson
1983-01-01
Spruce budworm growth was best on balsam fir, poorest on lowland black spruce, and intermediate on upland white and black spruce. Growth was consistently, positively linked to foliar N and negatively linked to Fe, K, and select terpenes. Survival rates were not strongly, nor consistently linked to any of the measured foliar chemical traits.
Albert E. Mayfield; Ray R. Hicks
2010-01-01
The abundance of red spruce (Picea rubens Sarg.) in the Central Appalachian Mountains has been drastically reduced over the past 100 to 150 years. The purpose of this study was to examine the potential for increases in the relative abundance of overstory red spruce in a Central Appalachian, high-elevation forest by measuring the abundance of red...
Darrell W. Ross; Gary E. Daterman; A. Steven Munson
2004-01-01
The spruce beetle, Dendroctonus rufipennis (Kirby), produces the antiaggregation pheromone 3-methylcyclohex-2-en- 1-one (MCH) (Rudinsky et al. 1974). MCH has reduced the numbers of spruce beetles attracted to infested logs and synthetic semiochemical lures or reduced colonization rates throughout the beetles range (Kline
Acidic deposition and red spruce in the central and southern Appalachians, past and present
Mary Beth. Adams
2010-01-01
During the 1980s, the Spruce-Fir Research Program, part of the Congressionally mandated National Atmospheric Precipitation Assessment Program (NAPAP), investigated the links between acidic deposition and decline and mortality of red spruce forests in the eastern United States. The Spruce-Fir Research Program was highly successful in advancing the state of knowledge on...
Mortality patterns following spruce budworm infestation in unprotected spruce-fir forests in Maine
Dale S. Solomon; Lianjun Zhang; Thomas B. Brann; David S. Larrick
2003-01-01
Cumulative and annual mortality of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L) Mill.] were examined over a 10 yr period to follow the mortality patterns in unprotected spruce-fir forests in northern Maine. Different mortality patterns were determined based on stand composition classes and merchantability classes. In general, balsam fir was more...
Matt Hansen; A. Steven Munson; Darren C. Blackford; David Wakarchuk; Scott Baggett
2016-01-01
We tested lethal trap trees and repellent semiochemicals as area treatments to protect host trees from spruce beetle (Dendroctonus rufipennis Kirby) attacks. Lethal trap tree treatments ("spray treatment") combined a spruce beetle bait with carbaryl treatment of the baited spruce. Repellent treatments ("spray-repellentâ) combined a baited lethal...
Dumais, Daniel; Prévost, Marcel
2008-08-01
We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch-conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce.
Can snowshoe hares control treeline expansions?
Olnes, Justin; Kielland, Knut; Juday, Glenn P; Mann, Daniel H; Genet, Hélène; Ruess, Roger W
2017-10-01
Treelines in Alaska are advancing in elevation and latitude because of climate warming, which is expanding the habitat available for boreal wildlife species, including snowshoe hares (Lepus americanus). Snowshoe hares are already present in tall shrub communities beyond treeline and are the main browser of white spruce (Picea glauca), the dominant tree species at treeline in Alaska. We investigated the processes involved in a "snowshoe hare filter" to white spruce establishment near treeline in Denali National Park, Alaska, USA. We modeled the pattern of spruce establishment from 1970 to 2009 and found that fewer spruce established during periods of high hare abundance. Multiple factors interact to influence browsing of spruce, including the hare cycle, snow depth and the characteristics of surrounding vegetation. Hares are abundant at treeline and may exclude spruce from otherwise optimal establishment sites, particularly floodplain locations with closed shrub canopies. The expansion of white spruce treeline in response to warming climate will be strongly modified by the spatial and temporal dynamics of the snowshoe hare filter. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Goisser, Michael; Blanck, Christian; Geppert, Uwe; Häberle, Karl-Heinz; Matyssek, Rainer; Grams, Thorsten E. E.
2016-04-01
Mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) frequently reflect over-yielding, when compared to respective monospecific stands. Over-yielding is attributed to enhanced resource uptake efficiency through niche complementarity alleviating species competition. Under climate change, however, with severe and frequent summer drought, water limitation may become crucial in modifying the competitive interaction between neighboring beech and spruce trees. In view of the demands by silvicultural practice, basic knowledge from experimental field work about competitive versus facilitative interaction in maturing mixed beech-spruce forests is scarce. To this end, we investigate species-specific drought response including underlying mechanisms of species interaction in a maturing group-wise mixed beech-spruce forest, amongst 60 and 53 adult trees of beech and spruce, respectively (spruce 65 ± 2, beech 85 ± 4 years old). Severe and repeated experimental drought is being induced over several years through a stand-scale approach of rain throughfall exclusion (Kranzberg Forest Roof Experiment, KROOF). The experimental design comprises 6 roofed (E, automated, closing only during rain) and 6 control (C) plots with a total area of almost 1800 square meters. In 2015 minimum predawn potentials of -2.16 MPa and -2.26 MPa were reached in E for beech and spruce respectively. At the leaf level, spruce displayed high drought susceptibility reflected by a distinct decrease in both stomatal conductance and net CO2 uptake rate by more than 80% each, suggesting isohydric response. Beech rather displayed anisohydry indicated by less pronounced yet significant reduction of stomatal conductance and net CO2 uptake rate by more than 55% and 45%, respectively. Under the C regime, a negative species interaction effect on stomatal conductance was found in beech, contrasting with a positive effect in spruce. However, drought reversed the effect of species interaction on stomatal conductance, suggesting competition release in beech and by contrast, a shift from facilitation to competition in spruce, if both species grew in mixture. Based on fine root distribution and soil moisture assessments, we interpret this reversed interaction effect as a consequence of different spatio-temporal patterns of soil water use in combination with enhanced root stratification between neighboring beech and spruce trees. Under humid climate conditions (i.e. with only short drought) the rather conservative strategy of spruce (isohydric response, root dominance in upper soil) appears to be advantageous, facilitating pre-emption of nutrients from litter mineralization and water from precipitation. During extended periods of drought, however, shallow rooting and early stomatal closure limits the accessibility to deep soil water and, hence, photosynthetic carbon assimilation, eventually constraining competitiveness of spruce. Beech rather benefits from reduced water consumption of its drought stressed competitor spruce. Regarding stomatal conductance, positive effects of beech-spruce interaction are overridden under extended periods of drought.
A.W. Thomas
1983-01-01
Female larvae ate about 1.5 times as much foliage as male larvae. Larvae ate significantly less old foliage than current foliage. Balsam fir current foliage was eaten in greater quantitities than any other foliage; white spruce current and balsam fir old were eaten to the same extent; very little old white spruce was eaten.
Jose F. Negron; John B. Popp
2017-01-01
1) Bark beetles (Coleoptera: Curculionidae: Scolytinae) can cause extensive tree mortality in forests dominated by their hosts. Among these, the spruce beetle (Dendroctonus rufipennis) is one of the most important beetles in western North America causing Engelmann spruce (Picea engelmannii) tree mortality. 2) Although pheromone traps with attractants are commonly used...
J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins
2016-01-01
Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...
S.A.M Manley; F. Thomas Ledig
1979-01-01
Photosynthetic response5 of black and red spruce were used to define parameters of their fundamental niches. Grown at warm temperature, black spruce had highest rates of CO2 uptake at high light intensities, fitting it for a pioneering role, while red spruce had the lowest light compensation point, fitting it for a late successional role. Black...
Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.
Matthew Hansen, E; Steven Munson, A; Blackford, Darren C; Wakarchuk, David; Scott Baggett, L
2016-10-01
We tested lethal trap trees and repellent semiochemicals as area treatments to protect host trees from spruce beetle (Dendroctonus rufipennis Kirby) attacks. Lethal trap tree treatments ("spray treatment") combined a spruce beetle bait with carbaryl treatment of the baited spruce. Repellent treatments ("spray-repellent") combined a baited lethal trap tree within a 16-m grid of MCH (3-methylcyclohex-2-en-1-one) and two novel spruce beetle repellents. After beetle flight, we surveyed all trees within 50 m of plot center, stratified by 10-m radius subplots, and compared attack rates to those from baited and unbaited control plots. Compared to the baited controls, spruce in the spray treatment had significantly reduced likelihood of a more severe attack classification (e.g., mass-attacked over strip-attacked or unsuccessful-attacked over unattacked). Because spruce in the spray treatment also had significantly heightened probability of more severe attack classification than those in the unbaited controls, however, we do not recommend lethal trap trees as a stand-alone beetle suppression strategy for epidemic beetle populations. Spruce in the spray-repellent treatment were slightly more likely to be classified as more severely attacked within 30 m of plot center compared to unbaited controls but, overall, had reduced probabilities of beetle attack over the entire 50-m radius plots. The semiochemical repellents deployed in this study were effective at reducing attacks on spruce within treated plots despite the presence of a centrally located spruce beetle bait. Further testing will be required to clarify operational protocols such as dose, elution rate, and release device spacing. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area. PMID:24009616
NASA Astrophysics Data System (ADS)
Wang, Guo-Hong; Li, He; Zhao, Hai-Wei; Zhang, Wei-Kang
2017-05-01
This study aimed to elucidate the relationship between climate and the phylogenetic and morphological divergence of spruces (Picea) worldwide. Climatic and georeferenced data were collected from a total of 3388 sites distributed within the global domain of spruce species. A phylogenetic tree and a morphological tree for the global spruces were reconstructed based on DNA sequences and morphological characteristics. Spatial evolutionary and ecological vicariance analysis (SEEVA) was used to detect the ecological divergence among spruces. A divergence index (D) with (0, 1) scaling was calculated for each climatic factor at each node for both trees. The annual mean values, extreme values and annual range of the climatic variables were among the major determinants for spruce divergence. The ecological divergence was significant (P < 0. 001) for 185 of the 279 comparisons at 31 nodes in the phylogenetic tree, as well as for 196 of the 288 comparisons at 32 nodes in the morphological tree. Temperature parameters and precipitation parameters tended to be the main driving factors for the primary divergences of spruce phylogeny and morphology, respectively. Generally, the maximum D of the climatic variables was smaller in the basal nodes than in the remaining nodes. Notably, the primary divergence of morphology and phylogeny among the investigated spruces tended to be driven by different selective pressures. Given the climate scenario of severe and widespread drought over land areas in the next 30-90 years, our findings shed light on the prediction of spruce distribution under future climate change.
Willem W.S. van Hees
1992-01-01
Forest inventory data collected in 1987 fTom sample plots established on the Kenai Peninsula were analyzed to provide point-in-time estimates of the trend and current status of a spruce beetle infestation. Ground plots were categorized by stage of infestation. Estimates of numbers of live and dead white spruce trees, cubic-foot volume in those trees, and areal extent...
Mice and voles prefer spruce seeds
Herschel G. Abbott; Arthur C. Hart
1961-01-01
When spruce-fir stands in the Northeast are cut, balsam fir seedlings often predominate in the regeneration that follows. Most landowners would prefer to have the spruce; but they do not get it, and they wonder why.
Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea?
Chen, Jun; Tsuda, Yoshiaki; Stocks, Michael; Källman, Thomas; Xu, Nannan; Kärkkäinen, Katri; Huotari, Tea; Semerikov, Vladimir L; Vendramin, Giovanni G; Lascoux, Martin
2014-07-01
Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species. Copyright © 2014 by the Genetics Society of America.
AmeriFlux CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolis, Hank
This is the AmeriFlux version of the carbon flux data for the site CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75). Site Description - Quebec - Eastern Boreal; Black Spruce forest harvested in 1975.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, K.M.; Holsten, E.H.; Werner, R.A.
1995-03-01
SBexpert version 1.0 is a knowledge-based decision-support system for management of spruce beetle developed for use in Microsoft Windows. The users guide provides detailed instructions on the use of all SBexpert features. SBexpert has four main subprograms; introduction, analysis, textbook, and literature. The introduction is the first of the five subtopics in the SBexpert help system. The analysis topic is an advisory system for spruce beetle management that provides recommendation for reducing spruce beetle hazard and risk to spruce stands and is the main analytical topic in SBexpert. The textbook and literature topics provide complementary decision support for analysis.
Lepidoptera associated with western spruce budworm: introduction
Robert E. Stevens; V. M. Carolin; George P. Markin
1984-01-01
Field workers doing surveys, control operations, and research on western spruce bud worm often encounter other kinds of foliage-feeding larvae, some of which closely resemble western spruce bud worm , Workers must be able to distinguish between the different species and groups.
Analyses of Great Smoky Mountain Red Spruce Tree Ring Data
Paul C. van Deusen; [Editor
1988-01-01
Four different analyses of red spruce tree ring data from the Great Smoky Mountains are presented along with a description of the spruce/fir ecosystem.The analyses use several techniques including spatial analysis, fractals, spline detrending, and the Kalman filter.
2007-08-01
mainly highbush cranberry and wild rose. The larger, more mature birch provide nesting sites for raptors and red squirrels use the scattered pockets...of white spruce as food, shelter, and cover. Highbush cranberry and rosehips provide a food supply for ruffed grouse. 3.2.1.2.3 Black Spruce. The...lowbush cranberry . Marten use the spruce for cover and red squirrels use the spruce cones for food. Because there is often discontinuous permafrost
Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo
2007-01-01
We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...
Nonlinearities, scale-dependence, and individualism of boreal forest trees to climate forcing
NASA Astrophysics Data System (ADS)
Wolken, J. M.; Mann, D. H.; Grant, T. A., III; Lloyd, A. H.; Hollingsworth, T. N.
2013-12-01
Our understanding of the climate-growth relationships of trees are complicated by the nonlinearity and variability of these responses through space and time. Furthermore, trees growing at the same site may exhibit opposing growth responses to climate, a phenomenon termed growth divergence. To date the majority of dendrochronological studies in Interior Alaska have involved white spruce growing at treeline, even though black spruce is the most abundant tree species. Although changing climate-growth relationships have been observed in black spruce, there is little known about the multivariate responses of individual trees to temperature and precipitation and whether or not black spruce exhibits growth divergences similar to those documented for white spruce. To evaluate the occurrence of growth divergences in black spruce, we collected cores from trees growing on a steep, north-facing toposequence having a gradient in environmental parameters. Our overall goal was to assess how the climate-growth relationships of black spruce change over space and time. Specifically, we evaluated how topography influences the climate-growth relationships of black spruce and if the growth responses to climate are homogeneous. At the site-level most trees responded negatively to temperature and positively to precipitation, while at the tree-level black spruce exhibited heterogenous growth responses to climate that varied in both space (i.e., between sites) and time (i.e., seasonally and annually). There was a dominant response-type at each site, but there was also considerable variability in the proportion of trees exhibiting each response-type combination. Even in a climatically extreme setting like Alaska's boreal forest, tree responses to climate variability are spatially and temporally complex, as well as highly nonlinear.
Hansen, E Matthew; Munson, A Steven; Blackford, Darren C; Graves, Andrew D; Coleman, Tom W; Baggett, L Scott
2017-10-01
We tested 3-methylcyclohex-2-en-1-one (MCH) and an Acer kairomone blend (AKB) as repellent semiochemicals for area and single tree protection to prevent spruce beetle (Dendroctonus rufipennis Kirby) attacks at locations in Utah and New Mexico. In the area protection study, we compared host infestation rates of MCH applications at three densities (20, 40, and 80 g MCH ha-1) against a control treatment over 0.64 ha plots centered within ~1.25 ha treatment blocks. All treatments included two baited funnel traps within the plot to assure spruce beetle pressure. Following beetle attack, plots were surveyed for new spruce beetle attacks and to quantify stand characteristics. The probability of more severe spruce beetle attacks was significantly reduced, by ~50%, in each of the MCH area treatments compared with the control treatment but there was no significant treatment difference among the MCH deployment densities. For the single tree protection study, we compared attack rates of MCH, Acer kairomone blend (AKB), and MCH plus AKB on spruce beetle-baited trees against bait-only trees. Each treatment was applied over a range of host diameters to test for host size effects. Seventy-five percent of control trees were mass-attacked, about one-third of MCH- and AKB-alone spruce was mass-attacked, and no MCH plus AKB spruce were mass-attacked. These results suggest that MCH alone is a marginal area and single tree protectant against spruce beetle but that deployment with other repellents can significantly increase treatment efficacy. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Nancy Lorimer; Leah S. Bauer
1983-01-01
Pupal weights and fecundities of spruce budworm from Minnesota had different means, coefficients of variation, and frequency distributions than spruce budworm from New Hampshire. The two variables were correlated in one of the populations but not the other.
Microbial communities in the litter of middle taiga bilberry-spruce forests
NASA Astrophysics Data System (ADS)
Sizonenko, T. A.; Zagirova, S. V.; Khabibullina, F. M.
2010-10-01
The structure of the microbial communities in the litters of middle-taiga bilberry-spruce forests was studied. It was found that ammonifying and oligonitrophilic microorganisms predominate in these communities. Two maximums in the population density of the microorganisms were observed in June and August. The number of microorganisms increased in the direction from the spruce trunks to the periphery of the crowns. The species composition of the micromycetes in the litters under the spruce crowns and within the intercrown spaces differed. The maximum population density of the fungi was found in the litter under the periphery of the spruce crowns, whereas the maximum diversity of the micromycetes was observed within the intercrown spaces. The Trichoderma, Trichosporiella, Penicillium, Paecilomyces, and Chaetomium genera were most abundant in the litters of the bilberry spruce forests. The Penicillium genus had the maximum abundance during the entire growing period, and the amount of Mycelia sterilia increased in the fall. The maximum diversity of the fungi was observed in May and June.
Preliminary lumber recovery for dead and live Engelmann spruce.
James M. Cahill
1980-01-01
Lumber recovery, lumber grade distribution, and log values are presented for logs cut from dead and live Engelmann spruce (Picea engelmannii Parry ex Engelm.) trees. The dead sample includes standing and down trees killed by the Engelmann spruce beetle (Dendroctonus ruffipennis Kirby) over 20 years ago.
Computer simulation for integrated pest management of spruce budworms
Carroll B. Williams; Patrick J. Shea
1982-01-01
Some field studies of the effects of various insecticides on the spruce budworm (Choristoneura sp.) and their parasites have shown severe suppression of host (budworm) populations and increased parasitism after treatment. Computer simulation using hypothetical models of spruce budworm-parasite systems based on these field data revealed that (1)...
Spruce reproduction dynamics on Alaska's Kenai Peninsula, 1987-2000.
Willem W.S. van Hees
2005-01-01
During the past 30 years, spruce forests of Alaskaâs Kenai Peninsula have undergone dramatic changes resulting from widespread spruce bark beetle(Dendroctonus rufipennis (Kirby)) infestation. In 1987 and again in 2000, the Pacific Northwest Research Station's Forest Inventory and Analysis Program conducted initial and remeasurement inventories...
T.D. Perkins; G.T. Adams; S.T. Lawson; P.G. Schaberg; S.G. McNulty
2000-01-01
Current-year red spruce (Picea rubens Sarg.) foliage is predisposed to winter injury by one or more types of anthropogenic pollutants, particularly acidic deposition. The resultant defoliation, when severe and repeated, leads to dieback and eventual mortality of affected red spruce individuals
Darrell W. Ross; Gary E. Daterman; A. Steven Munson
2005-01-01
Spruce beetle, Dendroctonus rufipennis (Kirby), populations periodically reach outbreak densities throughout the range of spruce, Picea spp., in western North America. During outbreaks it may kill thousands to millions of trees over vast areas, dramatically altering forest structure, composition, and ecological processes, thus impacting a variety...
AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce
Margolis, Hank A. [Université Laval
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss
Spruce Budworm Fecundity and Foliar Chemistry: Influence of Site
M.D.C. Schmitt; M.M. Czapowskyj; D.C. Allen; E.H. White
1983-01-01
Two Maine spruce-fir stands having different soils were sampled to determine the relationship between spruce budworm weight (fecundity) and foliage quality. Although much of the variation in budworm weight was attributable to other factors, significant correlations between budworm weight and multiple foliar nutrient concentration variables suggest that foliage quality...
Peter M. Brown; Wayne D. Shepperd; Christopher C. Brown; Stephen A. Mata; Douglas L. McClain
1995-01-01
Age structure in a stand of very old-age Engelmann spruce is described. The site is at 3,505 m near treeline in the Fraser Experimental Forest in central Colorado. The site contains the oldest Engelmann spruce trees yet reported in the literature; the oldest tree is at least 852 years of age.
The Kenai experience: communities and forest health.
Valerie. Rapp
2005-01-01
Over the last 15 years, spruce bark beetles have killed huge numbers of spruce trees, the dominant conifer across south-central Alaska. From 80 to 90 percent of the trees are dead in large areas on the Kenai Peninsula. The consequences of the spruce bark beetle outbreak will continue for years.
Response of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) to host volatiles
Jon Sweeney; Peter de Groot; Linda MacDonald
2003-01-01
Studies were undertaken to develop an attractant and trap for survey and detection of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), a European beetle recently found established in Halifax, Nova Scotia. Cortical volatiles of T. fuscum-infested red spruce, Picea rubens Sarg...
Eastern Spruce Dwarf Mistletoe
F. Baker; Joseph O' Brien; R. Mathiasen; Mike Ostry
2006-01-01
Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic flowering plant that causes the most serious disease of black spruce (Picea mariana) throughout its range. The parasite occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland; in the Lake States of Minnesota,...
Radial growth rate and susceptibility of Picea rubens Sarg. to Tetropium fuscum (Fabr.)
K. O' Leary; J. E. Hurley; W. Mackay; J. Sweeney
2003-01-01
The brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae) recently became established in Halifax, Nova Scotia, Canada, where it is infesting and killing apparently healthy red spruce, Picea rubens Sarg. In its native range, T. fuscum is a secondary pest of Norway spruce, Picea...
NASA Astrophysics Data System (ADS)
Kosiba, A. M.; Schaberg, P. G.; Rayback, S. A.; Hawley, G. J.
2016-12-01
Recent investigations have uncovered an unanticipated trend: red spruce (Picea rubens Sarg.) trees in the northeastern US are undergoing a marked surge in growth. This discovery stands in contrast to the declines in growth and vigor for red spruce that were documented in the second half of the 20th century and quantitatively attributed to acid deposition-induced calcium depletion. Further, predictions of potential habitat due to climate change depict red spruce habitat constricting from low elevations and latitudes. Considering these conflicting findings, we asked: what factors are most likely stimulating growth increases for red spruce trees? Here we use a uniquely large and both spatially- and temporally-explicit tree ring dataset to assess changes in red spruce growth over time. We compare patterns in growth to local weather data, atmospheric deposition rates, and other environmental and forest-stand metrics, including nutrient soil status and buffering capacity. These results allow us to model areas in the region where we predict similar growth increases for red spruce trees. Through this study, we suggest that this temperate conifer may be uniquely posed to benefit from a lengthened functional growing season, increased annual temperatures, particularly in winter, and decreased atmospheric pollution levels that proved problematic in the past.
Breeding for resistance in Norway spruce to the root and butt rot fungi Heterobasidion spp
G. Swedjemark; A.K. Borg-Karlson; B. Karlsson
2012-01-01
Results from previous studies of resistance in Norway spruce (Picea abies (L.) Karst.) to the pathogens Heterobasidion spp. show significant genotypic variation in fungal growth and spore susceptibility among Norway spruce clones. The genetic variation and the heritability are large enough for practical breeding purposes and...
Comparison of Bt formulations against the spruce budworm
Lew McCreery; Imants Millers; Dennis Souto; Bruce Francis
1985-01-01
The Passamaquoddy Indian Forestry Department treated 40,300 acres in Maine in 1983 using Bt to protect red spruce and eastern hemlock from spruce budworm damage. The post treatment evaluation indicated that the protection objectives were achieved. In cooperation between the Passamaquoddy Indian Forestry Department and two commercial Bt suppliers, Abbott Laboratories...
The Status of White Spruce Plantations on Lake States National Forests
Glen W. Erickson; H. Michael Rauscher
1985-01-01
Summarizes information about white spruce plantations as of 1982. Based on average site index, the Superior National Forest in Minnesota and the Hiawatha and Huron-Manistee in Michigan contain climate-soil-seed source complexes that are, on the average, less productive for white spruce than on the other National Forests
John E. Major; Alex Mosseler; Kurt H. Johnsen; Om P. Rajora; Debby C. Barsi; K.-H. Kim; J.-M. Park; Moira Campbell
2005-01-01
Hybridization between red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) BSP), lateand early-successional species, respectively, has resulted in identification and management problems. We investigated the nature and magnitude of reproductive and life-cycle success barriers in controlled intra- and inter-...
Climate-growth relationships along a black spruce toposequence in Interior Alaska
Jane M. Wolken; Daniel H. Mann; Thomas A. Grant; Andrea H. Lloyd; T. Scott Rupp; Teresa N. Hollingsworth
2016-01-01
Despite its wide geographic distribution and important role in boreal forest fire regimes, little is known about the climate-growth relationships of black spruce (Picea mariana [Mill.] B.S.P.). We used site- and tree-level analyses to evaluate the radial growth responses to climate of black spruce growing...
Some observations on age relationships in spruce-fir regeneration
Barton M. Blum
1973-01-01
Measurement of the ages of seedlings of balsam fir (Abies balsamea (L) Mill.), red spruce (Picea rubens Sarg.), and white spruce (Picea glauca (Moench) Voss) 15 years after the first harvest of a two-cut shelterwood operation revealed that very few potential crop-tree seedlings in the sample occurred as advance...
Effect of soil and vegetation on growth of planted white spruce.
Donald A. Perala
1987-01-01
White spruce container stock grew better on a sandy loam soil than on a silty clay, and much better without herbaceous competitions. Herbaceous competition was less vigorous on the sandy loam soil following glyphosate treatment, but was more vigorous on the silty clay. Certain spruce genotypes excelled under different field environments.
Bareroot nursery production and practices for white spruce: a literature review.
A.A. Alm; V.M. Vaughn; H.M. Rauscher
1991-01-01
This summary of white spruce literature covers seed collection and treatment, nursery cultural practices, seedling growth patterns and measurements of seedling quality. It includes information relevant to bareroot white spruce but does not cover containerized seedlings. It is intended for forest land managers, researchers and bareroot forest nursery managers.
Sticky-board trap for measuring dispersal of spruce budworm larvae
Daniel T. Jennings; Mark W. Houseweart
1983-01-01
Describes a new sticky-board trap for measuring early-larval dispersal of the spruce budworm, Choristoneura fumiferana (Clem.), and evaluates trap-board color and screened versus unscreened traps. Dispersing spruce budworm larvae showed no preference for trap color; fewer nontarget arthropods were caught on dark-colored than on light-colored traps....
SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped
NASA Astrophysics Data System (ADS)
Yansa, Catherine H.
2006-02-01
This paper revises the chronology for the northward migration of Picea glauca (white spruce) across the northern Great Plains, following the recession of the Laurentide Ice Sheet, and reinterprets the species composition and structure of the late-glacial vegetation on the basis of pollen and plant-macrofossil analysis. The timing of spruce migration is based on 26 14C ages obtained from Picea macrofossils. The date for the appearance of white spruce in southern South Dakota, USA, remains unchanged, 12,600 14C yr BP (ca 15,000 cal yr BP), but its arrival in southern Saskatchewan, Canada, by 10,300 14C yr BP (ca 12,100 cal yr BP) is about 1500 years later than previously estimated based on an organic sediment date. Picea glauca thus migrated northwards at an average rate of 0.38 km/ 14C year (0.30 km/calendar year), significantly slower than the previously published rate of 2 km/ 14C year. White spruce trees probably inhabited lake shorelines, whereas prairie, parkland, and boreal plants occupied both lowlands and uplands, forming an open white spruce parkland. This interpretation differs from a previous reconstruction of a boreal-type spruce forest and thus offers another paleoclimatic interpretation. Precipitation was probably low and summer temperatures relatively mild, averaging about 19 °C.
D.W. Williams; Andrew Liebhold
1997-01-01
Changes in global temperatures over the next century resulting from the greenhouse effect may have profound effects on the distribution and abundance of insect populations. One general hypothesis is the poleward shift of species distributions. We investigated potential range shifts for the spruce budworm, Choristoneura fumiferana, in the...
Fertilization of black spruce or poor site peatland in Minnesota.
David H. Alban; Richard F. Watt
1981-01-01
Fertilization of poor site black spruce on organic soil with various rates of nitrogen and phosphorus increased height and diameter growth from 2 to 4 times. The growth response declined with time but was still apparent 16 years after fertilization. Shrub biomass and coverage, and nutrient levels of spruce foliage were strongly affected by fertilization.
A density management diagram for Norway spruce in the temperate Europe montane region
Giorgio Vacchiano; R. Justin DeRose; John D. Shaw; Miroslav Svoboda; Renzo Motta
2013-01-01
Norway spruce is one of the most important conifer tree species in Europe, paramount for timber provision, habitat, recreation, and protection of mountain roads and settlements from natural hazards. Although natural Norway spruce forests exhibit diverse structures, even-aged stands can arise after disturbance or as the result of common silvicultural practice, including...
A.D. McGuire; R.W. Ruess; A. Lloyd; J. Yarie; J.S. Clein; G.P. Juday
2010-01-01
This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth...
E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner
2006-01-01
Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...
Factors influencing northern spruce engraver colonization of white spruce slash in interior Alaska
Christopher J. Fettig; Roger E. Burnside; Chistopher J. Hayes; James J. Kruse; Nicholas J. Lisuzzo; Stephen R. McKelvey; Sylvia R. Mori; Stephen K. Nickel; Mark E. Schultz
2013-01-01
In interior Alaska, increased use of mechanical fuel reduction treatments, increased interests in the use of wood energy systems as alternatives to fossil fuels, and elevated populations of northern spruce engraver, Ips perturbatus (Eichhoff), have raised concerns regarding the impact of this bark beetle to forest resources. We conducted a large-...
Robert L. Talerico; Michael Montgomery
1983-01-01
The Canada/U.S. Spruce Budworms Program in cooperation with the Center for Biological Control of Northeastern Forest Insects and Diseases of the Northeastern Forest Experiment Station co-sponsored this Forest Defoliator-Host Interaction Workshop.This invitational workshop was limited to investigators of the spruce bud worms and gypsy moth in the Forest Service,...
Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce
Walter C. Shortle; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence; Mark B. David
1997-01-01
Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical...
Natural development and regeneration of a Central European montane spruce forest
Miroslav Svoboda; Shawn Fraver; Pavel Janda; Radek Bače; Jitka Zenáhlíková
2010-01-01
Montane Norway spruce forests of Central Europe have a very long tradition of use for timber production; however, recently there has been increasing concern for their role in maintaining biological diversity. This concern, coupled with recent severe windstorms that led to wide-spread bark beetle outbreaks, has brought the management of montane spruce forests to the...
Growth and yield of white spruce plantations in the Lake States (a literature review).
H. Michael Rauscher
1984-01-01
This summary of the white spruce literature covers the structure, site relations, population dynamics, and cultural practices applicable to established plantations in the Lake States. The objective of this paper is to assemble and organize all information relevant to the silviculture, growth, and yield of white spruce plantations in the Lake States .
Heather Griscom; Helmut Kraenzle; Zachary. Bortolot
2010-01-01
The objective of our project is to create a habitat suitability model to predict potential and future red spruce forest distributions. This model will be used to better understand the influence of climate change on red spruce distribution and to help guide forest restoration efforts.
Effect of Fertilization on Western Spruce Budworm Feeding in Young Western Larch Stands
Robert L. Talerico; Michael Montgomery; [Tech. Coords
1983-01-01
This study evaluated effects of fertilization of young western larch stands on western spruce budworm feeding in Montana. Various combinations of nitrogen, phosphorus, and potassium resulted in nearly double the amount of feeding by western spruce budworm larvae, with nitrogen eliciting the most response. Larch growth response to fertilization can be negated by...
Decay of subalpine fir in Colorado
Thomas E. Hinds; Frank G. Hawksworth; Ross W. Davidson
1960-01-01
Spruce-fir is one of the major forest types in the central Rocky Mountains. Engelmann spruce, Picea engelmanni Parry, is usually the predominant species with subalpine fir, Abies lasiocarpa (Hook. ) Nutt., making up one-fourth or less of the total volume. Lodgepole pine, Pinus contorta Dougl. ex Loud., is frequently present at the lower elevations of the spruce-fir...
The isolated red spruce communities of Virginia and West Virginia
Harold S. Adams; Steven Stephenson; Adam W. Rollins; Mary Beth Adams
2010-01-01
Quantitative data on the composition and structure of coniferous forests containing red spruce in the mountains of central and southwestern Virginia and eastern central West Virginia, based on sampling carried out in 67 stands during the 1982 to 1984 field seasons, are provided. The average importance value ([relative basal area + relative density/2]) of red spruce was...
Regeneration alternatives for upland white spruce after buring and logging in interior Alaska
R. V. Densmore; G. P. Juday; John C. Zasada
1999-01-01
Site-preparation and regeneration methods for white spruce (Picea glaucu (Meench) Voss) were tested near Fairbanks Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification....
Red-breasted nuthatches detect early increases in spruce budworm populations
Hewlette S. Crawford; Daniel T. Jennings; Timothy L. Stone
1990-01-01
Early suppression .of increasing spruce budworm populations is essential to prevent epidemics; however, early changes in budworm numbers are difficult to detect. An effective and inexpensive method to detect early increases is needed. Red-breasted nuthatches eat more spruce budworm larvae and pupae as the insect increases in number. We estimated the number of large...
Sarah E. Stehn; Christopher R. Webster; Janice M. Glime; Michael A. Jenkins
2010-01-01
Ground-layer plant communities in spruce-fir forests of the southern Appalachians have likely undergone significant change since the widespread death of canopy Fraser fir (Abies fraseri) caused by the exotic balsam woolly adelgid (Adelges piceae). Bryophytes comprise an important part of the ground-layer flora in the spruce-fir...
Ips typographus and Ophiostoma polonicum versus Norway spruce: joint attack and host defense
Erik Christiansen
1991-01-01
During the years 1971 to 1982, major epidemics of the spruce bark beetle, Ips typographus L., occurred in southeastern Norway and adjoining parts of Sweden. The outbreaks were triggered by large-scale wind-felling and long-lasting drought (Worrell 1983). This "epidemic of the century," hitting our important timber tree, Norway spruce,...
Interspecific variation in resistance of two host tree species to spruce budworm
NASA Astrophysics Data System (ADS)
Fuentealba, Alvaro; Bauce, Éric
2016-01-01
Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.
NASA Astrophysics Data System (ADS)
Smolander, A.; Kitunen, V.
2012-04-01
The aim was to study how tree species and a tree species mixture affect microbial C and N transformations and two major plant secondary compound groups, terpenes and phenolic compounds in soil. The study site was a tree-species experiment in middle-eastern part of Finland containing plots of 43-year-old silver birch, Norway spruce and Norway spruce with a mixture of silver birch (22 and 37 % birch of the total stem number). Soil was podzol and humus type mor. Samples were taken from the organic layer. C and N in the microbial biomass, rates of C mineralization (CO2 evolution), net N mineralization and nitrification, and concentrations of total water-soluble phenolic compounds, condensed tannins and different kind of terpenes were measured. Amounts of C and N in the microbial biomass and the rates of C mineralization and net N mineralization were all lower under spruce than birch, and particularly net N mineralization was stimulated by birch mixture. Concentrations of total water-soluble phenolic compounds were on a similar level, irrespective of tree species. However, there were less low-molecular-weight phenolics and more high-molecular-weight phenolics under spruce than birch. Concentrations of condensed tannins and both sesqui- and diterpenes were all higher under spruce than birch but the concentrations of triterpenes were similar in all soils. The difference between tree species was greatest with monoterpenes which were measured from both organic layer and soil atmosphere: high concentrations under spruce and negligible under birch. Birch mixture tended to decrease the concentrations of condensed tannins and mono-, sesqui- and diterpenes.
CASTELLS, EVA; PEÑUELAS, JOSEP; VALENTINE, DAVID W.
2005-01-01
• Background and Aims Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. • Methods Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. • Key Results Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. • Conclusions These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology. PMID:15802310
Castells, Eva; Peñuelas, Josep; Valentine, David W
2005-06-01
Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.
Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe
2007-11-01
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.
Pulpwood, pesticides, and people. Controlling spruce budworm in northeastern North America
NASA Astrophysics Data System (ADS)
Irland, Lloyd C.
1980-09-01
The eastern spruce budworm is a major forest pest over the continental range of the spruce-fir forest ecosystem and its southern ecotonal fringes in Canada and the northeastern United States. The current budworm outbreak illustrates the difficulty of arriving at economically sound and publicly acceptable forest pest control policies. Policies ranging from no use of chemical control to annual widespread crop protection have been adopted. There is no single all-around “best” policy for spruce budworm control. Chemical spray programs have demonstrably slowed the normal progress of mortality due to budworm, but have not eradicated the pest. Where industry remains heavily dependent on a fully utilized spruce-fir forest, no easy, low-cost solutions to the budworm problem exist. Reliance on spraying will have to be reduced and plans made to utilize higher levels of tree mortality and to manage the forest for lower future vulnerability.
Gregory Nowacki; Robert Carr; Michael. Van Dyck
2010-01-01
Red spruce (Picea rubens Sarg.) was affected by an array of direct (logging, fire, and grazing) and indirect human activities (acid deposition) over the past centuries. To adequately assess past impacts on red spruce, thus helping frame its restoration potential, requires a clear understanding of its current status. To achieve this, Forest and...
Minimal approaches to genetic improvement of growth rates in white spruce
D.T. Lester
1973-01-01
Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...
E. Matthew Hansen; Barbara J. Bentz; James A. Powell; David R. Gray; James C. Vandygriff
2011-01-01
The spruce beetle, Dendroctonus rufipennis (Kirby), is an important mortality agent of native spruces throughout North America. The life-cycle duration of this species varies from 1 to 3 years depending temperature. The univoltine cycle (one generation per year) is thought to maximize outbreak risk and accelerate host mortality in established outbreaks. Prepupal...
Alexandra M. Kosiba; Paul G. Schaberg; Shelly A. Rayback; Gary J. Hawley
2018-01-01
Following growth declines and increased mortality linked to acid deposition-induced calcium depletion, red spruce (Picea rubens Sarg.) in the northeastern United States are experiencing a recovery. We found that more than 75% of red spruce trees and 90% of the plots examined in this study exhibited increasing growth since 2001. To understand this...
Bethany Schulz
2003-01-01
The forests of the Kenai Peninsula, Alaska, underwent a major spruce beetle(Dendroctonus rufipennis (Kirby)) outbreak in the 1990s. A repeated inventory of forest resources was designed to assess the effects of the resulting widespread mortality of spruce trees, the dominant component of the Kenai forests. Downed woody materials, fuel heights, and...
Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination
John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller
2018-01-01
Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...
P.G. Schaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong
2000-01-01
Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...
Site characteristics of red spruce witness tree locations in the uplands of West Virginia, USA
Melissa Thomas-Van Gundy; Michael Strager; James. Rentch
2012-01-01
Knowledge, both of the historical range of spruce-dominated forests and associated site conditions, is needed by land managers to help define restoration goals and potential sites for restoration. We used an existing digital database of witness trees listed in deeds from 1752 to 1899 to compare characteristics of red spruce (Picea rubens Sarg.) sites...
How damage to balsam fir develops after a spruce budworm epidemic
Thomas F. McLintock
1955-01-01
From 1948 to 1952 a light to medium spruce budworm infestation occurred in the spruce-fir forests of northern Maine. During this period both the degree of infestation and the acreage affected fluctuated considerably, but the population remained below the damage level. In 1953 there was a general reduction in budworm population in all portions of northern Maine except a...
A key for predicting postfire successional trajectories in black spruce stands of interior Alaska.
Jill F. Johnstone; Teresa N. Hollingsworth; F. Stuart Chapin
2008-01-01
Black spruce (Picea mariana (Mill) B.S.P) is the dominant forest cover type in interior Alaska and is prone to frequent, stand-replacing wildfires. Through impacts on tree recruitment, the degree of fire consumption of soil organic layers can act as an important determinant of whether black spruce forests regenerate to a forest composition similar...
Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore
2014-01-01
There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...
Evaluation of tree risk in the spruce - fir region of the Northeast
Thomas F. McLintock
1948-01-01
In attempting to find possible means of combating recurrent epidemics of the spruce budworm in the Northeast, research has shown that forest management has considerable promise. Reduction in the proportion of balsam fir to spruce and attainment of the highest possible proportion of rapidly growing trees are expected to result in a less severe outbreak and a higher...
Spruce budworm returns to the northeast
Lloyd Irland; William H. McWilliams
2014-01-01
Spruce and balsam fir supply a wealth of timber and other benefits across the northern tier of the Northeastern United States. This article is the second of a two-part series that provides an update on spruce and fir for the four Northem Forest states (Maine, New Hampshire, New York, and Vermont) using the latest Forest Inventory and Analysis (FIA) results (2012). Part...
Nathan Beane; James Rentch
2010-01-01
With the extensive loss of presettlement habitat for red spruce, this species is a high priority for restoration in West Virginia. The advent of climate change caused by human activity and the uncertainty of future environmental changes has also raised interests in the protection and restoration of red spruce ecosystems.
Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia
Nathan R. Beane; James S. Rentch; Thomas M. Schuler
2013-01-01
Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...
Amy C. Angell; Knut Kielland
2009-01-01
White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...
Stand basal-area and tree-diameter growth in red spruce-fir forests in Maine, 1960-80
S.J. Zarnoch; D.A. Gansner; D.S. Powell; T.A. Birch; T.A. Birch
1990-01-01
Stand basal-area change and individual surviving red spruce d.b.h. growth from 1960 to 1980 were analyzed for red spruce-fir stands in Maine. Regression modeling was used to relate these measures of growth to stand and tree conditions and to compare growth throughout the period. Results indicate a decline in growth.
Status of viruses as biocontrol agents for spruce budworms
J. C. Cunningham
1985-01-01
Aerial spray trials with a variety of viruses have been conducted between 1971 and 1983 with 2656 ha (65 plots) treated to control spruce budworm in Ontario and Quebec and 424 ha (6 plots) treated to control western spruce budworm in British Columbia. Generally, results have been inconsistent and less than satisfactory, but research continues in an effort to develop a...
Maximum size-density relationships for mixed softwoods in the northeastern USA
Dale S. Solomon; Lianjun Zhang
2002-01-01
The maximum size-density relationships or self-thinning lines were developed for three mix .ed-softwood climax forest habitats (hemlock-red spruce, spruce-fir, and cedar-black spruce) in the northeastern USA. The plot data were collected from an extensive data base used in growth studies from 1950 to 1970, and represented a wide range of species compositions, sites,...
T.N. Hollingsworth
2008-01-01
In this overview, I present extensive studies looking at the structure and function of the black spruce (Picea mariana) ecosystem of the boreal region of interior Alaska. One of the studies provides a classification of black spruce communities, the most abundant forest type in the region. Other studies examine large-scale processes that drive this...
Progress report on the rate of deterioration of beetle-killed Engelmann spruce in Colorado
Frank G. Hawksworth; Thomas E. Hinds
1959-01-01
A severe windstorm in 1939 blew down extensive patches of Engelmann spruce (Picea engelmannii Parry) in western Colorado. A major epidemic of the Engelmann spruce beetle (Dendroctonus engelmanni Hopk.) developed from the windthrown trees and by 1952, when the epidemic was controlled by a combination of chemical and natural-control factors, an estimated four billion...
Matthew B. Russell; Anthony W. D' Amato; Michael A. Albers; Christopher W. Woodall; Klaus J. Puettmann; Michael R. Saunders; Curtis L. VanderSchaaf
2015-01-01
Silvicultural strategies such as thinning may minimize productivity losses from a variety of forest disturbances, including forest insects. This study analyzed the 10-year postthinning response of stands and individual trees in thinned white spruce (Picea glauca [Moench] Voss) plantations in northern Minnesota, USA, with light to moderate defoliation...
"Super" Spruce Seedlings Continue Superior Growth for 18 Years
Hans Nienstaedt
1981-01-01
White spruce seedlings--20, 19, 18, and 17 inches tall--were selected among 2-2 transplants; controls from the same beds averaged 7.7 inches tall. After 18 years in the field, the selected seedlings continued to have a 30 percent height growth advantage over the controls. This note discusses how to incorporate super spruce seedlings into a tree breeding program....
Therese M. Poland; J. H. Borden; A. J. Stock; L. J. Chong
1998-01-01
We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of spruce beetles, Dendroctonus rufipennis Kirby, and western pine beetles, Dendroctonus brevicomis LeConte, to attraetant-baited traps. Two green leaf aldehydes, hexanal and (E)-2-hexenal, reduced the number of spruce beetles captured...
Martin, Diane; Tholl, Dorothea; Gershenzon, Jonathan; Bohlmann, Jörg
2002-01-01
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens. PMID:12114556
NASA Astrophysics Data System (ADS)
Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.
2016-11-01
Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.
How does synchrony with host plant affect the performance of an outbreaking insect defoliator?
Fuentealba, Alvaro; Pureswaran, Deepa; Bauce, Éric; Despland, Emma
2017-08-01
Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.
Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce
Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit
2012-01-01
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444
Mapping vulnerability of spruce-fir stands in the Northeast to spruce budworm attack
Thomas F. McLintock
1949-01-01
Once again a spruce budworm epidemic threatens to destroy large volumes of timber in the Northeast. One defense against the budworm is to cut and utilize trees in those stands in which the budworms are most apt to feed and breed. In this report the author presents three practical methods of determining what trees or stands should be cut first.
P. J. Hanson; A. L. Gill; X. Xu; J. R. Phillips; D. J. Weston; Randy Kolka; J. S. Riggs; L. A. Hook
2016-01-01
Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path...
SPRUCE: Sphagnum Productivity and Community Composition in the SPRUCE Experimental Plots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, R.J.; Childs, J.
This data set reports annual dry matter production of Sphagnum in replicated growth columns, the composition of the moss community, and plot-average Sphagnum productivity in the SPRUCE experimental study plots located in the S1-Bog. Data are reported for 2016 (October 2015 to October 2016) and 2017 (October 2016 to October 2017). Additional data will be appended as they become available.
Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa
2005-01-01
The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...
Optimal uneven-aged stocking guides: an application to spruce-fir stands in New England
Jeffrey H. Gove; Mark J. Ducey
2014-01-01
Management guides for uneven-aged forest stands periodically need to be revisited and updated based on new information and methods. The current silvicultural guide for uneven-aged spruce-fir management in Maine and the northeast (Frank, R.M. and Bjorkbom, J.C. 1973 A silvicultural guide for spruce-fir in the northeast. General Technical Report NE-6, Forest Service. U.S...
Richard L. Boyce; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Paula F. Murakami
2013-01-01
We examined the influence of calcium (Ca) and aluminum (Al) nutrition on the foliar physiology of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] in northern New England, USA. At the Hubbard Brook Experimental Forest (NH, USA), spruce and fir saplings were sampled from control, Al-, and Ca-supplemented...
Robert M. Frank; Barton M. Blum
1978-01-01
Early results after 20 years of record keeping indicate that spruce-fir stands will respond to the selection system of silviculture. Stand quality is improved, species composition can be altered, diameter-class distribution approaches a stated goal, stand density is controlled, and yields are increased. Selection silviculture in spruce-fir can now be compared to early...
Randall S. Morin; Richard H. Widmann
2010-01-01
Red spruce (Picea rubens Sarg.) is the most important component of the high-elevation forest ecosystems of the southern and central Appalachian Mountains. These communities are characterized by mixed hardwood/coniferous forests often with overstory dominance by red spruce. Due to their restricted geographic and elevation ranges, all community types...
Bethany Schulz
2015-01-01
Vegetation profile data were collected as part of a forest inventory project in the Tanana Valley in interior Alaska, providing a means of characterizing the forest vegetation. The black spruce forest type was most common, followed by Alaska paper birch, and white spruce, quaking aspen, and balsam poplar. For individual tree species, black spruce was recorded on 68...
Robert L. Deal; R. James Barbour; Michael H. McClellan; Dean L. Parry
2003-01-01
The frequency and size of epicormic sprouts in Sitka spruce (Picea sitchensis (Bong.) Carr.) were assessed in five 23-29 year-old mixed Sitka spruce-western hemlock (Tsuga heterophylla (Raf.) Sarg.) stands that were uniformly thinned and pruned to 2.4, 3.7 and 5.2 m lift heights. Six to nine years after treatment sprouts were...
M. Joan Foote
1983-01-01
One hundred thirty forest stands ranging in age from I month postfire to 200 years were sampled and described by successional series (white spruce and black spruce) and by developmental stage (newly burned, moss-herb, tall shrub-sapling, dense tree, hardwood, and spruce). Patterns of change in the two successional series are described. In addition, 12 mature forest...
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Latimer, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Burnham, A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Childs, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Vander Stel, H. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2017-01-01
This data set consists of observations of plant-available nutrients assessed using ion-exchange resin capsules incubated serially in aerobic and anaerobic peat layers beginning in 2013 in the SPRUCE experimental plots at four depths in hummock microtopography and two depths in hollow microtopography. Data will be periodically added to until the conclusion of the SPRUCE experiment.
SPRUCE Pretreatment Plant Tissue Analyses, 2009 through 2013
Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Childs, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Norby, R. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Warren, J. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2009-12-01
This data set reports the results of elemental analyses of foliar and stem/woody twig plant tissues collected at the SPRUCE site in 2009, 2012, and 2013. Samples were obtained at various locations around the S1 Bog and from within the developing experimental treatment plots. These are pretreatment vegetation samples, collected prior to initiation of the SPRUCE experiment heating and elevated CO2 treatments.
Historical reconstructions of high-elevation spruce forests in the Appalachian mountains
Carolyn A. Copenheaver
2010-01-01
The objective of this study was to determine whether the historical distribution of a small, high-elevation red spruce stand could be reconstructed based upon historical records. The study site was Giles County, VA, where a small stand of red spruce exists today, indicating that it has been in this location for as long as the written record exists for this region....
Decay of Engelmann spruce in the Blue Mountains of Oregon and Washington.
Paul E. Aho
1971-01-01
A total of 292 Engelmann spruce were dissected and examined for decay and other defects in seven areas in the Blue Mountains of southeastern Washington and northeastern Oregon. Decay on a cubic-foot basis was 3.3 percent for pole trees and 5.4 percent for sawtimber. Defect loss in sawtimber spruce amounted to nearly 12 percent of the gross merchantable board-foot...
Early red spruce restoration research by the Appalachian Forest Experiment Station, 1922-1954
James S. Rentch; Thomas M. Schuler
2017-01-01
This photograph (Fig. 1), taken in June of 1923 by E.S. Ship, depicts a red spruce (Picea rubens) stand with advanced reproduction near the summit of Mount Mitchell in the Pisgah National Forest of North Carolina. According to Hopkins (1899), the original extent of red spruce encompassed as much as 1,500,000 ac in the southern Appalachians; by 1895...
A. Flower; D. G. Gavin; E. K. Heyerdahl; R. A. Parsons; G. M. Cohn
2014-01-01
Douglas-fir forests in the interior Pacific Northwest are subject to sporadic outbreaks of the western spruce budworm, a species widely recognized as the most destructive defoliator in western North America. Outbreaks of the western spruce budworm often occur synchronously over broad regions and lead to widespread loss of leaf area and decrease in growth rates in...
Red spruce ecosystem level changes following 14 years of chronic N fertilization
Steven G. McNulty; Johnny Boggs; John D. Aber; Lindsey Rustad; Allison Magill
2005-01-01
In the early 1980s, nitrogen (N) deposition was first postulated as a cause of N saturation and spruce mortality across the northeastern US. In 1988, a series of high elevation spruce-fir forest N addition plots were established on Mt. Ascutney (southeastern) Vermont to test this hypothesis. The paired plots each received, in addition to ambient N deposition, 15.7 kg...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, P.J.; Phillips, J.R.; Brice, D.J.
This data set reports shrub layer growth assessments for the S1-Bog on the Marcell Experimental Forest in Minnesota from 2010 through 2017. Data were obtained by destructively harvesting two 0.25 m2 plots within defined plot areas of the S1-Bog or SPRUCE experimental plots. In 2015, SPRUCE plots 4, 6, 8, 10, 11, 13, 16, 17, 19 and 20 were enclosed in the SPRUCE enclosures. Prior to 2015 all data are for open ambient conditions. In early years a distinct hummock and a hollow sampling square were both collected, but in later years unsampled hollow areas became unavailable due to priormore » sampling or instrument installations. All vegetation material above the Sphagnum surface of the bog was clipped and transferred to plastic storage bags which were then frozen until the samples could be sorted. Sorting was done by species, tissue type (leaves vs. stems) and tissue age (current-year vs. older tissues).« less
W. Henry McNab; James H. Holbrook; Ted M. Oprean
2010-01-01
Red spruce (Picea rubens Michx.) is a large and long-lived species that dominated high-elevation forests of the southern Appalachians before most stands were heavily logged in the early 1900s. Restoration of spruce forests by artificial methods has been studied since the 1920s, but little information is available on characteristics of older planted...
Weight-Volume relationships of Aspen and Winter-Cut Black Spruce Pulpwood in Northern Minnesota
David C. Lothner; Richard M. Marden; Edwin Kallio
1974-01-01
Seasonal weight-volume relationships were determined for rough (bark on) aspen and black spruce 100-inch pulpwood that was delivered withing 1 week after cutting in northern Minnesota during 1971-72. For aspen, the weight of wood and bark per cubic foot of wood averaged 56 pounds in the winter and 61 pounds in the summer. This relationshipfor winter-cut black spruce...
David G. Grimble
1988-01-01
Four types of spruce budworm pheromone lures were field-tested in sparse spruce budworm populations in Maine. BioLures® with constant pheromone emission rates less than 1.0, ca. 1.0-1.5, and ca. 15.0 micrograms of pheromone per day were compared to polyvinyl chloride (PVC) lures with rapidly decreasing pheromone emission rates. Mean trap catch was roughly proportional...
G. R. Strimbeck; David R. Vann; Arthur H. Johnson
1996-01-01
Several studies have shown that exposure to acid mist impairs cold tolerance of red spruce foliage, predisposing it to winter injury, which appears to be a major factor in the decline of montane populations of the species. Other studies have shown increases in calcium (Ca) concentration in canopy throughfall in montane spruce-fir forests, and decreases in foliar Ca...
Lamarche, Josyanne; Stefani, Franck O P; Séguin, Armand; Hamelin, Richard C
2011-05-01
Chitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities. Endochitinase-expressing white spruce and untransformed controls were transplanted in soils from two natural forests and grown for 8 months in a greenhouse. Soil fungal biomass and diversity, estimated through species richness and Shannon and Rao diversity indices, were not different between transgenic and control tree rhizospheres. The fungal phylogenetic community structure was the same in soil samples from control and transgenic white spruces after 8 months. Soil type and presence of seedlings had a much more significant impact on fungal community structure than the insertion and expression of the ech42 transgene within the white spruce genome. The results suggest that the insertion and constitutive expression of the ech42 gene in white spruce did not significantly affect soil fungal biomass, diversity and community structure. © 2011 Her Majesty the Queen in Right of Canada FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.
McGuire, A. David; Ruess, Roger W.; Lloyd, A.; Yarie, J.; Clein, Joy S.; Juday, G.P.
2010-01-01
This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth throughout interior Alaska that have become more prevalent during the 20th century. Similarly, demographic studies show that white spruce tree growth is substantially limited by soil moisture availability in both mid- and late-successional stands. Interannual variability in tree growth among stands within a landscape exhibits greater synchrony than does growth of trees that occupy different landscapes, which agrees with dendrochronological findings that the responses depend on landscape position and prevailing climate. In contrast, the results from 18 years of a summer moisture limitation experiment showed that growth in midsuccessional upland stands was unaffected by moisture limitation and that moisture limitation decreased white spruce growth in floodplain stands where it was expected that growth would be less vulnerable because of tree access to river water. Taken together, the evidence from the different perspectives analyzed in this study clearly indicates that white spruce tree growth in interior Alaska is vulnerable to the effects of warming on plant water balance.
Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.
Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest
Liu, Jushan; Bai, Yuguang; Lamb, Eric G.; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W.; Papadopol, Pia
2013-01-01
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts. PMID:23593392
Robert H. Ruth; Carl M. Berntsen
1955-01-01
Four years' measurement of seed fall in the spruce-hemlock type on the Cascade Head Experimental Forest indicates that an ample supply of seed is distributed over clear-cut areas under staggered-setting cutting. The largest tract sampled was 81 acres; in spite of a seed crop failure in 1950, it received an average of 243,000 viable spruce and hemlock seeds per...
Pulpability of beetle-killed spruce. Forest Service research paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, G.M.; Bormett, D.W.; Sutherland, N.R.
1996-08-01
Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.
Daniel S. Ott; Christopher J. Fettig; Darrell W. Ross; A. Steven. Munson
2018-01-01
Spruce beetle (Dendroctonus rufipennis) is the primary mortality agent of mature spruce species in Western North America (Jenkins and others 2014a, Schmid and Frye 1977). The species preferentially colonizes hosts with reduced defenses, including diseased trees or downed material produced by wind events, snow avalanches, and landslides, as well as...
Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher Eagar
2011-01-01
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...
N.G. Rappaport; J.L. Robertson
1981-01-01
Five insect molt inhibitors (MI's) were mixed with artificial diet and fed to 3rd and 6th stage western spruce budworm (Choristoneura occidentalis) larvae and 2nd stage Douglas-fir tussock moth (Orgyia pseudotsugata) larvae. In general, tussock moth larvae were more susceptible that western spruce budworm larvae to these MI...
E.S. Kane; J.G. Vogel
2009-01-01
To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [Bâ¢S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m
Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoelldampf, B.; Barker, A.V.
Decline of high elevation red spruce forests in the northeastern United States has been related to acid rain, particularly with respect to the deposition of nitrogenous materials. Ca and Mg deficiencies may be induced by input of air-borne nitrogenous nutrients into the forest ecosystem. This research investigated the effects of N nutrition on mineral nutrition of red spruce and radish, as an indicator plant, grown in acid forest soil. Red spruce and radishes in the greenhouse were treated with complete nutrient solutions with 15 mM N supplied as 0, 3.75, 7.5, 11.25, or 15 mM NH[sub 4][sup +] with themore » remainder being supplied as NO[sub 3][sup [minus
Excess growing-season water limits lowland black spruce productivity
NASA Astrophysics Data System (ADS)
Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.
2015-12-01
The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.
A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers.
Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf
2007-05-01
Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants.
Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.
Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang
2016-02-01
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.
Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia
Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M.
2010-01-01
Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe gap-phase dynamics of even-aged, second-growth red spruce-northern hardwood stands in West Virginia that have been significantly degraded following early Twentieth Century harvesting and wildfire. In the current stage of stand development, gaps tended to be small, with mean canopy gap and extended canopy gap sizes of 53.4m2 and 199.3m2, respectively, and a canopy turnover rate of 1.4%year-1. The majority of gaps resulted from the death of one or two trees. American beech snags were the most frequent gap maker, partially due to the elevated presence of beech-bark disease in the study area. Gaps ranged in age from 1 to 28 years, had a mean of 13 years, and were unimodal in distribution. We projected red spruce to be the eventual gap filler in approximately 40% of the gaps. However, we estimated that most average-sized gaps will close within 15-20 years before red spruce canopy ascension is projected (30-60 years). Accordingly, many understory red spruce will require more than one overhead release - an observation verified by the tree-ring record and consistent with red spruce life history characteristics. Based on our observations, silvicultural prescriptions that include overhead release treatments such as thinning from above or small gap creation through selection harvesting could be an appropriate activity to foster red spruce restoration in the central Appalachians. ?? 2010 Elsevier B.V.
A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers1[OA
Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf
2007-01-01
Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants. PMID:17369429
Climate-induced mortality of spruce stands in Belarus
NASA Astrophysics Data System (ADS)
Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.
2015-12-01
The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.
Climate-Induced Mortality of Spruce Stands in Belarus
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.
2015-01-01
The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.
Mageroy, Melissa H; Parent, Geneviève; Germanos, Gaby; Giguère, Isabelle; Delvas, Nathalie; Maaroufi, Halim; Bauce, Éric; Bohlmann, Joerg; Mackay, John J
2015-01-01
Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations. PMID:25302566
Christopher D. O' Connor; Ann M. Lynch; Donald A. Falk; Thomas W. Swetnam
2014-01-01
The spruce beetle (Dendroctonus rufipennis) is known for extensive outbreaks resulting in high spruce mortality, but several recent outbreaks in the western United States have been among the largest and most severe in the documentary record. In the Pinaleño Mountains of southeast Arizona, U.S.A., an outbreak in the mid-1990s resulted in 85% mortality of Engelmann...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Karis J.
Boreal peatlands contain large amounts of old carbon, protected by anaerobic and cold conditions. Climate change could result in favorable conditions for the microbial decomposition and release of this old peat carbon as CO2 or CH4 back into the atmosphere. Our goal was to test the potential for this positive biological feedback to climate change at SPRUCE (Spruce and Peatland Response Under Climatic and Environmental Change), a manipulation experiment funded by DOE and occurring in a forested bog in Minnesota. Taking advantage of LLNL’s capabilities and expertise in chemical and isotopic signatures we found that carbon emissions from peat weremore » dominated by recently fixed photosynthates, even after short-term experimental warming. We also found that subsurface hydrologic transport was surprisingly rapid at SPRUCE, supplying microbes with young dissolved organic carbon (DOC). We also identified which microbes oxidize CH4 to CO2 at SPRUCE and found that the most active of these also fix N2 (which means they can utilize atmospheric N, making it accessible for other microbes and plants). These results reflect important interactions between hydrology, carbon cycling, and nitrogen cycling present at the bog and relevant to interpreting experimental results and modeling the wetland response to experimental treatments. LLNL involvement at SPRUCE continues through collaborations and a small contract with ORNL, the lead lab for the SPRUCE experiment.« less
Diggins, Corinne A.; Ford, W. Mark
2017-01-01
Glaucomys sabrinus fuscus (Virginia Northern Flying Squirrel; VNFS) is a rare Sciurid that occurrs in the Allegheny Mountains of eastern West Virginia and northwest Virginia. Previous work on this subspecies has confirmed close associations with Picea rubens (Red Spruce) at the landscape and stand levels in the region. However, ongoing Red Spruce restoration actions using canopy-gap creation to release single or small groups of trees requires a better understanding of within-stand habitat selection of VNFS to assess potential short- and medium-term impacts. To address these questions, we conducted a microhabitat study using radio-collared squirrels in montane conifer and mixed conifer—hardwood stands. We used points obtained from telemetry surveys and randomly generated points within each squirrel's home range to compare microhabitat variables for 13 individuals. We found that VNFS preferentially selected plots with conifer-dominant overstories and deep organic-soil horizons. VNFS avoided plots with dense Red Spruce regeneration in the understory in stands with hardwood-dominated overstories—the types of areas targeted for Red Spruce restoration. We also opportunistically searched for hypogeal fungi at telemetry points and found 3 species of Elaphomyces during our surveys. Our results indicate that microhabitat selection is associated with Red Spruce-dominant forests. Efforts to restore Red Spruce where hardwoods dominate in the central Appalachians may improve the connectivity and extent of habitat of VNFS.
Reconstruction of stand dynamics over the last 2500 years from spruce remains in a treeline peatland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arseneault, D.; Payette, S.
1995-06-01
Stem remains of black spruce Picea mariana (Mill. BSP.) buried in a permafrost treeless peatland were used for the reconstruction of the long-term forest dynamics at treeline in northeastern Canada. Because most spruce remains were well preserved, forest development was assessed from stem morphology (growth form) and tree ring patterns. The peatland border was colonized by a spruce forest from at least 500 BC (2500 BP) to 1568 AD. Most spruce individuals showed an erect, monopodial bole with only minor stem damage at the snow-air interface. The forest successfully regenerated after two fire events around 350 BC and 10 AD.more » The number of damaged stems at the snow-air interface increased after another fire around 700 AD, although faster ring growth occurred between 860 and 1000 AD (Medieval period). The forest shifted to an open krummholz after the last fire in 1568 AD because of reduced postfire regeneration and site opening. Reforestation of the site would necessitate sustained warmer conditions than those presently prevailing there.« less
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
DNA methylome of the 20-gigabase Norway spruce genome
Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng
2016-01-01
DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846
SPRUCE Porewater Chemistry Data for Experimental Plots Beginning in 2013
Griffiths, N. A. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set reports the chemistry of porewater in the SPRUCE plots located in the S1 bog. Sample collection and analyses started in August of 2013 and will continue for the duration of the experiment. Results will be added to this data set and released to the public periodically as quality assurance and publication of results are accomplished. These data are the pre- and post-treatment data from the warming and elevated CO2 treatments associated with the SPRUCE experiment. There are 10 experimental plots in SPRUCE: 5 temperature treatments (+0, +2.25, +4.5, +6.75, +9°C) at ambient CO2, and the same 5 temperature treatments at elevated CO2 (+500 ppm). There are 7 additional ambient plots without experimental enclosures, and thus a total of 17 plots.
AmeriFlux CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area)
Amiro, Brian [University of Manitoba
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area). Site Description - 55.880° N, 98.481° W, elevation of 259 m, Boreal coniferous: Black spruce; occasional larch present in poorly-drained areas. Groundcover is moss (feathermosses and Sphagnum), Labrador Tea, Vaccinium, and willows are a main component of the understory. It was established in 1993 as a BOREAS site.
Ge, Zhen-Ming; Kellomäki, Seppo; Peltola, Heli; Zhou, Xiao; Wang, Kai-Yun; Väisänen, Hannu
2011-03-01
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.
Contrasting drivers and trends of coniferous and deciduous tree growth in interior Alaska.
Cahoon, Sean M P; Sullivan, Patrick F; Brownlee, Annalis H; Pattison, Robert R; Andersen, Hans-Erik; Legner, Kate; Hollingsworth, Teresa N
2018-03-22
The boreal biome represents approximately one third of the world's forested area and plays an important role in global biogeochemical and energy cycles. Numerous studies in boreal Alaska have concluded that growth of black and white spruce is declining as a result of temperature-induced drought stress. The combined evidence of declining spruce growth and changes in the fire regime that favor establishment of deciduous tree species has led some investigators to suggest the region may be transitioning from dominance by spruce to dominance by deciduous forests and/or grasslands. Although spruce growth trends have been extensively investigated, few studies have evaluated long-term radial growth trends of the dominant deciduous species (Alaska paper birch and trembling aspen) and their sensitivity to moisture availability. We used a large and spatially extensive sample of tree cores from interior Alaska to compare long-term growth trends among contrasting tree species (white and black spruce vs. birch and aspen). All species showed a growth peak in the mid-1940s, although growth following the peak varied strongly across species. Following an initial decline from the peak, growth of white spruce showed little evidence of a trend, while black spruce and birch growth showed slight growth declines from ~1970 to present. Aspen growth was much more variable than the other species and showed a steep decline from ~1970 to present. Growth of birch, black and white spruce was sensitive to moisture availability throughout most of the tree-ring chronologies, as evidenced by negative correlations with air temperature and positive correlations with precipitation. However, a positive correlation between previous July precipitation and aspen growth disappeared in recent decades, corresponding with a rise in the population of the aspen leaf miner (Phyllocnistis populiella), an herbivorous moth, which may have driven growth to a level not seen since the early 20th century. Our results provide important historical context for recent growth and raise questions regarding competitive interactions among the dominant tree species and exchanges of carbon and energy in the warming climate of interior Alaska. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.
2015-07-01
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE Project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are: 1. Data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components. 2. Data collection system - set of hardware and software to deliver data to a central depository for storage and further processing. 3. Data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in-situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.
NASA Astrophysics Data System (ADS)
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.
2015-11-01
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following: 1. data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system - set of hardware and software to deliver data to a central depository for storage and further processing; 3. data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.
Full-Tree Skidding Favors Black Spruce Reproduction Under Certain Peatland Conditions
William F. Johnston
1980-01-01
Two trials on different sites indicate that clearcut black spruce reproduces well after full-tree skidding only on nonbrushy sites that have fairly abundant sphagnum seedbeds and adequate natural seeding.
Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry.
Gucek, Marjan; Makuc, Simon; Mlakar, Anita; Bericnik-Vrbovsek, Julija; Marsel, Joze
2002-01-01
For the determination of glutathione (GSH) and its oxidized form (GSSG) in spruce needles their electrospray mass and MS/MS spectra were recorded with an ion trap mass spectrometer (ITMS, LCQ, Finnigan) and a triple stage quadrupole mass spectrometer (TSQ, Quattro II, Micromass). A study of the stability of GSH in aqueous solutions shows the presence of dimeric and trimeric forms of GSH, as well as GSSG, GSH-sulfonate and GSH-sulfinic acid. The same components were also found in extracts of spruce needles. We developed an assay which is suitable for monitoring low concentrations of GSH and similar compounds in plant tissues, employing the sensitivity and specificity of LC/MS/MS. Preliminary results on the mass spectrometric determination of GSH in spruce needles are given. Copyright 2002 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nelson, E. A.; Thomas, S. C.
2007-12-01
Global increases in temperature and atmospheric CO2 concentration are predicted to enhance tree growth in the short term, but studies of current impacts of climate change on Canada's forests are limited. This study examined the effects of increasing temperature and atmospheric CO2 concentration on tree ring growth in west-central Manitoba and northern Ontario, sampling white spruce (Picea glauca) and black spruce (Picea mariana), respectively. Over 50 tree cores from each site were sampled, analysed for ring-width, cross-dated and detrended, generating a ~100 y chronology for each population. We found a positive correlation between ring-width increment and spring temperatures (April-May: p<0.005) in Ontario. In Manitoba, however, we found a negative correlation between summer temperatures (Jul-Aug: p<0.005) and ring-width increment coincident with a positive relationship with summer precipitation (July: p<0.03). We examined the residuals following a regression with temperature for a positive trend over time, which has been interpreted in prior studies as evidence for a CO2 fertilization effect. We detected no such putative CO2 fertilization signal in either spruce population. Our results suggest that temperature-limited lowland black spruce communities may respond positively to moderate warming, but that water-limited upland white spruce communities may suffer from drought stress under high temperature conditions. Neither population appears to benefit from increasing CO2 availability.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Date, T.; Harazono, Y.; Ichii, K.
2007-12-01
Spatio-temporal scale up of the eddy covariance data is an important challenge especially in the northern high latitude ecosystems, since continuous ground observations are rarely conducted. In this study, we measured the carbon fluxes at a black spruce forest in interior Alaska, and then scale up the eddy covariance data to spatio- temporal variations in regional carbon budget by using satellite remote sensing data and a process based ecosystem model, Biome-BGC. At point scale, both satellite-based empirical model and Biome-BGC could reproduce seasonal and interannual variations in GPP/RE/NEE. The magnitude of GPP/RE is also consistent among the models. However, spatial patterns in GPP/RE are something different among the models; high productivity in low elevation area is estimated by the satellite-based model whereas insignificant relationship is simulated by Biome-BGC. Long- term satellite records, AVHRR and MODIS, show the gradual decline of NDVI in Alaska's black spruce forests between 1981 and 2006, resulting in a general trend of decreasing GPP/RE for Alaska's black spruce forests. These trends are consistent with the Biome-BGC simulation. The trend of carbon budget is also consistent among the models, where the carbon budget of black spruce forests did not significantly change in the period. The simulated results suggest that the carbon fluxes in black spruce forests could be more sensitive to water availability than air temperature.
Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter
2011-05-01
Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
Hammerbacher, Almuth; Schmidt, Axel; Wadke, Namita; Wright, Louwrance P.; Schneider, Bernd; Bohlmann, Joerg; Brand, Willi A.; Fenning, Trevor M.; Gershenzon, Jonathan; Paetz, Christian
2013-01-01
Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host’s chemical defenses that it is even able to use host phenolic compounds as its sole carbon source. PMID:23729780
Do water-limiting conditions predispose Norway spruce to bark beetle attack?
Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel
2015-01-01
Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel ‘attack box’ method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance byI. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785
SPRUCE Bog Surface Elevation Assessments with SET Instrument Beginning in 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Paul J; Phillips, Jana R; Brice, Deanne J
This data set reports plot-specific bog surface elevation measurements collected with the SPRUCE Elevation Transect (SET) instrument. Measurements are reported as absolute elevation in meters above mean sea level for two locations in each of the SPRUCE experimental treatment plots and additional ambient boardwalk plots -- 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20 and 21. This data set reports measurements collected from June 2013 through August 2017, but it will be appended annually as new data are collected.
Incidental captures of Eastern Spotted Skunk in a high-elevation Red Spruce forest in Virginia
Diggins, Corinne A.; Jachowski, David S.; Martin, Jay; Ford, W. Mark
2015-01-01
Spilogale putorius (Eastern Spotted Skunk) is considered rare in the southern Appalachian Mountains and throughout much of its range. We report incidental captures of 6 Eastern Spotted Skunks in a high-elevation Picea rubens (Red Spruce) forest in southwestern Virginia during late February and March 2014. At 1520 m, these observations are the highest-elevation records for Eastern Spotted Skunk in the Appalachian Mountains. They are also the first known records of this species using Red Spruce forests in the southern Appalachians.
NASA Astrophysics Data System (ADS)
Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin
2015-04-01
Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the humus layer in monospecific stands. Forest floor stocks were also influenced by microelevation and canopy opening in the European beech stand and by microelevation in the Norway spruce stand. Root turnover and Norway spruce litterfall proportion directly increased C stocks in the mineral soil of the mixed stand. Additionally, N stock in the forest floor of the mixed stand was positively correlated with the Norway spruce litterfall proportion. Spatial analyses further confirmed that species composition was the main source of spatial variability of SOC stock in mixed stands. These results suggest that the admixture of individuals of European beech and Norway spruce may lead to a translocation of SOC from the forest floor to the better protected mineral soil layer, which might be beneficial for long term SOC sequestration.
Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank
2011-11-01
Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.
Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J
2016-04-01
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.
NASA Astrophysics Data System (ADS)
Kosiba, A. M.; Schaberg, P. G.; Engel, B. J.; Rayback, S. A.; Hawley, G. J.; Pontius, J.; Miller, E. K.
2016-12-01
Acidic sulfur (S) and nitrogen (N) deposition depletes cations such as calcium (Ca) from forest soils and has been linked to increases in foliar winter injury that led to the decline of red spruce (Picea rubens Sarg.) in the northeastern United States. We used results from a 30 m resolution steady-state S and N critical load exceedance model for New England to better understand the spatial connections between Ca depletion and red spruce productivity. To calculate exceedance, atmospheric deposition was estimated for a 5-year period (1984-1988) because tree health and productivity declines were expected to be most responsive to high acid loading. We examined how radial growth (basal area increment) of 441 dominant and co-dominant red spruce trees from 37 sites across Vermont and New Hampshire was related to modeled estimates of S and N critical load exceedance. We assessed growth using statistical models with exceedance as a source of variation, but which also included "year" and "elevation class" (to help account for climatic variability) and interactions among factors. Exceedance was significantly and negatively associated with mean growth for the study period (1951-2010) overall, and particularly for the 1980s and 2000s - periods of numerous and/or severe foliar winter injury events. However, climate-related sources of variation (year and elevation) accounted for most of the differences in growth over the chronology. Interestingly, recent growth for red spruce is now the highest recorded over our dendrochronological record for the species - suggesting that the factors shaping growth may be changing. Because red spruce is a temperate conifer that has the capacity to photosynthesize year-round, it is possible that warmer temperatures may be extending the functional growing season of the species thereby fostering increased growth. Data from elevational transects on Mount Mansfield (Vermont's tallest mountain) indicate that warmer spring, summer, fall and even winter temperatures are positively correlated with increased radial growth for red spruce.
Yellowheaded spruce sawfly--its ecology and management.
Steven A. Katovich; Deborah G. McCullough; Robert A. Haack
1995-01-01
Presents the biology and ecology of the yellowheaded spruce sawfly, and provides survey techniques and management strategies. In addition, it provides information on identification, classification, host range, and the historical records of outbreaks in the Lake States.
Animal vectors of eastern dwarf mistletoe of black spruce.
Michael E. Ostry; Thomas H. Nicholls; D.W. French
1983-01-01
Describes a study to determine the importance of animals in the spread of eastern dwarf mistletoe of black spruce. Radio telemetry, banding, and color-marking techniques were used to study vectors of this forest pathogen.
Formation of ectomycorrhizae following inoculation of containerized Sitka spruce seedlings.
C.G. Shaw; R. Molina
1980-01-01
Containerized Sitka spruce, [Picea sitchensis (Bong.) Carr.] were inoculated at sowing with pure cultures of either Pisolithus tinctorius (Pers.) Coker & Couch, Laccaria laccata (Scop. ex Fr.) Berk. & Br., Astraeus pteridis (Shear) Feller, Amanita pantherina...
NASA Astrophysics Data System (ADS)
Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.
1995-06-01
Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.
A., Kluber Laurel [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Allen, Samantha A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hendershot, Nicholas [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2014-09-01
This data set contains the results of a microcosm incubation study on deep peat collected from the SPRUCE experimental site in the S1 Bog in September 2014. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing.The experiment was designed with a full factorial design with elevated temperature, nitrogen (N), (P), and pH treatments was used with samples from each transect serving replicates. In all, 96 microcosms were constructed to account for the 16 treatment combinations (N x P x pH x temperature), 2 time points, and 3 replicates. Temperature treatments were 6 °C, to mimic the SPRUCE ambient plot temperatures, and 15 °C to mimic the SPRUCE +9 °C treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.S.; Chevone, B.I.; Seiler, J.R.
1988-01-01
Red spruce (Picea rubens Sarg.) is a long-lived, shade-tolerant tree that is commonly present in the cool, moist climates at high elevations of the Appalachian Mountains. Recently, an accelerated decline of red spruce has been reported in the northern Appalachians in the Green Mountains on Camels Hump, Vermont and on Whiteface Mountain in New York as well as in the mid and southern Appalachians. Even though many possible causes of this decline have been suggested, none have been established conclusively at present. High acid inputs and elevated concentrations of heavy metals, in addition to ozone stress, have been strongly suspectedmore » as contributing factors for the decline. The objectives of this research is to investigate the efforts of simulated acidic rain and ozone on growth and drought susceptibility of red spruce seedlings by measuring biomass, foliar nutrient status, root hydraulic conductivity, and gas exchange rates.« less
NASA Astrophysics Data System (ADS)
Krassovski, Misha; Hanson, Paul; Riggs, Jeff
2017-04-01
Climate change studies are one of the most important aspects of modern science and related experiments are getting bigger and more complex. One such experiment is the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE, http://mnspruce.ornl.gov) conducted in in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. This manipulation experiment generates a lot of observational data and requires a reliable onsite data collection system, dependable methods to transfer data to a robust scientific facility, and real-time monitoring capabilities. This publication shares our experience of establishing near real time data collection and monitoring system via a satellite link using PakBus protocol.
Hanks, E.M.; Hooten, M.B.; Baker, F.A.
2011-01-01
Ecological spatial data often come from multiple sources, varying in extent and accuracy. We describe a general approach to reconciling such data sets through the use of the Bayesian hierarchical framework. This approach provides a way for the data sets to borrow strength from one another while allowing for inference on the underlying ecological process. We apply this approach to study the incidence of eastern spruce dwarf mistletoe (Arceuthobium pusillum) in Minnesota black spruce (Picea mariana). A Minnesota Department of Natural Resources operational inventory of black spruce stands in northern Minnesota found mistletoe in 11% of surveyed stands, while a small, specific-pest survey found mistletoe in 56% of the surveyed stands. We reconcile these two surveys within a Bayesian hierarchical framework and predict that 35-59% of black spruce stands in northern Minnesota are infested with dwarf mistletoe. ?? 2011 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Krassovski, M.; Hanson, P. J.; Riggs, J. S.; Nettles, W. R., IV
2017-12-01
Climate change studies are one of the most important aspects of modern science and related experiments are getting bigger and more complex. One such experiment is the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE, http://mnspruce.ornl.gov) conducted in in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. This manipulation experiment generates a lot of observational data and requires a reliable onsite data collection system, dependable methods to transfer data to a robust scientific facility, and real-time monitoring capabilities. This presentation shares our experience of establishing near real time/low latency data collection and monitoring system using satellite communication.
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2016-04-01
This contribution summarizes a series of C allocation studies in maturing European beech and Norway spruce trees at Kranzberg Forest, located in southern Germany. Study objects are 60 to 70 year old trees, readily accessible via scaffoldings and canopy crane. Allocation of recently fixed photoassimilates is assessed either by conventional branch-bag labelling with 99 atom% 13CO2 or whole-tree labeling using 13C-depleted CO2 (isoFACE system). While labeling in branch bags, employed for few hours only, focused on phloem functionality in particular under long-term drought, C labeling of whole tree canopies was employed for up to 20 days, studying allocation of recent photoassimilates from the canopy along branches and stems to roots and soils below ground. In all experiments, dynamics of C allocation were mostly pursued assessing carbon isotopic composition of CO2 efflux from woody tissues which typically reflected isotopic composition of phloem sugars. Effects of severe and long-term summer drought are assessed in an ongoing experiment with roughly 100 trees assigned to a total of 12 plots (kroof.wzw.tum.de). Precipitation throughfall was completely excluded since early spring, resulting in pre-dawn leaf water potentials of both beech and spruce up to -2.2 MPa. The hypothesis was tested that long-term drought affects allocation of recently fixed C to branches and phloem functionality. In the annual course under unstressed conditions, phloem transport speed from the canopy to the stem (breast height) was double in beech compared to spruce, with highest transport velocities in early summer (about 0.51 and 0.26 m/h) and lowest in spring (0.26 and 0.12 m/h for beech and spruce, respectively). After leaf flush in spring, growth respiration of beech trunks was largely supplied by C stores. Recent photoassimilates supplied beech stem growth in early summer and refilled C stores in late summer, whereas seasonality was less pronounced in spruce. The hypothesis that growth respiration is exclusively supplied by recently fixed C was rejected for both species. After long-term (7 years) exposure to elevated (i.e. twice-ambient) O3 concentrations, allocation of recently fixed C to stems was distinctly affected when studied during later summer. In correspondence with significantly lowered woody biomass development in beech (- 40 %), C allocation to stems was reduced in response to O3 exposure. Conversely in spruce, photoassimilate allocation to stems and coarse root respiration was hardly affected, reflecting the overall lower sensitivity of spruce to elevated O3 concentrations. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demands. Stem respiration of spruce appeared to be largely supplied by recent photoassimilates. Conversely in beech, stored C, putatively located in stem parenchyma cells, was a major source for respiration, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce. Overall, the observed differences in C allocation between the two study species reflect the high plasticity of beech trees in response to seasons and stressors such as drought and elevated O3, whereas spruce displayed much lower responsiveness to the applied stressors and along the seasonal course of the year.
Distribution of Lepidopteran Larvae on Norway Spruce: Effects of Slope and Crown Aspect.
Kulfan, Ján; Dvořáčková, Katarína; Zach, Peter; Parák, Michal; Svitok, Marek
2016-04-01
Lepidoptera associated with Norway spruce, Picea abies (L.) Karsten, play important roles in ecosystem processes, acting as plant pests, prey for predators, and hosts for parasites and parasitoids. Their distribution patterns in spruce crowns and forests are only poorly understood. We examined how slope and crown aspect affect the occurrence and abundance of moth larvae on solitary spruce trees in a montane region in Central Europe. Moth larvae were collected from southern and northern crowns of trees growing on south- and north-facing slopes (four treatments) using emergence boxes at the end of winter and by the beating method during the growing season. Species responses to slope and crown aspect were not uniform. Treatment effects on moth larvae were stronger in the winter than during the growing season. In winter, the abundance of bud-boring larvae was significantly higher in northern than in southern crowns regardless of the slope aspect, while both slope and aspect had marginally significant effects on abundance of miners. During the growing season, the occurrence of free-living larvae was similar among treatments. Emergence boxes and beating spruce branches are complementary techniques providing valuable insights into the assemblage structure of moth larvae on Norway spruce. Due to the uneven distribution of larvae detected in this study, we recommend adoption of a protocol that explicitly includes sampling of trees from contrasting slopes and branches from contrasting crown aspect in all seasons. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knelman, Joseph E.; Graham, Emily B.; Prevéy, Janet S.
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and successional trajectories in plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study we sought to examine how emblematic shifts from early-successional Alnus sinuata (alder) to late successional Picea sitchensis (spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield tomore » delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early-successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate drives shifts in the relative abundance of major taxa of bacteria in alder-influenced soils, including declines in those that are enriched by alder. We found these effects to be spruce-specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Our results show that spruce leachate addition more strongly structures bacterial communities than alders (less dispersion in bacterial community beta diversity). Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.« less
20. GROVE OF TREES PINES, MULBERRY, JUNIPER, BLUE SPRUCE ...
20. GROVE OF TREES -- PINES, MULBERRY, JUNIPER, BLUE SPRUCE -- TRANSPLANTED FROM NEW MEXICO MANZANO MOUNTAINS, WEST OF BUILDINGS 4 AND T-59, LOOKING NORTHWEST - U. S. Veterans Administration Medical Center, 2100 Ridgecrest Southeast, Albuquerque, Bernalillo County, NM
David G. Grimble
1981-01-01
The Canada-United States Spruce Budworms Program (CANUSA) is a 6-year joint effort by the Department of the Environment, Canada, and the USDA Forest Service to develop methods for controlling spruce budworms in the Eastern and Western United States and in Canada.
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; ...
2015-11-09
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO 2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms,more » biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO 2 and CH 4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. In order to successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following; 1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing; and 3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. Finally, the approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.« less
Adoption of engineered wood products in Alaska
Joseph A. Roos; Indroneil Ganguly; Allen Brackley
2009-01-01
Based on an in-grade testing program, the Ketchikan Wood Technology Center has registered three proprietary grademarks for Alaska species of hemlock (Tsuga heterophylla (Raf.) Sarg.), yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach), and spruce (combined Sitka spruce [Picea sitchensis (Bong.) Carr...
NASA Astrophysics Data System (ADS)
Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.
2016-02-01
Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.
Ding, H; Pretzsch, H; Schütze, G; Rötzer, T
2017-09-01
Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Vinogradova, Julia; Perminova, Evgenia; Khabibullina, Fluza; Kovaleva, Vera; Lapteva, Elena
2016-04-01
Plant waste decomposition processes are closely associated with living activity of soil microbiota in aboveground ecosystems. Functional activity of microorganisms and soil invertebrates determines plant material transformation rate whereby changes in plant material chemical composition during destruction - succession change of soil biota. The purpose of the work was revealing the mechanism of microorganisms succession change during plant waste decomposition in middle-taiga green-moss spruce forests and coniferous-deciduous secondary stands formed after earlier cut bilberry spruce forests. The study materials were undisturbed bilberry spruce forest (Sample Plot 1 - SP1) and coniferous-deciduous secondary stands which were formed after tree cutting activities of 2001-2002 (SP2) and 1969 and 1970 (SP3). Plant material decomposition intensity was determined in microcosms isolated into kapron bags with cell size of 1 mm. At SP1 and SP2, test material was living mosses and at SP3 - fallen birch and aspen leaves. Every test material was exposed for 2 years. Destruction rate was calculated as a weight loss for a particular time period. Composition of micromycetes which participated in plant material decomposition was assessed by the method of inoculation of soil extract to Getchinson's medium and acidified Czapek's medium (pH=4.5). Microbe number and biomass was analyzed by the method of luminescent microscopy. Chemical analysis of plant material was done in the certified Ecoanalytical Laboratory of the Institute of Biology Komi SC UrD RAS. Finally, plant material destruction intensity was similar for study plots and comprised 40-44 % weight loss for 2 years. The strongest differences in plant material decomposition rate between undisturbed spruce forests and secondary after-cut stands were observed at first stages of destruction process. In the first exposition year, mineralizing processes were most active in undisturbed spruce forest. Decomposition rate in cuts at that period was less by a factor of 1.7-2.3. The highest diversity of moss-decomposing micromycetes (30 species of microscopic fungi of 13 genera) was found for undisturbed spruce forest (SP1). At cuts, the figures were 17 and 23 species of micromycetes, correspondingly. Succession change in composition of micromycetes was best pronounced in undisturbed spruce forest. At cuts, there was no clear mechanism of micromycetes species diversity change during plant waste decomposition. This could serve an anthropogenic disturbance marker of taiga ecosystems. Generally, microscopic moss- and leaf-decomposing fungi at all plots were very species specific. Total biomass of microorganisms in microcosms at cuts was less than that at undisturbed spruce forest by 1.4-1.6 time. Its structure was dominated by mycelium and fungal spores (98-99 % total biomass). On leaf waste decomposition (SP3), microbe biomass got more bacteria. By the obtained data, undisturbed middle-taiga spruce forests have better conditions for living activity of plant waste-decomposing microscopic fungi. This is evidenced by less species diversity of microscopic fungi, shorter length and less biomass of mycelium at cuts as compared with undisturbed spruce forests.
The Hybrid White Spruce X Himalayan Spruce
H. Nienstaedt; D. P. Fowler
1982-01-01
Picea glauca and P. amithiana were successfully crossed. Crossability ranged from 2 to 30 percent depending on the female P. glauca parent tree. Early characteristics and growth in Wisconsin and in New Brunswick are described. P. smithiana relatedness in the genus is discussed
Small-forest management in the spruce-fir region
A. C. Hart
1953-01-01
Small forest properties occupy about 3.4 million acres, or 25 percent of the total forest land, in the spruce-fir region of Maine and New Hampshire. Careful management of these small forest properties is important to the region and to the owners.
Leah S. Bauer; Gerald L. Nordin
1989-01-01
Diease in spruce budworm, Choristoneura fumiferana (Clemens), caused by the microsporidian Nosema fumiferanae (Thomson), increase larval susceptibility to mortality by bacillus thuringlensis (Berliner) treatments compared with larvae free of N. fumiferanae disease. The median lethal...
Growth and nutrient status of black spruce seedlings as affected by water table depth
Miroslaw M. Czapowskyj; Robert V. Rourke; Walter J. Grant; Walter J. Grant
1986-01-01
The objective of this study was to determine the effect of different soil water table levels on growth, biomass production, and nutrient accumulation in black spruce seedlings growing under greenhouse conditions over three growing seasons after transplanting.
Summary of life history and hosts of the spruce budworm
Robert L. Talerico
1983-01-01
My purpose is to provide background information on the spruce budworms and point out some insect-host interaction relationships that have been noted by others. These and other interactions will be discussed in more detail in the papers that follow.
NASA Astrophysics Data System (ADS)
Morimoto, M.; Juday, G. P.; Huettmann, F.
2016-12-01
Following forest disturbance, the stand initiation stage decisively influences future forest structure. Understanding post-harvest regeneration, especially under climate change, is essential to predicting future carbon stores in this extensive forest biome. We apply IPCC B1, A1B, and A2 climate scenarios to generate plausible future forest conditions under different management. We recorded presence of white spruce, birch, and aspen in 726 plots on 30 state forest white spruce harvest units. We built spatially explicit models and scenarios of species presence/absence using TreeNet (Stochastic Gradient Boosting). Post-harvest tree regeneration predictions in calibration data closely matched the validation set, indicating tree regeneration scenarios are reliable. Early stage post-harvest regeneration is similar to post-fire regeneration and matches the pattern of long-term natural vegetation distribution, confirming that site environmental factors are more important than management practices. Post-harvest natural regeneration of tree species increases under moderate warming scenarios, but fails under strong warming scenarios in landscape positions with high temperatures and low precipitation. Under all warming scenarios, the most successful regenerating species following white spruce harvest is white spruce. Birch experiences about 30% regeneration failure under A2 scenario by 2050. White spruce and aspen are projected to regenerate more successfully when site preparation is applied. Although white spruce has been the major managed species, birch may require more intensive management. Sites likely to experience regeneration failure of current tree species apparently will experience biome shift, although adaptive migration of existing or new species might be an option. Our scenario modeling tool allows resource managers to forecast tree regeneration on productive managed sites that have made a disproportionate contribution to carbon flux in a critical region.
Chen, Zhong; Clancy, Karen M; Kolb, Thomas E
2003-04-01
Variation in budburst phenology among individual trees of interior Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn.] Franco) may influence their susceptibility to western spruce budworm (Choristoneura occidentalis Freeman) defoliation. We tested the hypothesis that phenological asynchrony between Douglas-fir and the western spruce budworm is a mechanism of resistance using clones derived from parent trees that showed resistance versus susceptibility to C. occidentalis defoliation in the field. Susceptible clones had earlier budburst phenology compared with resistant clones when they were grown in a common greenhouse environment, demonstrating a genetic basis for parallel phenological differences exhibited by the parent trees. We tested the importance of phenological asynchrony as a factor influencing fitness of C. occidentalis using two different greenhouse bioassay experiments. One experiment compared western spruce budworm performance on equivalent phenological stages of susceptible and resistant clones by matching larval feeding to the columnar (fourth) bud development stage of each clone. Larvae reared on resistant clones had greater realized fitness (i.e., number of F1 offspring produced) than those reared on susceptible clones when the influence of variation in budburst phenology was minimized. In the other experiment, western spruce budworm larvae were placed on all trees on the same date when approximately 50% of all terminal buds in the population were in the yellow (second) budburst stage. Larvae reared on susceptible clones had greater realized fitness than those reared on resistant clones when the influence of phenological asynchrony was expressed. Our results suggest that resistant phenotypes of Douglas-fir have negative effects on survival and reproduction of C. occidentalis under the natural conditions that insects and trees experience in the field. Genetic variation among trees in budburst phenology has an important influence on interactions between the western spruce budworm and Douglas-fir.
Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford
2018-03-24
An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.
NASA Astrophysics Data System (ADS)
Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.
2016-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.
Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin
2013-01-01
Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671
Ford, W. Mark; Kelly, Christine A.; Rodrigue, Jane L.; Odom, Richard H.; Newcomb, Douglas; Gilley, L. Michelle; Diggins, Corinne A.
2014-01-01
The Carolina northern flying squirrel Glaucomys sabrinus coloratus is an endangered subspecies that is restricted to high elevation forests in the southern Appalachian Mountains. Owing to rugged terrain and nocturnal habits, the subspecies’ natural history, home range characteristics and habitat preferences are poorly known. We radio-tracked 3 female and 2 male Carolina northern flying squirrels during late winter through spring 2012 in the Pisgah National Forest, North Carolina, USA. Tracked squirrels used 13 yellow birch Betula alleghaniensis and 9 red spruce Picea rubens as diurnal dens. Ten of the yellow birch dens were in cavities, whereas the remainders were dreys. Conversely, 8 of the red spruce dens were dreys and one was in a cavity. Mean (±SE) female 95 and 50% adaptive kernel home ranges were 6.50 ± 2.19 and 0.93 ± 0.33 ha, respectively, whereas the corresponding values for males were 12.6 ± 0.9 and 1.45 ± 0.1 ha, respectively. Squirrels used red spruce stands with canopies >20 m more than expected based on availability at the landscape and home range scales. Results should be interpreted cautiously because of small sample sizes and seasonal observations; however, they provide evidence that although northern hardwoods such as yellow birch are an important den habitat component, mature red spruce-dominated habitats with complex structure provide foraging habitats and are also den habitat. Our findings support efforts to improve the structural condition of extant red spruce forests and/or increase red spruce acreage to potentially benefit Carolina northern flying squirrels.
Atmospheric nitrous oxide uptake in boreal spruce forest soil
NASA Astrophysics Data System (ADS)
Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti
2017-04-01
Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.
Spruce budworm core B.t. test - 1980 combined summary
Gerald S. Walton; Franklin B. Lewis
1982-01-01
Two commercial preparations of Bacillus thuringiensis (Bet.) were aerially applied in 1980 to populations of spruce budworm (Choristoneura fumiferana (Clem.)) in Arizona, Maine, New Hampshire, and Wisconsin. Operations were conducted under the auspices of CANUSA-East with standardized procedures for spray application and population...
Screening Sitka spruce for resistance to weevil damage in British Columbia
René I. Alfaro; John N. King
2012-01-01
The white pine weevil, Pissodes strobi (Coleoptera, Curculionidae), has serious impacts on Sitka (Picea sitchensis (Bong.) Carrière), Engelmann (P. engelmannii Parry ex Engelm.), and white spruce (P. glauca (Moench) Voss) plantations in British Columbia (BC), Canada. This weevil attacks...
Spruce galactoglucomannans inhibit the lipid oxidation in rapeseed oil-in-water emulsions
USDA-ARS?s Scientific Manuscript database
Oil-in-water emulsions are functional and industrially valuable systems, whose large interfacial area makes them prone to deterioration, due in part to as the oxidation and oligomerization of polyunsaturated fatty acids. Spruce galactoglucomannans (GGM), wood biomacromolecules abundantly available f...
Suchara, I; Rulík, P; Hůlka, J; Pilátová, H
2011-04-15
The (137)Cs specific activities (mean 32Bq kg(-1)) were determined in spruce bark samples that had been collected at 192 sampling plots throughout the Czech Republic in 1995, and were related to the sampling year. The (137)Cs specific activities in spruce bark correlated significantly with the (137)Cs depositions in areas affected by different precipitation sums operating at the time of the Chernobyl fallout in 1986. The ratio of the (137)Cs specific activities in bark and of the (137)Cs deposition levels yielded bark aggregated transfer factor T(ag) about 10.5×10(-3)m(-2)kg(-1). Taking into account the residual specific activities of (137)Cs in bark 20Bq kg(-1) and the available pre-Chernobyl data on the (137)Cs deposition loads on the soil surface in the Czech Republic, the real aggregated transfer factor after and before the Chernobyl fallout proved to be T*(ag)=3.3×10(-3)m(-2)kg(-1) and T**(ag)=4.0×10(-3)m(-2)kg(-1), respectively. The aggregated transfer factors T*(ag) for (137)Cs and spruce bark did not differ significantly in areas unequally affected by the (137)Cs fallout in the Czech Republic in 1986, and the figures for these aggregated transfer factors were very similar to the mean bark T(ag) values published from the extensively affected areas near Chernobyl. The magnitude of the (137)Cs aggregated transfer factors for spruce bark for the pre-Chernobyl and post-Chernobyl period in the Czech Republic was also very similar. The variability in spruce bark acidity caused by the operation of local anthropogenic air pollution sources did not significantly influence the accumulation and retention of (137)Cs in spruce bark. Increasing elevation of the bark sampling plots had a significant effect on raising the remaining (137)Cs specific activities in bark in areas affected by precipitation at the time when the plumes crossed, because the sums of this precipitation increased with elevation (covariable). Copyright © 2011 Elsevier B.V. All rights reserved.
Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather
NASA Technical Reports Server (NTRS)
Frolking, Steve
1997-01-01
Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to understand this behavior and test these types of models.
Kadić, Adnan; Palmqvist, Benny; Lidén, Gunnar
2014-01-01
Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for spruce at an elevated agitation suggests that mass transfer at sustained high viscosities plays an important role in determining the rate of enzymatic hydrolysis.
SPRUCE Ground Observations of Phenology in Experimental Plots, 2016-2017
Richardson, Andrew D.; Latimer, John M.; Nettles, W. Robert; Heiderman, Ryan R.; Warren, Jeffrey M.; Hanson, Paul J.
2018-01-01
This data set consists of phenological transition dates, as derived from direct observations of vegetative and reproductive phenology recorded by a human observer, from the SPRUCE experiment during the 2+ years (August 2015 through December 2017) of whole-ecosystem warming. For 2016, only springtime (April - June) phenological events are included. For 2017 (April - December), spring and autumn events are included.
Beginning in April 2016, human observers have been directly tracking the phenology of both woody and herbaceous species on a weekly schedule within the SPRUCE experimental chambers. The observed date reported here is the first survey date on which an event/phenophase was definitively observed.
Todd Allen Bowers; Robert I. Bruck
2010-01-01
Decline in high elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) forests throughout the southern Appalachians was shown following extensive surveys conducted during the 1980s.
Field studies of pine, spruce and aspen periodically subjected to sulfur gas emissions
A. H. Legge; R. G. Amundson; D. R. Jaques; R. B. Walker
1976-01-01
Field studies of photosynthesis in Pinus contorta/Pinus banksiana (lodgepole pine/jack pine) hybrids, Picea glauca (white spruce) and Populus tremuloides (aspen) subjected to SO2 and H2S from a nearby natural gas processing plant were initiated near Whitecourt,...
Photosynthetic capacity of red spruce during winter
P.G. Schaberg; J.B. Shane; P.F. Cali; J.R. Donnelly; G.R. Strimbeck
1998-01-01
We measured the photosynthetic capacity (Pmax) of plantation-grown red spruce (Picea rubens Sarg.) during two winter seasons (1993-94 and 1994-95) and monitored field photosynthesis of these trees during one winter (1993-94). We also measured Pmax for mature montane trees from January through May 1995....
Winter photosynthesis in red spruce (Picea rubens Sarg.): limitations, potential benefits, and risks
P.G. Schaberg
2000-01-01
Numerous cold-induced changes in physiology limit the capacity of northern conifers to photosynthesize during winter. Studies of red spruce (Picea rubens Sarg.) have shown that rates of field photosynthesis (Pfield) and laboratory measurements of photosynthetic capacity (Pmax) generally parallel seasonal...
SOIL CO2 EFFLUX FROM ISOTOPICALLY LABELED BEECH AND SPRUCE IN SOUTHERN GERMANY
• Carbon acquisition and transport to roots in forest trees is difficult to quantify and is affected by a number of factors, including micrometeorology and anthropogenic stresses. The canopies of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) were expose...
Therese M. Poland; J. H. Borden
1998-01-01
Capture of spruce beetles, Dendroctonus rufipennis, in multiple-funnel traps baited with frontalin and -pinene was reduced by up to 42% in the presence of synthetic (+)-exo- and (+)-endo-brevicomin, aggregation pheromones of the sympatric species Dryocoetes affaber. (+)-endo-...
Proceedings of the ninth Lake States Forest Tree Improvement Conference, August 22-23, 1969.
USDA
1970-01-01
Presents nine papers concerning recent research in forest genetics, physiology, and allied fields. Species discussed include Scotch pine, red pine, jack pine, white pine, larch, white spruce, black spruce, balsam fir, yellow birch, sugar maple, red oak, American elm, and aspen.
NASA Astrophysics Data System (ADS)
Schuster, R.; Zeisler, B.; Oberhuber, W.
2012-04-01
Climate sensitivity of tree growth will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. We applied dendroclimatological techniques to determine impact of climate warming on radial stem growth of three native and widespread coniferous tree species of the central Austrian Alps (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). Time series of annual increments were developed from > 250 saplings and mature trees. Radial growth response to recent climate warming was explored by means of moving response functions (MRF) and evaluation of trends in basal area increment (BAI) for the period 1911 - 2009. Climate-growth relationships revealed significant differences among species in response to water availability. While precipitation in May - June favoured radial growth of spruce and larch, Scots pine growth mainly depended on April - May precipitation. Spruce growth was most sensitive to May - June temperature (inverse relationship). Although MRF coefficients indicated increasing drought sensitivity of all species, which is most likely related to intensified belowground competition for scarce water with increasing stand density and higher evapotranspiration rates due to climate warming, recent BAI trends strikingly differed among species. While BAI of larch was distinctly declining, spruce showed steadily increasing BAI and quite constant BAI was maintained in drought adapted Scots pine, although at lowest level of all species. Furthermore, more favourable growing conditions of spruce in recent decades are indicated by scattered natural regeneration and higher growth rates of younger trees during first decades of their lifespan. Because human interference and wildlife stock is negligible within the study area, results suggest a competitive advantage of shade-tolerant and shallow-rooted late successional spruce over early successional species, whereby the spruce`s competitive strength is most likely related to synergistic effects of shade-tolerance and efficient uptake of small rainfall events by fine roots distributed primarily in upper soil layers. On the other hand, strikingly decreasing trend in BAI of larch is suggested to be due to negative influence of climate warming on tree water status. We conclude that climate warming-induced increase in drought sensitivity changed competitive strength of co-occurring conifers due to differences in inherent adaptive capacity at a drought-prone inner Alpine site.
Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter
2017-12-15
During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.
Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K
2018-01-01
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.
Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.
Auger, Sarah; Payette, Serge
2010-05-01
Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.
Knelman, Joseph E.; Graham, Emily B.; Prevéy, Janet S.; Robeson, Michael S.; Kelly, Patrick; Hood, Eran; Schmidt, Steve K.
2018-01-01
Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally. PMID:29467741
Dumais, Daniel; Prévost, Marcel
2014-02-01
We examined the ecophysiology and growth of 0.3-1.3 m tall advance red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.) regeneration during a 5-year period following the application of different harvest types producing three sizes of canopy openings: (i) small gaps (<100 m(2) in area; SMA) created by partial uniform single-tree harvest; (ii) irregular gaps of intermediate size (100-300 m(2); INT) created by group-selection harvest (removal of groups of trees, mainly balsam fir, with uniform partial removal between groups); and (iii) large circular gaps (700 m(2); LAR) created by patch-selection harvest (removal of trees in 30-m diameter circular areas with uniform partial removal between gaps). An unharvested control (CON) was monitored for comparison. At the ecophysiological level, we mainly found differences in light-saturated photosynthesis of red spruce and specific leaf area of balsam fir among treatments. Consequently, we observed good height growth of both species in CON and INT, but fir surpassed spruce in SMA and LAR. Results suggest that intermediate 100-300 m(2) irregular openings create microenvironmental conditions that may promote short-term ecophysiology and growth of red spruce, allowing the species to compete with balsam fir advance regeneration. Finally, results observed for spruce in large 700-m(2) openings confirm its inability to grow as rapidly as fir in comparable open conditions.
Abdul Hamid; Thomas M. O' Dell; Steven Katovich
1995-01-01
The white pine weevil - Pissodes strobi (Peck) (Coleoptera: Curculionidae) - is a native insect attacking eastern white pine (Pinus strobus L.). The latest cytogenetic and breeding studies indicate that two other North American pine weevil species - the Sitka spruce weevil and the Engelmann spruce weevil-also should be classified as Pissodes strobi. The present...
Resistance to galling adelgids varies among families of Engelmann spruce (Picea engelmani P.)
William J. Mattson; Alvin Yanchuk; Gyula Kiss; Bruce Birr
1999-01-01
Cooley gall adelgids, Adelges cooleyi, and round gall adelgids, Adelges abietis, differentially infested 110 half-sib families of Engelmann spruce, Picea engelmannii at 9 study sites in British Columbia. There was a negative genetic correlation (-0.53) between the infestations of the two gall-forming species....
Management of spruce-fir in even-aged stands in the central Rocky Mountains
Robert R. Alexander; Carleton B. Edminster
1980-01-01
Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.
Management of western Hemlock-sitka spruce forests for timber production.
Robert H. Ruth; A.S. Harris
1979-01-01
Ecological and management information for the coastal western hemlock-Sitka spruce forests is summarized in this report. Areas of emphasis include logging methods, silvicultural systems, natural and artificial regeneration, residue disposal, weed control, thinning, growth and yield, and forest protection. Consideration is given site protection and nontimber values as...
Red spruce/hardwood ecotones in the central Appalachians
Harold S. Adams; Steven L. Stephenson; David M. Lawrence; Mary Beth Adams; John D. Eisenback
1995-01-01
We are currently investigating patterns of species composition and distribution, ecologically important population processes, and microenvironmental gradients along ten permanent transects (each consisting of a series of. contiguous 10 x 10 m quadrats) established across the typically abrupt and narrow spruce/hardwood ecotone at seven localities in the mountains of...
V.M. Carolin
1980-01-01
Sampling studies on western spruce budworm and Modoc budworm disclosed a substantial number of associated insect species at the time larvae were in opening buds. About 20 species occur with sufficient regularity to justify identification by field crews.
Jacqueline L. Robertson; Nancy L. Rappaport
1979-01-01
The toxicities of acephate, aminocarb, carbaryl, chlorpyrifos, chlorpyrifos-methyl, methomyl, mexacarbate, permethrin, and trichlorfon to last instar wetern spruce budworm, Choristoneura occidentalis Freeman, were significantly altered by the presence of hostplant foliage. The pyrethroid permethrin was significantly more toxic when sprayed directly...
Edward H. Holsten; Roger E. Burnside; Steven J. Seybold
2000-01-01
From 1996 through 1999, field tests of various engraver beetle (Ips perturbatus (Eichhoff)) semiochemicals in funnel traps were conducted in south-central and interior Alaska in stands of Lutz (Picea xlutzii Little) and white spruce (P.glauca (Moench) Voss). The European spruce beetle (I....
Richard A. Werner; Edward H. Holsten
1997-01-01
Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus...
Red spruce restoration modeling in LANDIS
Melissa. Thomas-Van Gundy
2010-01-01
Scenarios for the restoration of red spruce (Picea rubens)-dominated forests on the Monongahela National Forest were created in the landscape simulation model LANDIS. The resulting landscapes were compared to existing habitat suitability index models for the Virginia northern flying squirrel (VNFS) and Cheat Mountain salamander (CMS) as a measure of...
Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska
V. Yadama; Eini Lowell; N. Petersen; D. Nicholls
2009-01-01
The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...
David G. Fellin; Jerald E. Dewey
1982-01-01
The western spruce budworm, Choristoneura occidentalis Freeman, is the most widely distributed and destructive defoliator of coniferous forests in Western North America. It is one of nearly a dozen Choristoneura species, subspecies, or forms, with a complexity of variation among populations found throughout much of the United States and Canada. It occurs in the Rocky...
Effects of defoliation on growth of certain conifers
Thomas W., Jr. Church
1949-01-01
In planning forest management of spruce-fir forests in the Northeast, the possibility of recurring epidemics of the spruce budworm (Archips fumiferana) must be considered. Investigations of this insect must take into account not only the effects of defoliation on mortality, but also the growth losses that result from partial defoliation.
J. M. Schmid; R. H. Frye
1977-01-01
This report summarizes the literature on the spruce beetle in the western United States, primarily in the Rocky Mountains. Information is presented on life history and behavior, host relationships, mortality agents and impacts of infestations. A section on suppression details the current status of chemicals, pheromones, trap trees and silvicultural treatments. The...
Therese M. Poland; John H. Borden
1998-01-01
We tested the feasibility of competitive exclusion as a potential management tactic for the spruce beetle, Dendroctonus rufipennis Kirby, using pre-attack baiting with pheromones of 2 secondary species, Ips tridens Mannerheim and Dryocoetes affaber Mannerheim. Spruce beetle attack densities, gallery lengths per...
ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING
A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...
N cycling in SPRUCE (Spruce Peatlands Response Under Climatic and Environmental Changes)
Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in th...
Structure and resilience of fungal communities in Alaskan boreal forest soils
D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh
2010-01-01
This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...
Development of western spruce budworm on Douglas-fir callus tissue.
Roy C. Beckwith; Barry Goldfarb
1991-01-01
The success of feeding and development of western spruce budworm (Choristoneura occidentalis Freeman) on callus tissue of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) was determined. Fewer insects died when fed pure callus tissue than when fed on standard diet or callus incorporated into the standard diet. The final...
Yasmin Cardoza; John Moser; Kier Klepzizg; Raffa Kenneth
2008-01-01
The spruce beetle, Dendroctonus rufipennis, is an eruptive forest pest of signifcant economic and ecological importance. D. rufipennis has symbiotic associations with a number of microorganisms, especially the ophiostomatoid fungus Leptographium abietinum. The nature of this interaction is only partially understood. Additionally, mite and nematode associates can...
Pinus glabra Walt. Spruce Pine
Susan V. Kossuth; J.L. Michael
1991-01-01
Spruce pine (Pinus glabra), also called cedar pine, Walter pine, or bottom white pine, is a medium-sized tree that grows in limited numbers in swamps, river valleys, on hummocks, and along river banks of the southern Coastal Plain. Its wood is brittle, close-grained, nondurable, and is of limited commercial importance.
Winter photosynthesis of red spruce from three Vermont seed sources
P.G. Schaberg; R.C. Wilkinson; J.B. Shane; J.R. Donnelly; P.F. Cali
1995-01-01
We evaluated winter (January through March) carbon assimilation of red spruce (Picea rubens Sarg.) from three Vermont seed sources grown in a common garden in northwestern Vermont. Although CO2 exchange rates were generally low, net photosynthetic rates increased during two prolonged thaws. Significant correlations between CO...
NASA Astrophysics Data System (ADS)
Preston, C. M.; Bhatti, J. S.; Norris, C. E.; Quideau, S. A.; Arevalo, C.
2012-04-01
To improve prediction of climate change impacts on the carbon balance of boreal forests, we are investigating C stocks, fluxes and organic matter quality of jack pine (Pinus banksiana) and black spruce (Picea mariana) stands in northern Saskatchewan and Manitoba along the Boreal Forest Transect Case Study (BFTCS). Jack pine stands occupy well-drained sandy soils with thin forest floor, whereas poorly-drained black spruce stands have a thick moss-dominated forest floor. Carbon storage for jack pine and black spruce stands respectively was 3.0-5.5 kg m-2 and 5.2-8.2 kg m-2 in vegetation, and 0.20-0.85 kg m-2 and 0.12-0.40 kg m-2 in coarse woody debris. Forest floor C stock was much higher for black spruce (6.0-12.7 kg m-2) than for jack pine (0.6-0.82 kg m-2). Mineral soil C to 50 cm was also significantly higher for black spruce (3.3-12.5 kg m-2) than for jack pine sites (2.2-3.0 kg m-2). Black spruce forest floor properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted ^13C and ^15N values, high tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with charcoal in some samples. These contrasts are unlikely due to the small differences in aboveground litter inputs (110 vs 121 g m-2) for jack pine and black spruce respectively, 2000-2010 means) or litter quality. Development of colder, wetter and thicker black spruce forest floor is more likely associated with soil texture and drainage, further exacerbated by increasing sphagnum coverage and forest floor depth. This suggests that small environmental changes could trigger large C losses through enhanced forest floor decomposition. An investigation of mineral soil C stabilization in four jack pine sites showed that silt plus clay accounted for 15-43 % of 0-1 m C (1.5-2.8 kg m-2); silt held 0.9-3.3% of horizon mass and 13-31% of total C. Carbon-13 NMR of HF-treated silt fractions showed that alkyl and O-alkyl C dominated the A and B horizons, but C-horizon samples were higher in aromatic C, possibly of fire origin. HCl hydrolysis was used to to isolate older C, but most 14C dates were modern, with five samples from deeper horizons ranging from 141-5184 ybp. HCl residues were mainly alkyl and aromatic C. Especially for black spruce stands, soil C appears to be dominated by inputs from roots and moss, and stabilized mainly by environmental factors; soil C stored as thick forest floor is also vulnerable to loss by fire. Forest floor and mineral soil show evidence of pyrogenic C, but quantitative data are lacking to assess its role in long-term C sequestration. Considering the sensitivity of this region to climate change, further research should focus on understanding the processes controlling climate, vegetation and soil interactions throughout the lifecycle of jack pine and black spruce forests.
Snow distribution and heat flow in the taiga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, M.
1992-05-01
The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less
Bioassays of TH6038 and difluron applied to western spruce budworm and Douglas-fir Tussock moth
Nancy L. Gillette; Jacqueline L. Robertson; Robert L. Lyon
1978-01-01
Two insects molt inhibitors, TH6038 N-[[4-cholorphenyl)amino]carbonyl]-2,6-dichlorobenzamide) and difluron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide), were tested for topical and feeding toxicity to the western spruce budworm, Choristoneura occidentalis Freeman, and the Douglas-fir tussock moth, Orgyia pseudotsugata...
Anita Rose; N.S. Nicholas
2009-01-01
Spruce-fir forests in the southern Appalachian Mountains receive high atmospheric nitrogen inputs and have high nitrate levels in soil solution and streamwater. High levels of excess nitrogen have been associated with reduced tree vigor. Additionally, the balsam woolly adelgid (Adelges piceae Ratz.) has killed the...
Richard A. Werner
1993-01-01
Field tests on the efficacy of various scolytid bark beetle pheromones to attract Ipsperturbatus (Eichhoff) were conducted from 1977 through 1992 in stands of white spruce (Picea glauca (Moench) Voss) in interior Alaska. Several pheromones attracted high numbers of L. perturbatus and species of the predator...
D. A. Perala; D.H. Alban
1982-01-01
Compares rates of forest floor decomposition and nutrient turnover in aspen and conifers. These rates were generally most rapid under aspen, slowest under spruce, and more rapid on a loamy fine sand than on a very fine sandy loam. Compares results with literature values.
Monitoring and risk assessment of the spruce bark beetle, Ips typographus
S. Netherer; J. Pennerstorfer; P. Baier; E. Fuhrer; A. Schopf
2003-01-01
A model describing development of the spruce bark beetle, Ips typographus, combines topo-climatic aspects of the terrain with eco-physiological aspects of the bark beetle. By correlating air temperature and solar irradiation measured at a reference station, along with topographic data and microclimatic conditions of terrain plots, topo-climatic...
Richard A. Werner; Edward H. Holsten
2002-01-01
Field experiments using baited multiple-funnel traps and baited felled trees were conducted to test the hypothesis that semiochemicals from secondary species of scolytids could be used to disrupt spruce beetle (Dendroctonus rufipennis (Kirby)) attraction. Semiochemicals from three secondary species of scolytids, (Ips perturbatus...
Relative quantification of membrane-associated calcium in red spruce mesophyll cells
Catherine H. Borer; Paul Schaberg; Jonathan R. Cumming
1997-01-01
We describe a method for localizing and comparing relative amounts of plasma membrane-associated calcium ions (mCa) in complex tissues and verify the procedure for mesophyll cells of red spruce (Picea rubens Sarg.) needles. This technique incorporates epifluorescence microscopy using the fluorescent probe chlorotetracycline (CTC) with computer image...
The New England Spruce-Fir Seed Orchard Program
Carter B. Gibbs; James B. Carlaw
1973-01-01
I once heard it said that if you want to know how something was organized, ask a man who had nothing to do with it. I suspect this may be one of the reasons I was asked to collaborate on this report of the development of the New England Spruce-Fir Seed Orchard Program.
USDA Forest Service Northern Area State & Private Forestry and Region 8
1992-01-01
The hemlock looper Lambdina fiscellaria is a defoliating insect native to North America. It occurs in the eastern United States from Maine to Georgia and west to Wisconsin. The larvae can be extremely destructive to hemlock, balsam fir, and white spruce. During an outbreak it will also feed on many other species including: larch, red and black spruce, cedar, jack pine...
Leah S. Bauer; Gerald L. Nordin
1988-01-01
A standardized bioassay procedure was used to determine median lethal doses (LD 50) of the microsporidium, Nosema fumiferanae (Thom.), on newly molted fourth- and fifth-instar eastern spruce budworm larvae (Choristoneura fumiferana (Clem.)). The LD50 for fifth-instar larva was 1.23 x 10...
Phenotypic evidence suggests a possible major-gene element to weevil resistance in Sitka spruce
John N. King; René I. Alfaro; Peter Ott; Lara vanAkker
2012-01-01
The weevil resistance breeding program against the white pine weevil, Pissodes strobi Peck (Coleoptera: Curculionidae), particularly for Sitka spruce (Picea sitchensis (Bong.) Carr), is arguably one of the most successful pest resistance breeding programs for plantation forest species, and it has done a lot to rehabilitate...
User's guide to the weather model: a component of the western spruce budworm modeling system.
W. P. Kemp; N. L. Crookston; P. W. Thomas
1989-01-01
A stochastic model useful in simulating daily maximum and minimum temperature and precipitation developed by Bruhn and others has been adapted for use in the western spruce budworm modeling system. This document describes how to use the weather model and illustrates some aspects of its behavior.
Stand-density study of spruce-hemlock stands in southeastern Alaska.
Donald J. DeMars
2000-01-01
The lack of growth and yield information for young even-aged western hemlock (Tsuga heterophylla(Raf.) Sarg.)-Sitka spruce (Picea sitchensis (Bong.) Carr.) stands in southeastern Alaska served as the impetus for a long-term stand-density study begun in 1974. The study has followed permanent growth plots in managed stands under...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
... providing for human safety. Treatments would be carried out on National Forest System (NFS) Lands within the scope of direction provided in the GMUG Revised Land and Resource Management Plan. DATES: To be most... DEPARTMENT OF AGRICULTURE Forest Service Spruce Beetle Epidemic and Aspen Decline Management...
Manager's handbook for black spruce in the north-central states.
William F. Johnston
1977-01-01
Presents the resource manager with a key for choosing silvicultural practices to manage black spruce stands, especially for pulpwood on organic soil sites. Discusses control of growth, establishment, composition, and damaging agents; also discusses managing for Christmas trees, wildlife habitat, water, and esthetics. Includes yield and growth data, and broadcast...
Kurt H. Johnsen; John R. Seiler
1996-01-01
We conducted a greenhouse experiment to determine: (1) if diverse provenances of black spruce (Picea mariana (Mill.) B.S.P.) respond similarly in growth, phenology and physiology to an approximately 300 ppm increase in atmospheric CO2...
Toxicity of stabilized and unstabilized pyrethrins applied to western spruce budworm
Robert L. Lyon; Jacqueline L. Robertson
1971-01-01
Stabilized pyrethrins were test in a laboratory spray chamber to provide information for planning field trials of this insecticide against the western spruce budworm (Choristoneura occidentalis Freeman). No significant differences were found in toxicity to instars 3 to 6. Stabilizers appear to have had no effect on basic contact toxicity. The...
Physiological and environmental causes of freezing injury in red spruce
Paul G. Schaberg; Donald H. DeHayes
2000-01-01
For many, concerns about the implications of "environmental change" conjure up scenarios of forest responses to global warming, enrichment of greenhouse gases, such as carbon dioxide and methane, and the northward migration of maladapted forests. From that perspective, the primary focus of this chapter, that is, causes of freezing injury to red spruce (
Flotation in ethanol affects storability of spruce pine seeds
James P. Barnett
1970-01-01
Flotation in 95-percent ethanol quickly separates full and empty seeds of spruce pine (Pinus glabra Walt.) without reducing viability measured soon after treatment. Results of two studies reported here, however, indicate that soaking in ethanol causes viability of the seeds to decline rapidly in storage. This phenomenon led to the enormous...
Predicting wildfire behavior in black spruce forests in Alaska.
Rodney A. Norum
1982-01-01
The current fire behavior system, when properly adjusted, accurately predicts forward rate of spread and flame length of wildfires in black spruce (Picea mariana (Mill.) B.S.P.) forests in Alaska. After fire behavior was observed and quantified, adjustment factors were calculated and assigned to the selected fuel models to correct the outputs to...
The western spruce budworm model: structure and content.
K.A. Sheehan; W.P. Kemp; J.J. Colbert; N.L. Crookston
1989-01-01
The Budworm Model predicts the amounts of foliage destroyed annually by the western spruce budworm, Choristoneura occidentalis Freeman, in a forest stand. The model may be used independently, or it may be linked to the Stand Prognosis Model to simulate the dynamics of forest stands. Many processes that affect budworm population dynamics are...
Site-index comparisons for tree species in northern Minnesota.
Willard H. Carmean; Alexander Vasilevsky
1971-01-01
Presents site-index comparisons for the following forest species in northern Minnesota: quaking aspen, paper birch, basswood, red oak, black ash, jack pine, red pine, white pine, white spruce, black spruce, balsam fir, white-cedar, and tamarack. Shows site-index relationships among these species by using site-index ratios and species-comparison graphs.
A Budget Tree Improvement Program
Hans Nienstaedt; Hyun Kang
1983-01-01
In an Upper Peninsula Michigan test of simple design, white spruce of a Beachburg, Ontaria provenance grew 17.5 percent taller than white spruce from the Ottawa N.F. The paper describes how to convert such tests to low-cost, low-risk, highly flexible improvement programs. The approach is applicable to other species of low priority.
Foliar and soil chemistry at red spruce sites in the Monongahela National Forest
Stephanie J. Connolly
2010-01-01
In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.
Red spruce as witness tree on the Monongahela National Forest
Melissa. Thomas-Van Gundy
2010-01-01
A digital database of witness tree locations has been created from the earliest deeds of the area now within the Monongahela National Forest. These locations were used to describe the distribution, environmental gradients, and associated tree species of red spruce (Picea rubens) in eastern West Virginia from between 1771 and 1889.
The Quest for Antifeedants for the Spruce Budworm (Choristoneura fumiferana (Clem.)
M.D. Bentley; D.E. Leonard; G.M. Strunz
1983-01-01
Extracts of non-host plants and selected naturally occurring compounds have been screened for their effects on feeding by spruce budworm larvae, (Choristoneura fumiferana (Clem.), using as diet a filter paper substrate impregnated with the synergistic feeding stimulants, sucrose, and L-proline. The most potent feeding deterrents identified to date...
Elizabeth A. Byers
2010-01-01
Natural communities within the red spruce ecosystem of the central Appalachians are characterized by exceptionally high biodiversity and conservation value. This ecosystem stretches in a southwest - northeast trending band for 250 km along the high elevations of the Allegheny Mountains, from Greenbrier County, WV to Garrett County, MD.
FT–Raman investigation of bleaching of spruce thermomechanical pulp
U.P. Agarwal; L.L. Landucci
2004-01-01
Spruce thermomechanical pulp was bleached initially by alkaline hydrogen peroxide and then by sodium dithionite and sodium borohydride. Near-infrared Fourier-transformâRaman spectroscopy revealed that spectral differences were due primarily to coniferaldehyde and p-quinone structures in lignin, new direct evidence that bleaching removes p-quinone structures. In...
Paul E. Aho
1984-01-01
A sample of 133 Douglas-firs (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and 69 true firs (Abies spp.) with dead tops caused by defoliation by the western spruce budworm (Choristoneura occidentalis Freeman) were felled, dissected, and examined for height loss and incidence and...
Mark B. David; Gregory B. Lawrence; Walter C. Shortle; Scott W. Bailey
1996-01-01
Dieback and growth decline of red spruce (Picea rubens) in the eastern U.S. coincides with the period of acidic deposition, and has led to much speculation as to whether this decline is caused by decreased root-available Ca in the soil.
DECLINE IN SOIL CO2 EFFLUX FOLLOWING TREE GIRTLING IN MATURE BEECH AND SPRUCE STANDS IN GERMANY
Studies were undertaken to estimate the contribution of autotrophic respiration to total soil CO2 efflux in stands of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Five mature trees of each species were girdled to eliminate carbo...
South-central Alaska forests: inventory highlights.
Sally Campbell; Willem W.S. van Hees; Bert. Mead
2005-01-01
This publication presents highlights of a recent south-central Alaska inventory conducted by the Pacific Northwest Research Station Forest Inventory and Analysis Program (USDA Forest Service). South-central Alaska has about 18.5 million acres, of which one-fifth (4 million acres) is forested. Species diversity is greatest in closed and open Sitka spruce forests, spruce...
Age and size effects on seed productivity of northern black spruce
J. N. Viglas; C. D. Brown; J. F. Johnstone
2013-01-01
Slow-growing conifers of the northern boreal forest may require several decades to reach reproductive maturity, making them vulnerable to increases in disturbance frequency. Here, we examine the relationship between stand age and seed productivity of black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) in Yukon Territory and Alaska....
Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin
2011-01-01
Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...
Symposium on formulation and application of microbials for spruce budworm and gypsy moth control
J. A. Armstrong; W. G. Yendol
1985-01-01
This panel of experts from Canada and the United States has been brought together to discuss control techniques and strategies employed against these important defoliators - the spruce budworm and the gypsy moth. In selecting the panel we have chosen people with experience ranging from research to control.
Christopher J. Fettig; Darren C. Blackford; Donald M. Grosman; A. Steven Munson
2017-01-01
In the western United States, protection of individual conifers from bark beetles typically involves liquid formulations of insecticides applied to the tree bole. Researchers attempting to find safer, more portable, and longer-lasting alternatives have evaluated injecting systemic insecticides directly into the tree.
Erynia radicans as a mycoinsecticide for spruce budworm control
Richard S. Soper
1985-01-01
The entomopahtogenic fungus Erynia radicans, has been under investigation for several years as a possible alternative to chemical control of the eastern spruce budworm. A commercial production method has been developed which allows the formulation of this pathogen as a mycoinsecticide. A standardized bioassay method was used to select strain RS141 as...
AmeriFlux CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce
Black, T. Andrew [The University of British Columbia
2017-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce. Site Description - 53.98717° N, 105.11779° W, elavation of 628.94 m, BOREAS 1994, 1996, BERMS climate measurements began Dec. 1996 and flux measurements in Apr. 1999
Formation of Olelresin and Lignans in Sapwood of White Spruce in Response to Wounding
J.H. Hart; J.F. Wardell; Richard W. Hemingway
1975-01-01
Sapwood of white spruce (Picea glauca) was wounded in the spring with an increment borer. Tissue adjacent to the wound, collected 4-9 months after injury, was more decay resistant than uninjured tissue when exposed to Poria monticola or Coriolus versicolor. No significant quantitative or qualitative differences...
Volume Comparison of Pine, Spruce, and Aspen Growing Side by Side
David H. Alban
1985-01-01
Red pine produced significantly more volume than the other species on all five sites in the Lake States. By age 40 to 50 white spruce was second to red pine and beyond this age it is expected that these two species will increase their lead over the other especies even more.
Peroral bioassay of nucleopolyhedrosis viruses in larvae of western spruce budworm.
Mauro E. Martignoni; Paul J. Iwai
1981-01-01
The relative virulence of entomopathogenic viruses and the potency of virus preparations for control of destructive insects can be estimated reliably only by means of biological assay in the target species. A simple, yet sensitive peroral bioassay procedure is described for preparations of nucleopolyhedrosis viruses pathogenic for the western spruce budworm, ...
Premature Needle Loss of Spruce
Jennifer Juzwik; Joseph G. O Brien
1990-01-01
Premature needle loss on white, black and Norway spruce has been observed in forest plantations in Wisconsin and Minnesota during the past six years. Symptoms vary by species but usually appear first in 2-4-year old needles on lower branches. Infected needles are dropped, resulting in branch mortality that progresses upward through the crown, sometimes killing even...
Field Comparison of Spruce Budworm Pheromone Lures
David G. Grimble
1987-01-01
Four types of spruce budworm pheromone lures were tested to compare field longevity and efficiency. Biolures with three different pheromone release rates and Silk-PVC lures all caught male budworm moths throughout the moth flight period in proportion to the different release rates. Fumigant strips in traps to kill trapped moths were necessary.
Phylogeography of Dendroctonus rufipennis based on mtDNA and microsatellites
Kenneth F. Raffa; Luana S. Maroja; Steven M. Bogdanowicz; Kimberly F. Wallin; Richard G. Harrison
2007-01-01
Spruce beetle, Dendroctonus rufipennis (Kirby), is one of the most broadly distributed bark beetles in North America, extending from Alaska to Newfoundland, south to Arizona. It colonizes most species of spruce within its range. Usually it is associated with highly stressed or killed trees, but under certain conditions undergoes landscape level...
Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine
Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.
1996-01-01
We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.
Paraquat-induced lightwood in two European conifers - Scotch pine and Norway spruce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wroblewska, H.; Conner, A.H.; Rowe, J.W.
1978-04-01
Paraquat treatment induced oleoresin-soaked lightwood in Scotch pine; borehole and ax-frill treatment methods were equally effective. Paraquat treatment of Norway spruce induced limited lightwood formation accompanied by heavy external oleoresin exudation. Thus paraquat treatment of Scotch pine and possibly Norway spruce could be commercially advantageous for increasing naval stores production from these species. Analysis of tall oil precursors (nonvolatile ether extractives) for resin acids, fatty acids, and nonsaponifiables showed that the increase from paraquat treatment was mainly from an increased resin acid content. The chemical composition of the resin acids from the lightwood and control wood areas was similar andmore » consisted of the usual pimaric and abietic type resin acids found in conifers. The fatty acids were predominately unsaturated C/sub 18/ isomers. Turpentine of both species consisted mainly of ..cap alpha..-pinene, ..beta..-pinene, and 3-carene. The composition of the turpentine from the Scotch pine lightwood did not differ from that of the control wood. However, turpentine from the Norway spruce lightwood had an increased 3-carene content compared to that from the control.« less
Influence of host tree condition on the performance of Tetropium fuscum (Coleoptera: Cerambycidae).
Flaherty, Leah; Sweeney, Jon D; Pureswaran, Deepa; Quiring, Dan T
2011-10-01
Tetropium fuscum (F.) attacks weakened Norway spruce, Picea abies (L.) Karst., in its native Europe and may colonize healthy spruce in Nova Scotia, Canada. We used manipulative field experiments to evaluate: 1) the development of T. fuscum on apparently healthy red spruce (Picea rubens Sarg.) in Nova Scotia; 2) the influence of red spruce physiological condition (healthy, girdled or cut) on T. fuscum performance; and 3) the impact of natural enemies and competitors on T. fuscum performance when developing on trees of varying condition. Tetropium fuscum successfully developed on healthy red spruce. Survival was higher on healthy than on girdled or cut trees when larvae were exposed to natural enemies and competitors. The benefits of reduced competition and parasitism on healthy trees appeared to compensate for any reductions in nutritional quality, increase in host resistance, or both. In contrast, when T. fuscum were protected from natural enemies, apparent survival was highest on girdled trees. Tetropium fuscum development took longer on healthy than on cut or girdled trees, and emerged adults were largest on healthy trees. The disparities in adult sizes among the three treatments may mean that healthy trees are more nutritious. Alternatively, the differences may indicate that a greater amount of time was spent feeding in healthy than in girdled or cut trees. Tree condition appears to have a direct impact on the success of T. fuscum, influencing survival, development time, and adult size, and may mediate the impact of natural enemies and competitors, further affecting T. fuscum performance.
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Diapause and overwintering of two spruce bark beetle species
Hansen, E. Matthew; Schopf, Axel; Ragland, Gregory J.; Stauffer, Christian; Bentz, Barbara J.
2017-01-01
Abstract Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research. PMID:28979060
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
Hamilton, Jill A; Aitken, Sally N
2013-08-01
Historic colonization and contemporary evolutionary processes contribute to patterns of genetic variation and differentiation among populations. However, separating the respective influences of these processes remains a challenge, particularly for natural hybrid zones, where standing genetic variation may result from evolutionary processes both preceding and following contact, influencing the evolutionary trajectory of hybrid populations. Where adaptation to novel environments may be facilitated by interspecific hybridization, teasing apart these processes will have practical implications for forest management in changing environments. We evaluated the neutral genetic architecture of the Picea sitchensis (Sitka spruce) × P. glauca (white spruce) hybrid zone along the Nass and Skeena river valleys in northwestern British Columbia using chloroplast, mitochondrial, and nuclear microsatellite markers, in combination with cone morphological traits. Sitka spruce mitotype "capture", evidenced by this species dominating the maternal lineage, is consistent with earlier colonization of the region by Sitka spruce. This "capture" differs from the spatial distribution of chloroplast haplotypes, indicating pollen dispersal and its contribution to geographic structure. Genetic ancestry, based on nuclear markers, was strongly influenced by climate and geography. Highly parallel results for replicate transects along environmental gradients provide support for the bounded hybrid superiority model of hybrid zone maintenance. • This broad-scale analysis of neutral genetic structure indicates the importance of historic and contemporary gene flow, environmental selection, and their interaction in shaping neutral genetic variation within this hybrid zone, informative to seed transfer development and reforestation for future climates.
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.
NASA Astrophysics Data System (ADS)
Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.
2015-09-01
Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.
Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska
NASA Technical Reports Server (NTRS)
Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut
2011-01-01
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.
Vitali, Valentina; Büntgen, Ulf; Bauhus, Jürgen
2017-12-01
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change. © 2017 John Wiley & Sons Ltd.
Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce
Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.
1997-01-01
Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.
NASA Astrophysics Data System (ADS)
Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.
2017-12-01
Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire. PMID:28777802
NASA Astrophysics Data System (ADS)
Wason, J. W., III; Dovciak, M.; Bevilacqua, E.
2015-12-01
Climate change in the northeastern United States is expected to shift climatic (temperature) envelopes for spruce-fir forests upslope and northward decreasing their area in the region by 2100. Coarse scale landscape models however, may not incorporate heterogeneity in climatic conditions in mountains that can create climatic refugia for species in high-elevation spruce-fir forests. To determine spatial and temporal trends in climate of mountain spruce-fir forests we measured microclimate at 98 forest plots in 2012 and 2013 on 12 mountains in New York, Vermont, New Hampshire, and Maine. By linking regional climate trends with our spatial climate data we calculated elevational shifts in temperature envelopes during the last 50 years. Additionally we linked our spatial dataset to a range of future climate conditions for 2100 based on Representative Concentration Pathways (1 to 5°C warming). We hypothesized that climates have already changed to an extent that spruce-fir forests should begin to respond and that future climate conditions may shift suitable habitat for spruce-fir forests beyond their current range. We found that regional climate change over the last 50 years has resulted in warming of 0.66 and 1.62°C for average annual daily maximum (Tmax) and minimum (Tmin) temperatures in the region. When linked to our spatial microclimate model, this warming results in a 100 (Tmax) and 312m (Tmin) upslope shift in temperature envelopes. Future climate projections suggest that by 2100 Tmax may shift upslope between 152 and 758m for the 1 and 5°C scenarios respectively, while Tmin may shift upslope between 192 and 962m. Spruce-fir forests typically occupy an elevation range of ~500m suggesting that the climate experienced in these forests 50 years ago may not be found within their elevation range by 2100. These results are discussed in the context of responses of tree populations and growth rates observed along the elevation gradients of northeastern United States.
The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.
NASA Astrophysics Data System (ADS)
Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.
2015-12-01
Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change, particularly near the edges of the species' range.
Xia, Rui; Xu, Jing; Arikit, Siwaret; Meyers, Blake C.
2015-01-01
In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification. PMID:26318183
BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.
NASA Astrophysics Data System (ADS)
Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo
2015-04-01
Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates. The exposure to high temperature and the position of the needles at the sun layer positively affect the BVOC emission, while the short-term exposure to high ozone concentration did not significantly affect BVOC emissions. The study contributes to increase our understanding about the environmental and structural controls of BVOC emission in response to both tropospheric ozone and global changes.
Reproductive compatibility within and among spruce budworm (Lepidoptera: tortricidae) populations
Nancy Lorimer; Leah S. Bauer
1983-01-01
Spruce budworm moths collected as larvae from two species of host trees in four populations were mated in single pairs in two years. In 1980 but not 1981, more of the intra-population matings than the inter-population matings were fertile. Host tree origin was not a significant factor in the level of sterility.
Western Spruce Budworm Consumption-Effects of Host Species and Foliage Chemistry
Michael R. Wagner; Elizabeth A. Blake
1983-01-01
Feeding efficiencies and growth rates of western spruce budworm larvae varied among hosts tested. Pupae attained normal size regardless of host species. Candidate defensive compounds (tannins and phenols) varied only slightly with the vigor of the host. The relationship between these defensive compounds and measures of larvae growth were not entirely consistent with...
Fifteen-Year Growth of a Thinned White Spruce Plantation
Robert F. Wambach; John H. Cooley
1969-01-01
Mean annual increment at age 38 in a thinned white spruce plantation was 102 cubic feet or 0.85 cords per acre per year. Periodic annual increment during the 15 years after thinning seemed to be maximum for residual basal areas between 100 and 120 square feet per acre. OXFORD: 562.2:174.7 Picca glauca: (775):242
Western spruce budworm as related to stand characteristics in the bitterroot national forest
Carroll B. Williams; Patrick J. Shea; Gerald S. Walton
1971-01-01
Relation of population density to certain stand conditions and damage indicators was analyzed in four drainages on the Bitterroot National Forest of Montana. Western spruce budworm (Choristoneura occidentalis Freeman) populations were strongly related to plot basal area, tree species, and tree crown levels, and also to current and past levels of tree defoliation....
Stephen D. West; R. Glenn Ford; John C. Zasada
1980-01-01
The population response of the northern red-backed vole (Clethrionomys rutilus) to a differentially cut white spruce (Picea glauca) forest 30 km southwest of Fairbanks, Alaska, was monitored by simultaneous livetrapping in a clearcut, in a partially cut or shelterwood area, and in an area of uncut forest. During the first...
Glenn Patrick Juday; Claire. Alix
2012-01-01
This paper calibrates climate controls over radial growth of floodplain white spruce (Picea glauca (Moench) Voss) and examines whether growth in these populations responds similarly to climate as upland trees in Interior Alaska. Floodplain white spruce trees hold previously unrecognized potential for long-term climate reconstruction because they...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Proposed Project CIG proposes to construct and operate a new air blending station in Douglas County... Spruce Hill Air Blending Project would consist of the following: An air blending compressor station (the Spruce Hill Air Blending Station) containing a 215-, a 390-, and a 500-horsepower air compressor; A back...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... Proposed Project CIG proposes to construct and operate a new air blending station in Douglas County... Spruce Hill Air Blending Project would consist of the following: An air blending compressor station (the Spruce Hill Air Blending Station) containing a 215-, a 390-, and a 500-horsepower air compressor; A back...
Amanda R. Carlson; Jason S. Sibold; Timothy J. Assal; Jose F. Negron
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have...
Service life of fence posts treated by double-diffusion methods
Donald C. Markstrom; Lee R. Gjovik
1999-01-01
Service-life tests indicate that Engelmann spruce, lodgepole pine, and Rocky Mountain Douglas-fir fence posts treated by double-diffusion methods performed excellently after field exposure of 30 years with no failures. The test site was located in the semiarid Central Plains near Nunn, Colorado. Although Engelmann spruce posts generally defy treatment by other treating...
Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So
2006-01-01
Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...
Elizabeth C. Cole; Thomas A. Hanley; Michael Newton
2010-01-01
The effects of precommercial thinning on the understory vegetative cover of 16- to 18-year-old spruce-hemlock (Picea sitchensis (Bong.) Carriere--Tsuga heterophylla (Raf.) Sarg.) stands were studied in seven replicate areas over seven growing seasons postthinning. Vegetative cover was analyzed at the class level, but species-...
E. Matthew Hansen; Barbara J. Bentz
2003-01-01
New spruce beetle, Dendroctonus rufipennis (Kirby), adults of univoltine and semivoltine life cycles, as well as re-emerged parent beetles, were laboratory-tested for differences in reproductive capacity and brood characteristics. Parameters measured from the three groups include dry weight, lipid content, and egg production. Brood characteristics measured include egg...
Katharine A. Sheehan
1996-01-01
Effects of insecticide treatments conducted in Oregon and Washington from 1982 through 1992 on subsequent defoliation by western spruce budworm (Choristoneura occidentalis Freeman) were evaluated by using aerial sketchmaps and a geographic information system. For each treatment, the extent and severity of defoliation was calculated for the treated...
An Engelmann spruce seed source study in the central Rockies
Wayne D. Shepperd; Richard M. Jeffers; Frank Ronco
1981-01-01
Planted Englemann spruce seedlings from 20 sources throughout North America were field tested in the central Rockies at 9,600 feet (2,930 m) elevation. Overall survival was 73% after 10 years. Significant differences in height were evident among several sources. Sources from northern latitudes and lower elevations grew best. The results demonstrate that Englemann...
A silvicultural Guide for Spruce-Fir in the Northeast
Robert M. Frank; John C. Bjorkbom
1973-01-01
A practical guide to the silvicultural treatment of spruce-fir stands for timber production in New England and New York. Both evenaged and uneven-aged management are considered, covering both the establishment of new stands and the culture of existing stands. Includes a set of prescriptions describing specific treatments for a range of stand conditions and management...
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty
2002-01-01
We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...
Therese M. Poland; John H. Borden
1997-01-01
The bark beetle predator Thanasimus undatulus Say was captured in statistically significant numbers (total catch = 470, 713, and 137) in three field experiments using multiple-funnel traps baited with various combinations of pheromones for the spruce beetle, Dendroctonus rufipennis Kirby, and the secondary bark beetles ...
Emile S. Gardiner; Magnus Lof; Joseph J. O' brien; John A. Stanturf; Palle Madsen
2009-01-01
Efforts inEurope to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...
Full-Tree SKidding Black Spruce: Another Way to Favor Reproduction
William F. Johnston
1975-01-01
An alternative to burning is needed for clearcut peatlands where only slash disposal is required to rapidly reproduce black spruce. A 2-year trial in north-central Minnesota indicates that reproduction will be rapid after full-tree skidding on nonbrushy sites taht have well-distribted sphagnum seedbeds and ample natural seeding. Broadcast burning is still recommended...
Snowmelt Runoff From Planted Conifers in Southwestern Wisconsin
Richard S. Sartz; David N. Tolsted
1976-01-01
Snowmelt overland flow was measured for one season from 10-year-old plantations of red pine, Norway spruce, European larch, and from old field control plots, on both north and south slopes. Pine and spruce plots produced more runoff than larch and old field plots; and south slope plots produced more runoff than north slope plots.
Indicators and associated decay of Engelmann spruce in Colorado
Thomas E. Hinds; Frank G. Hawksworth
1966-01-01
Average cull deductions for 11 cull indicators were determined from over 2,000 abnormalities on 1,027 merchantable Engelmann spruce in 21 stands throughout Colorado. On a board-foot basis, Fomes pini punk knots or sporophores caused an 81 percent deduction. Deduction for broken tops or dead tops with adjacent dead rust brooms amounted to 24 percent....
Susan Ernst; Marlin E. Plank; Donald J. Fahey
1986-01-01
The suitability of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) beach logs in southeast Alaska for lumber, pulp, and energy was determined. Logs were sawn at a cant mill in southeast Alaska and at a dimension mill in northern Washington. Volume and value recovery was...
Glenn A. Christensen; Kent R. Julin; Robert J. Ross; Susan. Willits
2002-01-01
Wood volume recovery, lumber grade yield, and mechanical properties of young-growth Sitka spruce (Picea sitchensis (Bong.) Carr.) and western hemlock (Tsuga heterophyla (Raf.) Sarg.)were examined. The sample included trees from commercially thinned and unthinned stands and fluted western hemlock logs obtained from a sort yard....
Soil Warming: Consequences for Foliar Litter Decay in a Spruce-Fir Forest in Maine, USA
Lindsey E. Rustad; Ivan J. Fernandez
1998-01-01
Increased rates of litter decay due to projected global warming could substantially alter the balance between C assimilation and release in forest soils, with consequent feedbacks to climate change. This study was conducted to investigate the effects of soil warming on the decomposition of red spruce (Picea rubens Sarg.) and red maple (...
Wood variables affecting the friction coefficient of spruce pine on steel
Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller
1970-01-01
Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...
Rooting sitka spruce from southeast Alaska.
Donald L. Copes
1987-01-01
Rooting and shoot growth characteristics of 10-, 15-, and 20-year-old Sitka spruce cuttings were studied. Twigs from three branch orders were tested with or without 5000 parts per million indole-3-butyric acid (IBA) hormone treatment. Rooting success averaged 64 percent. The effect of ortet age on rooting success was not significant. Cuttings from first-order branch...
Physiological changes in red spruce seedlings during a simulated winter thaw
P.G. Schaberg; J.B. Shane; G.J. Hawley; G.R. Strimbeck; D.H. DeHayes; P.F. Cali; J.R. Donnelly
1996-01-01
We evaluated net photosynthesis, respiration, leaf conductance, xylem pressure potential (XPP) and cold hardiness in red spruce (Picea rubens Sarg.) seedlings exposed to either a continuous thaw (CT) or a daytime thaw with freezing nights (FN) for 8 days during mid-winter. Physiological differences between CT and FN seedlings were evident for all...
Putrescine: a marker of stress in red spruce trees
Rakesh Minocha; Walter C. Shortle; Gregory B. Lawrence; B. David Mark; Subhash C. Minocha
1996-01-01
Aluminum (Al) has been suggested to be an important stress factor in forest decline due to its mobilization in soil following atmospheric deposition of acidic pollutants. A major goal of our research is to develop physiological and biochemical markers of stress in trees using cell cultures and whole plants. Needles of red spruce (Picea rubens)...
Growth and yield of sitka spruce and western hemlock at Cascade Head Experimental Forest, Oregon.
Stephen H. Smith; John F. Bell; Francis R. Herman; Thomas See
1984-01-01
A study established in 83-year-old, even-aged stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) at Cascade Head Experimental Forest in the Siuslaw National Forest on the Oregon coast traces their development for 33 years. Statistical data collected from 12 permanent...
Helicopter Propwash Dislodges Few Spruce Budworms
Daniel T. Jennings; Mark W. Houseweart; Mark W. Houseweart
1986-01-01
Propwash treatments from a low-flying Bell 47-G2 helicopter dislodged few spruce budworm larvae and pupae from host balsam-fir trees. After propwash treatments, both larval-pupal densities on branch samples and in drop-tray collections near the ground were not significantly different between treated and control plots. Significantly more larvae were found in the lower...
Dispersal flight and attack of the spruce beetle, Dendroctonus rufipennis, in south-central Alaska.
Edward H. Holsten; John S. Hard
2001-01-01
Data from 1999 and 2000 field studies regarding the dispersal flight and initial attack behavior of the spruce beetle (Dendroctonus rufipennis Kirby) are summarized. More dispersing beetles were trapped in flight near the middle to upper tree bole than the lower bole. There were no significant differences between trap location and ambient...
Eric Heitzman; Sean Doughterty; James Rentch; Steve Adams; Steve. Stephenson
2010-01-01
The extent of red spruce (Picea rubens) forests in West Virginia has dramatically declined from an estimated 1.5 million acres in 1865 to 30,000 acres today because of widespread logging and forest fires during the late 1800s and early 1900s.
Gerard, tech. coord. Hertel; Gerard Hertel
1988-01-01
Includes 66 papers presented at the US/FRG research symposium: effects of atmospheric pollutants on the spruce-fir forests of the Eastern United States and the Federal Republic of Germany, which was held October 19-23, 1987, in Burlington, Vermont.
The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...
Survival and growth response of white spruce stock types to site preparation in Alaska
Andrew Youngblood; Elizabeth Cole; Michael Newton
2011-01-01
To identify suitable methods for reforestation, we evaluated the interacting effects of past disturbance, stock types, and site preparation treatments on white spruce (Picea glauca (Moench) Voss) seedling survival and growth across a range of sites in Alaska. Replicated experiments were established in five regions. At each site, two complete...
L.F Ohmann; H.O. Batzer; R.R. Buech; D.C. Lothner; D. A. Perala; A.L. Schipper; E.S. Verry
1978-01-01
Describes some harvest options and their consequences in terms of timber investment return, water yield and quality, wildlife, visual quality, and disease and insect impact for the aspen, white birch, red pine, white pine, jack pine, black spruce, spruce-fir, and white-cedar forest types of the Lake States.
E.S. Gardiner; J.J. O’Brien; M. Löf; J.A. Stanturf; P. Madsen
2009-01-01
Efforts in Europe to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...
Aerial field tests of five insecticides on western spruce budworm in Idaho and Montana, 1978-1980
George P. Markin; David R. Johnson
1986-01-01
Each of five insecticides was applied at two or three application rates by helicopter to 20-ha plots. Effectiveness of each application rateagainst eastern spruce budworm (Choristoneura occidentalis) was judged by comparing larval population reduction at 15 or 20 days aftertreatment against populations in untreated check plots. Performance of each...
Marcin Jachym
2003-01-01
The web-spinning sawflies (Cephalcia Panz.) are members of the Symphyta that are of economic significance, and which constitutes an integral part of the spruce forest environment. Spruce, which is the dominant component of Western Carpathian forest stands, is the only known host plant for all the species of Cephalcia...
Western spruce budworm defoliation effects on forest structure and potential fire behavior.
S. Hummel; J.K. Agee
2003-01-01
Forest composition and structure on the eastern slope of the Cascade Mountains have been influenced by decades of fire exclusion. Multilayered canopies and high numbers of shade-tolerant true fir trees interact with western spruce budworm to alter forest structure and to affect potential fire behavior and effects. We compared...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... ENVIRONMENTAL PROTECTION AGENCY [EPA-R03-OW-2009-0985; FRL-9174-6] Announcement To Extend the Recommended Determination Preparation Period for the Spruce No. 1 Surface Mine, Logan County, West Virginia... public comments we received, EPA finds there is good cause to extend the time period provided in 40 CFR...
Negative heterosis not apparent in 22-year-old hybrids of Picea mariana and Picea rubens
Kurt H. Johnsen; John E. Major; Judy Loo; Donald McPhee
1998-01-01
Abstract: Work from the 1970s indicated that, relative to either parent species, crosses between red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) were inferior with respect to both growth and photosynthesis. We re-examined the hypothesis that there is negative heterosis in hybrids...
Animal damage to young spruce and fir in Maine
Barton M. Blum
1977-01-01
The loss of terminal buds on small balsam fir (Abies balsamea (L.) Mill.) and spruce (Picea spp.) trees because of nipping by mammals or birds has increased on the Penobscot Experimental Forest in recent years. The cut stem is smooth and slightly angled; there is no sign of tearing. Unnipped trees grew about 13 percent more than...
Dispersal of white spruce seed on Willow Island in interior Alaska.
Andrew Youngblood; Timothy A. Max
1992-01-01
The seasonal and spatial patterns of dispersal of white spruce (Picea glauca (Moench) Voss) seed were studied from 1986 to 1989 in floodplain stands along the Tanana River near Fairbanks, Alaska. Analysis of the 1987 crop showed that production of filled seed was strongly related to estimated production of total seed and unrelated to selected stand...
Performance of Seven Seed Sources of Blue Spruce in Central North Dakota
David H. Dawson; Paul O. Rudolf
1966-01-01
Blue spruce (Picea pungens Engelm.) has been planted quite extensively in North Dakota shelterbelts and farmstead windbreaks. Generally survival and growth have been promising, but there is considerable variation in performance of individual trees or plantations. Poorly adapted seed sources have been suspected as one cause for poor performance. There should be...
Stand dynamics of relict red spruce in the Alarka Creek headwaters, North Carolina
Beverly Collins; Thomas M. Schuler; W. Mark Ford; Danielle. Hawkins
2010-01-01
Disjunct red spruce (Picea rubens Sarg.) forests in the southern Appalachians can serve as models for understanding past and future impacts of climate change and other perturbations for larger areas of high-elevation forests throughout the Appalachians. We conducted a vegetation and dendrochronological survey to determine the age, size class, and...
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with cont...
Stem volume losses in grand firs topkilled by western spruce budworm in Idaho
George T. Ferrell; Robert F. Scharpf
1982-01-01
Mature grand firs (Abies grandis [Dougl. ex D. Don] Lindl.) were sampled in two stands, one cutover and one virgin, in the Little Salmon River drainage in west-central Idaho, to estimate stem volume losses associated with topkilling. Damage to the stands resulted from three outbreaks of western spruce budworm (Choristoneura occidentalis...
Evaluation of blown down Alaska spruce and hemlock trees for pulp.
Donald J. Fahey; James M. Cahill
1983-01-01
Chips from Alaska hemlock and spruce trees blown down more than 10 years produced usable grades of viscose pulp. Yields of pulp from both species were about 2 percent lower for blowdown material than for control trees. Ash content was slightly higher in the pulp manufactured from blowdown timber than in pulp from control trees.
Keith M. Reynolds; Edward H. Holsten; Richard A. Werner
1994-01-01
SBexpert version 1.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rutipennis (Kby.)) management developed for use in Microsoft Windows with the KnowledgePro Windows development language. The SBexpert users guide provides detailed instructions on the use of all SBexpert features. SBexpert has four main topics (...
Melody A. Keena; Alice Vandel; Oldrich. Pultar
2010-01-01
Lymantria monacha (L.) (Lepidoptera: Lymantriidae) is a Eurasian pest of conifers that has potential for accidental introduction into North America. The phenology over the entire life cycle for L. monacha individuals from the Czech Republic was compared on Picea glauca (Moench) Voss (white spruce) and a newly...
Genetic variation of piperidine alkaloids in Pinus ponderosa from a common garden
Elizabeth A. Gerson; Rick G. Kelsey; Bradley J. St. Clair
2012-01-01
Most species of pine and spruce synthesize and accumulate variable quantities of alkaloids in their tissues. These compounds express numerous types of biological activities in bioassay and could potentially offer resistance against enemies, although this function has never been confirmed for any known enemies of pine or spruce under natural conditions. The...
Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy
Umesh P. Agarwal; Sally A. Ralph
2008-01-01
A method based on FT-Raman spectroscopy is proposed for determining in situ concentrations of ethylenic residues in softwood lignin. Raman contributions at 1133 and 1654 cm-1, representing coniferaldehyde and coniferyl alcohol structures, respectively, were used in quantifying these units in spruce wood with subsequent conversion to concentrations in lignin. For...
Genetic variation in blue spruce: A test of populations in Nebraska
David F. Van Haverbeke
1984-01-01
Analyses of 43 blue spruce populations at age 12 (9 years in the field) revealed significant differences among populations for survival, height, vigor, crown diameter, frost injury, and foliage color. Use of regions increases the probability of locating better seeds sources, but high variability among individual populations within regions limits their value in...
David W. Williams; Andrew M. Liebhold
1995-01-01
Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania,...
Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests
Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet
2012-01-01
Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....
Flower production on clonal orchards at Oconto River Seed Orchard in Wisconsin
J.G. Murphy; R.G. Miller
1977-01-01
The Eastern Region, USDA Forest Service has been establishing and managing seed orchards to produce improved seed for the National Forests in the Lake States since 1969. This paper presents a review of the female flower production for the past 4 years in the white pine, white spruce, and black spruce clonal seed orchards.
Roy F. Shepherd
1983-01-01
A technique is described to relate seasonal development of buds of Douglas-fir, Pseudotsuga menziesii (Mirt.) Franco, to larval emergence and survival of western spruce budworm (Choristoneura occidentalis Freeman) (Tortricidae). Losses of larvae due to asynchrony of emergence and bud swelling and the reduced protection of the...
Nancy Rappaport; Marion Page
1985-01-01
Methods were devloped for rearing Glypta fumiferanae Viereck on a nondiapausing laboratory colony of the western spruce budworm, Choristoneura occidentalis Freeman. Both host and parasite are univoltine and undergo diapause in nature. In this study, the parasite's voltinism was synchronized with that of a nondiapausing...
Bark beetle management after a mass attack - some Swiss experiences
B. Forster; F. Meier; R. Gall
2003-01-01
In 1990 and 1999, heavy storms accompanied by the worst gales ever recorded in Switzerland, struck Europe and left millions of cubic metres of windthrown Norway spruce trees; this provided breeding material for the eight-toothed spruce bark beetle (Ips typographus L.) and led to mass attacks in subsequent years which resulted in the additional loss...
Insects as unidentified flying objects.
Callahan, P S; Mankin, R W
1978-11-01
Five species of insects were subjected to a large electric field. Each of the insects stimulated in this manner emitted visible glows of various colors and blacklight (uv). It is postulated that the Uintah Basin, Utah, nocturnal UFO display (1965-1968) was partially due to mass swarms of spruce budworms, Choristoneura fumiferana (Clemens), stimulated to emit this type of St. Elmo's fire by flying into high electric fields caused by thunderheads and high density particulate matter in the air. There was excellent time and spatial correlation between the 1965-1968 UFO nocturnal sightings and spruce budworm infestation. It is suggested that a correlation of nocturnal UFO sightings throughout the U.S. and Canada with spruce budworm infestations might give some insight into nocturnal insect flight patterns.
NASA Astrophysics Data System (ADS)
Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.
2016-11-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.
Kosiba, Alexandra M; Schaberg, Paul G; Rayback, Shelly A; Hawley, Gary J
2018-10-01
Following growth declines and increased mortality linked to acid deposition-induced calcium depletion, red spruce (Picea rubens Sarg.) in the northeastern United States are experiencing a recovery. We found that more than 75% of red spruce trees and 90% of the plots examined in this study exhibited increasing growth since 2001. To understand this change, we assessed the relationship between red spruce radial growth and factors that may influence growth: tree age and diameter, stand dynamics, plot characteristics (elevation, slope, aspect, geographical position), and a suite of environmental variables (temperature, precipitation, climate and precipitation indices (degree days, SPEI [standardized precipitation evapotranspiration index], and acid deposition [SO 4 2- , NO 3 - , pH of rainfall, cation:anion ratio of rainfall]) for 52 plots (658 trees) from five states (spanning 2.5°N × 5°W). Examining the growth relationships from 1925 to 2012, we found that while there was variability in response to climate and acid deposition (limited to 1980-2012) by elevation and location, plot and tree factors did not adequately explain growth. Higher temperatures outside the traditional growing season (e.g., fall, winter, and spring) were related to increased growth. Nitrogen deposition (1980-2012) was associated with lower growth, but the strength of this relationship has lessened over time. Overall, we predict sustained favorable conditions for red spruce in the near term as acid deposition continues to decline and non-traditional growing season (fall through spring) temperatures moderate, provided that overall temperatures and precipitation remain adequate for growth. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling tree growth and stable isotope ratios of white spruce in western Alaska.
NASA Astrophysics Data System (ADS)
Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne
2017-04-01
Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.
Exome capture from the spruce and pine giga-genomes.
Suren, H; Hodgins, K A; Yeaman, S; Nurkowski, K A; Smets, P; Rieseberg, L H; Aitken, S N; Holliday, J A
2016-09-01
Sequence capture is a flexible tool for generating reduced representation libraries, particularly in species with massive genomes. We used an exome capture approach to sequence the gene space of two of the dominant species in Canadian boreal and montane forests - interior spruce (Picea glauca x engelmanii) and lodgepole pine (Pinus contorta). Transcriptome data generated with RNA-seq were coupled with draft genome sequences to design baits corresponding to 26 824 genes from pine and 28 649 genes from spruce. A total of 579 samples for spruce and 631 samples for pine were included, as well as two pine congeners and six spruce congeners. More than 50% of targeted regions were sequenced at >10× depth in each species, while ~12% captured near-target regions within 500 bp of a bait position were sequenced to a depth >10×. Much of our read data arose from off-target regions, which was likely due to the fragmented and incomplete nature of the draft genome assemblies. Capture in general was successful for the related species, suggesting that baits designed for a single species are likely to successfully capture sequences from congeners. From these data, we called approximately 10 million SNPs and INDELs in each species from coding regions, introns, untranslated and flanking regions, as well as from the intergenic space. Our study demonstrates the utility of sequence capture for resequencing in complex conifer genomes, suggests guidelines for improving capture efficiency and provides a rich resource of genetic variants for studies of selection and local adaptation in these species. © 2016 John Wiley & Sons Ltd.
Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants
Koorem, Kadri; Price, Jodi N.; Moora, Mari
2011-01-01
The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest—evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species—and litter amount—shallow (4 mm), deep (12 mm) and leachate—on seedling emergence and biomass of three understorey species. The effect of litter amount on seedling emergence was highly dependent on litter type; while spruce needle litter had a significant negative effect that increased with depth, seedling emergence in the presence of hazel broadleaf litter did not differ from control pots containing no litter. Mixed litter of both species also had a negative effect on seedling emergence that was intermediate compared to the single-species treatments. Spruce litter had a marginally positive (shallow) or neutral effect (deep) on seedling biomass, while hazel and mixed litter treatments had significant positive effects on biomass that increased with depth. We found non-additive effects of litter mixtures on seedling biomass indicating that high quality hazel litter can reduce the negative effects of spruce. Hazel litter does not inhibit seedling emergence; it increases seedling growth, and creates better conditions for seedling growth in mixtures by reducing the suppressive effect of spruce litter, having a positive effect on understorey species richness. PMID:22028890
Sampling western spruce budworm by counting larvae on lower crown branches.
R.R. Mason; B.E. Wickman; H.G. Paul
1989-01-01
A technique is described for sampling spruce budworm larvae after bud flush by nondestructively beating branches in the lower crown. Sample data were collected from 32 plots representing a wide range of budworm densities. Statistical analyses indicated that larvae were less aggregated in the lower crown than at the same density in the middle crown. In an independent...
Nonlinear responses of white spruce growth to climate variability in interior Alaska
A.H. Lloyd; P.A. Duffy; D.H. Mann
2013-01-01
Ongoing warming at high latitudes is expected to lead to large changes in the structure and function of boreal forests. Our objective in this research is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest driest margins of its range in interior Alaska. We then use those relationships to...
Indicators of Population Viabllity in Red Spruce, Picea rubens. I. Reproductive Traits and Fecundity
A. Mosseler; J.E. Major; J.D. Simpson; B. Daigle; K. Lange; Y.S. Park; K.H Johnsen; O.P. Rajora
2000-01-01
Red spruce (Picea rubens Sarg.) has experienced a substantial decline across most of its range in eastern North America over the past centmy and probably also in the disjunct Ontario populations where it now occurs only in small isolated stands. Measurements of cone and seed traits from natural populations were used as indicators of the...
Anita K. Rose; N.S. Nicholas
2008-01-01
Spruce-fir forests in the southern Appalachian Mountains receive high atmospheric nitrogen inputs and have high nitrate levels in soil solution and streamwater. High levels of excess nitrogen have been associated with reduced tree vigor. Additionally, the balsam woolly adelgid (Adelges piceae Ratz.) has killed the majority of endemic Fraser fir [
Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.
Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa
2002-01-01
We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...
David L. Nicholls; Peter M. Crimp
2002-01-01
Wood energy can be important in meeting the energy needs of Alaska communities that have access to abundant biomass resources. In the Kenai Peninsula, a continuing spruce bark beetle (Dendroctonus rufipennis (Kirby)) infestation has created large volumes of standing dead spruce trees (Picea spp.). For this evaluation, a site in the Kenai-Soldotna...
Effects of a western spruce budworm outbreak on private lands in eastern Oregon, 1980-1994.
David L. Azuma; David L. Overhulser
2008-01-01
Forest Inventory and Analysis data from three inventory periods were used to examine the effects of a western spruce budworm outbreak on private lands in eastern Oregon. Growth was negatively related to defoliation with differences between crown ratio and species. The mortality and salvage harvesting caused changes in stand structure on private lands. Although many...
C. Dana Nelson; C. A. Mohn
1989-01-01
Significant family variation in female strobili incidence, ripeness-to-flower and production were found in a Minnesota black spruce (Picea mariana (Mill.) B.S.P.) population tested at four locations. Heritability estimates indicated that gain in early flowering from selection would be possible. Height growth through age 12 years was positively correlated (genetic and...
Garrett W. Meigs; Robert E. Kennedy; Andrew N. Gray; Matthew J. Gregory
2015-01-01
Across the western US, the two most prevalent native forest insect pests are mountain pine beetle (MPB; Dendroctonus ponderosae; a bark beetle) and western spruce budworm (WSB; Choristoneura freemani; a defoliator). MPB outbreaks have received more forest management attention than WSB outbreaks, but studies to date have not compared their cumulative mortality impacts...
John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell
2012-01-01
Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet...
Crown structure and growth efficiency of red spruce in uneven-aged, mixed-species stands in Maine
Douglas A. Maguire; John C. Brissette; Lianhong. Gu
1998-01-01
Several hypotheses about the relationships among individual tree growth, tree leaf area, and relative tree size or position were tested with red spruce (Picea rubens Sarg.) growing in uneven-aged, mixed-species forests of south-central Maine, U.S.A. Based on data from 65 sample trees, predictive models were developed to (i)...
Estimating potential Engelmann spruce seed production on the Fraser Experimental Forest, Colorado
Robert R. Alexander; Carleton B. Edminster; Ross K. Watkins
1986-01-01
Two good, three heavy, and two bumper spruce seed crops were produced during a 15-year period. There was considerable variability in seed crops, however. Not all locations produced good to bumper seed crops when overall yearly ratings averaged good or better; conversely, some locations produced bumper seed crops in 3 or more years. Mathematical relationships,...
Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce
P.G. Schaberg; D.H. DeHayes; G.J. Hawley; G.R. Strimbeck; J.R. Cumming; P.F. Murakami; C.H. Borer
2000-01-01
We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased...
Revisiting Pearson's climate and forest type studies on the Fort Valley Experimental Forest
Joseph E. Crouse; Margaret M. Moore; Peter Fule
2008-01-01
Five weather station sites were established in 1916 by Fort Valley personnel along an elevational gradient from the Experimental Station to near the top of the San Francisco Peaks to investigate the factors that controlled and limited forest types. The stations were located in the ponderosa pine, Douglas-fir, limber pine, Engelmann spruce, and Engelmann spruce/...
Silvicultural potential for pre-comercial treatment in northern forest type
H. W.,Jr Hocker
1977-01-01
It is proposed that pre-commercial thinning of young northern hardwood, oak, white pine and spruce-fir stands be carried out using appropriate stocking guides to regulate stand density. Thinning should be carried out when stands are-between 1" and 2" dbh. Pruning of eastern white pine is recommended, while pruning of spruce and yellow birch seems feasible,...
Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi
A. Ostrofsky; J. Jellison; K.T. Smith; W.C. Shortle
1997-01-01
Red spruce (Picea rubens Sarg.) wood blocks were incubated in modified soil block jars and inoculated with one of nine white rot or brown rot basidiomycetes. Concentrations of calcium, magnesium, potassium, iron, and aluminum were determined using inductively coupled plasma emission spectroscopy in wood incubated 0, 1.5, 4, and 8 months after...
Forest health restoration in south-central Alaska: a problem analysis.
Darrell W. Ross; Gary E. Daterman; Jerry L. Boughton; Thomas M. Quigley
2001-01-01
A spruce beetle outbreak of unprecedented size and intensity killed most of the spruce trees on millions of acres of forest land in south-central Alaska in the 1990s. The tree mortality is affecting every component of the ecosystem, including the socioeconomic culture dependent on the resources of these vast forests. Based on information obtained through workshops and...
Effect of seedbed preparation on natural reproduction of spruce and hemlock under dense shade
Grant Davis; Arthur C. Hart
1961-01-01
The cutting practices commonly recommended for spruce-fir stands in the Northeast involve uneven-aged management. The success of this type of management is predicated upon stand structures that have a range of size classes from seedlings to mature trees in intimate mixture. This kind of stand structure requires a continuous supply of reproduction of desirable species....
Susan M. Tait; Charles G. III Shaw; Andris Eglitis
1985-01-01
Insects and diseases were surveyed in 16 even-aged, young-growth stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) in southeastern Alaska. Stand ages ranged from 17 to 27 years in nine thinned stands and from 12 to 22 years in seven unthinned stands. All stands...
Revisiting Pearson's climate and forest type studies on the Fort Valley Experimental Forest (P-53)
Joseph E. Crouse; Margaret M. Moore; Peter Z. Fule
2008-01-01
Five weather station sites were established in 1916 by Fort Valley personnel along an elevational gradient from the Experimental Station to near the top of the San Francisco Peaks to investigate the factors that controlled and limited forest types. The stations were located in the ponderosa pine, Douglas-fir, limber pine, Engelmann spruce, and Engelmann spruce/...
Kimberly P. Wickland; Jason C. Neff
2007-01-01
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how...
Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth
2014-01-01
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...
Turker Dundar; Xiping Wang; Robert J. Ross
2013-01-01
The objective of this study was to examine the potential of acoustic measurement as a rapid and nondestructive method to predict the dimensional stability of young-growth Sitka spruce and western hemlock. Ultrasonic velocity, peak energy, specific gravity, and radial and tangential shrinkages were measured on twenty-four 25- x
F. Thomas Ledig; Virginia Jacob-Cervantes; Paul D. Hodgskiss
1997-01-01
Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an...
The course of growth response in released white spruce--10-year results
Robert M. Frank; Robert M. Frank
1973-01-01
Weekly bole measurements at 4.5 feet in height were made on individual codominant white spruce trees released on one, two, three, and four sides, and on untreated controls. Results showed that after 10 years annual circumference growth was still significantly related to the degree of release. The growth trend was established the first year but significant differences...
Recent field experiences with Bacillus thuringiensis in Canada and research needs
Oswald N. Morris
1985-01-01
The CANUSA working group on the use of B.t. against the spruce budworm has prepared a document entitled "Guidelines for the operational use of Bacillus thuringiensis (B.t.) against the spruce budworm" following six years of extensive cooperative field trials in Canada and the U.S.A. (Morris et al 1984). The document summarized below (Table...
William E. Wallner; David L. Wagner; Bruce L. Parker; Donald L. Tobi
1991-01-01
During the past two decades, the decline of red spruce, Picea rubens Sargent, and balsam fir, Abies balsamea (L), at high elevations (900-1200 m) in eastern North America has evoked concern about the effects of anthropogenic deposition upon terrestrial ecosystems. In many high-elevation forests across New England, as many as 50...
Alain Leduc; Yves Bergeron; Sylvie Gauthier
2007-01-01
Canadian mixedwood forests have a high compositional and structural diversity. It includes both hardwood (aspen, balsam poplar, and white birch) and softwood (balsam fir, white spruce, black spruce, larch, and white cedar) species that can form pure stands or mixed stands. This heterogeneity results in a variety of vertical structural strata that can potentially...
Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp
William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller
2004-01-01
Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...
N. Mukhamadiev; A. Lynch; C. O' Connor; A. Sagitov; N. Ashikbaev; I. Panyushkina
2014-01-01
On 17 May and 27 June 2011 severe cyclonic storms damaged several hundred hectares of spruce forest (Picea schrenkiana) in the Tian Shan Mountains. Bark beetle populations increased rapidly in dead and damaged trees, particularly Ips hauseri, I. typographus, I. sexdentatus, and Piiyogenesperfossus (all Coleoptera: Curculionidae), and there is concern about the...
Dynamics of calcium concentration in stemwood of red spruce and Siberian fir
Kevin T. Smith; Walter C. Shortle; Rakesh Minocha; Vladislav A. Alexeyev
1996-01-01
The atmospheric deposition of strong acid anions such as sulfate and nitrate shifts the ion exchange equilibrium in the rooting zone of sensitive forests. Red spruce and other northern coniferous forests are especially sensitive to deposition due to the shallow rooting of trees in a mor-type forest floor. Initially, the deposition of strong acid ions mobilizes...
Similar patterns of change in stemwood calcium concentration in red spruce and Siberian fir
W.C. Shortle; K.T. Smith; R. Minocha; V.A. Alexeyev
1995-01-01
Changes in stemwood calcium concentration ([Ca]) for the last 120 years occurred in a common pattern for two sample collections of red spruce (n = 33 and 20) from the northeastern United States and for one sample collection of Siberian fir (n = 20) from southcentral Siberia, Russia. The [Ca]was measured for wood formed during the...
Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape
Patrick M. James; Brian R. Sturtevant; Phil Townsend; Pete Wolter; Marie-Josee Fortin
2011-01-01
Increases in the extent and severity of spruce budworm (Choristoneura fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in forest structure due to forest management. A corollary of this hypothesis is that manipulations of forest structure and composition can be used to reduce future forest vulnerability....
Growth of hybrid poplars, white spruce, and jack pine under various artificial lights.
Pamela S. Roberts; J. Zavitkovski
1981-01-01
Describes the energy consumption and biological effects of fluorescent, incandescent, and high pressure sodium lighting on the growth of poplars, white spruce, and jack pine in a greenhouse. At similar light levels the biological effects of all three light sources were similar. The incandescent lamps consumed several times more energy than the other two light...
Rakesh Minocha; Subhash C. Minocha; Stephanie Long
2004-01-01
The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different...
Premsagar Korripally; Christopher G. Hunt; Carl J. Houtman; Don C. Jones; Peter J. Kitin; Dan Cullen; Kenneth E. Hammel; A. A. Brakhage
2015-01-01
Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in...
Lisa M. Lumley; Felix A.H. Sperling
2011-01-01
Identification of widespread species collected from islands can be challenging due to the potential for local ecological and phenotypic divergence in isolated populations. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest in western Canada....
Integrated pest management and the pear thrips
James C. Space
1991-01-01
Although it is a pleasure to be here, our primary reason for being here is far from pleasant. During the last ten years, we have had serious problems with the gypsy moth, western spruce budworm, southern pine beetle, mountain pine beetle, fusiform rust and root diseases and the worst spruce budworm epidemic ever recorded. Just when these outbreaks have largely subsided...
Louis Dorais
1985-01-01
I want, during this presentation, to give you a spray program coordinator point of view on Bt and try to explain why things are always different in Quebec. Not always better but always different, even in the application of Bacillus thuringiensis where 4 engine aircrafts were used to control the spruce budworm, Choristoneura funiferana...
Kurt Johnsen; John E. Major; Chris A. Maier
2003-01-01
Summary In most tree species, inbreeding greatly reduces seed production, seed viability, survival and growth. In a previous large-scale quantitative analysis of a black spruce (Picea mariana (Mill.) B.S.P.) diallel experiment, selfing had large deleterious effects on growth but no impact on stable carbon isotope discrimination (an...
A western larch-engelmann spruce spacing study in eastern Oregon: results after 10 years.
K.W. Seidel
1984-01-01
The 10-year growth response from a spacing study in an even-aged stand of western larch (Larix occidentalis Nutt.) and Engelmann spruce (Picea engelmannii Parry ex Engelm.), thinned at age 10 to 9- and 15-foot spacings, was measured in eastern Oregon. Both basal area and total cubic volume increment per acre increased at the...
Two Years Necessary for Successful Natural Seeding in Nonbrushy Black Spruce Bogs
Elon S. Verry; Arthur E. Elling
1978-01-01
Natural seeding in a strip-cut black spruce bog was adequate, averaging 1,800 stems per acre and 80 percent milacre stocking. natural seeding in a completely cut bog was inadequate, averaging 630 stems per acre and 40 percent milacre stocking. Slash was removed to expose sphagnum seedbeds in both cases. Progressive cutting every other year is recommended.
John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell
2013-01-01
To examine soil moisture stress, light, and genetic effects on individual needle parameters and investigate total needle contribution to productivity, individual and total needle parameter variation were quantified in 32-year-old black spruce from five crown positions from four full-sib families studied previously for drought tolerance and differential productivity on...
Aural Lozan; Jiri Zeleny
2003-01-01
Several species of bark beetles occur frequently in the upland spruce forests of the Czech Republic; some of them are serious pests that may cause vast destruction of forest stands. In the last decade, a complex of several species from the genera Ips, Pityogenes and Polygraphus contributed to large-scale devastation of thousand...
A spruce budworm sampling program for HUSKY HUNTER field data recorders.
Fred H. Schmidt
1992-01-01
A program for receiving sampling data for all immature stages of the western spruce budworm (Choristoneura occidentals Freeman) is described. Versions were designed to be used on field data recorders with either CP/M or DOS operating systems, such as the HUSKY HUNTER (Models 1, 2, and 16), but they also may be used on personal computers with compatible operating...
Masakazu Sano; Nathan P. Havill; Kenichi Ozaki
2011-01-01
Gall-forming insects are commonly highly host-specific, and galling species once thought to be oligo- or polyphagous are often found to represent a complex of host-specific races or cryptic species. A recent DNA barcoding study documented that an unidentified species of the genus Adelges is a gall-former associated with four spruce species (...
Peter T. Wolter; Philip A. Townsend; Brian R. Sturtevant; Clayton C. Kingdon
2008-01-01
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale...
Red spruce stand dynamics, simulations, and restoration opportunities in the central Appalachians
James S. Rentch; Thomas M. Schuler; W. Mark Ford; Gergory J. Nowacki
2007-01-01
Red spruce (Picea rubens)-dominated forests occupied as much as 600,000 ha in West Virginia prior to exploitive logging era of the late nineteenth and early twentieth centuries. Subsequently, much of this forest type was converted to northern hardwoods. As an important habitat type for a number of rare or sensitive species, only about 12,000 ha of...
Lisabeth G. Thygesen; Thomas Elder
2008-01-01
Using time domain NMR, the moisture in Norway spruce (Picea abies (L.) Karst.) sapwood subjected to four different treatments (never-dried, dried and remoistened, acetylated, and furfurylated) was studied during drying at 40°C, at sample average moisture contents above fiber saturation. Spin-spin relaxation time distributions were derived from CPMG...
Spruce-fir forest changes during a 30-year nitrogen saturation experiment
Steven G. McNulty; Johnny L. Boggs; John D. Aber; Lindsey E. Rustad
2017-01-01
A field experiment was established in a high elevation red spruce (Picea rubens Sarg.) â balsam fir (Abies balsamea) forest on Mount Ascutney Vermont, USA in 1988 to test the nitrogen (N) saturation hypothesis, and to better understand the mechanisms causing forest decline at the time. The study established replicate control, lowand high dose nitrogen addition plots (i...
Nitrogen saturation in a high elevation New England spruce-fir stand
Steven G. McNulty; John D. Aber; Steven D. Newman
1994-01-01
High rates of nitrogen (N) deposition were first postulated as a cause of N saturation (i.e. the availability of NH-N and NO3-N in excess of total combined plant and microbial nutritional demand) and spruce mortality during the1980s. To test this hypothesis, N addition plots were established in 1988, in a high elevation...
Computer prediction of insecticide efficacy for western spruce budworm and Douglas-fir tussock moth
Jacqueline L. Robertson; Molly W. Stock
1986-01-01
A generalized interactive computer model that simulates and predicts insecticide efficacy, over seasonal development of western spruce budworm and Douglas-fir tussock moth, is described. This model can be used for any insecticide for which the user has laboratory-based concentration-response data. The program has four options, is written in BASIC, and can be operated...
William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson
2010-01-01
Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...
Seedling distribution on a spruce-hemlock clearcut.
Carl M. Berntsen
1955-01-01
A better job of regeneration on cutover areas can be done if foresters know what areas are difficult to regenerate and what sort of practices are best for the difficult areas. A study recently completed at Cascade Head Experimental Forest has supplied that sort of information for a typical spruce-hemlock clearcut. Nearly a fifth of the area was still unstocked 6 years...
Keith M. Reynolds; Edward H. Holsten
1997-01-01
SBexpert version 2.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rufipennis (Kby.)) management developed for use in Microsoft (MS) Windows with the KnowledgePro Windows development language. Version 2.0 is a significant enhancement of version 1.0. The SBexpert users guide provides detailed instructions on the use of...
John A. McLean; P. Laks; T.L. Shore
1983-01-01
Western spruce budworm were reared on three host foliages and artificial medium. Trace element analyses showed large differences in elemental concentrations between food sources and only minor differences between insect life stages. Discriminant analyses were carried out to test the distinctiveness of adult chemoprints from each rearing regime. Fe, Cu, and Zn were...
Alexandra M. Kosiba; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen
2013-01-01
Red spruce (Picea rubens Sarg.) decline has been quantitatively attributed to foliar winter injury caused by freezing damage. The results of this injury include foliar mortality, crown deterioration, and negative carbon (C) balances that can lead to tree health declines and eventual mortality. In 2003, a severe region-wide event damaged over 90% of...
Douglas-fir Progeny Testing for Resistance to Western Spruce Budworm
Geral I. McDonald
1983-01-01
Ample evidence exists that inland populations of Douglas-fir suffer varying amounts of defoliation by western spruce budworm (Johnson and Denton 1975; Williams 1967; McDonald 1981). Such variation in plant insect association can be the result of the plant escaping attack in time and place to actual confrontation between plant and insect (Harris 1980). Co-evolved...
Paul G. Schaberg; Brynne E. Lazarus; Gary J. Hawley; Joshua M. Halman; Catherine H. Borer; Christopher F. Hansen
2011-01-01
Despite considerable study, it remains uncertain what environmental factors contribute to red spruce (Picea rubens Sarg.) foliar winter injury and how much this injury influences tree C stores. We used a long-term record of winter injury in a plantation in New Hampshire and conducted stepwise linear regression analyses with local weather and regional...
Paul B. Alaback
1984-01-01
Preliminary information on general landscape patterns in southeast Alaska suggests that two major, compositionally distinct vegetation zones can be defined for the closed-forest type: western hemlock-Sitka spruce/Alaska huckleberry/bunchberry on the uplands, and Sitka spruce/devils club-salmonberry on alluvial flats and terraces.Recent clearcuts (0 to 30...
Ronald Sabo; Altaf H. Basta; Jerrold E. Winandy
2013-01-01
Public health awareness has increased in the past few years regarding the disposal of chromated copper arsenate (CCA) preservative-treated wood wastes. This study demonstrates the potential for using remediated CCA lumber and alternative fiber sources, such as sugar cane bagasse, to produce medium density fiberboard (MDF). The role of both remediated CCA loaded spruce...
Timothy J. Veverica; Evan S. Kane; Eric S. Kasischke
2012-01-01
Organic layer consumption during forest fires is hard to quantify. These data suggest that the adventitious root methods developed for reconstructing organic layer depths following wildfires in boreal black spruce forests can also be applied to mixed tamarack forests growing in temperate regions with glacially transported soils.
Jonathan A. O' Donnell; Merritt R. Turetsky; Jennifer W. Harden; Kristen L. Manies; Lee E. Pruett; Gordon Shetler; Jason C. Neff
2009-01-01
We present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and carbon (C) exchange in black spruce (Picea mariana) ecosystems of interior Alaska. Our laboratory study showed that burning reduced the sensitivity of decomposition to...
Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska
Jill Johnstone; Leslie Boby; Emily Tissier; Michelle Mack; Dave Verbyla; Xanthe. Walker
2009-01-01
The availability of viable seed can act as an important constraint on plant regeneration following disturbance. This study presents data on seed quantity and quality for black spruce (Picea mariana (Mill.) B.S.P.), a semiserotinous conifer that dominates large areas of North American boreal forest. We sampled seed rain and viability for 2 years...
Wesley G. Page; Martin E. Alexander; Michael J. Jenkins
2015-01-01
Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...
Climate driven changes in Engelmann spruce stands at timberline in the La Sal Mountains
James F. Fowler; Steven Overby; Barb Smith
2012-01-01
Due to global warming spruce-fir forest and associated vegetation may experience elevational displacement and altered species composition at the timberline-treeline ecotone. These forests and their component species are predicted to migrate upslope and thus landscape features such as timberline and treeline may move upslope as well. Prior to this study, baseline data...
Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.).
J.B. St. Clair; J. Kleinschmit; J. Svolba
1985-01-01
Effects associated with progressive maturation of clones are of greatest concern in clonal tree improvement programs. Serial propagation has been in use at the Lower Saxony Forest Research Institute since 1968 to arrest maturation in Norway spruce clones. By 1980 cuttings were established in the nursery that had been serially propagated from one to five cycles. This...
Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska.
Walker, Xanthe J; Frey, Matthew D; Conway, Alexandra J; Jean, Mélanie; Johnstone, Jill F
2017-01-01
Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector.
Boreal tree hydrodynamics: asynchronous, diverging, yet complementary.
Pappas, Christoforos; Matheny, Ashley M; Baltzer, Jennifer L; Barr, Alan G; Black, T Andrew; Bohrer, Gil; Detto, Matteo; Maillet, Jason; Roy, Alexandre; Sonnentag, Oliver; Stephens, Jilmarie
2018-05-08
Water stress has been identified as a key mechanism of the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree hydrodynamics and their interspecific differences is still lacking. Here we examine the hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js), concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree water-use strategies. Our analysis revealed asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring 2 h earlier in larch than in black spruce. Interspecific differences in larch and black spruce crown architecture explained the observed asynchrony in their hydraulic functioning. Furthermore, the two species exhibited diverging stomatal regulation strategies with larch and black spruce employing relatively isohydric and anisohydric behaviour, respectively. Such asynchronous and diverging tree-level hydrodynamics provide new insights into the ecosystem-level complementarity in tree form and function, with implications for understanding boreal forests' water and carbon dynamics and their resilience to environmental stress.
Ecosystem structure and function in the SPRUCE chambers at fine resolution
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Graham, J.; Spaete, L.; Hanson, P. J.
2017-12-01
The Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE; operated by DOE's Oak Ridge National Laboratory) aims to assess biological and ecological responses in a peat bog to a range of increased temperatures and the presence of elevated atmospheric CO2 concentrations. We are using terrestrial laser scanning (TLS) to monitor vegetation productivity and hummock-hollow structure at cm-scale in the SPRUCE plots to complement in-situ measurements of gross and net primary production. The hummock-hollow peatland microtopography is associated with fluctuating water levels and sphagnum mosses, and ultimately controls C and methane cycling. We estimate tree growth by calculating increases in tree height and canopy voxel volume between years with the TLS data. Microtopography is also characterized over time with TLS but by using gridded cells to classify regions into hummocks or hollows. Spectroscopy to quantify water content in the sphagnum is used to further classify these microtopographic regions. As multiple years of data collection occur, we will couple our fine-scale remote sensing measurements with in-situ measurements of CO2 and CH4 flux measures to capture species-specific productivity responses to warming and increased CO2.
Edwards, M.E.; Hamilton, T.D.; Elias, S.A.; Bigelow, N.H.; Krumhardt, A.P.
2003-01-01
Numerous exposures of Pleistocene sediments occur in the Noatak basin, which extends for 130 km along the Noatak River in northwestern Alaska. Nk-37, an extensive bluff exposure near the west end of the basin, contains a record of at least three glacial advances separated by interglacial and interstadial deposits. An ancient river-cut bluff and associated debris apron is exposed in profile through the central part of Nk-37. The debris apron contains a rich biotic record and represents part of an interglaciation that is probably assignable to marine-isotope stage 5. Pollen spectra from the lower part of the debris apron closely resemble modern samples taken from the Noatak floodplain in spruce gallery forest, and macrofossils of spruce are also present at this level. Fossil bark beetles and carpenter ants occur higher in the debris apron. Mutual Climatic Range (MCR) estimates from the fossil beetles suggest temperatures similar to or warmer than today. Together, these fossils indicate the presence of an interglacial spruce forest in the western part of the Noatak Basin, which lies about 80 km upstream of the modern limit of spruce forest.
Migration and bioavailability of (137)Cs in forest soil of southern Germany.
Konopleva, I; Klemt, E; Konoplev, A; Zibold, G
2009-04-01
To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.
Remote detection of forest damage
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.; Vogelmann, A. F.; Hoshizaki, T.; Williams, D. L.
1986-01-01
The use of remote sensing to discriminate, measure, and map forest damage is evaluated. TM spectal coverage, a helicopter-mounted radiometer, and ground-based surveys were utilized to examine the responses of the spruces and firs of Camels Hump Mountain, Vermont to stresses, such as pollution and trace metals. The basic spectral properties of vegetation are described. Forest damage at the site was estimated as 11.8-76.0 percent for the spruces and 19-43.8 percent for the balsam firs. Shifts in the spectra of the conifers in particular in the near IR region are analyzed, and variations in the mesophyll cell anatomy and pigment content of the spruces and firs are investigated. The relations between canopy moisture and damage is studied. The TM data are compared to aircraft data and found to be well correlated.
Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Riggs, J. S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2017-01-01
This data set reports community-level CO2 and CH4 flux measurements for the SPRUCE experimental study plots located in the S1-Bog. Surface flux measurements of CO2 and CH4 were made using open-path analyzers over an area of 1.13 m2 within each of 16 plots. A custom-designed chamber encloses the hummock-hollow topography and allows point in time measurements of the shrub, forb, Sphagnum spp. and the complex microbial community. These observations were made with ambient light and imposed dark conditions to allow estimates of community daytime and night respiratory processes. This data set is all inclusive – beginning in 2011 and continuing through the Whole-Ecosystem-Warming (WEW) phase of the experiment.
Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?
NASA Astrophysics Data System (ADS)
Hommeltenberg, J.; Schmid, H. P.; Drösler, M.; Werle, P.
2014-07-01
This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for 2 years (July 2010-June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (-130 ± 31 and -300 ± 66 g C m-2 a-1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (-53 ± 28 and -73 ± 38 g C m-2 a-1). The strong net CO2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that over-compensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source when the whole life-cycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha-1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but stable carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.
Modelling Temporal Variability in the Carbon Balance of a Spruce/Moss Boreal Forest
NASA Technical Reports Server (NTRS)
Frolking, S.; Goulden, M. L.; Wofsy, S. C.; Fan, S.-M.; Sutton, D. J.; Munger, J. W.; Bazzaz, A. M.; Daube, B. C.; Crill, P. M.; Aber, J. D.;
1996-01-01
A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m(exp -2) y(exp -1); NEE ranged from +37 to -142 g C m(exp -2) y(exp -1). Values for these carbon balance terms in 1994 were slightly smaller than the 1969 - 89 means. Higher ecosystem productivity years (more negative NEE) generally had early springs and relatively wet summers; lower productivity years had late springs and relatively dry summers.
NASA Astrophysics Data System (ADS)
Shenoy, A.; Kielland, K.; Johnstone, J. F.
2011-12-01
Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species-specific differences in N preference coupled with their respective physiological response to fire severity represent a positive feedback loop that reinforce the opposing stand dominance patterns that have developed at the two ends of the fire severity spectrum. Shifts in forest composition from the current dominance by conifers to a future landscape dominated by deciduous forest are of concern due to impacts on climate-albedo feedbacks, forest productivity, ecosystem carbon storage, and wildlife habitat use.