Science.gov

Sample records for spun form domes

  1. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  2. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  3. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Form Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Damage tolerance testing development was required to help qualify a new spin forming dome fabrication process for the Ares 1 program at Marshall Space Flight Center (MSFC). One challenge of the testing was due to the compound curvature of the dome. The testing was developed on a sub-scale dome with a diameter of approximately 40 inches. The simulated service testing performed was based on the EQTP1102 Rev L 2195 Aluminum Lot Acceptance Simulated Service Test and Analysis Procedure generated by Lockheed Martin for the Space Shuttle External Fuel Tank. This testing is performed on a specimen with an induced flaw of elliptical shape generated by Electrical Discharge Machining (EDM) and subsequent fatigue cycling for crack propagation to a predetermined length and depth. The specimen is then loaded in tension at a constant rate of displacement at room temperature until fracture occurs while recording load and strain. An identical specimen with a similar flaw is then proof tested at room temperature to imminent failure based on the critical offset strain achieved by the previous fracture test. If the specimen survives the proof, it is then subjected to cryogenic cycling with loads that are a percentage of the proof load performed at room temperature. If all cryogenic cycles are successful, the specimen is loaded in tension to failure at the end of the test. This standard was generated for flat plate, so a method of translating this to a specimen of compound curvature was required. This was accomplished by fabricating a fixture that maintained the curvature of the specimen rigidly with the exception of approximately one-half inch in the center of the specimen containing the induced flaw. This in conjunction with placing the center of the specimen in the center of the load train allowed for successful testing with a minimal amount of bending introduced into the system. Stress corrosion cracking (SCC) tests were performed using the typical double beam assembly and with 4

  4. Large Spun Formed Friction-Stir Welded Tank Domes for Liquid Propellant Tanks Made from AA2195: A Technology Demonstration for the Next Generation of Heavy Lift Launchers

    NASA Technical Reports Server (NTRS)

    Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.

    2010-01-01

    Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.

  5. Dome forming eruptions: a global hazards database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Loughlin, S.; Calder, E. S.; Ortiz, N.

    2009-12-01

    The analysis of global datasets of historical eruptions is a powerful tool for decision-making as well as for scientific discovery. Lava dome forming eruptions are common throughout the world, can extend for significant periods of time and have many associated hazards, thus providing a rich source of data to mine. A database on dome forming eruptions is under development with the view to aiding comparative studies, providing scientists with valuable data for analysis, and enabling advances in modeling of associated hazards. For new eruptive episodes in particular, and in the absence of monitoring data or a knowledge of a volcano’s eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions in the past. Important scientific information has already been gleaned from disparate collections of dome-forming eruption hazard information, such as variation in the mobility of different types of pyroclastic flows, magma ascent and extrusion dynamics, and mechanisms of lava dome collapse. Further, modeling (both empirically-based and geophysically-based) of volcanic phenomena requires extensive data for development, calibration and validation. This study investigates the relationship between large explosive eruptions (VEI ≥ 4) and lava dome-growth from 1000 CE to present by development of a world-wide database of all relevant information, including dome growth duration, pauses between episodes of dome growth, and extrusion rates. Data sources include the database of volcanic activity maintained by the Smithsonian Institute (Global Volcanism Program) and all relevant published review papers, research papers and reports. For example, nearly all dome-forming eruptions have been associated with some level of explosive activity. Most explosions are vulcanian with eruption plumes reaching less than 15 km, and with a Volcanic Explosivity Index (VEI) <3. However large Plinian explosions with a VEI ≥ 4 can also occur

  6. Hot vacuum creep forming of scale shuttle external tank dome caps

    NASA Technical Reports Server (NTRS)

    Thomas, A. O.

    1974-01-01

    The feasibility of forming shuttle external tank dome caps by hot vacuum creep was investigated for a sub-scale configuration. Aluminum 2219-T37 at an elevated temperature equivalent to the artificial aging time and temperature was used to produce the T87 condition while achieving MIL-HBK -5 properties of 2219-T87 aluminum alloy material. A feasibility analysis was conducted in two phases: the design and build of a sub-scale hot vacuum creep forming (HVCF) die and the forming evaluation of various cap configurations. The contour was constant in all evaluations. This configuration was found to be too severe for the limited forming force available by HVCF.

  7. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  8. Room temperature stretch forming of scale space shuttle external tank dome gores. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Blunck, R. D.; Krantz, D. E.

    1974-01-01

    An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.

  9. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  10. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    NASA Astrophysics Data System (ADS)

    Xu, J.; Yang, Y. Z.; Li, W.; Chen, X. C.; Xie, Z. W.

    2016-11-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe83.4Si2B14-xPxCu0.5C0.1 (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe83.4Si2B10P4Cu0.5C0.1 alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe83.4Si2B11P3Cu0.5C0.1 nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe83.4Si2B10P4Cu0.5C0.1 drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications.

  11. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido —Contact between high-energy physics and volcano physics—

    PubMed Central

    TANAKA, Hiroyuki K. M.; YOKOYAMA, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, “pseudo growth curves” of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the “density length” of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics. PMID:18941290

  12. Magma ascent dynamic through Ti diffusion in magnetites. Application to lava dome-forming eruptions. Implications to lava dome superifical explosivity.

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Morgan, Dan J.

    2016-04-01

    Superficial lava dome explosivity represents a major hazard during lava dome growth. But the origin of this explosive activity remains unclear until recently. By using geochemical (residual water content, silica abundance) and textural (vesicularity, microcristallinity) data, we constrain the occurrence of such hazard to the beginning of the lava dome activity. During the first stages of growth, the lava dome is small enough to develop an impermeable carapace that isolates a less degassed batch of magma inside, thus allowing an internal overpressurization of the volcano (Boudon et al., 2015). This study more precisely details the petrology and the texture of titano-magnetites as archive of magma ascent dynamic within the conduit. Titano-magnetites may exhibit two types of textures: exsolved or "limpid". When they are exsolved, no time constrain may be extracted as they re-equilibrate. On the contrary, when they are unexsolved, major element distribution, in particular Ti, may act as a powerful tool to decipher magma dynamic (differentiation, mixing) and estimate time that corresponds to the magma ascent time. The composition and elemental diffusion profiles are acquired by EPMA, following textural investigations by SEM. The time is then obtained by modelling the profile as a diffusion profile using the intracristalline diffusion coefficients published in literature. We applied this methodology to examples of lava dome superficial explosivity on Montagne Pelée in Martinique (Lesser Antilles Arc), and on Puy Chopine volcano in La Chaine des Puys, (French Massif Central). More precisely, the first phase of the Puy Chopine lava dome growth experienced a superficial explosion, as for Montagne Pelée, the first stages of the 1902 eruption (several superficial explosions occurred) and the 650 y. BP eruption (two superficial explosions destroyed the growing lava dome). We show that, for a single event, the vesiculated, undegassed batch of magma responsible of the

  13. Carbon nanotube fiber spun from wetted ribbon

    SciTech Connect

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  14. Dome Schools.

    ERIC Educational Resources Information Center

    Cirulli, Carol

    1999-01-01

    Back in 1988, Emmett, Idaho, built the first monolithic dome school. Now, school boards in Arizona, Missouri, Florida, Minnesota, and New Mexico are among those that have voted to build domed school buildings. A monolithic dome is a steel- reinforced, concrete structure with a smooth, round surface that is inspired by the shape of an egg. (MLF)

  15. Correlation of Fracture Behavior With Microstructure in Friction Stir Welded, and Spin Formed AI-Li 2195 Domes

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    2012-01-01

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  16. Schlieren-bound Magmatic Structures Formed by the Unmixing of Granitic Magmas: A Case Study from Pothole Dome, Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Ardill, K. E.; Paterson, S. R.; Memeti, V.

    2015-12-01

    There is ongoing debate regarding the mobility of crystal mush zones in granitic magmas and their ability to mix and interact with intrusive batches to form compositional heterogeneity in plutons. Magmatic structures, localized zones of compositional diversity, enable evaluation of the significance of magmatic flow and convection vs. chemical diffusion in magmatic systems by determining their mode of formation. With further study, magmatic structures are potentially powerful tools recording syn-emplacement tectonic activity. Pothole Dome, in the Cathedral Peak Granodiorite of the Tuolumne Intrusive Complex is an ideal location to investigate magmatic structures since a variety of plumes, pipes, mafic ellipsoids, and schlieren troughs are densely clustered. Previous workers have established patterns in the orientations of different Pothole Dome magmatic structures that are indicative of a broad pattern of movement and younging directions at the kilometer scale. Preliminary whole-rock geochemical and isotopic data compare variations between the normal Cathedral magmas and a plume, trough, tube, potassium feldspar cluster and granitic dyke to investigate plausible mechanisms for the formation of the distinct compositional diversity formed in the structures. Schlieren, abundant in biotite, hornblende, apatite, sphene and zircon show relatively high levels of titanium, calcium and magnesium relative to the feldspar cluster and dyke. Schlieren are also enriched in minor elements including Zr, Y, Sr and Ce relative to the felsic structures. Both elemental and isotopic data for schlieren defining the plumes and troughs and the late leucogranitic dikes and k-feldspar clusters all plot outside the typical mixing line for Cathedral Peak Granodiorite compositions. We postulate that this may be a result of an unmixing process during physical flow of previously mixed populations of chemically distinct crystals in the Cathedral Peak.

  17. Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.

  18. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  19. Effect of Chemical Treatments on Flax Fibre Reinforced Polypropylene Composites on Tensile and Dome Forming Behaviour

    PubMed Central

    Wang, Wentian; Lowe, Adrian; Kalyanasundaram, Shankar

    2015-01-01

    Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure) to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength) can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system. PMID:25789505

  20. Effect of chemical treatments on flax fibre reinforced polypropylene composites on tensile and dome forming behaviour.

    PubMed

    Wang, Wentian; Lowe, Adrian; Kalyanasundaram, Shankar

    2015-01-01

    Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure) to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength) can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system.

  1. Contact mechanics models and algorithms for dome polishing with UltraForm Finishing (UFF)

    NASA Astrophysics Data System (ADS)

    Bouvier, Christophe; Gracewski, Sheryl M.; Burns, Stephen J.

    2007-04-01

    UltraForm Finishing (UFF) is a new deterministic subaperture computer numerically controlled (CNC) polisher. Because UFF uses compliant tools with large contact patches, the depth of removal is prescribed by adjusting the tool crossfeed velocity. The equations for the depth of removal as the tool traverses an axisymmetric part are derived. The form correction problem consists in solving these equations by adjusting the tool crossfeed velocity to achieve a desired removal profile. The solution must satisfy constraints on the tool velocity and acceleration. Solutions for flats, spheres and aspheres are achieved by treating the problem as a constrained optimization after writing the depth of removal equations in matrix form. The solutions were validated experimentally. The removal function is evaluated by making a removal spot for one set of process parameters. Its variations, as a function of the process parameters, are predicted by using Hertz contact theory and the Preston equation. To prevent tool-part collisions and to analyze part and spot measurements, algorithms were developed for the tool path and evaluation of metrology inputs.

  2. Identification, distribution and significance of lunar volcanic domes.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.

    1973-01-01

    Over 300 previously unrecognized volcanic domes were identified on Lunar Orbiter photographs using the following criteria: (1) the recognition of land forms on the Moon similar in morphology to terrestrial volcanic domes, (2) structural control, (3) geomorphic discordance, and (4) the recognition of land forms modified by dome-like swellings. Many terrestrial volcanic domes are similar in morphology to lunar domes. This analogy suggests that some lunar hills are in fact extrusive volcanic domes. Many of the domes identified in this paper seem to be related to basins and craters, and with the exception of local tectonic grid control few domes are related to any observable Moon-wide pattern.

  3. Implications of Viscosity-Contrast for Co-Extruding Two-Component Magmas, Triggering Eruptions and Forming Layered Domes

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Clarke, S. M.

    2004-12-01

    Polymer co-extrusion experiments represent excellent dynamical analogies with two-magma transport and the effusion of composite lava domes. They demonstrate that the co-extrusion of magmas having different viscosity can explain not only the observed normal zoning in magma dikes and conduits but also the compositional layering observed in effused lava domes. New results indicate that dike and conduit zoning along with dome layering are strongly dependent on the viscosity contrast between the flowing magmas. Realistic models of magma storage and dike formation show that co-extrusion of magmas is both more readily explained and energetically preferred over serial intrusion processes. Co-extrusion during the formation of dikes may play an important role in triggering larger volcanic eruptions. Lubrication of the flow by a typically, more mafic, lower-viscosity component allows a more viscous but also more highly volatile-charged magma to be transported greater distances upward in the dike resulting in exsolution of a gas phase and the formation of a magma foam. Transition to a foam lowers the bulk density of the magma enabling dikes to propagate greater vertical distances for a given back pressure. Our new results suggest that a dike propagating across a sloping magma-chamber roof intersecting both "wet" silicic and relatively "dry" mafic layers has the greatest probability of reaching the surface in the dike segment where the magmas flow co-extrusively. Thus, bimodal eruptive compositions are dynamically preferred in such a petrologically common magmatic regime. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  4. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core

    NASA Astrophysics Data System (ADS)

    Ahn, Jinho; Headly, Melissa; Wahlen, Martin; Brook, Edward J.; Mayewski, Paul A.; Taylor, Kendrick C.

    One common assumption in interpreting ice-core CO2 records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO2 diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO2 associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO2 diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca2+ ion concentrations to show that substantial CO2 diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO2 in ice is ˜4 × 10-21 mol m-1 s-1: Pa-1 at -23°C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO2 record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of ˜930-950 m (˜60-70 kyr) indicate that smoothing of the CO2 record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

  5. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  6. Modeling of the Process of Filling a Dome Separator with the Decomposition of a Gas Hydrate Formed During the Mounting of the Installation

    NASA Astrophysics Data System (ADS)

    Chiglintsev, I. A.; Nasyrov, A. A.

    2016-07-01

    Consideration is given to the theoretical foundations of operation of a dome separator designed to collect and subsequently ship gas and oil emissions in the case of fracturing of the well near deep-water reservoirs where thermobaric conditions are favorable for the formation of a gas hydrate. A mathematical model has been constructed that describes the process of filling the indicated dome with hydrocarbons and pumping them out it under hydrate-formation conditions. The dynamics of change in the phase temperature in the dome has been described.

  7. A Radar Survey of Lunar Dome Fields

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Bruce A.; Hawke, B. Ray; Bussey, Ben

    2011-01-01

    The near side of the Moon has several areas with a high concentration of volcanic domes. These low relief structures are considerably different in morphology from terrestrial cinder cones, and some of the domes may be similar to some terrestrial shields formed through Hawaiian or Strombolian eruptions from a central pipe vent or small fissure [1]. The domes are evidence that some volcanic lavas were more viscous than the mare flood basalts that make up most of the lunar volcanic flows. It is still not known what types of volcanism lead to the creation of specific domes, or how much dome formation may have varied across the Moon. Prior work has shown that some domes have unusual radar polarization characteristics that may indicate a surface or subsurface structure that is different from that of other domes. Such differences might result from different styles of late-stage volcanism for some of the domes, or possibly from differences in how the erupted materials were altered over time (e.g. by subsequent volcanism or nearby cratering events). For example, many of the domes in the Marius Hills region have high circular polarization ratios (CPRs) in S-band (12.6 cm wavelength) and/or P-band (70 cm wavelength) radar data [2]. The high CPRs are indicative of rough surfaces, and suggest that these domes may have been built from overlapping blocky flows that in some cases have been covered by meters of regolith [2, 3]. In other cases, domes have low circular polarization ratios indicative of smooth, rock-poor surfaces or possibly pyroclastics. The 12 km diameter dome Manilius 1 in Mare Vaporum [1], has a CPR value of 0.20, which is significantly below values for the surrounding basalts [4]. To better understand the range of surface properties and styles of volcanism associated with the lunar domes, we are currently surveying lunar dome fields including the Marius Hills, Cauchy/Jansen dome field, the Gruithuisen domes, and domes near Hortensius and Vitruvius.

  8. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C. PMID:24468854

  9. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  10. Manufacturing of 5.5 Meter Diameter Cryogenic Fuel Tank Domes for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration s (NASA s) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA) and the common bulkhead manufacturing development articles (CBMDA). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminum-lithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. Manufacturing solutions will be discussed including the implementation of photogrammetry, an advanced metrology technique, as well as fixtureless welding. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) will also be highlighted. Each CBMDA consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. An overview of CBMDA manufacturing processes and the effect of tooling on weld defect formation will be discussed.

  11. Microstructure and stability of melt spun INCONEL 713 LC

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Bowman, R. R.

    1986-01-01

    The alloy IN-714LC was used in an investigation of the effect of process parameters on the microstructure of a rapidly solidified melt-spun material. The resultant ribbon microstructure consisted of several distinct regions, each of which corresponds to a different thermal history during processing. A chill zone of equiaxed randomly-oriented grains exists in a region of the foil which was in contact with the wheel during casting. This zone develops into a dendritic growth morphology with distance away from the lower ribbon surface. Dendrites inclined in the direction of wheel rotation result from growth into a flowing stream. TEM studies showed that a cell structure formed, the cell size decreasing with increasing wheel speed. Aging studies indicated that the cell structure plays an important role in gamma prime precipitation. Results relating to heat treatments (as would be encountered in compaction and use) and the stability of the melt-spun structure are considered.

  12. New Monolithic Dome Schools.

    ERIC Educational Resources Information Center

    Parker, Freda

    2000-01-01

    Discusses how the Grand Meadow (Minnesota) school district got more than twice the grant money asked for from the state's legislature as well as voter approval for five new $8 million monolithic domes for their K-12 facility. Three additional school district successes in developing monolithic domes for their schools are examined. (GR)

  13. Emplacement Scenarios for Volcanic Domes on Venus

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  14. The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jeffery, A. J.; Gertisser, R.; Troll, V. R.; Jolis, E. M.; Dahren, B.; Harris, C.; Tindle, A. G.; Preece, K.; O'Driscoll, B.; Humaida, H.; Chadwick, J. P.

    2013-07-01

    Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia's most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007-2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47-94), orthopyroxene (En64-72, Fs24-32, Wo2-4), clinopyroxene (En40-48, Fs14-19, Wo34-46), Ti-magnetite (Usp16-34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6

  15. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    NASA Technical Reports Server (NTRS)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  16. Pancakelike domes on Venus

    NASA Technical Reports Server (NTRS)

    Mckenzie, Dan; Ford, Peter G.; Liu, Fang; Pettengill, Gordon H.

    1992-01-01

    The shape of seven large domes on the plains of Venus, with volumes between 100 and 1000 cu km, is compared with that of an axisymmetric gravity current spreading over a rigid horizontal surface. Both the altimetric profiles and the horizontal projection of the line of intersection of domes on the SAR images agree well with the theoretical similarity solution for a newtonian fluid, but not with the shape calculated for a rigid-plastic rheology, nor with that for a static model with a strong skin. As a viscous current spreads, it generates an isotropic strain rate tensor whose magnitude is independent of radius. Such a flow can account for the randomly oriented cracks that are uniformly distributed on the surface of the domes. The stress induced by the flow in the plains material below is obtained, and is probably large enough to produce the short radial cracks in the surface of the plains beyond the domes. The viscosity of the domes can be estimated from their thermal time constants if spreading is possible only when the fluid is hot, and lies between 10(exp 14) and 10(exp 17) Pa s. Laboratory experiments show that such viscosities correspond to temperatures of 610 - 690 C in dry rhyolitic magmas. These temperatures agree with laboratory measurements of the solidus temperature of wet rhyolite. These results show that the development of the domes can be understood using simple fluid dynamical ideas, and that the magmas involved can be produced by wet melting at depths below 10 km, followed by eruption and degassing.

  17. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  18. Dry-Spun Silk Produces Native-Like Fibroin Solutions

    PubMed Central

    2016-01-01

    Silk’s outstanding mechanical properties and energy efficient solidification mechanisms provide inspiration for biomaterial self-assembly as well as offering a diverse platform of materials suitable for many biotechnology applications. Experiments now reveal that the mulberry silkworm Bombyx mori secretes its silk in a practically “unspun” state that retains much of the solvent water and exhibits a surprisingly low degree of molecular order (β-sheet crystallinity) compared to the state found in a fully formed and matured fiber. These new observations challenge the general understanding of silk spinning and in particular the role of the spinning duct for structure development. Building on this discovery we report that silk spun in low humidity appears to arrest a molecular annealing process crucial for β-sheet formation. This, in turn, has significant positive implications, enabling the production of a high fidelity reconstituted silk fibroin with properties akin to the gold standard of unspun native silk. PMID:27526078

  19. Morphology and growth of the 2009 Redoubt Volcano lava dome

    NASA Astrophysics Data System (ADS)

    Bull, K. F.; Anderson, S. W.; Diefenbach, A. K.; Wessels, R. L.

    2010-12-01

    Redoubt Volcano began to extrude the third and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the summit crater and ceased to grow, reaching a volume of 70M m3. The first 12 days of growth (4/4-16) produced blocky lava of unknown vesicularity that effused at a rate of 35 m3sec-1. Lava formed a round dome, and began to flow northward down a steep, glacial gorge. The effusion rate from 4/16-5/4 decreased to 4 m3sec-1. At that time, while blocky lava continued to be exposed on the margins and south side of the dome, more finely fragmented lava began to appear at the top of the dome directly above the vent. This material, more scoriaceous than the blocky lava was tracked by webcam images, and sampled in August, 2010. Dome growth continued for the next two months in the form of inflation and steep, north-directed flow. The effusion rate increased 5/4-16 to an average of 18 m3sec-1 and the surface area comprising fragmented, scoriaceous lava increased from 10 to 30%. This time period includes 2 days (5/14-16) of high effusion rate (27 m3sec-1) and an increase in the surface area of scoriaceous lava by 15%/day. Effusion rates decreased steadily to 2 m3sec-1 shortly before growth ceased around July 1. Fragmental, scoriaceous lava, however, continued to increase in area over the dome surface, spreading as a relatively cool carapace over the top of the dome. By 7/1 the fragmental carapace covered ~40% of the total dome area. Lava along the southern half, lower margins and northern toe of the dome appeared relatively dense and blocky. The hottest areas on the dome (~200-300°C) were found in blocky areas and along radial cracks that originate at the top of the dome, overlying the vent. We can gain insights regarding degassing processes by comparing similarities and differences in surface morphology of Redoubt’s dome with the 1980-86 Mount St. Helens (MSH) dome. The 1980-86 MSH dome displayed lobes with a predominantly scoriaceous carapace

  20. Internal ballistics model update for ASRM dome

    NASA Technical Reports Server (NTRS)

    Bowden, Mark H.; Jenkins, Billy Z.

    1991-01-01

    A previous report (no. 5-32279, contract NAS8-36955, DO 51) describes the measures taken to adapt the NASA Complex Burning Region Model and code so that is was applicable to the Advanced Solid Rocket Motor as envisioned at that time. The code so modified was called the CBRM-A. CBRM-A could calculate the port volume and burning area for the star, transition, and cylindrically perforated regions of the motor. Described here is a subsequent effort to add computation of port volume and burning area for the Advanced Solid Rocket Motor head dome. Sample output, input, and overview of the models are included. The software was configured in two forms - a stand alone head dome code and a code integrating the head dome solution with the CBRM-A.

  1. Steep-sided domes on Venus - Characteristics, geologic setting, and eruption conditions from Magellan data

    NASA Technical Reports Server (NTRS)

    Pavri, Betina; Head, James W., III; Klose, K. B.; Wilson, Lionel

    1992-01-01

    A survey of more than 95 percent of the Venus surface reveals 145 steep-sided domes which can be subdivided into a variety of morphologic forms, the most common being shaped like inverted bowls or flat-topped domes. Results of a preliminary analysis of the distribution and geologic setting of the domes are presented. The relation of the domes to analogous terrestrial features is examined, and possible models for their mode of emplacement are outlined.

  2. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  3. Sustainable Outreach: Lessons Learned from Space Update and Discovery Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.

    2009-12-01

    A sustainable program lives on past its initial funding cycle, and develops a network of users that ensures continued life, either by fees, advertising revenue, or by making the program more successful in later sponsored grants. Teachers like free things, so having a sponsor for products such as lithographs or CD-Roms is key to wide distribution. In 1994 we developed “Space Update®”, under the NASA “Public Use of the Internet” program. It has new editions annually, with over 40,000 distributed so far (many purchased but most free at teacher and student workshops). In 1996 we created a special edition “Space Weather®”, which includes the space weather module from Space Update plus other resources. Initially developed with funding from the IMAGE mission, it is now sponsored by Cluster and MMS. A new edition is published annually and distributed in the “Sun-Earth Day” packet; total distribution now exceeds 180,000. “Earth Update” was created in 1999 under cooperative agreement “Museums Teaching Planet Earth”. It now has a total distribution of over 20,000. Both Earth Update and Space Update were developed to be museum kiosk software, and more than 15 museums have them on display. Over 4,000 users are active in our e-Teacher network and 577 in our museum educator network. Although these can certainly be considered successful because of their longevity and user base, we have had a far more dramatic sustainable program arise in the last six years… the “Discovery Dome®”. Invented at HMNS and developed under NASA Cooperative Agreement “Immersive Earth”, this dome was the first digital portable planetarium that also showed fulldome movies with an interactive interface (first shown to the public at the Dec 2003 AGU meeting). The Discovery Dome network (tinyurl.com/DiscDome) has spun those initial 6 NASA-funded domes into over 90 installations in 22 states and 23 countries. Creating high quality content is quite expensive and so needs

  4. Evaluation of the structure and stratigraphy over Richton Dome, Mississippi

    SciTech Connect

    Werner, M.L.

    1986-05-01

    The structure and stratigraphy over Richton Salt Dome, Mississippi, have been evaluated from 70 borings that were completed to various depths above the dome. Seven lithologic units have been identified and tentatively correlated with the regional Tertiary stratigraphy. Structure-contour and thickness maps of the units show the effects of dome growth from Eocene through early Pliocene time. Growth of the salt stock from late Oligocene through early Pliocene is estimated to have averaged 0.6 to 2.6 centimeters (0.2 to 1.1 inches) per 1000 years. No dome growth has occurred since the early Pliocene. The late Oligocene to early Pliocene strata over and adjacent to the dome reflect arching over the entire salt stock; some additional arching over individual centers may represent pre-Quaternary differential movement in the salt stock. The lithology and structure of the caprock at the Richton Salt Dome indicate that the caprock probably was completely formed by late Oligocene. In late Oligocene, the caprock was fractured by arching and altered by gypsum veining. Since late Oligocene, there are no indications of significant hydrologic connections through the caprock - that is, there are no indications of dissolution collapse or further anhydrite caprock accumulation. This structural and stratigraphic analysis provides insights on dome growth history, dome geometry, and neardome hydrostratigraphy that will aid in planning site characterization field activities, including an exploratory shaft, and in the conceptual design of a high-level waste (HLW) repository.

  5. Investigation on the magnetocaloric effect in RNi2 (R: Dy, tb) melt-spun ribbon

    NASA Astrophysics Data System (ADS)

    de Souza, M. V.

    2016-08-01

    We report a theoretical and experimental investigation on the magnetocaloric properties of the rare earth RNi2 (R=Dy,Tb) in melt-spun ribbon and bulk form. The theoretical calculations were performed using a Hamiltonian model including the Zeeman-exchange interactions and the crystalline electrical field. Thus the magnetocaloric potential was calculated in the easy magnetic axes, in order an average over all of the possible directions. The isothermal entropy-change dependence on temperature calculated was compared with available experimental data for melt-spun ribbon and bulk material. We also investigated, theoretically and experimentally, the behavior of a DyNi2 and TbNi2 composite with optimized molar proportions and discussed this in the context of the optimum regeneration Ericsson cycle.

  6. Emplacement of Volcanic Domes on Venus and Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  7. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an

  8. Karst processes evidences on a Martian evaporite Dome

    NASA Astrophysics Data System (ADS)

    Baioni, D.; Zupan Hajna, N.; Wezel, F. C.

    2009-04-01

    In the eastern part of Tithonium Chasma (Mars) a body displaying a dome shape morphology is located. According to OMEGA mineralogical data (OMEGA data orbit 531_3) and further studies the dome appears to consist of kieserite, an evaporitic mineral also found on the Earth. Previous works highlighted the presence on the dome surface of karst-like landforms and morphologies that strongly resemble the evaporitic karst morphologies found on the Earth. Through the analysis of the new MRO HIRISE images we have investigated the Martian landform and the possible processes involved in their formation and shaping in great detail. The results of our study out show that the landforms observed clearly indicate the presence of solutional processes that also acted in a selective way just as in the evaporite rocks on the Earth. The analysis carried out highlight that the Martian dome can be also formed of different materials with different solutional proprieties. The dome quite probably it is constituted mainly by salts such as carnallite, kainite and halite (a mineral without spectral signatures that might be present in the dome). Our observation also suggest that on the dome liquid water must have existed in the past for enough time so that the solution features we investigated could be formed.

  9. Yukimarimo at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Petenko, Igor

    2015-04-01

    Natural frostballs called "yukimarimo" were observed at at Dome C, Antarctica, during the winter of 2014. Frostballs have spheroidal or lightly oblate form. Four cases of the yukimarimo were observed in the period April - August. The characteristics concerning their sizes, density, distribution over the surface varied for different cases. The diameters ranged from several millimetres to 120 mm, the density ranged from 15 to 60 kg/m3 . The heaviest one weighted 14 g and had a diameter of ≈90 mm. The initial "material" from which they formed resembles candy floss or fluff. In one case, only the initial stage of the small-yukimarimo formation was observed; the further development was interrupted. The meteorological conditions observed diuring the yukimarimo were not particular. The near-surface temperature varied between -70° and -60°C. Winds favouring to the yukimarimo formation were low, but not less than 2 m/s^1. A two-step mechanism of their formation and development is assumed: 1) at the initial stage, an electrostatic attraction favours the clumping of ice crystals to form some ice mass resembling floss structured in spherical pieces; 2) some pieces of ice floss are rolled by the wind and collect more ice crystals and increase in size like to a tumbleweed. Special comprehensive studies of electrical properties of the frost during the initial stage are necessary. Videos of moving yukimarimo at different stages of their formation are available.

  10. First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome

    NASA Astrophysics Data System (ADS)

    Fu, Jiangang; Li, Guangming; Wang, Genhou; Huang, Yong; Zhang, Linkui; Dong, Suiliang; Liang, Wei

    2016-07-01

    The Cuonadong dome exposes in east-southern margin of the North Himalayan gneiss domes (NHGD), which is reported first time in this study. The Cuonadong dome is located at the southern part of the Zhaxikang ore concentration area, which is divided into three tectono-lithostratigraphic units by two curved faults around the dome geometry from upper to lower (or from outer to inner): the upper unit, middle unit and lower unit, and the outer fault is Nading fault, while the inner fault is Jisong fault. The Cuonadong dome is a magmatic orthogneiss and leucogranite mantled by orthogneiss and metasedimentary rocks, which in turn are overlain by Jurassic metasedimentary and sedimentary rocks. The grades of metamorphism and structural deformation increase towards the core, which is correspondence with the Ridang Formation low-metamorphic schist, tourmaline granitic-biotite gneiss, garnet-mica gneiss and mylonitic quartz-mica gneiss. The Cuonadong dome preserves evidences for four major deformational events: firstly top-to-S thrust (D1), early approximately N-S extensional deformation (D2), main approximately E-W extensional deformation (D3), and late collapse structural deformation (D4) around the core of the Cuonadong dome, which are consistent to three groups lineation: approximately N-S-trending lineation including L1 and L2, E-W trending L3, and L4 with plunging towards outside of the dome, respectively. The formation of the Cuonadong dome was probably resulted from the main E-W extensional deformation which is a result of eastward flow of middle or lower crust from beneath Tibet accommodated by northward oblique underthrusting of Indian crust beneath Tibet. The establishment of the Cuonadong dome enhanced the E-W extension of the NHGD, which is further divided into two structural dome zones according to the different extensional directions: approximately N-S extensional North Himalayan gneiss domes (NS-NHGD) and E-W extensional North Himalayan gneiss domes (EW

  11. Mechanical properties of continuously spun fibers of carbon nanotubes.

    PubMed

    Motta, Marcelo; Li, Ya-Li; Kinloch, Ian; Windle, Alan

    2005-08-01

    We report on the mechanical properties of fibers consisting of pure carbon nanotube fibers directly spun from an aerogel formed during synthesis by chemical vapor deposition. The continuous withdrawal of product from the gas phase imparts a high commercial potential to the process, either for the production of particularly strong fibers or for the economic production of bulk quantities of carbon nanotubes. Tensile tests were performed on fibers produced from the dissociation of three different hydrocarbons, namely, ethanol, ethylene glycol, and hexane, with a range of iron (catalyst) concentrations. The conditions were chosen to lie within the range known to enable satisfactory continuous spinning, the iron concentration being varied within this range. Increasing proportions of single wall nanotubes were found as the iron concentration was decreased, conditions which also produced fibers of best strength and stiffness. The maximum tensile strength obtained was 1.46 GPa (equivalent to 0.70 N/tex assuming a density of 2.1 g/cm(3)). The experiments indicate that significant improvements in the mechanical properties can be accomplished by optimizing the process conditions. PMID:16089483

  12. The GREGOR dome, pathfinder for the EST dome

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Kommers, Johannes N.; Visser, Simon; Bettonvil, Felix C. M.; van Schie, Anton G. M.; van Leverink, Simon J.; Sliepen, Guus; Jägers, Aswin P. L.

    2012-09-01

    The completely open-foldable dome of the GREGOR telescope is a further development of the DOT dome, respectively 9 and 7 meter in diameter. New technical developments are implemented and tested at the GREGOR dome, that are important for the design of the much larger dome for the EST, which will be 28 meter in diameter. The GREGOR dome is the first with more than one clamp working simultaneously for closing the dome and bringing the membranes on the required high tension for storm resistance. The storm Delta with 245 km/h 1-minute mean maximum at the location of the GREGOR gave no problems nor did the storms afterwards. Opening and closing experiences are up to wind speeds of 90 km/h without problems. Good observing circumstances never occur with higher wind speeds. A double layer of membranes is applied in the GREGOR construction whereas the DOT dome is equipped with a single layer. Simultaneous climate measurements inside and outside the dome have proven the thermal-insulation capability of this double-layer construction. The experiences with the GREGOR showed that the elongation by tensioning of the prestrained membrane material is much lower than originally expected. In the meantime, more strong and stiff membrane material is available and applied in the EST design. As a consequence, the clamps of the EST can have a relatively much shorter length and there is no need anymore for simultaneous operation of the clamps and the main actuators in low speed with help of a frequency inverter. The clamps can close after the main bow operation is finished, which simplifies the electrical control.

  13. Geodesic Domes in the Classroom.

    ERIC Educational Resources Information Center

    Lund, Charles

    1978-01-01

    Some practical, hands-on ways in which ideas about geodesic domes can be used in secondary school mathematics are described. Instructions for constructing a one-frequency geodesic sphere are given. (MP)

  14. A Dome Amidst the Hexagons

    ERIC Educational Resources Information Center

    American School and University, 1976

    1976-01-01

    Describes the design of the gymnasium of York (South Carolina) Comprehensive High School, a circular 12,000 square foot structure with a prefabricated domed roof constructed of steel hubs and curved wooden beams. (JG)

  15. Integrated field and numerical modeling investigation of crustal flow mechanisms and trajectories in migmatite domes

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Teyssier, Christian; Rey, Patrice

    2016-04-01

    Integrated field-based and modeling studies provide information about the driving mechanisms and internal dynamics of migmatite domes, which are important structures for understanding the rheology of the lithosphere in orogens. Dome-forming processes range from extension (isostasy) driven flow to density (buoyancy) driven systems. Vertical flow (up or down) is on the scale of tens of km. End-member buoyancy-driven domes are typically Archean (e.g., Pilbara, Australia). Extension-driven systems include the migmatite domes in metamorphic core complexes of the northern North American Cordillera, as well as some domes in Variscan core complexes. The Entia dome of central Australia is a possible hybrid dome in which extension and density inversion were both involved in dome formation. The Entia is a "double dome", comprised of a steep high-strain zone bordered by high melt-fraction migmatite (subdomes). Field and numerical modeling studies show that these are characteristics of extension-driven domes, which form when flowing deep crust ascends beneath normal faults in the upper crust. Entia dome migmatite shows abundant evidence for extension, in addition to sequences of cascading, cuspate folds (well displayed in amphibolite) that are not present in the carapace of the dome, that do not have a consistent axial planar fabric, and that developed primarily at subsolidus conditions. We propose that these folds developed in mafic layers that had a density contrast with granodioritic migmatite, and that they formed during sinking of a denser layer above the rising migmatite subdomes. Extension-driven flow of partially molten (granodioritic) crust was therefore accompanied by sinking of a dense, mafic, mid-crustal layer, resulting in complex P-T-d paths of different lithologic units within the dome. This scenario is consistent with field and 2D modeling results, which together show how a combination of structural geology, metamorphic petrology, and modeling can illuminate the

  16. Flexible fibers wet-spun from formic acid modified chitosan.

    PubMed

    Li, Jinlei; Liu, Dagang; Hu, Chengming; Sun, Fengxiang; Gustave, Williamson; Tian, Huafeng; Yang, Shuguang

    2016-01-20

    The rigidity and low strain of chitosan fibers hindered their broader utility for biomedical applications. In present work, formic acid was employed as an efficient modifier for chitosan to prepare flexible fibers wet-spun from the formic acid modified chitosan solution. The formation of amide linkages between chitosan and formic acid was confirmed by FTIR, (13)C NMR, (1)H NMR and XRD measurements. The degree of formylation evaluated by (1)H NMR spectra was varied from 14.1% to 37.2% as a function of the reaction temperature. The results of the mechanical properties showed that the as-spun fibers exhibited an enhanced ductility with a maximum elongation at break of 21.7% compared with that spun from the chitosan dissolved in diluted acetic acid. The novel flexible chitosan fibers were anticipated to be used as comfortable wound dressing and bandages in biomedical fields.

  17. Spun microstructured optical fibres for Faraday effect current sensors

    SciTech Connect

    Chamorovsky, Yury K; Starostin, Nikolay I; Morshnev, Sergey K; Gubin, Vladimir P; Ryabko, Maksim V; Sazonov, Aleksandr I; Vorob'ev, Igor' L

    2009-11-30

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is {approx}70% that of an ideal fibre, in good agreement with theoretical predictions. (optical fibres and fibreoptic sensors)

  18. Giant Magnetoresistance and Microstructure of Melt-Spun Cu70Co30 Ribbons

    NASA Astrophysics Data System (ADS)

    Song, Xiao-ping; S, W. Mahon; R, F. Cochrane; B, J. Hickey; M, A. Howson

    1997-02-01

    This paper reports an investigation on the giant magnetoresistance and microstructure evolution in melt-spun Cu70Co30 alloy. The results show that the phase separation is inevitable in the course of quenching, leading to the formation of two types of fcc magnetic Co-rich particles but these do not appear to contribute to the magnetoresistance (MR). On annealing, a very fine distribution of Co-rich precipitates forms at temperatures above 573K which are responsible for the high MR developed in this material.

  19. Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes.

    PubMed

    Jiang, Chengmin; Saha, Avishek; Young, Colin C; Hashim, Daniel Paul; Ramirez, Carolyn E; Ajayan, Pulickel M; Pasquali, Matteo; Martí, Angel A

    2014-09-23

    In this work, single-walled carbon nanotube (SWCNT) fibers were produced from SWCNT polyelectrolyte dispersions stabilized by crown ether in dimethyl sulfoxide and coagulated into aqueous solutions. The SWCNT polyelectrolyte dispersions had concentrations up to 52 mg/mL and showed liquid crystalline behavior under polarized optical microscopy. The produced SWCNT fibers are neat (i.e., not forming composites with polymers) and showed a tensile strength up to 124 MPa and a Young's modulus of 14 GPa. This tensile strength is comparable to those of SWCNT fibers spun from strong acids. Conductivities on the order of 10(4) S/m were obtained by doping the fibers with iodine.

  20. High temperature exchange bias effect in melt-spun Mn55Bi45alloys

    NASA Astrophysics Data System (ADS)

    Song, Yiming; Xiang, Zhen; Wang, Taolei; Niu, Junchao; Xia, Kada; Lu, Wei; Zhang, Hong; Cao, Yongze; Yoshimura, Satoru; Saito, Hitoshi

    2016-09-01

    In this paper, we report a high-temperature exchange bias (EB) effect in melt-spun Mn55Bi45 alloy ribbons. A remarkable spontaneous exchange bias (up to 1700 Oe) was achieved at temperature from 300 K to 550 K, which is far higher than what has so far been observed in other alloy systems. Such a phenomenon is attributed to the local antiferromagnetic cluster formed in the ferromagnetic matrix. The observation of high-temperature EB in the Mn55Bi45 alloy is of interest from the perspective of practical applications, and it is a good starting point for designing high-temperature spintronic devices.

  1. Growth of intra-caldera lava domes controlled by various modes of caldera collapse, the Štiavnica volcano-plutonic complex, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Tomek, Filip; Žák, Jiří; Holub, František V.; Chlupáčová, Marta; Verner, Kryštof

    2016-02-01

    The Štiavnica volcano-plutonic complex is an erosional relic of Miocene caldera-stratovolcano in the Western Carpathians. The complex exposes a vertical section from the volcano basement through subvolcanic intrusions and a ring fault to volcanic edifice, comprising mostly andesitic lava flows and domes. This paper examines internal structure, magnetic fabric as derived from the anisotropy of magnetic susceptibility (AMS), and emplacement dynamics of three intra-caldera andesite domes (referred to as Domes 1-3) located near the presumed ring fault. Magnetic fabrics, carried by multi-domain titanomagnetite and titanomaghemite, are interpreted as recording various mechanisms of dome growth controlled by active caldera collapse. Dome 1 is explained as a lava coulée, fed by conduits located along the ring fault, with a long lava outflow down the sloping caldera floor. Dome 2 represents an elongated, ring fault-parallel dome wherein the lava flowed a short distance over a flat floor. Dome 3 is interpreted as a composite dome fed from multiple linear fissures opened at a high angle to the ring fault. Subsequently, the dome was intruded by ring fault-parallel dikes that may have potentially fed overlying, now largely eroded lava domes and flows. Finally, we suggest that all domes formed during collapse of the Štiavnica caldera and the various mechanisms of their growth reflect different stages of the caldera evolution from piston (Dome 2) through trap-door (Dome 1) to piecemeal (Dome 3).

  2. Radar topography of domes on planetary surfaces

    USGS Publications Warehouse

    Neish, C.D.; Lorenz, R.D.; Kirk, R.L.

    2008-01-01

    We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. ?? 2008 Elsevier Inc.

  3. 'Heat Dome' Heats Up United States

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160028.html 'Heat Dome' Heats Up United States Much of the country to ... July 22, 2016 (HealthDay News) -- As a massive "heat dome" stretches across the United States this week, ...

  4. The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.; Bystrov, A.

    2016-07-01

    The Gruithuisen domes, situated on the western portion of the Imbrium basin rim, form three tall mountains (NW, Gamma, Delta) totaling ∼780 km3 in volume. The shapes of the domes are significantly different from that of mare-type domes elsewhere on the Moon. We use data from the Lunar Reconnaissance Orbiter (LRO) and Kaguya missions (LRO Lunar Orbiter Laser Altimeter, Lunar Reconnaissance Orbiter Camera, Diviner, and the Kaguya imager) to characterize the domes and assess models for their origin. The configuration of the domes (steep slopes, up to ∼18-20°) and their specific remote sensing characteristics (strong downturn in the UV, and results from the M3 and Diviner instruments) suggest that the domes formed by eruptions of highly viscous lava. The estimated surface volumes of the domes vary from ∼20 km3 (NW dome) to ∼290 km3 (Gamma dome) to ∼470 km3 (Delta dome). The domes occur on the portion of the Imbrium basin rim that is overlain by ejecta from the post-Imbrium Iridum crater. In some areas, relatively high albedo smooth volcanic plains are seen within the Iridum ejecta near the Gruithuisen domes, and low albedo mare deposits surround and embay the domes and Iridum crater. Dating of different units and features by crater counts indicates that impact melts from the Iridum basin are ∼3.9 Ga old, the domes Gamma and Delta are ∼3.8 Ga, and the ages of the plains near the domes vary from ∼2.3 to ∼3.6 Ga. A fresh impact crater exposes the internal structure of the Gamma dome. The most prominent features on the wall of the crater are rough, blocky layers that are typical of volcanic plains in the highlands and maria around the domes. The layers are interleaved with fine-grained materials of higher and lower albedo and the visible orientation of the layers changes over short (a few hundred meters) distances. These characteristics of the internal structure of the dome are consistent with eruptions of high viscosity lava (rough layers) that

  5. The control of overburden thickness on resurgent domes: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Acocella, V.; Cifelli, F.; Funiciello, R.

    2001-11-01

    Resurgent doming consists of the uplift, usually accompanied by volcanic activity, of part of a collapse caldera. Analogue models were used to investigate the architecture of resurgent domes. Dry sand simulates the brittle crust; uprising silicone, located at the base of the sand-pack, simulates magma. The deformation pattern depends mainly upon: (1) the ratio (aspect ratio) between the thickness of the sand overburden and the width of the silicone intrusion; (2) the duration of experiment. For aspect ratios ≈1, two concentric domes develop; the first-formed outer dome is bordered by inward-dipping reverse ring faults, while the inner dome by outward-dipping normal ring faults. The layers inside the dome are uniformly dipping. For aspect ratios ≈0.4, the dome shows a crestal depression, surrounded by radial fractures, followed by an apical extrusion of silicone. The internal structure of the dome is made up of domed layers. Independently from the aspect ratio, the duration of the experiment enhances silicone extrusion. A consistent structure is observed in most resurgent domes in nature. The comparison between experiments and nature suggests that two distinct resurgence modes occur, mainly depending on the aspect ratio (thickness/width) of the crust overlying the magma chamber. Aspect ratios ≈1 develop a resurgent block with uniformly-dipping layers and peripheral volcanic activity (Ischia and Pantelleria type). Aspect ratios ≈0.4 develop a resurgent dome with a crestal depression, domed layers within and peripheral and internal volcanic activity (Valles and Long Valley type).

  6. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.

    2013-06-01

    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4-May 4) produced blocky intermediate- to high-silica andesite lava (59-62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8-62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome. We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  7. Upheaval Dome, An Analogue Site for Gale Center

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Eignebrode, J. L.

    2011-01-01

    We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.

  8. Phase delay of polarisation modes in elastically twisted spun fibres

    SciTech Connect

    Morshnev, Sergey K; Chamorovsky, Yury K; Vorob'ev, Igor' L

    2011-05-31

    The evolution of the phase delay between linearly polarised orthogonal modes in a spun fibre elastically twisted around its axis has been studied experimentally and theoretically using a model for a helical structure of the built-in linear birefringence axes. The phase delay is a sinusoidal function of elastic twist angle, with an amplitude and period dependent on fibre parameters: spin pitch and built-in linear birefringence beat length. It is shown that, at a known spin pitch, phase delay versus elastic twist angle data can be used to determine the beat length of built-in linear birefringence in the range 0.01 to 100 mm. The theoretical analysis results are supported by experimental data for conventional and microstructured spun fibres. (fibre optics)

  9. Salt dome discoveries mounting in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1996-06-17

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  10. Programmable shape transformation of elastic spherical domes.

    PubMed

    Abdullah, Arif M; Braun, Paul V; Hsia, K Jimmy

    2016-07-20

    We investigate mismatch strain driven programmable shape transformation of spherical domes and report the effects of different geometric and structural characteristics on dome behavior in response to applied mismatch strain. We envision a bilayer dome design where the differential swelling of the inner layer with respect to the passive outer layer in response to changes in dome surroundings (such as the introduction of an organic solvent) introduces mismatch strain within the bilayer system and causes dome shape transformation. Finite element analysis reveals that, in addition to snap-through, spherical domes undergo bifurcation buckling and eventually gradual bending to morph into cylinders with increasing mismatch strain. Besides demonstrating how the snap-through energy barrier depends on the spherical dome shape, our analysis identifies three distinct groups of dome geometries based on their mismatch strain-transformed configuration relationships. Our experiments with polymer-based elastic bilayer domes that exhibit differential swelling in organic solvents qualitatively confirm the finite element predictions. We establish that, in addition to externally applied stimuli (mismatch strain), bilayer spherical dome morphing can be tuned and hence programmed through its geometry and structural characteristics. Incorporation of an elastic instability mechanism such as snap-through within the framework of stimuli-responsive functional devices can improve their response time which is otherwise controlled by diffusion. Hence, our proposed design guidelines can be used to realize deployable, multi-functional, reconfigurable, and therefore, adaptive structures responsive to a diverse set of stimuli across multiple length scales.

  11. Formation of the giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Ratschbacher, Lothar; Hacker, Bradley; Dunkl, István; Gloaguen, Richard

    2013-04-01

    Cenozoic gneiss domes comprise one third of the surface exposure of the Pamir Mountains and provide a window into deep crustal processes of the India-Asia collision. The largest of these is the 350 × 90 km Shakhdara-Alichur composite dome of the southern Pamir, Tajikistan and Afghanistan. The Shakhdara and Alichur domes formed by footwall exhumation of two low-angle detachments: In the larger Shakhdara dome the top-to-S South Pamir shear zone (SPSZ) exhumed crust from 30-40 km depth; in the Alichur dome the top-to-N Alichur shear zone exhumed upper crustal rocks. The subdomes are separated by a low-strain horst. Non-coaxial shear in the Shakhdara dome is pervasive over the ~4 km thick SPSZ. The top of the shear zone is preserved at mountain peaks, the base is incised by the Panj gorge, which exposes the 'core' of the dome; total erosion is less than 4 km throughout most of the dome. We use a comprehensive geo-thermochronologic dataset of titanite, monazite, and zircon U/Th-Pb, mica Rb-Sr and 40Ar/39Ar, zircon and apatite fission track, and zircon (U-Th)/He ages to constrain the exhumation history of the southern Pamir domes. Doming started at ~21 Ma by crustal buckling and activation of a top-to-N normal shear zone (Gunt shear zone) along the northern rim of the Shakhdara dome, resulting in exhumation and cooling. The bulk of the exhumation was accomplished by northward extrusion of the SPSZ footwall, which was active from ~18-15 Ma to ~2 Ma; exhumation rates were 1-3 mm/yr. Erosion rates during and after the end of doming were 0.3-0.5 mm/yr within the domes and 0.1-0.3 mm/yr in the horst and in the SE Pamir plateau; incision rates of the major drainages were up to 1.0 mm/yr. Doming by footwall exhumation of the SPSZ resulted in up to 90 km N-S extension, coeval with ongoing N-S convergence between India and Asia. Extension opposes shortening along and above the reactivated Rushan-Pshart suture zone, a wide fold-thrust belt north of the Shakhdara-Alichur domes

  12. The hydrothermal alteration of cooling lava domes

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Stauffer, Philip H.; Calder, Eliza S.; Valentine, Greg A.

    2015-12-01

    Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

  13. Thread-like supercapacitors based on one-step spun nanocomposite yarns.

    PubMed

    Meng, Qinghai; Wang, Kai; Guo, Wei; Fang, Jin; Wei, Zhixiang; She, Xilin

    2014-08-13

    Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after sufficient washing to remove surfactants. After applying a further coating layer of gel electrolyte, two flexible yarns are twisted together to form a thread-like supercapacitor. The supercapacitor based on these two yarns (SWCNTs and PAniNWs) possesses a much higher specific capacitance than that based only on pure SWCNTs yarns, making it an ideal energy-storage device for wearable electronics. PMID:24729355

  14. Geology of the Upheaval Dome impact structure, southeast Utah

    USGS Publications Warehouse

    Kriens, B.J.; Shoemaker, E.M.; Herkenhoff, K. E.

    1999-01-01

    Two vastly different phenomena, impact and salt diapirism, have been proposed for the origin of Upheaval Dome, a spectacular scenic feature in southeast Utah. Detailed geologic mapping and seismic refraction data indicate that the dome originated by collapse of a transient cavity formed by impact. Evidence is as follows: (1) sedimentary strata in the center of the structure are pervasively imbricated by top-toward-the-center thrust faulting and are complexly folded as well; (2) top-toward-the-center normal faults are found at the perimeter of the structure; (3) clastic dikes are widespread; (4) the top of the underlying salt horizon is at least 500 m below the surface at the center of the dome, and there are no exposures of salt or associated rocks of the Paradox Formation in the dome to support the possibility that a salt diapir has ascended through it; and (5) planar microstructures in quartz grains, fantailed fracture surfaces (shatter surfaces), and rare shatter cones are present near the center of the structure. We show that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, are largely a consequence of this motion. We have also detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding near the perimeter of the structure. The observed deformation corresponds to the central uplift and the encircling ring structural depression seen in complex impact craters. Copyright 1999 by the American Geophysical Union.

  15. Dome cities for extreme environments

    NASA Technical Reports Server (NTRS)

    Leonard, Raymond S.; Schwartz, Milton

    1992-01-01

    Extreme environments whether they be the frigid nights of the polar regions, the burning sands of the desert, or the harsh environment of space pose interesting challenges to the architect, the engineer, and the constructor in their efforts to create habitats for mankind. In space, the goals are to provide radiation protection while also providing an aesthetic living environment for long duration missions. Because of the need to provide both radiation protection and options for expansion of base facilities, a unique structural system which separates the radiation protection systems from the pressure envelope of the habitats was created. The system uses cable networks in a tensioned structural system, which supports the lunar regolith used for shielding above the facilities. The system is modular, easily expandable, and simple to construct. Additional innovations include the use of rock melting perpetrators for piles and anchoring deadmen, and various sized craters to provide side shielding. The reflective properties of the fabric used in the membrane are utilized to provide diffuse illumination. The use of craters along with the suspended shielding allows the dome to be utilized in fashions similar to those proposed by various designers unaware of the Moon's hostile radiation environment. Additional topics addressed deal with construction techniques for large domes, i.e., on the order of 100's to 1000's of meters, thermal control, the integration of tertiary water treatment schemes with architectural design, human factors, and its implications for the design of habitats for long term use in extreme environments.

  16. On the temperature dependent magnetic properties of as-spun Mn-Bi ribbons

    NASA Astrophysics Data System (ADS)

    Kavita, S.; Seelam, U. M. R.; Prabhu, D.; Gopalan, R.

    2015-03-01

    The structural and magnetic properties of melt-spun ribbons with nominal composition of Mn55Bi45 were investigated using X-ray diffraction, transmission electron microscopy and magnetometer measurements. A large coercivity (Hc) of 0.8 T was observed in the as-spun ribbons. Microstructure reveals the presence of Mn-Bi nanoparticles in the as-spun ribbons. Coercivity was found to increase with increasing temperature with a maximum coercivity of 1.4 T at T=503 K in the as-spun ribbons. Heat treatment of the as-spun ribbons resulted in the increase of LTP MnBi phase. Spin reorientation transition (TSR) was observed around 100 K.

  17. Environmental assessment: Richton Dome site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  18. Environmental assessment: Richton Dome Site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  19. A history of semi-active laser dome and window materials

    NASA Astrophysics Data System (ADS)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  20. Submarine Analogs to Venusian Pancake Domes

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1995-01-01

    The morphology and dimensions of the large diameter, steep-sided, flat-topped "pancake domes" on Venus make them unlike any type of terrestrial subaerial volcano. Comparisons between images of Hawaiian seamounts and pancake domes show similarities in shapes and secondary features. The morphometry of pancake domes is closer to that of Pacific seamounts than subaerial lava domes. Considering both morphology and morphometry, seamounts seem a better analog to the pancake domes. The control of volatile exsolution by pressure on Venus and the seafloor can cause lavas to have similar viscosities and densities, although the latter will be counteracted by high buoyancy underwater. However, analogous effects of the Venusian and seafloor alone are probably not sufficient to produce similar volcanoes. Rather, Venusian lavas of various compositions may behave like basalt on the seafloor if appropriate rates and modes of extrusion and planetary thermal structure are also considered.

  1. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  2. Formation of dome and basin structures: Results from scaled experiments using non-linear rock analogues

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Zanella, F.

    2016-09-01

    Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.

  3. Solidification process in melt spun Nd-Fe-B type magnets

    SciTech Connect

    Li, C.

    1998-02-23

    A generalized solidification model has been developed based on a systematic investigation on the microstructure of melt spun Nd-Fe-B alloys. Melt spinning was conducted on initial stoichiometric and TiC added Nd{sub 2}Fe{sub 14}B (2-14-1) compositions to produce under, optimally and over quenched microstructures. Microstructural characterization was carried out by TEM, SEM, Optical microscopy, XRD, DTA, VSM and DC SQUID techniques. By taking the dendritic breakup during recalescence into consideration, this generalized model has successfully explained the solidification process of the melt spun Nd-Fe-B alloys. Challenging the conventional homogeneous nucleation models, the new model explains the fine and uniform equiaxed 2-14-1 microstructure in optimally quenched ribbons as a result of the breakup of the 2-14-1 dendrites which nucleate heterogeneously from the wheel surface and grow dendritically across the ribbon thickness due to the recalescence. Besides this dendritic breakup feature, the under quenched microstructure is further featured with another growth front starting with the primary solidification of Fe phase near the free side, which results in a coarsely grained microstructure with Fe dendritic inclusions and overall variation in microstructure across the ribbon thickness. In addition, because a epitaxy exists between the Fe phase and the 2-14-1, the so-formed coarse 2-14-1 grains may be textured. C-axis texturing was observed in under quenched ribbons. As a constraint to solidification models in this system, the cause and characteristics of this phenomenon has been studied in detail to test the authors proposed model, and agreement has been found. An extension has also been made to understand the solidification process when TiC is added, which suggests that Ti and C slow down the growth front of both Fe and 2-14-1 phase.

  4. Arc jet testing of a Dynasil dome

    NASA Astrophysics Data System (ADS)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  5. Subsidence and collapse at Texas Salt Domes

    SciTech Connect

    Mullican, W.F.

    1989-01-01

    This book provides a description of the mechanisms and extent of natural and man-induced subsidence and collapse at Texas salt domes. In the Houston diapir province, Frasch mining has caused subsidence bowls and collapse sinkholes at 12 of the 14 sulfur-productive domes. Understanding the structural and hydrologic instability that results at the surface and subsurface is crucial in evaluating the suitability of salt domes as repositories for waste disposal. Part of the Bureau's Coastal Salt Dome Program, this study used aerial photographs, remote-sensing methods, historical and modern topographic maps, and field checks to detect subsidence and collapse associated with natural salt diapiric processes and commercial resource recovery and to determine which processes are likely to reduce the stability and integrity of hydrologic and structural barriers around salt diapirs. Figures and tables illustrating the extent and evolution of subsidence and collapse, along with photographs showing their effects, highlight the text discussion of the salt domes detailed in this study-Boling, Orchard, Moss Bluff, Spindletop, Hoskins Mound, Fannett, Long Point, Nash, High Island, Bryan Mound, Clemens, and Gulf. The author concludes that Frasch sulfur mining from cap rocks causes the most catastrophic subsidence and collapse and that subsidence over salt domes includes processes ranging from trough subsidence to various types of subsurface caving. He concludes that salt domes characterized by subsidence and collapse are unfavorable sites for storage/disposal of hazardous wastes.

  6. Use of Spun optical fibres in current sensors

    SciTech Connect

    Gubin, Vladimir P; Isaev, Victor A; Morshnev, Sergey K; Sazonov, Aleksandr I; Starostin, Nikolay I; Chamorovsky, Yury K; Oussov, Aleksey I

    2006-03-31

    The polarisation properties of a Spun optical fibre are studied in connection with their applications in fibreoptic current sensors based on the Faraday effect. A model of this fibre is proposed which represents it as an anisotropic medium with the spiral structure of the fast and slow birefringence axes. A sensor is developed based on an all-fibre low-coherence linear interferometer with a threshold sensitivity of 70 mA Hz{sup -1/2}, a maximum measured current of 3000 A, and a scale-factor reproducibility of {+-}0.6%. It is found that for a given diameter of the fibre contour, the normalised sensitivity is independent of the fibre length. The experimental results confirm the theory. (laser applications and other topics in quantum electronics)

  7. Injection of vesicular magma into an andesitic dome at the effusive-explosive transition

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Di Muro, A.; Horwell, C. J.; Spieler, O.; Llewellin, E. W.

    2010-06-01

    A single, vesicular pyroclast collected from a major (11 × 106 m3) dome collapse eruption of the Soufrière Hills volcano, Montserrat (21st September 1997) was found to contain textural and Raman evidence for multiple decompression events and magma injection into the dome just prior to the onset of dome collapse. Quartz, plagioclase and hornblende phenocrysts contain closed and burst melt inclusions (MIs), the latter in the form of either foam or cylindrical melt extrusions from cavities on fracture surfaces. Fractures within ruptured quartz phenocrysts were infilled with glass, whereas those within plagioclase are entirely free of glass, indicating relatively early fracturing (decompression) of the quartz. This interpretation is supported by slightly higher measured H2OT in burst MIs in quartz (0.44 wt.% ± 0.07, 1 s.d.) compared with plagioclase (0.31 wt.% ± 0.05, 1 s.d.), indicating equilibration on rupturing of the quartz at higher PH2O. H2OT levels in glass from burst MIs in plagioclase are consistent with plagioclase fragmentation at H2O saturation pressures < 5 MPa, at an estimated depth of < 210 m, within the dome. The fragmentation occurred whilst the groundmass glass was still plastic, as evident from the presence of stretched vesicles in glass at fracture terminations. The fractures in plagioclase are empty of vapour phase precipitates (mainly cristobalite that infills matrix vesicles) which constrains the fracturing of plagioclase to the last depressurisation event recorded in the pyroclast, which was the dome collapse which led to the pyroclast being ejected from the dome. We suggest that our study provides the first direct (i.e. non seismic) evidence for the injection of gas-charged magma into the dome at the onset of dome collapse, marking the transition from effusive to explosive eruption, and that the magma injection could have provided the triggering mechanism for dome collapse.

  8. Central Pit and Dome Formation as Seen in Occator Crater, Ceres

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; Buczkowski, Debra; Scully, Jennifer E. C.; De Sanctis, Maria Cristina; Schmidt, Britney E.; O'Brien, David P.; Hiesinger, Harald; Sizemore, Hanna G.; Ammannito, Eleonora; Raymond, Carol; Russell, Christopher T.; Dawn Science Team

    2016-10-01

    Dawn mapping of Ceres revealed that central depressions (or pits) are common in craters >75 km. The best preserved of these is Occator (D~92 km), where the pit is associated with a major bright deposit dominated by carbonates. The pit is ~9 km wide, 600-800 m deep and flanked by asymmetric massifs 0.7 to 1.3 km high. The pit is partially filled by a fractured central dome ~3 km wide and 700 m high. Fracturing could have been due to dome inflation by "magma" or by subsurface freezing of ice. Within the bright material, two color units are mapped, including a paler surface unit and a more yellowish to reddish unit exposed within the most fractured parts of the dome surface and at small bright spots, at least some of which could be post-Occator small craters. Some bright materials form as discrete small spots midslope along the pit wall and others avoid small hills, suggesting partial topographic control. Stratigraphic relations are ambiguous but suggest formation of a smooth carapace some meters thick that was subsequently disrupted by fractures crossing the floor of Occator, and by uplift of the dome surface. Pit and dome morphologies, including dome fracturing are potentially analogous to central pits and domes in many craters on Ganymede and Callisto, suggesting some commonality in formation processes. The absence of center pits or domes on Saturnian satellites could be related to much lower temperatures on those bodies. The prominence of central pits and domes on Ceres confirms the importance of volatile materials, mostly likely water ice, in the outer layers of Ceres, especially as compared to Vesta.

  9. Phenocryst fragments in rhyolitic lavas and lava domes

    NASA Astrophysics Data System (ADS)

    Allen, S. R.; McPhie, J.

    2003-08-01

    Although rhyolitic lavas and lava domes are characterised by evenly porphyritic textures, not all the phenocrysts are whole euhedra. We undertook image analysis of 46 rhyolitic lava and lava dome samples to determine the abundance and shape of quartz and feldspar phenocryst fragments. Phenocryst fragments were identified in nearly all samples. On average, fragments amount to ˜5% of the total phenocryst population, or ˜0.5 modal%. The abundance of fragments in lavas and lava domes is not related to the groundmass texture (whether vesicular, flow banded, massive, glassy or crystalline), nor to distance from source. Fragments are, however, more abundant in samples with higher phenocryst contents. The phenocryst fragments in rhyolitic lavas and lava domes are mainly medium to large (0.5-3.5 mm), almost euhedral crystals with only a small portion removed, or chunky, equant, subhedral fragments, and occur in near-jigsaw-fit or clast-rotated pairs or groups. The fragments probably formed in response to decompression of large melt inclusions. Shear during laminar flow then dismembered the phenocrysts; continued laminar shear separated and rotated the fragments. Fractures probably formed preferentially along weaknesses in the phenocrysts, such as zones of melt inclusions, cleavage planes and twin composition planes. Rare splintery fragments are also present, especially within devitrified domains. Splinters are attributed to comminution of solid lava adjacent to fractures that were later healed. For comparison, we measured crystal abundance in a further 12 rhyolite samples that include block and ash flow deposits and ignimbrite. Phenocryst fragments within clasts in the block and ash flow samples showed similar shapes and abundances to those fragments within the lava and lava domes. Crystal fragments are much more abundant in ignimbrite (exceeding 67% of the crystal population) however, and dominated by small, equant, anhedral chunks or splinters. The larger crystals in

  10. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  11. Environmental assessment overview: Richton Dome site, Mississippi

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Richton Dome site as one of five sites suitable for characterization. 3 figs.

  12. 'Heat Dome' Not Budging Until Week's End

    MedlinePlus

    ... fullstory_160083.html 'Heat Dome' Not Budging Until Week's End Eastern part of country still in its ... not be budging before the end of the week, weather forecasters said Tuesday. "With no strong pushes ...

  13. Experimental Studies of Lava Dome Fracture

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P. R.; Kilburn, C. R.

    2005-12-01

    Renewed extrusion at andesitic to dacitic lava domes and collapses of these domes are usually preceded by fracturing and frictional sliding of material in and around the lava dome and magma conduit. This is observed through the occurrence of shallow high frequency earthquakes. Samples of andesite from Mount Shasta in the Cascades, a typical material for both lava domes and shallow underlying country rock, have been deformed in compression and tension, at temperatures of up to 900°C, and under confining pressures of up to 70MPa. During these tests the axial load, sample deformation and acoustic emissions were recorded, in order to compare the results with field observations of deformation and short period seismicity at lava domes. Typical strengths at room temperature and pressure were 6MPa in tension, and 100MPa in compression. Increased temperatures increased the tensile strength, but reduced the compressive strength, whereas both strengths increased with increasing confining pressure. There were ~10 times more acoustic emissions at room temperature than at maximum test temperatures, indicating that increased temperatures favour ductile, rather than brittle, failure. These results suggest that young, hot lava domes may collapse or erupt with little precursory short period seismicity, whilst older, cooler domes are likely to exhibit stronger short period seismic precursors. However, hotter material is likely to exhibit more recognisable deformation precursors. This is consistent with the seismicity observed after the 18 May 1980 climactic eruption at Mount St Helens, where there was ~100 times more seismicity prior to eruptions in 1985 and 1986 than there was prior to eruptions in 1980 and 1981. During these later eruptions, the interior of the dome would still have been ductile due to its temperature and the overburden weight acting as a confining pressure, but the large amount of pre-failure deformation in this zone could drive fracturing of the cooler outer

  14. Unzipped Nanotube Sheet Films Converted from Spun Multi-Walled Carbon Nanotubes by O2 Plasma.

    PubMed

    Jangr, Hoon-Sik; Jeon, Sang Koo; Shim, Dae Seob; Lee, Nam Hee; Nahm, Seung Hoon

    2015-11-01

    Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance.

  15. The design research of a spinel dome

    NASA Astrophysics Data System (ADS)

    Zhao, Hongwei; Hou, Tianjin; Zhu, Bin; Huang, Qiu; Gao, Zhifeng

    2011-08-01

    Based on the aerodynamic heating simulated results of a spinel middle-infrared (Mid IR) image guide missile dome flying at supersonic speed, a series of experiments are made and some methods of eliminating aero-heating effect are carried out successfully. First, a simulation experiment on the ground discarding an outside protective shell of a spinel dome is accomplished in order to inspect the withstanding impact ability of the dome. Second, an arc wind tunnel experiment is fulfilled to obtain thermal mechanics characteristic of the spinel dome, and a method to buildup obviously mechanics intensity is approved which is coating diamond protective layer on the external wall of the spinel dome. Third, two heated dome imaging experiments on the ground are made to study the aero-optical phenomenon. Finally, a rocket sled experiment of a guide missile head is made successfully. Experimental results show that when the guide missile head flies in a supersonic, by adjusting the frame integration time of detector etc. the aero-optic effect would decrease greatly.

  16. Radar scattering properties of steep-sided domes on Venus

    NASA Technical Reports Server (NTRS)

    Ford, Peter G.

    1994-01-01

    More than 100 quasi-circular steep-sided volcanic domes, with diameters ranging from 6 to 60 km, have been observed on the surface of Venus by the Magellan radar mapper. Assuming that they have the shape of a solidified high-viscosity Newtonian fluid, their radar scattering properties can be studied in detail from Magellan images, since a typical radar swath resolves each dome into several tens of thousands of measurements of radar cross section at incidence angles varying fom 15 deg to 55 deg. Through examination of 20 domes in detail, it appears that many of those situated on lava plains scatter radar in a manner that is indistinguishable from that of the surrounding material, suggesting that either (1) they were formed of a relatively high-density high-viscosity material, e.g., andesite, rather than a lower-density one, e.g., rhyolite or dacite; or (2) that their surfaces share a common origin with those of their surroundings, e.g., through in situ weathering or aeolian deposition.

  17. Ice crystal precipitation at Dome C site (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including "diamond dust" (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  18. Charged nano-domes and bubbles in epitaxial graphene.

    PubMed

    Trabelsi, A Ben Gouider; Kusmartsev, F V; Robinson, B J; Ouerghi, A; Kusmartseva, O E; Kolosov, O V; Mazzocco, R; Gaifullin, Marat B; Oueslati, M

    2014-04-25

    For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150–200 nm) to a few μm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5–12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble–substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble–substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon.

  19. Distributions of cranial pathologies provide evidence for head-butting in dome-headed dinosaurs (Pachycephalosauridae).

    PubMed

    Peterson, Joseph E; Dischler, Collin; Longrich, Nicholas R

    2013-01-01

    Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females) lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.

  20. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    SciTech Connect

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad

    2014-06-15

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron inside the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.

  1. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development

    PubMed Central

    Thoresen, Daniel T.; Miao, Lingling; Williams, Jonathan S.; Wang, Chaochen; Atit, Radhika P.; Wong, Sunny Y.

    2016-01-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance. PMID:27414798

  2. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    PubMed

    Xiao, Ying; Thoresen, Daniel T; Miao, Lingling; Williams, Jonathan S; Wang, Chaochen; Atit, Radhika P; Wong, Sunny Y; Brownell, Isaac

    2016-07-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance. PMID:27414798

  3. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    SciTech Connect

    Munson, Darrell E.

    2007-07-01

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  4. Dome, Sweet Dome--Geodesic Structures Teach Math, Science, and Technology Principles

    ERIC Educational Resources Information Center

    Shackelford, Ray; Fitzgerald, Michael

    2007-01-01

    Today, geodesic domes are found on playgrounds, homes, over radar installations, storage facilities, at Disney's Epcot Center, and at World's Fairs. The inventor of the design, Buckminster Fuller, thought that geodesic domes could be used to cover large areas and even designed one to cover all of New York's Manhattan Island. This article details…

  5. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.

    PubMed

    Stoessel, Philipp R; Krebs, Urs; Hufenus, Rudolf; Halbeisen, Marcel; Zeltner, Martin; Grass, Robert N; Stark, Wendelin J

    2015-07-13

    Sustainability, renewability, and biodegradability of polymeric material constantly gain in importance. A plausible approach is the recycling of agricultural waste proteins such as keratin, wheat gluten, casein or gelatin. The latter is abundantly available from animal byproducts and may well serve as building block for novel polymeric products. In this work, a procedure for the dry-wet spinning of multifilament gelatin yarns was developed. The process stands out as precipitated gelatin from a ternary mixture (gelatin/solvent/nonsolvent) was spun into porous filaments. About 1000 filaments were twisted into 2-ply yarns with good tenacity (4.7 cN tex(-1)). The gelatin yarns, per se susceptible to water, were cross-linked by different polyfunctional epoxides and examined in terms of free lysyl amino groups and swelling degree in water. Ethylene glycol diglycidyl ether exhibited the highest cross-linking efficiency. Further post-treatments with gaseous formaldehyde and wool grease (lanolin) rendered the gelatin yarns water-resistant, allowing for multiple swelling cycles in water or in detergent solution. However, the swelling caused a decrease in filament porosity from ∼30% to just below 10%. To demonstrate the applicability of gelatin yarn in a consumer good, a gelatin glove with good thermal insulation capacity was fabricated.

  6. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.

    PubMed

    Stoessel, Philipp R; Krebs, Urs; Hufenus, Rudolf; Halbeisen, Marcel; Zeltner, Martin; Grass, Robert N; Stark, Wendelin J

    2015-07-13

    Sustainability, renewability, and biodegradability of polymeric material constantly gain in importance. A plausible approach is the recycling of agricultural waste proteins such as keratin, wheat gluten, casein or gelatin. The latter is abundantly available from animal byproducts and may well serve as building block for novel polymeric products. In this work, a procedure for the dry-wet spinning of multifilament gelatin yarns was developed. The process stands out as precipitated gelatin from a ternary mixture (gelatin/solvent/nonsolvent) was spun into porous filaments. About 1000 filaments were twisted into 2-ply yarns with good tenacity (4.7 cN tex(-1)). The gelatin yarns, per se susceptible to water, were cross-linked by different polyfunctional epoxides and examined in terms of free lysyl amino groups and swelling degree in water. Ethylene glycol diglycidyl ether exhibited the highest cross-linking efficiency. Further post-treatments with gaseous formaldehyde and wool grease (lanolin) rendered the gelatin yarns water-resistant, allowing for multiple swelling cycles in water or in detergent solution. However, the swelling caused a decrease in filament porosity from ∼30% to just below 10%. To demonstrate the applicability of gelatin yarn in a consumer good, a gelatin glove with good thermal insulation capacity was fabricated. PMID:26035474

  7. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  8. Effective pine bark composting with the Dome Aeration Technology

    SciTech Connect

    Trois, Cristina . E-mail: troisc@ukzn.ac.za; Polster, Andreas

    2007-07-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process

  9. Interaction between an emerging flux region and a pre-existing fan-spine dome observed by IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Jiang, Fayu; Zhang, Jun; Yang, Shuhong

    2016-04-01

    We present multi-wavelength observations of a fan-spine dome in the active region NOAA 11996 with the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO) on March 9, 2014. The destruction of the fan-spine topology owing to the interaction between its magnetic fields and an nearby emerging flux region (EFR) is firstly observed. The line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the SDO reveal that the dome is located on the mixed magnetic fields, with its rim rooted in the redundant positive polarity surrounding the minority parasitic negative fields. The fan surface of the dome consists of a filament system and recurring jets are observed along its spine. The jet occurring around 13:54 UT is accompanied with a quasi-circular ribbon that brightens in the clockwise direction along the bottom rim of the dome, which may indicate an occurrence of slipping reconnection in the fan-spine topology. The EFR emerges continuously and meets with the magnetic fields of the dome. Magnetic cancellations take place between the emerging negative polarity and the outer positive polarity of the dome's fields, which lead to the rise of the loop connecting the EFR and brightenings related to the dome. A single Gaussian fit to the profiles of the IRIS SI IV 1394 Å line is used in the analysis. It appears that there are two rising components along the slit, except for the rise in the line-of-sight direction. The cancellation process repeats again and again. Eventually the fan-spine dome is destroyed and a new connectivity is formed. We suggest that magnetic reconnection between the EFR and the magnetic fields of the fan-spine dome in the process is responsible for the destruction of the dome.

  10. Geology of Damon Mound Salt Dome, Texas

    SciTech Connect

    Collins, E.W.

    1989-01-01

    Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

  11. Environmental assessment, Richton Dome site, Mississippi (US)

    SciTech Connect

    none,

    1986-05-01

    The Nuclear Waste Policy Act of 1982 (42 USC Sections 10101-10226) requires the environmental assessment of a potential site to include a statement of the basis for the nomination of a site as suitable for characterization. Volume 2 of this environmental assessment provides a detailed evaluation of the Richton Dome Site and its suitability as the site for a radioactive waste disposal facility under DOE siting guidelines, as well as a comparison of the Richton Dome site with other proposed sites. Evaluation of the Richton Dome site is based on the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The comparative evaluation of proposed sites is required under DOE guidelines, but is not intended to directly support the subsequent recommendation of three sites for characterization as candidate sites. 428 refs., 24 figs., 62 tabs. (MHB)

  12. On the Measurement of the Electrical Power Produced by Melt Spun Piezoelectric Textile Fibres

    NASA Astrophysics Data System (ADS)

    Matsouka, Dimitroula; Vassiliadis, Savvas; Prekas, Kleanthis; Bayramol, Derman Vatansever; Soin, Navneet; Siores, Elias

    2016-10-01

    Piezoelectric, melt spun, textile fibres as multifunctional materials appeared recently, and they are under thorough investigation and testing in order to define their performance and behaviour. Although piezoelectricity was first reported in 1880 and the piezoelectric behaviour of organic polymers materials has been known since 1969, the fibrous form of the piezoelectric materials under consideration opens new technological horizons; however, it introduces novel restrictions and further complex parameters are involved in their study. The major issue of the current research work is the study of the actual capacity of the piezoelectric fibres, i.e. the electric power produced following mechanical stimulation of the individual fibre. The measurements were made possible after the development of the necessary specific equipment. The test results enabled the ranking of the various types of the piezoelectric fibres according to the respective power generation. The main difference in this research approach is the measurement of the power generated by the fibres. Measurement of the power generated by an electrical power source (in the case of energy harvesting applications which is the prime interest of this research project) is an important characteristic as the requirements of various applications are expressed in units of power. Stating the voltage produced during mechanical deformation of the fibres is not enough (cf. voltage produced due to electrostatic phenomena on textiles where the voltage is in the range is the several kV, but the power is not enough to power a light-emitting diode).

  13. TECHNICAL NOTE: Spun-cast micromolding for etchless micropatterning of electrically functional PDMS structures

    NASA Astrophysics Data System (ADS)

    McClain, Maxine A.; La Placa, Michelle C.; Allen, Mark G.

    2009-10-01

    Polydimethylsiloxane (PDMS) is widely used in bioMEMS applications; however, patterning of this material to form complex structures is often challenging. Chemical etches are typically ineffective due to the inertness of the material. Plasma processing of bulk material can be time intensive and presents concerns regarding the mechanical properties of the post-etched polymer due to etch-induced cross-linking of surrounding material. Presented in this paper, the etchless process of spun-cast micromolding (SCμM) is used to create an array of patterned, PDMS, electrical microcables. The microcables are arranged in a net-like array and incorporate electrical functionality. The geometries fabricated with these techniques include straight and sinusoidal microcables. In addition to the cables themselves, specific regions of the cables' top insulating layer can also be patterned using a hierarchical application of the SCμM process, creating exposed electrical access sites useful as electrical access points for electrophysiological applications. The SCμM process is a simple, relatively rapid technique that can be used to make highly compliant electronic structures with patternable geometries.

  14. On the Measurement of the Electrical Power Produced by Melt Spun Piezoelectric Textile Fibres

    NASA Astrophysics Data System (ADS)

    Matsouka, Dimitroula; Vassiliadis, Savvas; Prekas, Kleanthis; Bayramol, Derman Vatansever; Soin, Navneet; Siores, Elias

    2016-06-01

    Piezoelectric, melt spun, textile fibres as multifunctional materials appeared recently, and they are under thorough investigation and testing in order to define their performance and behaviour. Although piezoelectricity was first reported in 1880 and the piezoelectric behaviour of organic polymers materials has been known since 1969, the fibrous form of the piezoelectric materials under consideration opens new technological horizons; however, it introduces novel restrictions and further complex parameters are involved in their study. The major issue of the current research work is the study of the actual capacity of the piezoelectric fibres, i.e. the electric power produced following mechanical stimulation of the individual fibre. The measurements were made possible after the development of the necessary specific equipment. The test results enabled the ranking of the various types of the piezoelectric fibres according to the respective power generation. The main difference in this research approach is the measurement of the power generated by the fibres. Measurement of the power generated by an electrical power source (in the case of energy harvesting applications which is the prime interest of this research project) is an important characteristic as the requirements of various applications are expressed in units of power. Stating the voltage produced during mechanical deformation of the fibres is not enough (cf. voltage produced due to electrostatic phenomena on textiles where the voltage is in the range is the several kV, but the power is not enough to power a light-emitting diode).

  15. The Evolution of Coalescence: Spun Down FK Comae Stars

    NASA Astrophysics Data System (ADS)

    Ambruster, Carol W.

    FK Com stars, single subgiants or giants characterized by very high rotational velocities (50-200 km s^-1) and extraordinary activity and variability levels, are currently understood to be coalescing or very recently coalesced stars. They are also very rare: only 4 stars are currently accepted members, and their space density is estimated at ~ 2xlO^-8pc^-3. Their most likely progenitors, the W UMa contact binaries are, however, rather common, with a space density -- 1xl0^-4 pc^-3. Thus stars must pass through the coalescence phase and spin down through expansion and stellar winds, very rapidly, ending up as seemingly ordinary slowly rotating giants. The extraordinary activity, including evidence for an excretion disk, is most evident in high dispersion spectra of the Mg II h and k lines (where photospheric contamination is minimized). Two of the four FK Corn stars lack LWP-Hi spectra: 1E1751+7O46 and NGC 188 I-1. Because variability is so characteristic of the 'younger' FK Com stars (FK Com and HD 199178), we request IUE time to obtain two LWP-Hi exposures each of the two spun down FK Com stars, 1E1751+7046 (Vsini = 30-40 km s^-1) and NGC 188 I-1 (Vsini = 24 km s^-1) in order to trace the evolution of chromospheric activity as the stars adjust to the coalesced state. NGC 188 I-1 is a particularly important and exciting target: because of its established membership near the center of the old open cluster NGC 188, it is the only coalesced star with a known age, luminosity and distance. Thus it is uniquely important, not just for its magnetic activity, but for studies of stellar evolution.

  16. FIRST OBSERVATIONS OF A DOME-SHAPED LARGE-SCALE CORONAL EXTREME-ULTRAVIOLET WAVE

    SciTech Connect

    Veronig, A. M.; Muhr, N.; Kienreich, I. W.; Temmer, M.; Vrsnak, B.

    2010-06-10

    We present first observations of a dome-shaped large-scale extreme-ultraviolet coronal wave, recorded by the Extreme Ultraviolet Imager instrument on board STEREO-B on 2010 January 17. The main arguments that the observed structure is the wave dome (and not the coronal mass ejection, CME) are (1) the spherical form and sharpness of the dome's outer edge and the erupting CME loops observed inside the dome; (2) the low-coronal wave signatures above the limb perfectly connecting to the on-disk signatures of the wave; (3) the lateral extent of the expanding dome which is much larger than that of the coronal dimming; and (4) the associated high-frequency type II burst indicating shock formation low in the corona. The velocity of the upward expansion of the wave dome (v {approx} 650 km s{sup -1}) is larger than that of the lateral expansion of the wave (v {approx} 280 km s{sup -1}), indicating that the upward dome expansion is driven all the time, and thus depends on the CME speed, whereas in the lateral direction it is freely propagating after the CME lateral expansion stops. We also examine the evolution of the perturbation characteristics: first the perturbation profile steepens and the amplitude increases. Thereafter, the amplitude decreases with r {sup -2.5{+-}0.3}, the width broadens, and the integral below the perturbation remains constant. Our findings are consistent with the spherical expansion and decay of a weakly shocked fast-mode MHD wave.

  17. After-Hours Science: Gee, A Dome!

    ERIC Educational Resources Information Center

    Santos, John G.

    1984-01-01

    Nature's Classroom (Southbridge, MA), which provides field experiences, academic classes, and activities in the natural sciences, has been recognized as an outstanding program by the National Science Teachers Association's Search for Excellence in Science Education project. Various program activities (including building a geodesic dome) are…

  18. Dome Storage of Farmer Stock Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small-scale farmer stock storage research facility at the National Peanut Research Laboratory in Dawson, GA consisting of four warehouses and four monolithic domes was used to conduct a 3-yr study looking at the effects of storing peanuts through the summer months following harvest. The study wa...

  19. Geodesic Dome Activity Provides Serious Fun!

    ERIC Educational Resources Information Center

    Anderson, Richard

    2009-01-01

    After the author's class completed last year's 44'-long timber-framed covered bridge project, he was pondering what other learning challenge he could pose to his students. He came across an article on geodesic dome construction in the September 2007 issue of "Tech Directions" and, he had his answer. In this article, the author and his students…

  20. The Urban Dust Dome: A Demonstration Model

    ERIC Educational Resources Information Center

    Cross, Ralph D.

    1973-01-01

    Working plans for an inexpensive urban dust dome model are presented together with some generalizations about urban atmosphere pollution. Theories and principles of atmospheric pollution which are introduced can be made meaningful to elementary students through classroom use of this model. (SM)

  1. Statistical forecasting of repetitious dome failures during the waning eruption of Redoubt Volcano, Alaska, February-April 1990

    USGS Publications Warehouse

    Page, R.A.; Lahr, J.C.; Chouet, B.A.; Power, J.A.; Stephens, C.D.

    1994-01-01

    successful forecasts and two false alarms; no events would have been missed. On closer examination, the intervals between successive dome failures are not uniform but tend to increase with time. This increase attests to the continuous, slowly decreasing supply of magma to the surface vent during the waning phase of the eruption. The domes formed in a precarious position in a breach in the summit crater rim where they were susceptible to gravitational collapse. The instability of the February 15-April 21 domes relative to the earlier domes is attributed to reaming the lip of the vent by a laterally directed explosion during the major dome-destroying eruption of February 15, a process which would leave a less secure foundation for subsequent domes. ?? 1994.

  2. 4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. FACING EAST AT VIEW OF YOSEMITE VALLEY; EL CAPITAN ON LEFT, HALF DOME AT CENTER AND SENTINEL DOME AT LEFT REAR. POST AT LOWER LEFT MARKED 'W3' IS MARKER FOR SELF GUIDED TOUR TO PARK. - Wawona Road, Between South Entrance & Yosemite Valley, Yosemite Village, Mariposa County, CA

  3. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  4. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  5. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  6. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have a minimum...

  7. 49 CFR 178.255-3 - Expansion domes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Expansion domes. 178.255-3 Section 178.255-3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Specifications for Portable Tanks § 178.255-3 Expansion domes. (a) Expansion domes, if applied, must have...

  8. Structure and Kinematics of a Complex Crater: Upheaval Dome, Southeast, Utah

    NASA Technical Reports Server (NTRS)

    Kriens, B. J.; Herkenhoff, K. E.; Shoemaker, E. M.

    1997-01-01

    Two vastly different phenomena, extraterrestrial impact and salt diapirism, have been proposed for the origin of Upheaval Dome. Upheaval Dome is a about 2.5-km-diameter structural dome surrounded by a 5-km-diameter ring structural depression, which is in turn flanked by extensive, nearly flat-lying Colorado Plateau strata. Seismic refraction data and geologic mapping indicate that the dome originated by the collapse of a transient cavity formed by impact; data also show that rising salt has had a negligible influence on dome development. Evidence for this includes several factors: (1) a rare lag deposit of impactite is present; (2) fan-tailed fracture surfaces (shatter surfaces) and a few shattercones are present; (3) the top of the underlying salt horizon is at least 500 m below the center of the dome, with no exposures of salt in the dome to support the possibility that a salt diapir has ascended through it; (4) sedimentary strata in the center are significantly imbricated by top-to-the-center thrust faulting and are complexly folded; (5) top-to-the-center low-angle normal faults are found at the perimeter of the structure; and (6) clastic dikes are widespread. The scarcity of melt rocks and shock fabrics is attributed to approximately 0.5 km of erosion; the structures of the dome reflect processes of complex crater development at a depth of about 0.5 km below the crater floor. Based on mapping and kinematic analysis, we infer that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, largely resulted from this motion. In addition, we have detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding in the perimeter of the structure. Collectively, the observed deformation accounts for the creation of both the central uplift and the encircling ring syncline.

  9. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  10. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    NASA Astrophysics Data System (ADS)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  11. Spun optical fibres: A helical structure of linear birefringence or circular birefringence?

    SciTech Connect

    Morshnev, Sergey K; Gubin, Vladimir P; Vorob'ev, I P; Starostin, I I; Sazonov, Aleksandr I; Chamorovsky, Yury K; Korotkov, N M

    2009-03-31

    An experiment has been proposed, theoretically substantiated and accomplished which has provided conclusive evidence in favour of one of two models for the behaviour of polarised light in optical fibres fabricated by spinning preforms with a high built-in linear birefringence (spun fibres): a helical structure of the built-in linear birefringence axes and circular birefringence. The experiment, carried out with a reflective fibreoptic dual-polarisation interferometer, has shown that the behaviour of polarisation states in spun fibres can be understood in terms of a helical structure of the built-in linear birefringence axes. (optical fibres)

  12. Textural evidence for origin of salt dome anhydrite cap rocks, Winnfield Dome, Louisiana

    SciTech Connect

    Ulrich, M.R.; Kyle, J.R.; Price, P.E.

    1985-02-01

    Textures within anhydrite cap rock are products of repeated cycles of halie dissolution and residual anhydrite accretion at tops of salt stocks. Quarrying operations at Winnfield dome have exposed extensive portions of the anhydrite cap rock zone. This zone is composed primarily of unoriented, xenoblastic anhydrite crystals in laminae less than 1 mm to several centimeters thick. Laminations are defined by thin, dark sulfide accumulations and pressure solution of anhydrite. Deformed, banded anhydrite clasts are contained locally within laminae. Multiple-laminated, concave downward anhydrite mounds occur along some horizons. They may contain anhydrite breccia fragments or sulfides. Coarsely crystalline salt mounds, containing disseminated idioblastic anhydrite also occur along horizons. Mound morphologies vary from tall and thin to broad and squat; maximum dimensions range from less than 0.5 to about 2.0 m. These moundlike structures are related spatially and genetically. Moundlike structures are believed to form from salt spines along the salt-anhydrite contact. As the spine dissolves through several cycles of dissolution and accretion, a laminated anhydrite mound is preserved; if the spine becomes isolated from dissolution, then a salt inclusion is preserved. Anhydrite beds within the Louann Salt, deformed during diapirism, are preserved as deformed anhydrite clasts. Steeply dipping, bedded anhydrite zones within the salt stock may produce brecciated anhydrite mounds when incorporated into the cap rock. Sulfides record the movement of metalliferous fluids through the salt-anhydrite contact.

  13. Magma Injection as a Trigger for Dome Collapse Eruption of the Soufriere Hills Volcano, Montserrat: Evidence from a Single Pyroclast

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; di Muro, A.; Horwell, C.

    2009-05-01

    A single, pumiceous pyroclast collected following a major (85 million m3) dome collapse eruption of the Soufriere Hills volcano, Montserrat (21 September 1997) was found to contain textural and geochemical evidence for: 1) multiple decompression events, and 2) magma injection into the dome at the onset of dome collapse. Quartz, plagioclase and hornblende phenocrysts contain a variety of closed and burst melt inclusions (MIs). Burst MIs occur on fracture surfaces within exploded phenocrysts, with melt extruded as either foam or cylindrical pipe-forms. Fractures within exploded quartz phenocrysts are infilled with glass, whereas those within plagioclase are entirely free of glass, indicating relatively early fracturing (decompression) of the quartz. This interpretation is supported by slightly higher measured H2OT in burst MIs in quartz (av. 0.45 wt%) compared with plagioclase (av. 0.34 wt%), indicating equilibration on bursting of the quartz at higher relative pressures. From the low levels of H2OT in glass from the burst MIs in quartz, this fracturing occurred within the dome or upper conduit/dense plug at pressures < 10 MPa, probably at a depth much less than 400 m. The fracturing of plagioclase occurred at even higher levels. Both the fracturing of quartz and plagioclase occurred whilst the matrix was still molten, as evident from the presence of stretched vesicles in matrix glass at fracture terminations. The fractures in plagioclase are empty of vapour phase precipitates (such as cristobalite), whereas the pumiceous vesicles commonly contain such crystals, and therefore the fracturing of plagioclase is thought to have been the last depressurisation event recorded in the pyroclast. Indeed the fracturing is considered to have occurred due to the overpressure caused by the dome collapse which resulted in the pyroclast being ejected from the dome. We suggest that this is the first direct evidence for the injection of magma into the dome at the onset of dome

  14. Volcanism on Venus: Large shields and major accumulations of small domes

    NASA Technical Reports Server (NTRS)

    Schaber, Gerald G.; Kozak, Richard C.

    1989-01-01

    The outer layers of the Venusian lithosphere appear to dissipate heat from the interior through mantle-driven thermal anomalies (hot spots, swells). As a result, Venus exhibits diverse forms of thin-skin tectonism and magmatic transfer to and extrusion from countless numbers of volcanic centers (e.g., shields, paterae, domes) and volcano-tectonic complexes (e.g., coronae, arachnoids). What is known about the distribution and morphologies of major Venusian shields is summarized, and the evidence for possible structural control of major accumulations as long as 5000 km of small volcanic domes is described.

  15. The tectono-thermal evolution of the Waterbury dome, western Connecticut, based on U-Pb and 40Ar/39Ar ages

    USGS Publications Warehouse

    Dietsch, Craig; Kunk, Michael J.; Aleinikoff, John; Sutter, John F.

    2010-01-01

    Level 3 nappes were emplaced over the Waterbury dome along an Acadian décollement synchronous with the formation of a D3 thrust duplex in the dome. The décollement truncates the Ky + Kfs-in (migmatite) isograd in the dome core and a St-in isograd in level 3 nappes, indicating that peak metamorphic conditions in the dome core and nappe cover rocks formed in different places at different times. Metamorphic overgrowths on zircon from the felsic orthogneiss in the Waterbury dome have an age of 387 ± 5 Ma. Rocks of all levels and the décollement are folded by D4 folds that have a strongly developed, regional crenulation cleavage and D5 folds. The Waterbury dome was formed by thrust duplexing followed by fold interference during the Acadian orogeny. The 40Ar/39Ar ages of amphibole, muscovite, biotite, and K-feldspar from above and below the décollement are ca. 378 Ma, 355 Ma, 360 Ma (above) and 340 (below), and 288 Ma, respectively. Any kilometer-scale vertical movements between dome and nappe rocks were over by ca. 378 Ma. Core and cover rocks of the Waterbury dome record synchronous, post-Acadian cooling.

  16. Historical review: viruses, crystals and geodesic domes.

    PubMed

    Morgan, Gregory J

    2003-02-01

    In the mid 1950s, Francis Crick and James Watson attempted to explain the structure of spherical viruses. They hypothesized that spherical viruses consist of 60 identical equivalently situated subunits. Such an arrangement has icosahedral symmetry. Subsequent biophysical and electron micrographic data suggested that many viruses had >60 subunits. Drawing inspiration from architecture, Donald Caspar and Aaron Klug discovered a solution to the problem - they proposed that spherical viruses were structured like miniature geodesic domes.

  17. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    PubMed Central

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  18. Sediment distribution about salt domes and ridges on Louisiana slope

    SciTech Connect

    Lowrie, A.

    1984-09-01

    Salt ridges and domes underlie much of the present Louisiana slope. The bathymetric expression of underlying salt could be either a mound or a flattening of the normal rate of descent down the slope. The mounded salt features form barriers to the gravity-driven sediments from the shelf break. Much industrial research has been done in the search for reservoir sands about such an obstruction. Parallel-bedded sediments from foredrifts on the upcurrent side of a seamount. These foredrift sediments were deposited where the prevailing ocean bottom currents were locally decelerated by the obstructing seamount. Moats are found on the sides of the obstruction and are the result of erosion or nondeposition owing to acceleration of deflected waters. Leedrifts are found on the downcurrent side of the obstruction. Current gyres result from deceleration of accelerated currents along the obstruction's flanks, and a complex sedimentation pattern results. Flow over the obstruction's top is determined by size and shape of the obstruction relative to size and velocity of the bottom-following current. A turbulent wave will be set up which may have sufficient amplitude to influence sedimentation on the downcurrent side. If ocean bottoms currents equal gravity-driven terrigenous sediment movement and seamounts equal salt domes and ridges, then the result of deep ocean surveys are directly applicable to sedimentation on slopes with underlying salt basement. The salt-related sedimentation pattern of the present slope should be applicable to similar paleoenvironments.

  19. A chemically reactive spinning dope for significant improvements in wet spun carbon nanotube fibres.

    PubMed

    González-Domínguez, Jose M; Neri, Wilfrid; Maugey, Maryse; Poulin, Philippe; Ansón-Casaos, Alejandro; Martínez, M Teresa

    2013-05-11

    Single-walled carbon nanotubes can be spun in a polyvinyl alcohol stream to produce nanocomposite fibres. We use a facile ester linking between both elements to create improved fibres which exhibit outstanding enhancements in the absence of post-processing stages, providing a promising alternative based on a chemical method. PMID:23471091

  20. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  1. Underwater Calibration of Dome Port Pressure Housings

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  2. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, L.A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  3. Tourmalinites from the Golden Dyke Dome, Northern Australia

    NASA Astrophysics Data System (ADS)

    Plimer, I. R.

    1986-10-01

    Tourmalinites occur at five stratigraphic levels within the low metamorphic grade multiply deformed Lower Proterozoic metasediments and metavolcanics of the Golden Dyke Dome. The geological setting, exhalite associations, sedimentary structures and tourmaline chemistry all preclude a granitic origin. Tourmalinite derived from the isochemical metamorphism of an exhalite comprising silica and tourmaline. Tourmalinite and other exhalites are hosted by carbonaceous pelitic metasediments and were deposited in deeper basinal areas. The ore fluid was probably dolerite-heated seawater which leached a thick pile of argillaceous sediments and acquired metals and boron by leaching. The first and second increase in geothermal gradient produced tourmalinite, the third produced auriferous tourmalinite and iron formations with tourmalinite and exhalative Pb-Zn deposits forming during the period of maximum geothermal gradient. More tourmalinite formed during the subsequent decline in geothermal gradient. Tourmalinites are regarded as B-rich iron formations which can be the host for or associated with exhalative deposits of Au and base metals.

  4. Holocene regional gradients of dust provenance and flux between Talos Dome and Dome C, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Andersson, P. S.; Baroni, C.; Narcisi, B.; Petit, J. R.; Salvatore, M. C.; Albani, S.; Maggi, V.

    2012-04-01

    Aeolian sequences from Central East Antarctic ice cores provide climate and environmental information of hemispheric significance. Close to the margins of the ice sheet, high-elevation ice-free terrains protruding above the ice sheet surface can provide an additional input of fine dust particles to the atmosphere, making peripheral locations particularly interesting for the study of the regional climate evolution. In the Talos Dome area of East Antarctica, entrainment and transport of local mineral particles is merely influenced by local wind direction and strength, which in turn is tuned by regional climate changes. We investigate the spatial variability of modern and Holocene dust flux, grain size and isotopic (Sr-Nd) composition along a hypothetic transect from Talos Dome all through the interior of the ice sheet (Dome C/Vostok area), and compare the geochemical fingerprint of dust extracted from firn and ice cores to the equivalent size fraction of regolith and glacial deposits from high altitude Victoria Land sources. This study aims to better understand the environmental gradients of dust flux and provenance from the marginal Talos Dome site to the higher Dome C drainage area, with implications for the regional atmospheric circulation, while documenting the isotopic composition of local exposed sediments.

  5. Finite Element Model of a Two-Phase Non-Newtonian Thixotropic Fluid: Mount St. Helens Lava Dome

    NASA Astrophysics Data System (ADS)

    Vincent, P.; Zevada, P.

    2011-12-01

    Extrusion of highly viscous lavas that spread laterally and form lava domes in the craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or the entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. The rate of lava dome growth in the mature state of the dome evolution is often oscillatory. Relatively quiescent episodes are terminated by renewed extrusion and emplacement of exogenous "lobes" or "spines" of lava on the surface of the dome. Emplacement of new lobes is preceded by pressurization of magma in the magmatic conduit that can trigger volcanic eruptions and is preceded by crater floor deformation (e.g. Swanson and Holcombe, 1990). This oscillatory behavior was previously attributed primarily to crystallization kinetics and gas exsolution generating cyclic overpressure build-ups. Analogue modeling of the lava domes has revealed that the oscillatory growth rate can be reproduced by extrusion of isothermal, pseudoplastic and thixotropic plaster of Paris (analogue material for the magma) on a sand layer (analogue material for the unconsolidated deposits of the crater floor). The patterns of dome growth of these models closely correspond to both the 1980-1985 and 2004-2005 growth episodes of Mt. St. Helens lava dome (Swanson and Holcombe, 1990; Major et al., 2005). They also suggest that the oscillatory growth dynamics of the lavas can be explained by the mechanical interaction of the non-Newtonian magma with the frictional and deformable substrate below the lava dome rather than complex crystallization kinetics (e.g. Melnik and Sparks, 1999). In addition, these results suggest that the renewed growth episode of Mt. St. Helens dome in 2006 could be associated with an even higher degree of magma pressurization in the conduit than occurred during the 1980 - 1986

  6. Geologic and hydrologic summary of salt domes in Gulf Coast region of Texas, Louisiana, Mississippi, and Alabama

    USGS Publications Warehouse

    Anderson, R. Ernest; Eargle, Dolan H.; Davis, Beth O.

    1973-01-01

    There are 263 known or suspected onshore salt domes in the Texas-Louisiana-Mississippi-Alabama portion of the Gulf Coast geosyncline. The top of the salt in 148 of them is probably deeper than desirable for a waste repository site, and 79 of those that are shallow enough are probably unavailable for a site because of present use by industry for gas storage or production of oil, salt, or sulfur. In this report we have compiled the available geologic and hydrologic background data pertinent to the evaluation of the remaining 36 known or suspected salt domes as potential sites for waste storage. There are three parts to this compilations: 1) summaries of the geology and hydrology of the salt-dome province as a whole; 2) summaries of the physiography, climate, geology, and hydrology of each of the five salt-dome basins that occur within the province; and 3) an appendix of background data for each of the 36 potentially acceptable domes. The distribution of salt domes in the province is genetically related to areas of relative subsidence that formed basins or depocenters within the Gulf Coast geosyncline. In some cases, as in northeast Texas and south Louisiana, the locations of individual domes or groups of domes are related to deep movement of salt along axial trends. The salt domes in the interior salt-dome subprovince are probably more structurally stable than those of the coastal subprovince because salt diapirism is inferred to have ceased around Miocene time in the interior but may still be active in parts of the coastal subprovince. Although the size and shape of many domes is unknown or can only be roughly approximated, each of the five basins in the province appears to contain potentially acceptable domes of adequate size for a repository. We recognize no pattern to the distribution of salt-dome size. Caprock thicknesses vary greatly within each salt-dome basin,and we recognize no pattern to the variations. Among the potentially acceptable domes, the depths to

  7. Cenozoic tectonic evolution of Liaodong dome, Northeast Liaodong Bay, Bohai, offshore China, constraints from seismic stratigraphy, vitrinite reflectance and apatite fission track data

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Yan, Shiyong; Xu, Changgui; Li, Wei; Zhang, Jing; Zhang, ShaoChen; Ren, Jian; Su, Wen; Zhang, JiangTao

    2015-09-01

    The Liaodong dome is a region of localized uplift and deformation within the Liaodong Bay, Bohai, offshore China. 3-D seismic dataset, vitrinite reflectance and apatite fission track data provide an exceptional opportunity to document the evolution of the Liaodong dome which developed coeval with the Tan-Lu strike-slip fault zone with a rift system. The 3-D seismic data demonstrates that the dome formed before the deposition stage of EsM sequence (40 Ma), and it uplifted again during or after the depositional stage of Ed sequence (32-24 Ma). Apatite fission track and vitrinite reflectance data indicate that the dome experienced two stages of cooling episodes, Paleocene to Early/Middle Eocene (65-40 Ma) and Late Oligocene to Late Miocene (30-11.5 Ma), usually indicating uplifting. Both the seismic stratigraphy and thermal history analysis show that: 1) the Liaodong dome is part of the Jiaoliao terrane; 2) regional continental rifting climaxed during 65-40 Ma, as it did the rift-shoulder uplift of the dome; 3) the reactivation of the Tan-Lu fault caused a second uplift processes of the Liaodong dome during 30-11.5 Ma; 4) the Liaodong dome uplifted independently and separated from the Jiaoliao terrane. Our results also suggest that it is important to take uplifting evolution into consideration to target a potential petroleum reservoir.

  8. Where is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B

    NASA Technical Reports Server (NTRS)

    Suanders, Will; Lawrence, Jon S.; Storey, John W. V.; Ashley, Michael C. B.; Kato, Seiji; Minnis, Patrick; Winker, David M.; Liu, Guiping; Kulesa, Craig

    2009-01-01

    The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases were selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call Ridge A (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, free atmosphere, sky brightness, pecipitable water vapour, and surface temperature at each site. We find that all Antarctic sites are likely compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted OH hole over Antarctica during Spring.

  9. Conformal dome aberration correction by designing the inner surface

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang

    2016-12-01

    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  10. A Look Inside Rotating Rubble-Pile Asteroids Spun to Disruption

    NASA Astrophysics Data System (ADS)

    Sanchez Lana, Diego; Scheeres, Daniel J.

    2014-11-01

    Driven by the images obtained by different space missions to small asteroids, during the last few years different researchers have used self-gravitating granular mechanics codes for the simulation of small rubble-pile asteroids. One of the many topics of research has been the response of these bodies to rotational evolution due to YORP, specifically the deformation and ultimate disruption of small bodies due to elevated angular velocities.In this research we use self-gravitating aggregates formed by thousands of spheres and a soft-sphere granular dynamics code to explore the effect of the variation of two parameters, friction angle and tensile strength, on their disruption process. The aggregates were slowly spun up to disruption controlling for friction angle, cohesion and global shape. How much each aggregate deformed before disruption was directly related to the angle of friction. The greater it was, the less the aggregate deformed before disruption. Cohesive forces controlled the mode of disruption and maximum spin rate, showing that the aggregates could disrupt by shedding particles or groups of particles from the equatorial region. For high values of tensile strength, the pieces that detached from the initial aggregate were sizable enough for the disruption process to be seen as a fission. This implies that the change from shedding to fission is continuous and therefore, they should not be seen as different processes but just as two ends of the spectrum.A closer look at the spherical aggregates showed that the reshaping of the bodies was not symmetrical. A granular aggregate cannot be completely homogeneous unless its particles are arranged in a crystalline structure, something we avoided. This resulted in an asymmetrically reshaped body, similar to that of 1999 KW4 (at times forming a binary system). For ellipsoidal aggregates, this meant the formation of tear-drop shapes and pairs. The failing of the granular structure is ultimately controlled by the inter

  11. Small domes on Venus - Probable analogs of Icelandic lava shields

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Williams, Richard S., Jr.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, small, dome-like features on radar images of Venus are interpreted to be analogs of Icelandic lava-shield volcanoes. Morphometric data for Venusian domes in Aubele and Slyuta as well as measurements of representative dome volumes and areas from Tethus Regio are used to demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS).

  12. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  13. Exhumation of high-pressure rocks in a Variscan migmatite dome (Montagne Noire, France)

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Roger, Francoise; Rey, Patrice; Teyssier, Christian

    2015-04-01

    of garnet rims presents a challenge for ascribing the zircon rim age to hydrothermal alteration. Of the 5 reported eclogite localities in the MN, 4 are located near a high-strain zone along the long axis of the dome and one is located in a shear zone at the SSW margin of the gneissic core. 2D and 3D numerical models show that migmatite domes may form in response to extension of the upper crust, as the partially molten deep crust ascends along a steep, axial high strain zone and then flows into subdomes flanking this zone, forming a double dome such as the MN. This mode of dome formation is an efficient mechanism for rapid exhumation of deep crust. Migmatite dome rocks equilibrate at LP/HT, but eclogite inclusion in migmatite preserve their deep origin, track exhumation, and inform the internal dynamics of domes. Domes like the MN demonstrate that the opportunistic low-viscosity deep crust flows readily to fill gaps created by extensional/ transtensional domains in the collapsing late-Variscan orogen.

  14. Numerical Simulation of Textile Composite Stamping On Double Dome

    SciTech Connect

    Xiongqi Peng; Zia Ur Rehman

    2011-05-04

    Stamping is one of the most effective ways to form textile composites in industry for providing high-strength, low-weight and cost-effective products. This paper presents a fully continuum mechanics-based approach for stamping simulation of textile fiber reinforced composites by using finite element (FE) method. A previously developed non-orthogonal constitutive model is used to represent the anisotropic mechanical behavior of textile composites under large deformation during stamping. Simulation are performed on a balanced plain weave composite with 0 deg./90 deg. and {+-}45 deg. as initial yarn orientation over a benchmark double dome device. Simulation results show good agreement with experimental output in terms of a number of parameters selected for comparison.

  15. Dispersive thermohaline convection near salt domes: a case at Napoleonville Dome, southeast Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Jamshidzadeh, Zahra; Tsai, Frank T.-C.; Ghasemzadeh, Hasan; Mirbagheri, Seyed Ahmad; Barzi, Majid Tavangari; Hanor, Jeffrey S.

    2015-08-01

    Density-driven flow around salt domes is strongly influenced by salt concentration and temperature gradients. In this study, a thermohaline convection numerical modeling is developed to investigate flow, salinity, and heat transport around salt domes under the impact of fluid dispersivity and variable density and viscosity. `Dispersive fluid flux of total fluid mass' is introduced to the density-driven flow equation to improve thermohaline modeling in porous media. The dispersive fluid flux term is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The model is first tested by a hypothetical salt-dome problem, where a circulation of flow is induced by an overpressure and density effect. The result shows a distinct salt-transport change due to the inclusion of the dispersive fluid flux and temperature effect. Then, the model is applied to investigate changes of groundwater flow, salinity, and heat transport near the west of Napoleonville salt dome, southeastern Louisiana, USA, due to a salt cavern failure. The result shows that an instant overpressure assumed to be created by the salt-cavern wall breach has little impact on salinity near the ground surface within a period of 3 months. However, salinity is significantly elevated near the breach area of the salt cavern, caused by strong flow velocities.

  16. Precipitation regime and stable isotopes at Dome C and Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Masson-Delmotte, Valerie; Powers, Jordan G.; Manning, Kevin W.; Raphael, Marilyn; Fujita, Koji; Werner, Martin; Valt, Mauro; Cagnati, Anselmo

    2016-04-01

    Dome Fuji and Dome C, both deep ice-core drilling sites in East Antarctica, are the only stations, for which direct daily precipitation measurements and stable isotope ratios of the precipitation samples are available. Whereas the Dome F series encompasses only one year of measurements, the Dome C series has been started in 2006 and is ongoing. For Dome C, the type of precipitation (diamond dust, hoar frost, snowfall) was determined based on crystal type analysis. The weather situations causing precipitation at the stations were analysed using data from the Antarctic Mesoscale Prediction System (AMPS). At both sites, major snowfall events were always related to an amplification of Rossby waves in the circumpolar westerlies, which led to an increased meridional transport of moisture and energy. Furthermore, increased amounts of diamond dust were observed after such event-type precipitation. The stable isotope data of the precipitation samples were related to the different weather situations and precipitation types and also simulated using a simple Rayleigh-type model (MCIM) and compared to output from the global isotopic-enhanced model ECHAM5wiso. Possible moisture sources were estimated using the synoptic analysis combined with back-trajectory calculation. MCIM was better in reproducing the annual cycle of deuterium excess, whereas ECHAM5wiso generally showed a smaller bias of the isotope ratios. Hoar frost shows isotope signals very different from diamond dust and snowfall, which hints at a more local cycle of sublimation and deposition for this type of precipitation, whereas both snowfall and diamond dust are related to large-scale moisture transport. Contrary to the literature, a more northern moisture source was found to be not necessarily associated with more depleted snowfall. This is explained by the strong warm air advection accompanying snowfall events, which decreases the temperature difference between source area and deposition site and thus leads to

  17. PP/POSS Nanocomposites: Characterization and Properties of Melt Spun Fibers

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Jo; Roy, Sayantan; Jana, Sadhan

    2009-03-01

    It is known that molecules of polyhedral oligomeric silsesquioxane (POSS) can self-assemble into spherical, fibrillar, or lamellar nanoparticles by bottom-up self assembly process during mixing with host polymers. This study capitalizes on such nanoparticle formation to increase the melt strength and tensile properties of polyolefin blown films and spun fibers. A novel method was developed whereby a sorbitol-type nucleating agent was used as dispersion aids for POSS. The nucleating agent also served as templates for self-assembly of POSS molecules into nanoparticles of 25-200 nm in diameter. A typical polypropylene formulation containing 0.3 wt% nucleating agent and 5-10 wt% POSS was spun into fibers with close to 70% reduction in diameter and 40-45% increase in modulus and 70-75% increase in yield strength compared to unfilled PP. An optimum concentration of POSS was identified.

  18. DOME: operational metrics under one roof

    NASA Astrophysics Data System (ADS)

    Primas, F.; Marteau, S.; Tacconi-Garman, L. E.; Mainieri, V.; Rejkuba, M.; Mysore, S.

    2012-09-01

    Thirteen VLT/I instruments plus some extra critical components like the block-scheduling of the Laser Guide Star Facility and VLTI baselines make for a rather complex machine that constantly challenges our operational efficiencies. DOME (Dashboard for Operational Metrics at ESO) is an ongoing project developed, implemented and maintained by the ESO User Support Department. It aims at providing an ESO-internal dashboard where key operational metrics are published and updated at regular intervals. Here, we will present the project and report on the indicators that have been looked at until now.ty and VLTI baselines make for a rather complex machine that constantly challenges our operational efficiencies. DOME (Dashboard for Operational Metrics at ESO) is an ongoing project developed, implemented and maintained by the ESO User Support Department. It aims at providing an ESO-internal dashboard where key operational metrics are published and updated at regular intervals. Here, we will present the project and report on the indicators that have been looked at until now.

  19. Surface valence transformation during thermal activation and hydrogenation thermodynamics of Mg-Ni-Y melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Tiebang; Song, Wenjie; Kou, Hongchao; Li, Jinshan

    2016-05-01

    In this work, phase compositions and chemical valence states on the surface and subsurface of Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons during thermal activation have been investigated by X-ray photoelectron spectroscopy (XPS). The results indicate that the surface contaminants of melt-spun ribbons are mainly MgO, NiO, Y2O3 and organics. The oxides/hydroxides of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are removed from the surface during thermal activation. Surface chemical valence firstly transforms from oxidized state to the metallic one during thermal activation, which accounts for hydrogenation of Mg67Ni33-xYx melt-spun ribbons. Hydrogen absorption capacities of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are enhanced with the increase of cycle numbers during thermal activation. Hydrogenation thermodynamics of activated Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons have been also compared and correlated with the surface valence transformation. The obtained enthalpy of hydride formation is -55.5, -50.5, -46.9 and -48.6 kJ/mol for Mg67Ni33-xYx melt-spun ribbons with x = 0, 1, 3 and 6, respectively.

  20. Measurement of high-birefringent spun fiber parameters using short-length fiber Bragg gratings.

    PubMed

    Vasiliev, S A; Przhiyalkovsky, Ya V; Gnusin, P I; Medvedkov, O I; Dianov, E M

    2016-05-30

    Spectral polarization characteristics of short-length fiber Bragg gratings UV-written in a highly-birefringent spun-fiber have been investigated. Based on the analysis of the characteristics the technique for measuring the built-in linear phase birefringence as well as the spin period in this fiber type has been suggested. In this method the birefringence dispersion is excluded and therefore the built-in linear phase birefringence can be measured with an improved accuracy. PMID:27410060

  1. Effect of mechanical processing on giant magnetoresistance in melt-spun Co{endash}Cu ribbons

    SciTech Connect

    Jiang, J.S.; Pearson, J.; Hinks, D.; Bader, S.D.

    1997-11-01

    We have investigated the effect of uniaxial deformation on the giant magnetoresistance (GMR) effect in melt-spun Co{endash}Cu ribbons. Postprecipitation deformation does not affect the Co particles, but the mechanical processing increases the structural disorder and the resistivity; thus the GMR effect is degraded. Deforming the metastable alloy prior to precipitation of the Co particles possibly affects the particle nucleation process. As a result, the low-field sensitivity of the GMR effect increases slightly.

  2. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  3. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    SciTech Connect

    Karakoese, Ercan; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.

  4. Neutron irradiation study of Nd-Fe-B permanent magnets made from melt-spun ribbons

    SciTech Connect

    Brown, R.D.; Cost, J.R.; Meisner, G.P.; Brewer, E.G.

    1988-01-01

    Radiation-induced changes in the magnetization of sintered Nd-Fe-B permanent magnets are known to vary widely among specimens produced by different manufacturers. Samples of Nd-Fe-B MAGNEQUENCH magnets, which are made from melt-spun ribbons, have now been studied and show a much reduced sensitivity to neutron irradiation than do sintered Nd-Fe-B magnets. All melt-spun ribbon-based MAGNEQUENCH magnets, i.e., epoxy-bonded, hot-pressed, and die-upset magnets, show essentially the same slow decrease in magnetic remanence with neutron dose. Measurements of the open-circuit remanence B/sub r//B/sub ro/ at various times during the irradiation show a decay of only 1.5% of the preirradiated value for the MAGNEQUENCH magnets after 1 hour of irradiation, or a dose of 1.4 /times/ 10/sup 16/ neutrons/cm/sup 2/, compared to a 4.6% drop in remanence for the best sintered Nd-Fe-B magnet (Sumitomo 3OH) with the same irradiation dose. Moreover, after 5.3 hours of irradiation, the remanence drops by only 3% for the MAGNEQUENCH magnets. Magnets made from melt-spun ribbons are thus the least sensitive to neutron irradiation so far measured for Nd-Fe-B permanent magnets, but are somewhat more sensitive than samarium-cobalt magnets. 12 refs., 1 fig.

  5. A Geohydrologic Analysis of an Upland-Dome Aquifer System, a Case Study of Ester Dome, Alaska

    NASA Astrophysics Data System (ADS)

    Youcha, E. K.; Lilly, M. R.; Hinzman, L. D.

    2001-12-01

    We are investigating the Ester Dome upland-dome aquifer system located seven miles west of Fairbanks, Alaska. The bedrock of the Fairbanks area is composed primarily of pre-Cambrian to mid-Paleozoic metamorphic rocks of the Yukon-Tanana metamorphic complex (Forbes, 1982). Common geomorphic structures in the Tanana-Yukon Uplands are bedrock domes. Igneous intrusives underlie many of Interior Alaska's dome structures. The Fairbanks Mining District is dominated by either upland bedrock aquifers or valley alluvial aquifers. The geohydrology of an upland dome is characterized by open boundaries. A typical watershed approach is to define a drainage system and define no-flow boundaries. Alaska Interior dome systems are the inverse of this approach. Boundaries are more likely to be all discharging ground water and surface water. A ground-water monitoring network of 50 observation wells on Ester Dome allows us to obtain field data to help interpret upland-dome geohydrologic processes. Seasonal and pumping water-level fluctuations occur in several wells, but many wells show no seasonal or short-term variation in water levels. Geologic variation on Ester Dome helps explain these differences. Ester Dome consists of four major stratigraphic units: quaternary alluvial and eolian deposits, Fairbanks Schist, Muskox Amphibolite and Schist, and cretaceous plutonic rocks. Additionally, permafrost is present in much of the low-lying valleys and north-facing slopes of the dome. Water levels in wells will exhibit different responses since the hydrogeologic properties of each unit differ. Snow surveys and precipitation recorders were established at varying elevations on Ester Dome to examine the changes in precipitation spatially and to evaluate recharge processes. In general, precipitation on the dome increases with elevation. The amount of unknown information on Ester Dome makes simplified analysis approaches harder to evaluate taking into account all the possible geohydrologic models

  6. Acoustic and Elastodynamic Redatuming for VSP Salt Dome Flank Imaging

    NASA Astrophysics Data System (ADS)

    Lu, R.; Willis, M.; Toksoz, N.

    2007-12-01

    We apply an extension of the concept of Time Reversed Acoustics (TRA) for imaging salt dome flanks using Vertical Seismic Profile (VSP) data. We demonstrate its performance and capabilities on both synthetic acoustic and elastic seismic data from a Gulf of Mexico (GOM) model. This target-oriented strategy eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove the effects of the salt canopy and surrounding overburden. In this study, we use data from surface shots recorded in a well from a walkaway VSP survey. The method, called redatuming, creates a geometry as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process generates effective downhole shot gathers without any knowledge of the overburden velocity structure. The resulting shot gathers are less complex since the VSP ray paths from the surface source are shortened and moved to be as if they started in the borehole, then reflected off the salt flank region and captured in the borehole. After redatuming, we apply multiple passes of prestack migration from the reference datum of the borehole. In our example, the first pass migration, using only simple vertical velocity gradient model, reveals the outline of the salt edge. A second pass of reverse-time prestack depth migration using the full, two-way wave equation, is performed with an updated velocity model that now consists of the velocity gradient and the salt dome. The second pass migration brings out the dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank forming prismatic reflections.

  7. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  8. The Carrier Dome Controversy: Rewriting the Town-Gown Relationship.

    ERIC Educational Resources Information Center

    Kirby, Donald J.

    1988-01-01

    On December 16, 1986, a new Syracuse city administration and the university announced an agreement exempting the Syracuse University Carrier Dome from real estate taxes; in return the city would receive a share of ticket proceeds from nonacademic Dome events. This settled a controversy that began when the city demanded payment of city taxes in…

  9. The Mairan domes: silicic volcanic constructs on the Moon

    USGS Publications Warehouse

    Glotch, Timothy D.; Hagerty, Justin J.; Lucey, Paul G.; Hawke, B. Ray; Giguere, Thomas A.; Arnold, Jessica A.; Williams, Jean-Pierre; Jolliff, Bradley L.; Paige, David A.

    2011-01-01

    The Mairan domes are four features located in northern Oceanus Procellarum at ∼312.3E, 41.4N on the Moon. High resolution visible imagery, visible-to-mid-IR spectra, and Lunar Prospector Th abundance data all indicate that these four domes have a composition that is consistent with derivation from a Si-rich, highly evolved magma.

  10. Astronaut Jack Lousma doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  11. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  12. A Multi-Aperture Scintillation Sensor for Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Chen, Hualin; Pei, Chong; Yuan, Xiangyan

    2013-01-01

    Site-testing measurements by the Australian group has already shown that Dome C on the Antarctic plateau is one of the best ground-based astronomical sites. Furthermore, Dome A, the Antarctic Kunlun Station, as the highest point on Antarctic inland plateau, where a Chinese Antarctic scientific expedition team first reached in 2005, is widely predicted to be an even better astronomical site by the international astronomical community. Preliminary site-testing carried out by the Center for Antarctic Astronomy (CAS) also confirms Dome A as a potential astronomical site. Multi-aperture scintillation sensors (MASS) can measure the seeing and isoplantic angle, the turbulence profile, etc., which are very important site-testing parameters that we urgently need. The MASS site testing at Dome A is presented here, and includes the method of processing data and the hardware for the extreme conditions of Dome A, Antarctica.

  13. Effects of hypersonic vehicle's optical dome on infrared imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjun; Cao, Zhiguo; Wang, Wenwu

    2011-09-01

    When an optically guided hypersonic vehicle flies in the atmosphere, the scene is viewed through an optical dome. Because of hypersonic friction with the atmosphere, the optical dome is inevitably covered by a serious shock wave, which threatens to alter the dome's physical parameters and further induce wavefront distortion and degradation of images. By studying the physical phenomena occurring within the optical dome in such an adverse environment, this paper identifies the relationship between the variation of the dome's optical characteristics and the infrared image degradation. The research indicates that the image quality degrades sharply as the vehicle's Mach number increases. Simulations also show that while the thermo-optic effect, elastic-optic effect, thermal deformation, and variation of transmittance have little effect on the optical system, the thermal radiation severely degrades images when vehicles fly at hypersonic speeds. Photo-Optical Instrumentation Engineers

  14. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

  15. Phase competition in trisected superconducting dome

    NASA Astrophysics Data System (ADS)

    Vishik, Inna

    2012-02-01

    The momentum-resolved nature of angle-resolved photoemission spectroscopy (ARPES) has made it a key probe of emergent phases in the cuprates, such as superconductivity and the pseudogap, which have anisotropic momentum-space structure. ARPES can be used to infer the origin of spectral gaps from their distinct phenomenology---temperature, doping, and momentum dependence, and this principle has been used to argue that the pseudogap is a distinct phase from superconductivity, rather than a precursor [1]. We have studied Bi2Sr2CaCu2O8+δ (Bi-2212) using laser-ARPES, and our data give evidence for three distinct quantum phases comprising the superconducting ground state, accompanied by abrupt changes at p˜0.076 and p˜0.19 in the doping-and-temperature dependence of the gaps near the bond-diagonal (nodal) direction [2]. The latter doping likely marks the quantum critical point of the pseudogap, while the former represents a distinct competing phase at the edge of the superconducting dome. Additionally, we find that the pseudogap advances closer towards the node when superconductivity is weak, just below Tc or at low doping, and retreats towards the antinode well below Tc and at higher doping. This phase competition picture together with the two critical doping are synthesized into our proposed phase diagram, which also reconciles conflicting phase diagrams commonly used in the field. Our results underscore the importance of quantum critical phenomena to cuprate superconductivity, provide a microscopic picture of phase competition in momentum space, and predict the existence of phase boundaries inside the superconducting dome which are different from simple extrapolations from outside the dome. [4pt] [1] I. M. Vishik, W. S. Lee, R.-H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z.-X. Shen. New J. Phys. 12, 105008 (2010). [0pt] [2] I. M. Vishik, M. Hashimoto, R.-H. He, W. S. Lee, F. Schmitt, D. H. Lu, R.G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K

  16. Geologic study of Kettle dome, northeast Washington. Final report

    SciTech Connect

    Not Available

    1980-10-01

    This geologic study of Kettle dome, northeast Washington, encompasses an area of approximately 800 square miles (2048 sq km). The evaluation of uranium occurrences associated with the igneous and metamorphic rocks of the dome and the determination of the relationship between uranium mineralization and stratigraphic, structural, and metamorphic features of the dome are the principal objectives. Evaluation of the validity of a gneiss dome model is a specific objective. The principal sources of data are detailed geologic mapping, surface radiometric surveys, and chemical analyses of rock samples. Uranium mineralization is directly related to the presence of pegmatite dikes and sills in biotite gneiss and amphibolite. Other characteristics of the uranium occurrences include the associated migmatization and high-grade metamorphism of wallrock adjacent to the pegmatite and the abrupt decrease in uranium mineralization at the pegmatite-gneiss contact. Subtle chemical characteristics found in mineralized pegmatites include: (1) U increase as K/sub 2/O increases, (2) U decreases as Na/sub 2/O increases, and (3) U increases as CaO increases at CaO values above 3.8%. The concentration of uranium occurrences in biotite gneiss and amphibolite units results from the preferential intrusion of pegmitites into these well-foliated rocks. Structural zones of weakness along dome margins permit intrusive and migmatitic activity to affect higher structural levels of the dome complex. As a result, uranium mineralization is localized along dome margins. The uranium occurrences in the Kettle dome area are classified as pegmatitic. Sufficient geologic similarities exist between Kettle dome and the Rossing uranium deposit to propose the existence of economic uranium targets within Kettle dome.

  17. The Discovery Dome: A Tool for Increasing Student Engagement

    NASA Astrophysics Data System (ADS)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  18. Transdomes: Emplacement of Migmatite Domes in Oblique Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Rey, P. F.; Whitney, D. L.; Mondy, L. S.; Roger, F.

    2014-12-01

    Many migmatite domes are emplaced within wrench corridors in which a combination of strike-slip and extensional detachment zones (pull-apart, extensional relay, or transfer zones) focus deep-crust exhumation. The Montagne Noire dome (France, Variscan Massif Central) exemplifies wrench-related dome formation and displays the following structural, metamorphic, and geochronologic characteristics of a 'transdome': the dome is elongate in the direction of extension; foliation outlines a double dome separated by a high-strain zone; lineation is shallowly plunging with a fairly uniform trend that parallels the strike of the high-strain zone; subdomes contain recumbent structures overprinted by upright folds that affected upward by flat shear zones associated with detachment tectonics; domes display a large syn-deformation metamorphic gradient from core (upper amphibolite facies migmatite) to margin (down to greenschist facies mylonite); some rocks in the dome core experienced isothermal decompression revealed by disequilibrium reaction textures, particularly in mafic rocks (including eclogite); and results of U-Pb geochrononology indicate a narrow range of metamorphic crystallization from core to mantling schist spanning ~10 Myr. 3D numerical modeling of transdomes show that the dome solicits a larger source region of partially molten lower crust compared to 2D models; this flowing crust creates a double-dome architecture as in 2D models but there are differences in the predicted thermal history and flow paths. In a transtension setting, flow lines converge at depth (radial-centripetal flow) toward the zone of extension and diverge at shallow levels in a more uniform direction that is imposed by upper crust motion and deformation. This evolution produces a characteristic pattern of strain history, progressive fabric overprint, and P-T paths that are comparable to observed dome rocks.

  19. Spatial and temporal patterns of dome extrusion during the 2004-2008 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Salzer, J. T.; Denlinger, R. P.; Diefenbach, A. K.; Walter, T. R.

    2014-12-01

    Extensive efforts by the USGS Cascades Volcano Observatory in response to the 2004-2008 dome building eruption at Mount St. Helens recorded the extrusion of seven dacite spines. Efforts included a network of time-lapse cameras. Published studies of decimated data from these cameras show strong correlations between (long-term) extrusion velocities determined from the camera imagery and ancillary geophysical data, such as dome tilt and RSAM seismicity. However, more detailed analysis of these data should provide better constraints on physical processes behind dome extrusion. Here we apply modern computer vision techniques to explore the spatiotemporal variability and interactions occurring during spine extrusion and dome growth. Digital Image Correlation (DIC) delineates the deformation field in a series of images at sub-pixel level, and quantifies dome, talus and glacier deformation at unprecedented resolution, revealing spatiotemporal variability of the strain field on the time scale of hours. We identify sharp boundaries between the vertically extruding spine, laterally displaced material, and downward-creeping talus. The spine growth at Mount St. Helens appears locally constrained and structurally separated into distinct segments. The velocities of different dome segments are generally correlated, but displacement patterns of the talus are more complex. We identify short term fluctuations with periods of hours to days superimposed on longer term fluctuations having periods of several weeks. The short term episodes of high displacement rates are often associated with strongly degassing plumes observed in the camera imagery. Over longer periods (days to weeks), extrusion rates form a sinusoidal fluctuating pattern, marked by sharp increases and gradual decreases in velocity. These observations substantiate the correlations with seismic and geodetic data shown in previous studies, but more closely constrain the velocity fluctuations of each spine. These fluctuations

  20. The Lifferth Dome for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  1. Structural review of the Vredefort dome

    NASA Technical Reports Server (NTRS)

    Colliston, W. P.; Reimold, W. U.

    1992-01-01

    The structure of the older-than-3.2-Ga Archean basement and Archean-to-Precambrian sedimentary/volcanic rocks (3.07 to ca. 2.2 Ga) in the center of the Witwatersrand Basin to the southwest of Johannesburg (South Africa) is dominated by the ca. 2.0-Ga megascopic Vredefort 'Dome' structure. The effect of the 'Vredefort event' is demonstrably large and is evident within a northerly arc of about 100 km radius around the granitic core of the structure. Northerly asymmetric overturning of the strata is observed within the first 17 km (strata is horizontal in the south), followed by a 40-km-wide rim synclinorium. Fold and fault structures (normal, reverse, and strike-slip) are locally as well as regionally concentrically arranged with respect to the northern and western sides of the structure. The unusual category of brittle deformation, the so-called 'shock deformation', observed in the collar strata has attracted worldwide attention over the past two decades. These deformation phenomena include the presence of coesite and stishovite, mylonites, and pseudotachylites, cataclasis at a microscopic scale, and the ubiquitous development of multiply striated joint surfaces (which include shatter cones, orthogonal, curviplanar, and conjugate fractures). The macroscopic to microscopic deformation features have led to the formulation of various hypotheses to account for the origin of the Vredefort structure: (1) tectonic hypotheses--deep crustal shear model, doming and N-directed thrust fault model, fold interference model, and diapir model; (2) the exogenous bolide impact hypothesis; and (3) the endogenous cryptoexplosion model.

  2. Evolution of the microstructure and magnetic properties of as-cast and melt spun Fe2NiAl alloy during aging

    NASA Astrophysics Data System (ADS)

    Menushenkov, V. P.; Gorshenkov, M. V.; Shchetinin, I. V.; Savchenko, A. G.; Savchenko, E. S.; Zhukov, D. G.

    2015-09-01

    Fe2NiAl-based alloy with the nominal composition Fe51.1Ni23.5Al23.7Si1.7 was prepared by casting and melt-spinning. Comparison of the phase composition, microstructure and magnetic properties of water-quenched bulk samples and melt spun ribbons after isothermal aging in the 500-900 °C range were carried out. TEM investigations of the decomposition of the solid solution into β- and β2 phases during cooling or quenching and subsequent aging have revealed different types of decomposition products. The optimal periodic modulated structure with coercive force Hc~700 Oe was observed after cooling of as-cast alloy at a critical rate. In this structure the paramagnetic β2 phase forms a continuous network that isolates elongated single domain ferromagnetic β particles. The water-quenched bulk samples and melt spun ribbons were characterized by zone structure with zones about 10 nm and 4 nm in size. The isothermal aging of quenched samples resulted in the formation of modulated microstructure dissimilar to those of the optimal state. The coarsening of ferromagnetic β particles as well as deterioration of the magnetic insulation of β particles occur in bulk samples after aging at Tag>700 °C that decreases Hc≤350 Oe. The dependence δM(H) was measured and negative values of δM(H) in the H=0-2000 Oe range indicate that magnetostatic interactions between the β particles are dominant. The melt spun ribbons were characterized by the presence of antiphase domain boundaries (APD) and discontinuous precipitation (DP) products at grain boundaries (GB). The cellular areas at GBs consisting of alternating lamellas of β‧- and β2‧ type phases were formed after aging the ribbons at Tag>500 °C. At Tag>700 °C the modulated structure formed inside grains and the wide intergranular double-layer of β and β2 phases develops by the coalescence of the primary DP products that decrease Hc≤250 Oe. MFM image of the magnetic structure correlated with the microstructure of the

  3. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

    1980-01-01

    Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.

  4. Syntectonic Extension and Dome Development during Formation of the NE-Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Thiede, R. C.; Sobel, E. R.; Schoenbohm, L. M.; Chen, J.; Stockli, D. F.

    2011-12-01

    4 Ma to the NW and 4 to 6 Ma along the southern termination of the Muztagh Ata dome were obtained. Structural observation and pervasive Ar-cooling ages of 10-8 Ma suggest that the rocks forming the southern termination of Muztagh Ata were exhumed along a N-S-deforming Shen-ti fault during the middle Miocene before deformation shifted to E-W-oriented deformation along the KNFS. Preliminary 1D thermo-kinematic and erosion modeling in combination with structural observations suggests (1) that along the southern termination of Muztagh Ata, exhumation must have been high between ~10 to ~5 Ma (>3 mm/a); however, since then exhumation rates have slowed down to rates <0.5 mm/a; (2) a shift from N-S-to-E-W-directed dome exhumation occurred at ~8 Ma, (3) since then, erosion and exhumation has been limited mainly to the vicinity of the domes, allowing them to exhume with up to threefold higher rates than the surrounding Pamir. One can speculate whether the observed kinematic change in the NE-Pamir reflects a change in rheology, boundary conditions or gravitational potential energy, as discussed for Tibet.

  5. The eastern Central Pamir Gneiss Domes: temporal and spatial geometry of burial and exhumation

    NASA Astrophysics Data System (ADS)

    Rutte, Daniel; Stearns, Michael; Ratschbacher, Lothar

    2013-04-01

    of the domes are Paleozoic. Detrital zircon data from the low-grade cover and surrounding units of the Muskol dome suggest that low-grade cover and high-grade dome formed from the same Paleozoic, possibly early Mesozoic strata. This indicates that the upper crust of the Central Pamir thickened to at least 30 km in phase (1). Based on our data and those of Robinson et al. (2012) underthrusted Karakul-Mazar (Songpan-Ganze) material (as discussed by Schwab et al. 2004), in analogy to the Tibetan Qiangtang domes (Kapp et al. 2000), can be ruled out as protolith for the Muskol and Shatput domes. (3) Neogene shortening is bi-vergent: top-to-S back-thrusting north of the Central Pamir Gneiss Domes opposes top-to-N thrusting in the south. Neogene deformation affected ~18 Ma (Ar-Ar) coarse fluvial and alluvial fan strata with basaltic dikes and flows south of the dome; restoration of these strata yielded up to 40% shortening. Total shortening by thrusting of the Central Pamir is at least 40% in the Shatput-Muskol area with a minimal total shortening of 70 km; internal deformation with recumbent north-verging folds within the domes and its cover indicate much higher values. Literature: Kapp, P., Yin, A., Manning, C. E., Murphy, M., Harrison, T. M., Spurlin, M., Lin, D., Yi-Guang, D., Cun-Ming, W. (2000) Blueshist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet, Geology, v. 28; no. 1; p.19-22 Robinson, A. C., M. Ducea, and T. J. Lapen (2012), Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir, Tectonics, 31, TC2016, doi:10.1029/2011TC003013. Schwab, M., Ratschbacher, L., Siebel, W., McWilliams, M., Minaev, V., Lutkov., V., Chen, F., Stanek, K., Nelson, B. and Wooden, J. L. (2004) Assembly of the Pamir: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamir and their relation to Tibet, Tectonics, 23, No. 4, TC4002

  6. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie; Lavallée, Yan; Varley, Nick; Wadsworth, Fabian; Lamb, Oliver; Vasseur, Jérémie

    2016-04-01

    Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945). This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced the lava dome

  7. The Vaasa migmatitic complex: the birth, growth and death of a thermal dome

    NASA Astrophysics Data System (ADS)

    Chopin, Francis; Korja, Annakaisa; Hölttä, Pentti; Eklund, Olav; Tapani Rämö, Osmo

    2015-04-01

    The Vaasa migmatitic complex, or Vaasa dome, is cored by diatexite migmatites and S-type granitoids and gradually mantled by metatexite migmatites and mica schist with thin metabasite-andesite intercalations. Previous geochemical studies have demonstrated that the metasediments are the sources of the melted core: it have been suggested that the complex have been formed by in-situ melting of a basin. Field work studies highlight the formation of a gently dipping metamorphic fabric with a lateral increase of the in-situ melt content towards the core of the dome (D1). This early layered and partially melted fabric is then affected by a regional N-S shortening forming km- to outcrop-scale E-W striking folds and new sub-vertical foliation (D2). Late sub-vertical shearing is visible along the dome border and within the diatexitic zone (D3). No late detachment structures have been observed. In the metamorphic belt, the grade increases from medium-T amphibolite facies to low-P granulite facies towards the core of the dome. Pseudosections in the MnNCKFMASHTO system have been performed in one mica schist (Grt+BtPl+Qz±Std+Sill+And) and one metatexite migmatite (Bt+Liq+Crd+Pl+Kfs+Grt+Qz±Sill+And). The metamorphic peaks are bracketed at 560°C at 5 kbar and 750-770°C at 4.5-5 kbar, respectively. The retrograde condition is situated at 540°C and <3 kbar for both lithologies. This implies an isobaric increase of the metamorphic grade towards the core of the dome. An isothermal decompression for the schist and a retrograde PT path for the migmatites are observed. Existing and new U/Pb monazite ages from mica schists, migmatites and clustered at 1860-1865 Ma whereas U/Pb ages from metamorphic and magmatic zircons are older and clustered at 1875 Ma. The latter might represent the peak of melting process and associated metamorphism whereas monazites ages might be related to the cooling of the orogenic middle crust. It has to be noticed that few monazites from metamorphic rocks of

  8. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  9. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  10. Melt spun and suction cast Nd-Fe-Co-B-Nb hard magnets with high Nd contents

    NASA Astrophysics Data System (ADS)

    Cui, X. H.; Liu, Z. W.; Zhong, X. C.; Yu, H. Y.; Zeng, D. C.

    2012-04-01

    Nd-Fe-Co-B-Nb alloys with Nd contents of 9-9.5 at % were prepared by melt spinning and suction casting. It was found from the melt spun ribbon samples that Nb addition enhanced the glass forming ability and Co addition improved the thermal stability. Larger values of Jr and (BH)max were obtained for the ribbon samples than for the bulk ones due to the finer crystalline structure in the former. Nanocrystallite with amorphous structure was found in the suction cast rod samples. The as-cast Nd9Fe71.5B15.5Nb4 rod in a diameter of 2 mm exhibited the best hard magnetic behavior. A remanence of 0.59 T, a coercivity of 1154 kA/m, and a maximum energy product of 54.2 kJ/m3 have been obtained after heat treatment. The distribution of nonmagnetic FeNb phase plays a key role in the improvement of coercivity. Current work suggests that large size Nd2Fe14B/Fe3B nanocomposite magnets with high Nd contents and good magnetic properties can be obtained using a nanocrystalline precursor instead of bulk metallic glass.

  11. Lava Dome Growth at Volcan de Fuego MEXICO (Colima Volcano), October 2001 to May 2002

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Reyes-Davila, G. A.

    2002-12-01

    The Volcan de Fuego (19.512 N, 103.617 W) is located on the border between the States of Jalisco and Colima, Mexico, it is also known as Colima Volcano or Zapotl n Volcano, is a stratovolcano rising nearly 4000 m above sea level, and is the most active volcano in Mexico. Recent activity has been characterized by at least 3 different phases since January 1998 when seismic swarms began and ended with the extrusion of blocky lava in November 22, 1998 by the West vent as the 1991 eruptive process. That extrusive period lasted until the end of January, 1999 when was possible to observe a change in the seismic pattern, which mark the beginning of a new eruptive regime, an explosive one. On February 10, 1999 at approximately 0154 local time, 0754 gmt, an explosive event happens at the summit dome of Volc n de Fuego, four more big explosions took place at the summit the last one at dawn February 22, 2001. These explosions opened a new crater at the summit with a elliptical form with radius of 260 x 225 m and depth between 40 m and 15 m. A small dome structure inside the new crater was reported by March 2001. A reconnaissance flight in August 2001 shows two main features in the main crater an steep-sided mound(scoria cone) over the West vent and an inner crater on the NE vent. On October 31 Civil Defense members at Nevado Base on Nevado de Colima observed a neddle over the main crater rim, reconnaissance flight shows a spiny, 40 m high with a diameter of 20 m grows from the NE vent, the spiny seems to formed by material of the 1976 eruption. Continuous aerial observations allow us to follow the growth of a new dome pushing out the spiny. On November 23 the dimensions of the dome under the spiny were a radius of about 14 m and 21 m high for a total extrusion of 86,000 m3 which implies a extrusion rate of 0.027m3 /seg. By December the dome push out the spiny and began to grow from the NW vent. By December 29 an increase in the rate of extrusion was observed reaching a value

  12. Maximum potential erosion and inundation of seven interior salt domes

    SciTech Connect

    Aronow, S.

    1982-08-01

    Seven interior salt domes have been evaluated in regard to erosion or inundation due to natural events. The most likely possibility of either event occurring would be associated with continental glaciation. The domes were evaluated based on maximum previous sea level changes due to glaciation and effects caused by melting of existing ice sheets. Results are listed for each of the seven domes. Past history indicates a likelihood of returning to a glacial period. The subsequent fall of sea level may cause regrading of streams in the area. A conservative evaluation of this phenomenon was performed and the results are reported.

  13. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  14. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  15. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  16. Enhanced power transfer and mode coupling in spun twin-core optical fibers

    SciTech Connect

    Kutz, J.N.; Muraki, D.J.

    1996-06-01

    In a twin-core optical fiber a propagating light pulse periodically transfers power between its two cores. Experiments by Tjugiarto {ital et} {ital al}. [Opt. Lett. {bold 17,} 1058 (1992)] have demonstrated that this coupling length is considerably reduced when the fiber is also spun. A coupled-mode analysis reveals a pitch resonance that couples a cladding mode with the circularly polarized core mode whose handedness matches that of the helical twist of the cores. This resonance mechanism explains the observation of enhanced coupling and cladding-mode cross coupling. {copyright} {ital 1996 Optical Society of America.}

  17. 4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-37 43 13.7 / W-119 34 23.0 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  18. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  19. DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  20. DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS OF THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  1. DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. 4. FACING EAST ACROSS BRIDGE AT HALF DOME WITH BICYCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FACING EAST ACROSS BRIDGE AT HALF DOME WITH BICYCLE PATH MARKERS IN FOREGROUND AND ELECTRICAL TRANSFORMER FOR CAMPGROUND TO RIGHT. - Ahwahnee Bridge, Spanning Merced River on service road, Yosemite Village, Mariposa County, CA

  4. 8. Detail view of steam dome attached to top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of steam dome attached to top of Lancashire double flue boiler. - Hacienda Azucarera El Coto, Sugar Mill Ruins, .5 Mi. SW of Rt. 347 Bridge Over Guanajibo River, San German, San German Municipio, PR

  5. Geomorphogenesis and Carbon Fluxes of Tropical Peat Domes

    NASA Astrophysics Data System (ADS)

    Cobb, A.; Hoyt, A.; Dommain, R.; Harvey, C. F.

    2015-12-01

    Tropical peatlands sequester and release globally significant quantities of carbon dioxide as peat domes grow and subside on millennial time scales. Research to date indicates that the hydrologic feedback between water table depth and peat accumulation is fundamentally similar across tropical peatlands, but peat accumulation and fluxes cannot always be spatially uniform across the landscape because peat accumulates in domes. We show that upscaling from local measurements to landscape fluxes of CO2 and CH4 requires (1) sampling in both the growing interiors and the static margins of peat domes, and (2) use of topographical data from the peatland. Similarly, inference of past carbon sequestration from dated peat cores requires a model for the partitioning of peatlands into domes by drainage networks.

  6. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  7. 5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. LOOKING E. GIS: N-37 42 43.8 / W-119 35 12.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  8. 1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-36 43 45.8 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  9. Dome shaped features on Europa's surface

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Solid State Imaging system aboard the spacecraft Galileo took this image of the surface of Europa on February 20, 1997 during its sixth orbit around Jupiter. The image is located near 16 North, 268 West; illumination is from the lower-right. The area covered is approximately 48 miles (80 kilometers) by 56 miles (95 kilometers) across. North is toward the top of the image.

    This image reveals that the icy surface of Europa has been disrupted by ridges and faults numerous times during its past. These ridges have themselves been disrupted by the localized formation of domes and other features that may be indicative of thermal upwelling of water from beneath the crust. These features provide strong evidence for the presence of subsurface liquid during Europa's recent past.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Snodar: 2009 performance at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Bonner, Colin S.; Ashley, Michael C. B.; Bradley, Stuart G.; Cui, Xiangqun; Feng, Longlong; Gong, Xuefei; Lawrence, Jon S.; Luong-van, Daniel M.; Shang, Zhaohui; Storey, John W. V.; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2010-07-01

    Snodar is a high resolution acoustic radar designed specifically for profiling the atmospheric boundary layer on the high Antarctic plateau. Snodar profiles the atmospheric temperature structure function constant to a vertical resolution of 1 m or better with a minimum sample height of 8 m. The maximum sampling height is dependent on atmospheric conditions but is typically at least 100 m. Snodar uses a unique in-situ intensity calibration method that allows the instrument to be autonomously recalibrated throughout the year. The instrument is initially intensity calibrated against tower-mounted differential microthermal sensors. A calibration sphere is located in the near-field of the antenna to provide a fixed echo of known intensity, allowing the instrument to be continuously re-calibrated once deployed. This allows snow accumulation, transducer wear and system changes due to temperature to be monitored. Year-round power and communications are provided by the PLATO facility. This allows processed data to be downloaded every 6 hours while raw data is stored on-site for collection the following summer. Over 4 million processed samples have been downloaded through PLATO to date. We present signal attenuation from accumulation of snow and ice on Snodar's parabolic reflector during the 2009 at Dome A.

  11. Dome houses and energy conservation: an introductory bibliography. [38 references to dome efficiency

    SciTech Connect

    Not Available

    1983-01-01

    The appearance of geodesic domes in conventional neighborhoods is recent. The current popularity of these spherical designs is due to their energy efficiency. Some manufacturers have claimed over 40% efficiency improvement over conventional homes of the same size. A host of low utility bills across the country is now backing up these claims. This bibliography concentrates on the period from 1960 to the present, although there are a few entries from earlier periods. Most of the material is available in articles rather than books.

  12. Perforating domed plasmonic films for broadband and omnidirectional antireflection.

    PubMed

    Ai, Bin; Gu, Panpan; Möhwald, Helmuth; Zhang, Gang

    2016-08-25

    Domed Ag nano-hole/disk array films exhibit a reflectivity of less than 0.7% over a wide spectral range (400-1000 nm) and even lower values down to 0.05% with an oblique incidence angle; this unique optical response is attributed to three key factors: diffractive scattering loss on nanostructures, localized plasmonic absorption and curved surface (domed units). PMID:27510646

  13. Preliminary paragenetic interpretation of the Quaternary topaz rhyolite lava domes of the Blackfoot volcanic field, southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Lochridge, W. K., Jr.; McCurry, M. O.; Goldsby, R.

    2015-12-01

    The Quaternary topaz rhyolite lava domes of the bimodal, basalt-dominated Blackfoot volcanic field (BVF), SE Idaho occur in three clusters. We refer to these as the China Hat lava dome field (southernmost; ~ 57 ka), and the 1.4 to 1.5 Ma Sheep Island and White Mountain (northernmost) lava dome fields. The rhyolites and surrounding, more voluminous basalt lavas closely resemble coeval Quaternary rocks erupted to the north along the Eastern Snake River Plain segment of the Yellowstone-Snake River Plain volcanic track. However rhyolites in BVF are distinguished by having more evolved Sr- and Nd-isotopic ratios, as well as having phenocryst assemblages that includes hydrous phases (biotite and hornblende), thorite, and vapor-phase topaz. This study seeks to improve our understanding of the unique conditions of magma evolution that led to these differences. We focus on textural features of major and accessory phenocrysts as a basis for inferring paragenesis for rhyolites from the China Hat lava dome field. Preliminary work indicates that there are three sequentially formed populations of textures among magmatic phases: 1. population of anhedral quartz and plagioclase; 2. population of euhedral grains that includes quartz, sandine, plagioclase, biotite, hornblende, Fe-Ti oxides, zircon and apatite; 3. boxy cellular (skeletal?) sanidine and quartz. We speculate that the first population are resorbed antecrysts, the second formed prior to eruption as autocrysts (at or near equilibrium?), and the third formed soon before or during eruption.

  14. Unique dome design for the SOAR telescope project

    NASA Astrophysics Data System (ADS)

    Teran, Jose U.; Porter, David S.; Hileman, Edward A.; Neff, Daniel H.

    2000-08-01

    The SOAR telescope dome is a 20 meter diameter 5/8 spherical structure built on a rotating steel frame with an over the top nesting shutter and covered with a fiberglass panel system. The insulated fiberglass panel system can be self- supporting and is typically used for radomes on ground based tracking systems. The enclosed observing area is ventilated using a down draft ventilation system. The rotating steel frame is comprised of a ring beam and dual arch girders to provide support to the panel system sections and guide the shutter. The dual door shutter incorporates a unique differential drive system that reduces the complexity of the control system. The dome, shutter and windscreen `track' the telescope for maximum wind protection. The dome rotates on sixteen fixed compliant bogie assemblies. The dome is designed for assembly in sections off the facility and lifted into place for minimal impact on assembly of other telescope systems. The expected cost of the complete dome; including structure, drives, and controls is under 1.7 million. The details covered in this paper are the initial trade-offs and rationale required by SOAR to define the dome, the detailed design performed by M3 Engineering and Technology, and the choices made during the design.

  15. Internal Convection on Ceres: A Possible Explanation for Dome Formation

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Feldman, W. C.; Sizemore, H. G.; O'Brien, D. P.; Sykes, M. V.

    2015-12-01

    Numerical 2-D whole-body simulations of the evolution of Ceres' internal dynamics and thermal structure over its history indicate that hydrothermal activity is very strong throughout the first half of Ceres' history, gradually weakening thereafter, but still active even today (Travis et al, 2015, 46th LPSC). Large-scale upwelling plumes of muddy water extend from the porous, permeable rocky core through an ocean layer and impinge on the bottom of the ice shell. These upwellings are very long-lasting. In addition, small scale, shorter-lived plumes frequently develop on the upper regions of the large plumes. The large-scale plumes occur at roughly +/- 25 o latitude. Recently, 3-D simulations of a sector of Ceres shows that the upwellings are indeed plumes and not sheets. In the 3-D model, plume diameters in the model are as small as 15-20 km in diameter, up to several 10s of km or more. Relating internal dynamics to surface features is challenging. Linkage to mounds seen on the surface may be possible. There appear to be two classes of mounds: Large domes (10s of km diameter) and small (<15 km diameter). Morphological evidence such as embayment relations imply that large mounds may be extrusive. The source of the small domes is less clear. They could be extrusive, or they could be pingo-like structures that form when large areas of melt are extruded or produced by impact, although they are larger than terrestrial or martian structures. Mound heights are typically no more than 1 - 5 km. One mechanism for generation of these mounds suggested by our modeling is extrusion of mud through fractures in the icy crust. Over-pressuring of upwelling plumes at the base of the icy crust from freezing of neighboring downwellings could generate fractures in a frozen mud crust. As plumes and icy crust cool, a significant volume expansion occurs due to freezing of water to ice. This pressurization is not uniform in space; the still-liquid upwellings will experience overpressure in

  16. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  17. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  18. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.

    PubMed

    Limbert, Georges; Omar, Rodaina; Krynauw, Hugo; Bezuidenhout, Deon; Franz, Thomas

    2016-01-01

    Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.

  19. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.

    PubMed

    Lundahl, Meri J; Cunha, A Gisela; Rojo, Ester; Papageorgiou, Anastassios C; Rautkari, Lauri; Arboleda, Julio C; Rojas, Orlando J

    2016-01-01

    Hydrogels comprising cellulose nanofibrils (CNF) were used in the synthesis of continuous filaments via wet-spinning. Hydrogel viscosity and spinnability, as well as orientation and strength of the spun filaments, were found to be strongly affected by the osmotic pressure as determined by CNF surface charge and solid fraction in the spinning dope. The tensile strength, Young's modulus and degree of orientation (wide-angle X-ray scattering, WAXS) of filaments produced without drawing were 297 MPa, 21 GPa and 83%, respectively, which are remarkable values. A thorough investigation of the interactions with water using dynamic vapour sorption (DVS) experiments revealed the role of sorption sites in the stability of the filaments in wet conditions. DVS analysis during cycles of relative humidity (RH) between 0 and 95% revealed major differences in water uptake by the filaments spun from hydrogels of different charge density (CNF and TEMPO-oxidised CNF). It is concluded that the mechanical performance of filaments in the presence of water deteriorates drastically by the same factors that facilitate fibril alignment and, consequently, enhance dry strength. For the most oriented filaments, the maximum water vapour sorption at 95% RH was 39% based on dry weight. PMID:27465828

  20. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels

    PubMed Central

    Lundahl, Meri J.; Cunha, A. Gisela; Rojo, Ester; Papageorgiou, Anastassios C.; Rautkari, Lauri; Arboleda, Julio C.; Rojas, Orlando J.

    2016-01-01

    Hydrogels comprising cellulose nanofibrils (CNF) were used in the synthesis of continuous filaments via wet-spinning. Hydrogel viscosity and spinnability, as well as orientation and strength of the spun filaments, were found to be strongly affected by the osmotic pressure as determined by CNF surface charge and solid fraction in the spinning dope. The tensile strength, Young’s modulus and degree of orientation (wide-angle X-ray scattering, WAXS) of filaments produced without drawing were 297 MPa, 21 GPa and 83%, respectively, which are remarkable values. A thorough investigation of the interactions with water using dynamic vapour sorption (DVS) experiments revealed the role of sorption sites in the stability of the filaments in wet conditions. DVS analysis during cycles of relative humidity (RH) between 0 and 95% revealed major differences in water uptake by the filaments spun from hydrogels of different charge density (CNF and TEMPO-oxidised CNF). It is concluded that the mechanical performance of filaments in the presence of water deteriorates drastically by the same factors that facilitate fibril alignment and, consequently, enhance dry strength. For the most oriented filaments, the maximum water vapour sorption at 95% RH was 39% based on dry weight. PMID:27465828

  1. Electrocoagulation pretreatment of wet-spun acrylic fibers manufacturing wastewater to improve its biodegradability.

    PubMed

    Gong, Chenhao; Zhang, Zhongguo; Li, Haitao; Li, Duo; Wu, Baichun; Sun, Yuwei; Cheng, Yanjun

    2014-06-15

    The electrocoagulation (EC) process was used to pretreat wastewater from the manufacture of wet-spun acrylic fibers, and the effects of varying the operating parameters, including the electrode area/wastewater volume (A/V) ratio, current density, interelectrode distance and pH, on the EC treatment process were investigated. About 44% of the total organic carbon was removed using the optimal conditions in a 100 min procedure. The optimal conditions were a current density of 35.7 mA cm(-2), an A/V ratio of 0.28 cm(-1), a pH of 5, and an interelectrode distance of 0.8 cm. The biodegradability of the contaminants in the treated water was improved by the EC treatment (using the optimal conditions), increasing the five-day biological oxygen demand/chemical oxygen demand ratio to 0.35, which could improve the effectiveness of subsequent biological treatments. The improvement in the biodegradability of the contaminants in the wastewater was attributed to the removal and degradation of aromatic organic compounds, straight-chain paraffins, and other organic compounds, which we identified using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy. The EC process was proven to be an effective alternative pretreatment for wastewater from the manufacture of wet-spun acrylic fibers, prior to biological treatments.

  2. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels

    NASA Astrophysics Data System (ADS)

    Lundahl, Meri J.; Cunha, A. Gisela; Rojo, Ester; Papageorgiou, Anastassios C.; Rautkari, Lauri; Arboleda, Julio C.; Rojas, Orlando J.

    2016-07-01

    Hydrogels comprising cellulose nanofibrils (CNF) were used in the synthesis of continuous filaments via wet-spinning. Hydrogel viscosity and spinnability, as well as orientation and strength of the spun filaments, were found to be strongly affected by the osmotic pressure as determined by CNF surface charge and solid fraction in the spinning dope. The tensile strength, Young’s modulus and degree of orientation (wide-angle X-ray scattering, WAXS) of filaments produced without drawing were 297 MPa, 21 GPa and 83%, respectively, which are remarkable values. A thorough investigation of the interactions with water using dynamic vapour sorption (DVS) experiments revealed the role of sorption sites in the stability of the filaments in wet conditions. DVS analysis during cycles of relative humidity (RH) between 0 and 95% revealed major differences in water uptake by the filaments spun from hydrogels of different charge density (CNF and TEMPO-oxidised CNF). It is concluded that the mechanical performance of filaments in the presence of water deteriorates drastically by the same factors that facilitate fibril alignment and, consequently, enhance dry strength. For the most oriented filaments, the maximum water vapour sorption at 95% RH was 39% based on dry weight.

  3. Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties.

    PubMed

    Bienek, Diane R; Hoffman, Kathleen M; Tutak, Wojtek

    2016-09-01

    Blow spinning is continuing to gain attention in tissue engineering, as the resultant nanofibrous structures can be used to create a biomimetic environment. In this study, blow spinning was used to construct nanofiber scaffolds with up to 10 % chitosan and poly(DL-lactide-co-glycolide) in the absence or presence of poly(ethylene glycol). Scanning electron microscopy demonstrated that nanofibers were distributed randomly to form three-dimensional mats. With respect to chitosan concentration, the average fiber diameter did not differ statistically in either the absence or presence of poly(ethylene glycol). In poly(ethylene glycol)-formulations, the average fiber diameter ranged from (981.9 ± 611.3) nm to (1139.2 ± 814.2) nm. In vitro cellular metabolic activity and proliferation studies using keratinized rat squamous epithelial cells (RL-65) showed that cytocompatibility was not compromised with the addition of poly(ethylene glycol). The cell responses at lower (1 and 2.5 %) chitosan concentrations were not significantly different from the groups without chitosan or no scaffold when cultivated for 3, 6, or 9 days. However, >15 % reduction in cellular responses were observed at 10 % chitosan. In presence of poly(ethylene glycol), nearly a 1-log incremental reduction in the number of colony forming units of Streptococcus mutans occurred as the chitosan concentration increased from 0-1 to 2.5 %. Bacterial preparations tested with poly(ethylene glycol) and 5 or 10 % chitosan were not significantly different than the positive kill control. Taken together, the most favorable conditions for attaining cytocompatibility and maintaining antibacterial functionality existed in poly(ethylene glycol)/poly(DL-lactide-co-glycolide) blow-spun scaffolds with integrated 1 or 2.5 % chitosan. PMID:27568217

  4. Central pit and dome craters - Exposing the interiors of Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1993-01-01

    Central pit craters on Ganymede and Callisto are an unusual crater class, perhaps related to the unusual properties of water ice. The domes and pits form rapidly, on the time scale of the impact itself, rather than by long-term, post-impact intrusion or extrusion. The bright domes in pit craters are most simply explained as the uplift and exposure of relatively ice-rich material from depths of approximately 3.5 to 5 km during impact. The unusual pit morphology on icy satellites may be the result of impact into crust that is mechanically much weaker at shallow depth than on rocky bodies such as the moon. Because crater morphology is strongly dependent on ice-rock composition, the similarity of pit and dome dimensions on Ganymede and Callisto indicates that the structure and rheology of the crusts of these bodies are very similar, and have been for several billion years. Pit crater morphology indicates that the crusts of both satellites are probably ice-rich and differentiated.

  5. Central pit and dome craters - Exposing the interiors of Ganymede and Callisto

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.

    1993-04-01

    Central pit craters on Ganymede and Callisto are an unusual crater class, perhaps related to the unusual properties of water ice. The domes and pits form rapidly, on the time scale of the impact itself, rather than by long-term, post-impact intrusion or extrusion. The bright domes in pit craters are most simply explained as the uplift and exposure of relatively ice-rich material from depths of approximately 3.5 to 5 km during impact. The unusual pit morphology on icy satellites may be the result of impact into crust that is mechanically much weaker at shallow depth than on rocky bodies such as the moon. Because crater morphology is strongly dependent on ice-rock composition, the similarity of pit and dome dimensions on Ganymede and Callisto indicates that the structure and rheology of the crusts of these bodies are very similar, and have been for several billion years. Pit crater morphology indicates that the crusts of both satellites are probably ice-rich and differentiated.

  6. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  7. Temporal Evolution of Magma Flow Conditions during Dome Growth, Insights from Numerical Modelling.

    NASA Astrophysics Data System (ADS)

    Chevalier, L. A. C.; Collombet, M.; Pinel, V.

    2015-12-01

    Transitions from effusive to explosive regime at andesitic volcanoes are almost unpredictable at the moment. The reliability of empirical methods based on geophysical precursory patterns is still debated. A better understanding of the physical processes happening in the volcanic system before explosions and associated geophysical signals is needed. At andesitic volcanoes, dome building is often observed during the effusive phase. The weight of a forming dome is expected to have several effects: 1) It obviously induces a ground subsidence in the near field; 2) pressure increase at the top of the conduit causes magma properties and flow conditions evolution; 3) it increases pressure in the surrounding rock such decreasing rock permeability and thus gas loss through the conduit walls, possibly leading to gas pressurisation. Here we use numerical models that couple realistic magma flow conditions in the upper conduit with solid deformation, in 2D axisymmetry, to investigate all these effects. Subsiding effect due to the dome emplacement is simulated by a pressure loading of the rock surrounding the conduit. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top. Volatile solubility increases with pressure, then dome growth causes a decrease of magma porosity and permeability at the top of the conduit. This also causes a decrease of magma viscosity. From magma flow model, we extract pressure and shear stress conditions at the conduit wall, and apply them to the surrounding rock for ground deformation calculation . Darcy flow model is used to study the impacts of permeability decrease inside the conduit and in the surrounding rock on gas loss cinematics. Permeability decrease in the conduit and pressure increase in the surrounding rock cause gas pressurisation.

  8. Explosive destruction of a Pliocene hot lava dome underwater: Dogashima (Japan)

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.

    2015-10-01

    Transition from effusive to explosive volcanism is common during subaerial eruptions, and here we demonstrate that this behavior is also possible underwater. The pyroclastic facies produced underwater are distinctive and can be used to distinguish subaqueous from subaerial eruptions and depositional settings. The Pliocene Dogashima Formation (Izu Peninsula, Japan) is a pumice-rich succession originally deposited in an open-marine, below wave-base setting (Jutzeler et al., 2014a). A thick, clast-supported, gray andesite breccia composed of very coarse, dense andesite clasts with quenched margins was sourced from disintegration of an active lava dome. Overall, the gray andesite breccia is gradationally to sharply overlain by thick, graded, clast-supported white pumice breccia chiefly composed of angular pumice clasts and free broken crystals. Regional setting and distinctive facies show that this succession was produced by a fully underwater, magmatic volatile-driven, pumice-forming explosive eruption. The gradational contact between the two breccias, compositional similarities, rare mingled clasts, and fluidal textures in the gray andesite clasts suggest that the explosive eruption destroyed a hot lava dome and generated an eruption-fed, high-concentration density current. In most places, the coarsest hot lava dome fragments were deposited first, followed by the lower density white pumice clasts. The low amount of fine (< 2 mm) components, well-developed hydraulically controlled grading and sorting, clast angularity, and very coarse dome-derived clasts, some including well-defined quenched margins and common fluidal textures, distinguish the products of subaqueous effusive-to-explosive eruptions from their subaerial counterparts.

  9. Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Reyes-Dávila, Gabriel A.; Arámbula-Mendoza, Raúl; Espinasa-Pereña, Ramón; Pankhurst, Matthew J.; Navarro-Ochoa, Carlos; Savov, Ivan; Vargas-Bracamontes, Dulce M.; Cortés-Cortés, Abel; Gutiérrez-Martínez, Carlos; Valdés-González, Carlos; Domínguez-Reyes, Tonatiuh; González-Amezcua, Miguel; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Carlos Ariel; Cárdenas-González, Lucio; Castañeda-Bastida, Elizabeth; Vázquez Espinoza de los Monteros, Diana M.; Nieto-Torres, Amiel; Campion, Robin; Courtois, Loic; Lee, Peter D.

    2016-06-01

    During July 10th-11th 2015, Volcán de Colima, Mexico, underwent its most intense eruptive phase since its Subplinian-Plinian 1913 AD eruption. Production of scoria coincident with elevated fumarolic activity and SO2 flux indicate a significant switch of upper-conduit dynamics compared with the preceding decades of dome building and vulcanian explosions. A marked increase in rockfall events and degassing activity was observed on the 8th and 9th of July. On the 10th at 20:16 h (Local time = UTM - 6 h) a partial collapse of the dome generated a series of pyroclastic density currents (PDCs) that lasted 52 min and reached 9.1 km to the south of the volcano. The PDCs were mostly channelized by the Montegrande and San Antonio ravines, and produced a deposit with an estimated volume of 2.4 × 106 m3. Nearly 16 h after the first collapse, a second and larger collapse occurred which lasted 1 h 47 min. This second collapse produced a series of PDCs along the same ravines, reaching a distance of 10.3 km. The total volume calculated for the PDCs of the second event is 8.0 × 106 m3. Including associated ashfall deposits, the two episodes produced a total of 14.2 × 106 m3 of fragmentary material. The collapses formed an amphitheater-shaped crater open towards the south. We propose that the dome collapse was triggered by arrival of gas-rich magma to the upper conduit, which then boiled-over and sustained the PDCs. A juvenile scoria sample selected from the second partial dome collapse contains hornblende, yet at an order of magnitude less abundant (0.2%) than that of 1913, and exhibits reaction rims, whereas the 1913 hornblende is unreacted. At present there is no compelling petrologic evidence for imminent end-cycle activity observed at Volcán de Colima.

  10. Reactivation of a collisional suture by Miocene transpressional domes associated with the Red River and Song Chay detachment faults, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Osozawa, Soichi; Van Vuong, Nguyen; Van Tich, Vu; Wakabayashi, John

    2015-06-01

    Elongate Miocene gneissose and granitic domes in northern Vietnam formed in a dextral-transpressional ductile shear regime, possibly associated with large-scale restraining step-overs along dextral faults. Initial anticlinal D1 doming involved folding of both basement and hanging wall rocks with D1 secondary folds that verge toward the anticlinal axes. Such folds reflect dome-scale flexural slip folding. With continued shortening, D2 detachment faults developed on the flanks of the anticlines along the hanging wall-basement interface, so that the basement was extruded vertically into the overlying hanging wall rocks. The detachment faults were associated with D2 drag folds that verge away from the anticlinal axes. The hanging wall assemblage lacks a well-ordered stratigraphy, displaying primarily block-in-matrix fabric. We identified bedded cherts, associated with umbers and alkalic basaltic intrusions within these hanging wall rocks, a first report of such rocks from Vietnam. The association of cherts, umbers, and basaltic intrusions and extrusions with block-in-matrix units with clastic rocks strongly suggest that the hanging wall rocks comprise part of a subduction complex. Because the base of a subduction complex is a former subduction megathrust horizon, the hanging wall-basement interface represents a reactivated collisional suture. Such a suture was probably associated with the Indosinian orogeny, and the basement should be the Indochina continental block. This structure may have influenced the position of Miocene dextral faulting in addition to controlling the position of the dome detachments. The well-known Red River fault marks the boundary of one of the domes, but in this region it appears to be a detachment (normal) fault rather than a dextral strike-slip fault. However, the association with the dome evolution with large-scale restraining step-overs suggests that dextral faulting associated with dome development may lie further away from the dome axes

  11. Interactive property of large thrust sheets with footwall rocks—the Sub thrust interactive duplex hypothesis: A mechanism of dome formation in thrust sheets

    NASA Astrophysics Data System (ADS)

    Hatcher, Robert D.

    1991-06-01

    Recently acquired Appalachian Ultradeep Core Hole (ADCOH) Project site investigation seismic reflection data and geologic data from the Appalachians and several other orogenic belts suggest an important mutually interdependent relationship exists between emplacement of large crystalline thrust sheets and the deforming foreland rocks beneath. This relationship suggests isolated domes beneath crystalline thrust sheets may be produced by passive folding of the sheet as a result of formation of an antiformal stack duplex in the platform sedimentary sequence beneath. Suggestions that domes in crystalline thrust sheets formed by interference of late open folds is doubtlessly still valid in places, but the platform duplex mechanism is probably also valid to explain the late doming of many crystalline and other large thrust sheets. The dome beneath the Shooting Creek and Brasstown Bald windows in the ADCOH site region is imaged as an antiformal stack duplex at depth. The Tallulah Falls dome, Grandfather Mountain and Mountain City windows, and Smokies Foothills duplex in the site region and elsewhere in the southern Blue Ridge are all late isolated domes and all are probably or demonstrably underlain by antiformal stack duplexes beneath the Blue Ridge-Piedmont composite crystalline thrust sheet. The Assynt window and footwall duplex benath the Arnabol and Moine thrusts in Scotland, and the Engadine window in the Alps may be similar structures.

  12. Geostrophic circulation between the Costa Rica Dome and Central America

    NASA Astrophysics Data System (ADS)

    Brenes, C. L.; Lavín, M. F.; Mascarenhas, Affonso S.

    2008-05-01

    The geostrophic circulation between the Costa Rica Dome and Central America is described from CTD observations collected in two surveys: (a) The Wet Cruise in September-October 1993, and the Jet Cruise in February-March 1994. Poleward coastal flow was present on both occasions, but the transition from flow around the dome to the poleward Costa Rica Coastal Current flow was quite tortuous because of the presence of mesoscale eddies. In particular, a warm anticyclonic eddy was found off the Gulf of Fonseca during both cruises, at an almost identical position and with similar dimensions (150 m deep, 250 km in diameter) and surface speed (0.5 m s -1). In the Gulf of Panama, poleward flow was also observed, weaker in February-March 1994 than in September-October 1993, when it penetrated to 600 m depth and transported 8.5 Sv. In September-October 1993, the current between the dome and the coast was mostly ˜100 m deep and weak (˜0.15 m s -1), although in its southern side it was deeper (˜450 m) and faster at 0.3 m s -1. The poleward transport between the dome and the coast was ˜7 Sv. In February-March 1994 the Costa Rica Dome was a closed ring adjacent to the continental shelf, ˜500 km in diameter, at least 400 m deep, had geostrophic surface speeds ˜0.25 m s -1, and subsurface maximum speed (0.15-0.20 m s -1) at ˜180 m depth; the associated uplift of the isotherms was ˜150 m. The flow in the south part of the dome splits into two branches, the weakest one going around the dome and the strongest one continuing east and turning south before reaching the Gulf of Panama.

  13. Wind tunnel study of an observatory dome with a circular aperture

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.; Cliffton, Ethan W.

    1990-01-01

    Results of a wind tunnel test of a new concept in observatory dome design, the Fixed Shutter Dome are presented. From an aerodynamic standpoint, the new dome configuration is similar in overall shape to conventional observatory domes, with the exception of the telescope viewing aperture. The new design consists of a circular aperture of reduced area in contrast to conventional domes with rectangular or slotted openings. Wind tunnel results of a side-by-side comparison of the new dome with a conventional dome demonstrate that the mean and fluctuating velocity through the aperture and in the center of the new dome configuration are lower than those of conventional domes, thus reducing the likelihood of telescope flow-induced vibration.

  14. Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions

    SciTech Connect

    Chen,X.; Burger, C.; Wan, F.; Zhang, J.; Rong, L.; Hsiao, B.; Chu, B.; Cai, J.; Zhang, L.

    2007-01-01

    In this study, structure changes of regenerated cellulose fibers wet-spun from a cotton linter pulp (degree of polymerization {approx}620) solution in an NaOH/urea solvent under different conditions were investigated by simultaneous synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the increase in flow rate during spinning produced a better crystal orientation and a higher degree of crystallinity, whereas a 2-fold increase in draw ratio only affected the crystal orientation. When coagulated in a H{sub 2}SO{sub 4}/Na{sub 2}SO{sub 4} aqueous solution at 15 {sup o}C, the regenerated fibers exhibited the highest crystallinity and a crystal orientation comparable to that of commercial rayon fibers by the viscose method. SAXS patterns exhibited a pair of meridional maxima in all regenerated cellulose fibers, indicating the existence of a lamellar structure. A fibrillar superstructure was observed only at higher flow rates (>20 m/min). The conformation of cellulose molecules in NaOH/urea aqueous solution was also investigated by static and dynamic light scattering. It was found that cellulose chains formed aggregates with a radius of gyration, R{sub g}, of about 232 nm and an apparent hydrodynamic radius, R{sub h}, of about 172 nm. The NaOH/urea solvent system is low-cost and environmentally friendly, which may offer an alternative route to replace more hazardous existing methods for the production of regenerated cellulose fibers.

  15. Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre

    SciTech Connect

    Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I; Gubin, V P

    2014-10-31

    We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of the fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)

  16. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.

    PubMed

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-12-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect. PMID:26897002

  17. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.

    PubMed

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-12-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.

  18. Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus

  19. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  20. Two types of superconducting domes in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Panagopoulos, Christos

    In this talk, we present a comprehensive analysis of the SC properties and phase diagrams across several families of unconventional superconductors within the copper-oxides, heavy-fermions, organics, and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We find that there are two types of SC domes present in all families of SC materials, arising sometimes as completely isolated, or merged into one, or in some materials only any one of them appears. One of the SC dome appearing at or near a possible QCP usually possesses a lower transition temperature (Tc) . The other SC dome appearing at a different value of the tuning parameter around a non-Fermi liquid (NFL) state often has higher Tc. Both SC domes are not necessarily linked to each other, and so does the QCP and NFL state. In materials, where both domes are present, they can be isolated by multiple tuning (such as such as disorder, or pressure, or magnetic field in addition to doping, and vice versa), giving a unique opportunity to decouple the relationship between QCP, NFL, and their role on superconductivity. The systematic study the NFL state might be a generic route to higher-Tc superconductivity.

  1. Fracture fillings and intrusive pyroclasts, Inyo Domes, California

    SciTech Connect

    Heiken, G.; Wohletz, K.; Eichelberger, J.

    1988-05-10

    Fractures containing juvenile magmatic pyroclasts were encountered during drilling into a 600-year-old feeder dike beneath the Inyo Domes chain, California. The Inyo Domes consist of a north-south trending, 10-km-long chain of domes, rhyolitic tuff rings, and phreatic craters. Boreholes were cored through the 51-m-diameter conduit of Obsidian Dome, the largest of the Inyo Domes, and through an unvented portion of the intrusion (dike) 1 km to the south. Pyroclast-bearing fractures were intersected in both holes: (1) 7- to 40-cm-thick fractures in welded basaltic scoria and quartz monzonite country rock are adjacent to the conduit at depths of 400--411 m and 492--533 m; they contain gray, clastic deposits, which show truncated cross bedding and convolute bedding; (2) adjacent to the dike, massive fracture fillings occur at depths of 289--302 m (129 m east of the dike) and 366--384 m (95--87 m east of the dike).

  2. The behaviour of repaired composite domes subjected to external pressure

    NASA Astrophysics Data System (ADS)

    Mistry, J.; Levy-Neto, F.

    1992-07-01

    Six hemispherical and four torispherical composite plastic domes reinforced with either carbon or E-glass woven fabrics or a combination of both have been tested under external pressure. The domes were prepared using male or female moulds and employed the hand lay-up/vacuum bag method for their manufacture. The domes were observed to fail either by buckling or as a result of material failure. Both modes of failure were usually located at the meridian having the minimum average thickness. These domes were then repaired using a recommended technique and retested. It has been shown that the integrity of the repaired zones was guaranteed and further damage to the domes during retesting moved to new locations usually corresponding to the areas of the new minimum average thickness meridian. Two computer programs based on finite difference and finite element methods were employed to predict the critical buckling or material failure loads. The theoretical predictions were shown to correlate very well with the experimental results.

  3. Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems.

    PubMed

    Lavin, Danya M; Zhang, Linda; Furtado, Stacia; Hopkins, Richard A; Mathiowitz, Edith

    2013-01-01

    Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2 MPa to 16±1 MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.

  4. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect

    Neal, J.T.; Magorian, T.R.; Thoms, R.L.; Autin, W.J.; McCulloh, R.P.; Denzler, S.; Byrne, K.O.

    1993-07-01

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  5. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    USGS Publications Warehouse

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  6. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water-rock interaction, but the Na-Mg-K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the

  7. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    SciTech Connect

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

  8. Magnetization dynamics and ferromagnetic resonance behavior of melt spun FeBSiGe amorphous alloys

    NASA Astrophysics Data System (ADS)

    Estévez, D. C.; Betancourt, I.; Montiel, H.

    2012-09-01

    Frequency-dependent magnetic properties of melt spun Fe80B10Si10-xGex (x = 0.0-10.0) were studied by means of inductance spectroscopy (using the complex permeability formalism) and ferromagnetic resonance techniques. The magnetization dynamics showed two magnetization mechanisms, reversible bulging of domains and hysteresis. The dominant mechanism changed as Ge progressively replaced Si; the changes reflect the crystallization processes observed for higher Ge contents, x > 5. High relaxation frequencies (above 1 MHz) were observed for alloys with x ≥ 2.5. In the ferromagnetic resonance response, coupling and decoupling between the amorphous and crystalline phases were detected depending on the orientation of the alloy samples. This allowed the calculation of the anisotropy fields of the alloys—the decreasing trend with increasing Ge content was interpreted in terms of a variable easy direction.

  9. The magnetization behavior of melt-spun FeDy-B alloys

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Lee, J. M.; Jeung, J. K.; Moon, Y. M.; Yu, S. C.; Lim, S. H.

    2001-05-01

    We report the salient features of the magnetization behavior of melt-spun ribbons of (Dy 0.33Fe 0.67) 1- xB x with x=0, 0.05, 0.1 and 0.15 alloys. The temperature dependence of magnetization and low-temperature hysteresis loops were measured using a vibrating sample magnetometer during heating from 5 to 900 K, with an applied field of 50 kOe. Our results show that the addition of B seems to decrease the magnetic order and hence to decrease the exchange stiffness and the Curie temperature. Very large values of the coercive force at a low temperature of 5 K, ranging from 19 800 to 22 900 Oe, was observed. The rapid increase of the coercive force at low temperatures is explained by the topological disorder due to the presence of rare earth spins distributed randomly.

  10. Consolidation of Nd-Fe-B melt-spun ribbon by compression shearing method

    SciTech Connect

    Saito, Tetsuji; Takeishi, Hiroyuku; Nakayama, Noboru

    2007-05-01

    Commercially available Nd-Fe-B melt-spun ribbons (MQ powders) were consolidated at temperatures ranging from room temperature to 573 K in ambient atmosphere by the compression shearing method. The resultant bulk materials consisted of the Nd{sub 2}Fe{sub 14}B phase together with a small amount of the soft magnetic {alpha}-iron phase. The bulk material consolidated at room temperature was magnetically isotropic as was the case for the MQ powders. On the other hand, the bulk material consolidated at 573 K was found to be magnetically anisotropic and showed a remanence of 9.2 kG, higher than that of the MQ powders.

  11. Pre-35 Ma Na-rich peraluminous leucogranites in the Yardoi gneiss dome, southern Tibet

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zeng, L.; Liu, J.; Xie, K.

    2008-12-01

    The Northern Himalayan Gneiss Dome (NHGD) consists of a series of semi-continuous east-west trending gneiss domes within the Tethyan Himalayan Belt. The Yardoi gneiss dome, the easternmost among these domes, consists of garnet two-mica gneiss, garnet amphibolite,Cenozoic two-mica granite and leucogranite. New SHRIMP zircon U/Pb dating show that the Yardoi leucogranite formed at 35.5±1.1Ma, which is older than those similar leucogranites to the west (commonly with ages < 25 Ma). We have performed bulk chemical and Sr and Nd isotope analyses on a suite of leucogranites and the wall-rocks to characterize their geochemistry and evaluate their formation mechanism. These data show that: (1) a majority of the Yardoi leucogranites are of Na-rich peraluminous granite; (2) similar to the wall-rock gneisses, the Yardoi leucogranites are enriched in LILE (K, Sr, Rb, Ba, and Th), but highly depleted in Ti, Y, Yb, Sc, and Cr; (3) as compared to those either in the gneisses or in the amphibolites, the Yardoi leucogranites are depleted both in LREE and in HREE. However, they are enriched in LREE relative to HREE;(4) the Yardoi leucogranites have initial Sr isotope compositions (0.71195~0.71934), similar to those of the amphibolites, whereas their "ÕNd(i) values (-8.9~-15.0) are between those in the amphibolites and the gneisses. Simple mixing calculations indicate that partial melting of a source mixed of garnet amphibolite with subordinate pelitic gneiss could account for the formation of the Yardoi Na-rich peraluminous melts. Though both H2O-fluxed melting of metapelite at high pressures (~10 kbar) and amphibolite parting melting can produce Na-rich peraluminous granitic melts, the ~35 Ma anatectic event in the Yardoi gneiss dome was dominated by amphibolite partial melting. This event might be a major factor led to transition from compressional to extensional deformation in the overthickened Himalayan belt.

  12. Superconducting dome in a gate-tuned band insulator.

    PubMed

    Ye, J T; Zhang, Y J; Akashi, R; Bahramy, M S; Arita, R; Iwasa, Y

    2012-11-30

    A dome-shaped superconducting region appears in the phase diagrams of many unconventional superconductors. In doped band insulators, however, reaching optimal superconductivity by the fine-tuning of carriers has seldom been seen. We report the observation of a superconducting dome in the temperature-carrier density phase diagram of MoS(2), an archetypal band insulator. By quasi-continuous electrostatic carrier doping achieved through a combination of liquid and solid gating, we revealed a large enhancement in the transition temperature T(c) occurring at optimal doping in the chemically inaccessible low-carrier density regime. This observation indicates that the superconducting dome may arise even in doped band insulators.

  13. Geodesic-dome tank roof cuts water contamination, vapor losses

    SciTech Connect

    Barrett, A.E. )

    1989-07-10

    Colonial Pipeline Co. has established an ongoing program for using geodesic-dome roofs on tanks in liquid petroleum-product service. As its standard, Colonial adopted geodesicodone roofs, in conjunction with internal floating decks, to replace worn external floating roofs on existing tanks used in gasoline service and for use on new tanks in all types of product service. Geodesic domes are clear-span structures requiring no internal-support columns. This feature allows the associated use of a floating deck that is as vapor tight as is possible to construct. Further, geodesic domes can practically eliminate rainwater contamination, eliminate wind-generated vapor losses, and greatly reduce filling losses associated with conventional external floating roofs.

  14. Dome-shaped PDC cutters drill harder rock effectively

    SciTech Connect

    Moran, D.P. )

    1992-12-14

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 [mu]sec/ft, compared to the standard cutoff of 75 [mu]sec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 [mu]sec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance.

  15. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.

    PubMed

    Kratz, Karl; Habermann, Ronny; Becker, Tino; Richau, Klaus; Lendlein, Andreas

    2011-02-01

    Multifunctional polymer-based biomaterials, which combine degradability and shape-memory capability, are promising candidate materials for the realization of active self-anchoring implants. In this work we explored the shape-memory capability as well as the hydrolytic and enzymatic in vitro degradation behavior of electro-spun scaffolds prepared from a multiblock copolymer, containing hydrolytically degradable poly(p-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) segments, which we have named PDC. Electro-spun PDC scaffolds with an average deposit thickness of 80 ± 20 µm and a porosity in the range from 70% to 80% were prepared, where the single fiber diameter was around 3 µm. Excellent shape-memory properties were achieved with high recovery rate (Rr) values in the range of Rr = 92% to 98% and a recovery stress of smax = 4.6 MPa to 5.0 MPa. The switching temperature (Tsw) and the characteristic temperature obtained under constant strain recovery conditions (Ts,max) were found in the range from 32 °C to 35 °C, which was close to the melting temperature (Tm,PCL) associated to the poly(e-caprolactone) domains. A linear mass loss was observed in both hydrolytic and enzymatic degradation experiments. The mass loss was substantially accelerated, in enzymatic degradation when Pseudomonas cepacia lipase was added, which was reported to accelerate the degradation of PCL. During hydrolytic degradation a continuous decrease in elongation at break (eB) from eB = 800% to 15% was observed in a time period of 92 days, while in enzymatic degradation experiments a complete mechanical failure was obtained after 4 days.

  16. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  17. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  18. Evidence for Neoarchaean extensional faults in the Vredefort Dome, South Africa.

    NASA Astrophysics Data System (ADS)

    mashabela, sello

    2013-04-01

    The Vredefort Dome is an approximately 80-90 km wide impact structure, situated 120 km southwest of Johannesburg in South Africa. The dome is a preserved centrally uplifted region of an ancient 250-300 km wide multi-ringed crater that formed at 2.02 Ga. The ancient crater underwent 5-10 km of erosion to expose the Vredefort Dome, allowing for unique study of the deeper levels of the impact crater. The Vredefort Dome is composed of a 40 km wide core, bounded by a 20-25 km wide collar. The core is wholly composed of Mesoarchaean basement gneiss (ca. 3.1 Ga), and the collar is made up of mid-amphibolite to lower greenschist facies supracrustal rocks (ca. 3.0-2.2 Ga). Fault development in the collar has largely been attributed to the impact, except for two fault systems. The two exceptions have been described as pre-impact faults, with apparent strike-slip displacements up to 3 km. It is the focus of this study to distinguish pre-impact structures from impact-related structures. Ortho-photographs, satellite images, and field mapping have shown that pre-impact faults were listric in character, and associated with second order accommodation faults. The main fault is associated with a 20 m wide zone of pseudotachylitic breccia. Most of the pseudotachylitic breccia in the dome has been attributed to the impact, so these faults were possibly associated with earlier pseudotachylite generation. Cleavage associated with the listric faults is displaced by impact-related faults, confirming the existence of two deformation events in the dome. The geometry of the listric faults is similar to those observed in the West Wits Line and West Rand goldfields (55 km north of Vredefort Dome), which have been modelled by Manzi et al. (2012, a, b; submitted) using 3D seismic techniques. The authors attribute the development of listric faults (or a rift-like system of faults) to crustal extension that took place during deposition of Klipriviersberg Group lavas and Platberg Group (2709

  19. LAMELLA DOME FRAMING DETAIL. NOTE CATWALK AT 12 O'CLOCK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LAMELLA DOME FRAMING DETAIL. NOTE CATWALK AT 12 O'CLOCK AND SUSPENDED PENTAGONAL LIGHT RING GONDOLA. ALSO NOTE COMPRESSION RING AT CROWN OF DOME. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  20. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  1. Degassing processes during lava dome growth: Insights from Santiaguito lava dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Holland, A. S. Peter; Watson, I. Matthew; Phillips, Jeremy C.; Caricchi, Luca; Dalton, Marika P.

    2011-04-01

    Eruptions of intermediate magma may be explosive or effusive. The development of open system degassing has been proposed as a pre-requisite for effusion of intermediate magma, however processes leading to open system degassing are poorly understood. To better understand degassing processes during lava dome extrusion we report high temporal-resolution SO 2 emission rate measurements collected with an ultra violet imaging camera at Santiaguito, Guatemala. Santiaguito is an ideal case study as the dome lava is compositionally very similar to products of the 1902 Plinian eruption of the parental Santa María volcano. We find that degassing is weak (0.4-1 kg s - 1 ) but continuous, and explosions are associated with small increases in emission rates (up to 2-3 kg s - 1 ). Continuous repose degassing occurs through a shallow cap rock which likely represents a proto-crust on the block lava flow which is extruded from the same vent. The continual permeability of the upper conduit argues against a mechanism of explosion triggering in which gas pressure builds beneath a viscous cap rock or plug. Rather, we consider degassing data better consistent with a model of shear-fracturing at the conduit margins. Using field constraints, we model the viscosity of Santiaguito magma as a function of depth and show that conditions for shear-fracturing are met from 150-600 m to the surface. This is in line with independent estimates of explosion initiation depth. We show that repose timescales are orders of magnitude longer than the timescale for shear fracture, and suggest that explosions are triggered when a continuous network of smaller-scale fractures develops, at which point decompression occurs and an explosion is triggered. Fracture healing occurs by viscous relaxation however near to the surface where viscosity is highest, an unconsolidated gouge layer may develop. Our model implies that the observed explosions are a by-product of extrusion. Shear-fracturing can drive open system

  2. Topaz rhyolites of Nathrop, Colorado: Lava domes or rheomorphic flows?

    NASA Astrophysics Data System (ADS)

    Hernandez, B. M.; Panter, K. S.; Van Der Voo, R.

    2013-12-01

    Deposits of topaz-bearing rhyolite at Ruby and Sugarloaf Mountains in central Colorado are considered to be remnants of lava domes. The deposits are part of the Late Eocene-Oligocene Central Colorado Volcanic Field [1] that lies along the eastern margin of the Arkansas Graben of the Rio Grande Rift. Topaz-bearing rhyolite lava domes and flows have been identified elsewhere in Colorado and the western U.S., but an assortment of geomorphological, lithostratigraphical, and textural features of Ruby and Sugarloaf Mountains call into question their strict classification as such. Alternatively, the lava flows may be interpreted as rheomorphic ignimbrites. The volcanic deposits encompass a sequence of steeply (~70°) west-dipping units that form two N-S elongated edifices ~0.5 km long and a few hundred meters high. Their common lithostratigraphy from bottom to top is tuff breccia, vitrophyre, and flow-banded rhyolite. The tuff breccia includes large (up to ~1 m) pumice blocks and lithics that vary from nearly absent to moderately abundant (10-20%). At Sugarloaf lithics include rare cobble-sized clasts of granite, but the majority consists of flow-banded rhyolite. The tuff breccia grades normally upward into the vitrophyre with increased welding and a eutaxitic fabric defined by fiamme with increasing aspect ratios. Lithics are abundant in the vitrophyre at Sugarloaf but are rare or absent in the vitrophyre at Ruby Mountain. The transition from the vitrophyre to the flow-banded rhyolite is abrupt (<1 m) at both locations, though the lower rhyolite is less competent. The flow-banded rhyolite at Sugarloaf is crystal-rich (up to 50%), containing plagioclase, sanidine, smoky quartz, and biotite, while at Ruby the rhyolite is relatively crystal poor (2-3%) and biotite is absent. Pumiceous zones and lithophysae occur within the rhyolite at both locations. Zones of auto-brecciation are often associated with convoluted flow banding, especially along a vertical contact with

  3. 19. View of satcom communication dome with TR radome in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of satcom communication dome with TR radome in background right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. The E-ELT project: the dome design status

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; De Lorenzi, S.; Busatta, A.

    2012-09-01

    Further to the re-dimensioning of the E-ELT (European Extremely Large Telescope) telescope to 37 metres, the project of the dome has been completely reviewed, together with the Auxiliary Building and the Foundations. The Dome is now constituted by a structure with a steel hemispherical architecture, 79m.-high, with a 101m.-external pier diameter and a 42m-wide observing slit. These dimensions require the application of technologies for big structures (like stadiums, hangars, etc.) in order to comply with the manufacturing, transport and assembly constrains. The dome is characterized by an agglomerate of mechathronic technologies originated by the long experience matured by EIE in the industrial and astronomical fields. The solutions adopted for the NTT, the VLT, the LBT, the VST and the VISTA have demonstrated, along the years of service, their functionality, as well as their reliability and maintainability. Moreover, innovative technologies have been introduced, especially for what concerns the rotation systems of the Dome, the louvers, the windscreen, etc. The architecture of the control systems has been completed re-formulated, and they are now able to manage in real time all the exigencies of the E-ELT Observatory. All Project phases have been properly analysed and simulated, guaranteeing the completeness of the constructability and the maintainability. The entire work has been developed in close cooperation with ESO Project Team, further to a specific contract.

  5. [Analysis of the Basic Stress Pathway Above Acetabular Dome].

    PubMed

    Nie, Yong; Ma, Jun; Haung, Qiang; Hu, Qinsheng; Shi, Xiaojun; Pei, Fuxing

    2015-08-01

    The basic stress pathway above the acetabular dome is important for the maintenance of implant stability in acetabular reconstruction of total hip arthroplasty (THA). The purpose of this study was to describe the basic stress pathway to provide evidence for clinical acetabular reconstruction guidance of THA. A subject-specific finite element (FE) model was developed from CT data to generate 3 normal hip models and a convergence study was conducted to determine the number of pelvic trabecular bone material properties using 5 material assignment plans. In addition, in the range of 0 to 20 mm above the acetabular dome, the models were sectioned and the stress pathway was defined as two parts, i.e., 3D, trabecular bone stress distribution and quantified cortical bone stress level. The results showed that using 100 materials to define the material property of pelvic trabecular bone could assure both the accuracy and efficiency of the FE model. Under the same body weight condition, the 3D trabecular bone stress distributions above the acetabular dome were consistent, and especially the quantified cortical bone stress levels were all above 20 MPa and showed no statistically significant difference (P>0.05). Therefore, defining the basic stress pathway above the acetabular dome under certain body weight condition contributes to design accurate preoperative plan for acetabular reconstruction, thus helping restore the normal hip biomechanics and preserve the stability of the implants. PMID:26710451

  6. Laparoscopic ureteral reimplantation: a simplified dome advancement technique.

    PubMed

    Lima, Guilherme C; Rais-Bahrami, Soroush; Link, Richard E; Kavoussi, Louis R

    2005-12-01

    Laparoscopic Boari flap reimplantation has been used to treat long distal ureteral strictures. This technique requires extensive bladder mobilization and complex intracorporeal suturing. This demonstrates a novel laparoscopic bladder dome advancement approach for ureteral reimplantation. This technique obviates the need for bladder pedicle dissection and simplifies the required suturing.

  7. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within <1 km of the surface. The term "rigidification" refers to the point at which crystallization ends, vesicles are preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad

  8. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    NASA Astrophysics Data System (ADS)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  9. Giant magnetostriction in Tb-doped Fe{sub 83}Ga{sub 17} melt-spun ribbons

    SciTech Connect

    Wu, Wei; Liu, Jinghua; Jiang, Chengbao; Xu, Huibin

    2013-12-23

    Giant magnetostriction is achieved in lightly Tb-doped Fe{sub 83}Ga{sub 17} melt-spun ribbons. The average perpendicular magnetostriction λ{sub ⊥} is −886 ppm along the melt-spun ribbon direction in the Fe{sub 82.89}Ga{sub 16.88}Tb{sub 0.23} alloy and the calculated parallel magnetostriction λ{sub ‖‖} is 1772 ppm. These values are more than four times as large as those found in binary Fe{sub 83}Ga{sub 17}. The enhanced magnetostriction is attributed to a small amount of Tb entering solution in the A2 matrix phase during rapid solidification. The strong localized magnetocrystalline anisotropy of terbium is thought to cause the giant magnetostriction.

  10. Lead, zinc, and strontium in limestone cap rock from Tatum salt dome, Mississippi

    SciTech Connect

    Saunders, J.A.

    1988-09-01

    Limestone cap rock at Tatum salt dome, Mississippi, contains disseminated pyrite, sphalerite, and galena, and disseminated to massive amounts of strontianite (SrCO/sub 3/) and celestite (SrSO/sub 4/). Sulfide minerals are locally present in bitumen-rich areas of the upper, massive portion of the limestone cap rock, whereas strontium minerals are disseminated throughout this zone. However, sulfide and strontium minerals are most abundant in the lower banded portion of the limestone cap rock, which consists of alternating subhorizontal light and dark-colored bands. The dark bands are composed of calcite of variable grain size, sulfides, quartz, dolomite, albite, and up to 1% bitumen that apparently formed by the biodegradation of crude oil. Lighter bands are composed of variable amounts of coarsely crystalline, euhedral calcite, strontianite, and celestite resulting in strontium (Sr) contents of up to 30% locally. Banded limestone cap rock at Tatum dome formed at the top of the actively dissolving anhydrite zone by a combination of sulfate reduction and oxidation of liquid hydrocarbons by bacteria to cause the precipitation of calcite and sulfide minerals and the accumulation of insoluble residue from the anhydrite (quartz, albite, dolomite). Lead and zinc in the sulfide minerals could have been derived from the dissolving anhydrite, but the abundance of Sr minerals present requires an external source. Present-day oil field brines in central Mississippi contain up to 3000 ppm Sr, and basin brines of similar composition apparently contributed Sr to the cap-rock environment during formation.

  11. Late Pleistocene zircon ages for intracaldera domes at Gölcük (Isparta, Turkey)

    NASA Astrophysics Data System (ADS)

    Schmitt, Axel K.; Danišík, Martin; Siebel, Wolfgang; Elitok, Ömer; Chang, Yu-Wei; Shen, Chuan-Chou

    2014-10-01

    Pleistocene to Quaternary volcanism in the Isparta region (SW Anatolia, Turkey) comprises potassic lavas and pyroclastic deposits, which are largely centered around Gölcük caldera. Trachytic intracaldera lava domes represent the latest eruptive event at Gölcük, and their eruption age is crucial for defining a minimum age for the preceding caldera-forming explosive eruption. Here, we present combined U-Th and (U-Th)/He zircon geochronological data for two intracaldera lava domes constraining their crystallization and eruption ages, respectively. U-Th zircon crystallization ages peak between ca. 15 and 25 ka. In rare instances U-Th zircon crystallization ages date back to ca. 59 and 136 ka. U-Th zircon crystallization ages also permit (U-Th)/He eruption ages from the same crystals to be individually corrected for uranium series decay chain disequilibrium, which is mainly due to the deficit of the intermediate daughter 230Th in zircon. Average disequilibrium-corrected (U-Th)/He zircon ages are 14.1 ± 0.5 and 12.9 ± 0.4 ka (1σ). These ages are indistinguishable within analytical uncertainties suggesting that both lavas erupted quasi simultaneously. This contradicts published K-Ar ages that suggest an extended hiatus from ca. 52 to 24 ka between intracaldera dome eruptions. Evidence for protracted zircon crystallization over several thousands of years prior to eruption indicates the presence of a long-lived magma reservoir underneath Gölcük caldera. Implications of the revised eruptive geochronology presented here include younger ages for the latest effusive eruptions at Gölcük, and potentially also a more recent explosive eruption than previously assumed.

  12. Using Horizontal Cosmic Muons to Investigate the Density Distribution of the Popocatepetl Volcano Lava Dome

    NASA Astrophysics Data System (ADS)

    Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.

    2013-05-01

    Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.

  13. Doming at large scale on Europa: a model of formation of Thera Macula

    NASA Astrophysics Data System (ADS)

    Mével, L.; Tobie, G.; Mercier, E.; Sotin, C.

    2003-04-01

    Thera Macula is an approximately 140 by 80 km elliptical feature of the southern hemisphere of Europa. Our morphological analysis shows two types of terrains. The north west part is weakly disturbed and only some cuesta-like structures are recognized. Nevertheless, the south east part looks like a chaotic area similar to Conamara Chaos with ice overflowing on the southern margin. The chaotic terrains have a lower elevation than the weakly disturbed terrains. Both units are separated by a steep scarp cutting across the middle of Thera Macula. This dichotomy may reflect the processes by which Thera was build. Detailed observation of the chaotic area reveals the presence of little sinuous scarps limiting terraces lying at different elevations. We have calculated the cumulated height along a N-S profile and deduced a mean regional slope ranging from 0.2% to 0.8% along the entire profile. On the basis of these morphological arguments, we purpose an original model for the emplacement of Thera Macula. The rise of ductile or liquid material beneath an inclined brittle icy crust may induce vertical upward, doming, and a median fracture. Then, the soft material may overflow alongside the regional slope and the dome may collapse as the reservoir empties out. In order to constrain this emplacement model, we are currently performing numerical experiments of thermal convection for a fluid with a strongly temperature-dependent viscosity, including tidal heating and damage rheology. Preliminary results suggest that, although a thick stagnant lid forms at the top of a convective ice layer, damaged icy material in this rigid lid permits the rise of warm ductile ice at shallow depth. This could explain both doming and softening of the crustal material.

  14. Crosslinked Electro-Spun Chitosan Nanofiber Mats with Cd(II) as Template Ions for Adsorption Applications.

    PubMed

    Li, Yan; Xu, Cong; Qiu, Tianbao; Xu, Xiaoyan

    2015-06-01

    The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were successfully prepared using Cd(II) as template ions and glutaraldehyde (GA) as crosslinker to investigate the adsorption of Cd(II) and Pb(II) ions in aqueous solutions. The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were characterized by the Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscope (SEM), Thermal Gravimetric Analysis (TGA), elemental analysis and solubility tests. The prepared chitosan nanofiber mats exhibited a higher adsorption capacity for both Cd(II) (364.3 mg/g) and Pb(II) (272.0 mg/g) ions. The dynamic study demonstrated that the adsorption process followed the second-order kinetic equation. Langmuir and Freundlich adsorption models were used to analyze the equilibrium isotherm data. The results showed that the Langmuir model was best suitable for predicting the adsorption isotherm of the studied system. The as prepared Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats might be used as an effective adsorbent for Cd(II) and Pb(II) removal from heavy metal wastewater. PMID:26369036

  15. Magnetic properties of Cu80Co20 and Cu80Co15Fe5 melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Rubinstein, Mark; Harris, V. G.; Das, B. N.; Koon, N. C.

    1994-11-01

    The magnetic properties of granular, annealed, melt-spun ribbons of the ``giant'' magnetoresistors, Cu80Co20 and Cu80Co15Fe5, have been studied by a variety of techniques. These include x-ray dfiffraction, electron microscopy, ferromagnetic resonance, SQUID magnetometry, Mössbauer-effect spectroscopy, and magnetoresistance. We utilize each of these measurements to reveal different aspects of the particle size distribution as a function of annealing temperatures. These melt-spun alloys require large magnetic fields for magnetic saturation, impairing their utility as magnetic sensors. However, the properties of melt-spun ribbons provide an understanding of why all granular magnetic materials are difficult to saturate. The magnetoresistance ratio of these alloys is maximized by a 500 °C anneal with Δρ/ρ~=14% at 4.2 K. The paramagnetic fraction determined by SQUID magnetometry at 4.2 K is 33% for this annealing temperature. The paramagnetic fraction determined by Mössbauer spectroscopy is 14% for samples annealed by 500 °C, and vanishes when the sample is annealed at 900 °C. The discrepancy between the two measurements of the paramagnetic fraction is due to the vastly different averaging times of the two techniques.

  16. Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia)

    NASA Astrophysics Data System (ADS)

    Kushnir, Alexandra R. L.; Martel, Caroline; Bourdier, Jean-Louis; Heap, Michael J.; Reuschlé, Thierry; Erdmann, Saskia; Komorowski, Jean-Christophe; Cholik, Noer

    2016-04-01

    Low permeability dome rocks may contribute to conduit overpressure development in volcanic systems, indirectly abetting explosive activity. The permeability of dome-forming rocks is primarily controlled by the volume, type (vesicles and/or microcracks), and connectivity of the void space present. Here we investigate the permeability-porosity relationship of dome-forming rocks and pumice clasts from Merapi's 1888 to 2013 eruptions and assess their possible role in eruptive processes, with particular emphasis on the 2010 paroxysmal eruption. Rocks are divided into three simple field classifications common to all eruptions: Type 1 samples have low bulk density and are pumiceous in texture; Type 2 samples, ubiquitous to the 2010 eruption, are dark grey to black in hand sample and vary greatly in vesicularity; and Type 3 samples are weakly vesicular, light grey in hand sample, and are the only samples that contain cristobalite. Type 2 and Type 3 rocks are present in all eruptions and their permeability and porosity data define similar power law relationships, whereas data for Type 1 samples are clearly discontinuous from these trends. A compilation of permeability and porosity data for andesites and basaltic andesites with published values highlights two microstructural transitions that exert control on permeability, confirmed by modified Bayesian Information Criterion (BIC) analysis. Permeability is microcrack- and diktytaxitic-controlled at connected porosities, φc, < 10.5 vol.%; vesicle- and microcrack-controlled at 10.5 < φc < 31 vol.%; and likely vesicle-controlled for φc > 31 vol.%. Type 3 basaltic andesites, the least permeable of the measured samples and therefore the most likely to have originated in the uppermost low-permeability dome, are identified as relicts of terminal domes (the last dome extruded prior to quiescence). Cristobalite commonly found in the voids of Type 3 blocks may not contribute significantly to the reduction of the permeability of

  17. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  18. Effect of the co-spun anode functional layer on the performance of the direct-methane microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Gong, Xun; Yin, Yimei; Yang, Naitao; Tan, Xiaoyao; Ma, Zi-Feng

    2014-02-01

    NiO-YSZ/porous YSZ (NiO-YSZ/p-YSZ) dual-layer hollow fibers have been fabricated by a co-spinning-sintering method, on which a dense YSZ films has been formed by a dip-coating and sintering process. A LSM-YSZ ink has been dip-coated on the dense YSZ films as cathode, while the Cu-CeO2 carbon-resistant catalyst has been impregnated in the p-YSZ layer to form double-anode supported micro tubular fuel cells (MT-SOFCs). The thickness of the Ni-YSZ layer, so called anode functional layer (AFL), is controlled from 74 μm to 13 μm by varying the spinning rates of the NiO-YSZ dopes. The maximum power density of an MT-SOFC, which is fabricated based on a thin co-spun AFL, reaches 566 mW cm-2 operated at 850 °C fed with dry methane, and is stably operated for 85 h without power declination.

  19. Timescales of texture development in a cooling lava dome

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Nichols, A. R. L.; Kennedy, B. M.; Oze, C.

    2013-08-01

    Crystal growth and crack development in cooling lava domes are both capable of redistributing and mobilizing water. Cracking and hydration decrease the stability of a dome, which may lead to hazards including partial dome collapse and block and ash flows. By examining the distribution of water around crystals and cracks, we identify and confine temperature and timescales of texture development in glassy rocks of volcanic domes. Four generations of textures have been identified: type a: spherulites, type b: cracks associated with spherulite growth, type c: perlitic cracks, and type d: disparate cracks. High-resolution imaging using Fourier Transform Infrared Spectroscopy (FTIR) performed on samples from the Ngongotaha dome, New Zealand, show an increase in H2O of up to 450% along gradients of around 100 μm up to 300 μm in length from perlitic cracks, spherulitic cracks and in haloes around spherulites. No gradients in water concentrations across the disparate cracks are present. Water diffusion models show potential timescale-temperature couples that coincide with textural observations and previous studies, and allow us to develop a conceptual model of spherulite growth and cracking in a cooling lava dome. Spherulite growth starts around the glass transition temperature (Tg) when the viscous melt cools to a brittle solid and proceeds with cracking related to volume changes at slightly lower temperatures and shorter timescales (days to weeks) compared to spherulite growth. Perlitic cracking happens at T≪Tg, allowing hydration of a permeable network within weeks to months. Low temperature (≲50 °C) cracks could not be hydrated in the time since eruption (≃230 ka). Our data show that textures in cooling glass develop during cooling below Tg within days, producing cracks and crystals that create inhomogeneities in the spatial distribution of water. The lengthscales of water diffusion away from spherulites, spherulite cracks, and perlite cracks suggest that most

  20. Site testing for submillimetre astronomy at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Minier, V.; Schneider, N.; Durand, G. Al.; Ashley, M. C. B.; Lawrence, J. S.; Luong-van, D. M.; Storey, J. W. V.; Durand, G. An.; Reinert, Y.; Veyssiere, C.; Walter, C.; Ade, P.; Calisse, P. G.; Challita, Z.; Fossat, E.; Sabbatini, L.; Pellegrini, A.; Ricaud, P.; Urban, J.

    2011-11-01

    Aims: Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 μm over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environment. Methods: The 200-μm atmospheric opacity was measured with a tipper. The forward atmospheric model MOLIERE (Microwave Observation LIne Estimation and REtrieval) was used to calculate the atmospheric transmission and to evaluate the precipitable water vapour content (PWV) from the observed sky opacity. These results have been compared with satellite measurements from the Infrared Atmospheric Sounding Interferometer (IASI) on Metop-A, with balloon humidity sondes and with results obtained by a ground-based microwave radiometer (HAMSTRAD). In addition, a series of experiments has been designed to study frost formation on surfaces, and the temporal and spatial evolution of thermal gradients in the low atmosphere. Results: Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astronomy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 μm is achieved for 75% of the time. The 200-μm window opens with a typical transmission of 10% to 15% for 25% of the time. Conclusions: Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 μm are possible all year round, and the 200-μm window opens long enough and with a

  1. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    SciTech Connect

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  2. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application.

    PubMed

    Wang, Feng; Xu, Hanfu; Wang, Yuancheng; Wang, Riyuan; Yuan, Lin; Ding, Huan; Song, Chunnuan; Ma, Sanyuan; Peng, Zhixin; Peng, Zhangchuan; Zhao, Ping; Xia, Qingyou

    2014-12-01

    Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.

  3. Morphology dependent field emission of acid-spun carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Fairchild, S. B.; Boeckl, J.; Back, T. C.; Ferguson, J. B.; Koerner, H.; Murray, P. T.; Maruyama, B.; Lange, M. A.; Cahay, M. M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Lockwood, N. P.; Averett, K. L.; Gruen, G.; Tsentalovich, D. E.

    2015-03-01

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber’s electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of <1 V μm-1. This stable high current operation makes these CNT fibers excellent candidates for use as low voltage electron sources for vacuum electronic devices.

  4. Morphology dependent field emission of acid-spun carbon nanotube fibers.

    PubMed

    Fairchild, S B; Boeckl, J; Back, T C; Ferguson, J B; Koerner, H; Murray, P T; Maruyama, B; Lange, M A; Cahay, M M; Behabtu, N; Young, C C; Pasquali, M; Lockwood, N P; Averett, K L; Gruen, G; Tsentalovich, D E

    2015-03-13

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber's electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of <1 V μm(-1). This stable high current operation makes these CNT fibers excellent candidates for use as low voltage electron sources for vacuum electronic devices. PMID:25694166

  5. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels.

    PubMed

    Das, Paramita; Heuser, Thomas; Wolf, Andrea; Zhu, Baolei; Demco, Dan Eugen; Ifuku, Shinsuke; Walther, Andreas

    2012-12-10

    Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts. PMID:23102411

  6. Magnetocaloric Properties Response in High-Speed Melt-Spun La-Ce-Fe-Si Ribbons

    NASA Astrophysics Data System (ADS)

    Hou, Xueling; Han, Ning; Xue, Yun; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong

    2016-06-01

    The structure and magnetocaloric properties of La-Ce-Fe-Si alloys have been studied. The samples were prepared by melt spinning, the surface speed of the Cu wheel being 55 m/s. The as-spun ribbons were subsequently annealed at 1273 K for different times (10 min-1 h) and then quenched to room temperature. When the annealing time was 20 min, on a 1.5-T applied magnetic field, the maximum magnetic entropy change (ΔS M) of the ribbons reached values of 33.8 J/kg K at the Curie temperature of T C ˜ 182 K. When the annealing time was longer than 20 min, the maximum magnetic entropy change (|ΔS M,Max|) tended to decrease while the T C remained almost unchanged. In the annealing process, La/Ce located at grain boundaries was easily oxidized on the ribbon surface. The presence of large grain sizes and La2O3 or LaO were shown to degrade the magnetocaloric properties. On the other hand, the substitution of Ce for La improved the magnetocaloric effect of La-Fe-Si compounds, which is of practical importance for magnetic refrigeration.

  7. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn

    NASA Astrophysics Data System (ADS)

    Lee, Jae Ah; Baughman, Ray H.; Kim, Seon Jeong

    2015-04-01

    High performance torsional and tensile artificial muscles are described, which utilize thermally- or electrochemically-induced volume changes of twist-spun, guest-filled, carbon nanotube (CNT) yarns. These yarns were prepared by incorporating twist in carbon nanotube sheets drawn from spinnable CNT forests. Inserting high twist into the CNT yarn results in yarn coiling, which can dramatically amplify tensile stroke and work capabilities compared with that for the non-coiled twisted yarn. When electrochemically driven in a liquid electrolyte, these artificial muscles can generate a torsional rotation per muscle length that is over 1000 times higher than for previously reported torsional muscles. All-solid-state torsional electrochemical yarn muscles have provided a large torsional muscle stroke (53° per mm of yarn length) and a tensile stroke of up to 1.3% when lifting loads that are ~25 times heavier than can be lifted by the same diameter human skeletal muscle. Over a million torsional and tensile actuation cycles have been demonstrated for thermally powered CNT hybrid yarns muscles filled with paraffin wax, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. At lower actuation rates, these thermally powered muscles provide tensile strokes of over 10%.

  8. Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment.

    PubMed

    Boncel, Slawomir; Sundaram, Rajyashree M; Windle, Alan H; Koziol, Krzysztof K K

    2011-12-27

    Translating the remarkable mechanical properties of individual carbon nanotubes to macroscopic assemblies presents a unique challenge in maximizing the potential of these remarkable entities for new materials. Infinitely long individual nanotubes would represent the ideal molecular building blocks; however, in the case of length-limited nanotubes, typically in the range of micro- and millimeters, an alternative strategy could be based on the improvement of the mechanical coherency between bundles assembling the macroscopic materials, like fibers or films. Here, we present a method to enhance the mechanical performance of fibers continuously spun from a CVD reactor, by a postproduction processing methodology utilizing a chemical agent aided by UV irradiation. The treatment results in an increase of 100% in specific strength and 300% in toughness of the fibers with strength values rocketing to as high as 3.5 GPa SG(-1). An attempt has been made to explore the nature of the chemical modifications introduced in the fiber and the consequential effects on its properties.

  9. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility.

    PubMed

    Hirano, S; Zhang, M; Nakagawa, M; Miyata, T

    2000-05-01

    Based on an in vitro test for an improvement of the blood compatibility of chitin by blending with tropocollagen, we prepared a novel biocompatible blended fiber and its chemically N-modified fibers. Each (1 g/30 ml) of a clear mixed solution of chitosan with tropocollagen or collagen and a clear solution of chitosan itself in aqueous 2% acetic acid-methanol (2:1, v/v) was spun through a viscose-type spinneret into an aqueous 5% ammonia solution containing 40-43% ammonium sulfate at room temperature to afford a white fiber of chitosan-tropocollagen blends (1.08-1.65 g/denier for the tenacity and 10.9-43.2% for the elongation). The tropocollagen content up to 50% by weight) in the blended fiber affected little their tenacity and elongation values. The blended fiber was chemically N-modified at the fiber state by treatment with a series of carboxylic anhydrides and aldehydes to afford the corresponding N-modified fiber (0.86-1.31 g/denier for the tenacity and 8.0-12.1% for the elongation). A transparent blended hydrogel of N-acetylchitosan (chitin) with tropocollagen was produced from the above mixed solution by treatment with acetic anhydride, and its membrane and sponge sheet were also prepared from the hydrogel.

  10. Microstructure and magnetic properties of melt-spun Alnico-5 alloys

    NASA Astrophysics Data System (ADS)

    Löwe, Konrad; Dürrschnabel, Michael; Molina-Luna, Leopoldo; Madugundo, Rajasekhar; Frincu, Bianca; Kleebe, Hans-Joachim; Gutfleisch, Oliver; Hadjipanayis, George C.

    2016-06-01

    The aim of this work is to investigate the effect of very fine grain sizes on the spinodal decomposition in the Alnico system. Commercial Alnico 5 was melted and melt-spun with varying copper wheel speeds, which led to a grain size of 1-2 μm. This value was further reduced to sub-micrometer size by a small addition of Boron (1 at%). The spinodal decomposition was induced through a two-step annealing treatment under magnetic field in the range of 600-900 °C. It was found that the size of the spinodal structures is not influenced much by increased wheel speeds but becomes smaller with the addition of Boron. However, the difference in coercivity between the samples with and without Boron is only 50 Oe (4 kA/m). To study the influence of the annealing treatment two sets of samples are compared, one with the highest coercivity (366 Oe/29 kA/m) and the other one with lower coercivity (180 Oe/14.5 kA/m). We found with Scanning transmission electron microscopy Energy-dispersive X-ray spectroscopy (STEM EDX) a much sharper chemical interface between the α1 and α2 precipitates in the former sample, which we attribute to be the main reason for the higher coercivity.

  11. Magnetocaloric Properties Response in High-Speed Melt-Spun La-Ce-Fe-Si Ribbons

    NASA Astrophysics Data System (ADS)

    Hou, Xueling; Han, Ning; Xue, Yun; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong

    2016-10-01

    The structure and magnetocaloric properties of La-Ce-Fe-Si alloys have been studied. The samples were prepared by melt spinning, the surface speed of the Cu wheel being 55 m/s. The as-spun ribbons were subsequently annealed at 1273 K for different times (10 min-1 h) and then quenched to room temperature. When the annealing time was 20 min, on a 1.5-T applied magnetic field, the maximum magnetic entropy change (Δ S M) of the ribbons reached values of 33.8 J/kg K at the Curie temperature of T C ˜ 182 K. When the annealing time was longer than 20 min, the maximum magnetic entropy change (|Δ S M,Max|) tended to decrease while the T C remained almost unchanged. In the annealing process, La/Ce located at grain boundaries was easily oxidized on the ribbon surface. The presence of large grain sizes and La2O3 or LaO were shown to degrade the magnetocaloric properties. On the other hand, the substitution of Ce for La improved the magnetocaloric effect of La-Fe-Si compounds, which is of practical importance for magnetic refrigeration.

  12. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska

    USGS Publications Warehouse

    Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D.K.; Youcha, E.K.

    2008-01-01

    Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with

  13. Miocene calc-alkaline magmatism, calderas, and crustal extension in the Kofa and Castle Dome Mountains, southwestern Arizona

    SciTech Connect

    Grubensky, M.J. ); Bagby, W.C. )

    1990-11-10

    Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains. A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.

  14. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  15. Analysis of the TMI-2 dome radiation monitor

    SciTech Connect

    Murphy, M B; Mueller, G M; Jernigan, W C

    1985-08-01

    Questions have been raised regarding the accuracy of the in-containment radiation readings from the LOCA qualified, dome radiation monitor, HP-R-214 during the March 28, 1979 accident at the Three Mile Island Unit 2 Reactor. This report discusses the accuracy of the readings, gives the results of examining the radiation monitor itself, and estimates the radiation environment inside containment during the accident.

  16. Arthroscopic intralesional curettage for large benign talar dome cysts

    PubMed Central

    El Shazly, Ossama; Abou El Soud, Maged M.; Nasef Abdelatif, Nasef Mohamed

    2015-01-01

    Introduction: Surgical management of large talar dome cysts is challenging due to increased morbidity by associated cartilage damage and malleolar osteotomy. The purpose of this study is to evaluate the clinical and radiological outcome of endoscopic curettage and bone graft for large talar dome cysts. Methods: This is a retrospective analysis of data for eight patients (eight feet) who were treated by arthroscopic curettage and grafting for large talar dome cysts. Seven cases were treated by posterior ankle arthroscopy as the lesion was located posteriorly while one case was treated by anterior ankle arthroscopy as the lesion was breached anteriorly. Results: The final diagnosis, was; large osteochondral lesion of talus (two cases), aneurysmal bone cyst (ABC) (two case), intra-osseous ganglion (two cases), Chronic infection in talus (one case) and angiomatous lesion of the talus (one case). The mean follow up period was 18.3 (±3.06 SD) months (range 16–25 months). The median preoperative AOFAS score was 74.5 (±5.34 SD) points. The mean postoperative AOFAS score at one year follow up was 94.6 (±2.97 SD) points. None of the patient had recurrence of the lesion during follow up. Return to normal daily activity was achieved at 11.25 (±2.37 SD) weeks. Discussion: In this short case series study, large talar dome bony cysts of different pathologies including aneurysmal bone cysts could be treated effectively by endoscopic curettage and bone grafting with no recurrence no complications during the follow-up period. PMID:27163087

  17. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2008-10-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka ( 14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO 2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO 2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO 2 and H 2S bubble up through the lake, weakly but widely. Geochemical analyses ( n = 148), including pre-and post-caldera lavas (53-74% SiO 2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO 2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  18. Advances in spinel ceramic technology for large windows and domes

    NASA Astrophysics Data System (ADS)

    Sepulveda, Juan L.; Loutfy, Raouf O.; Chang, Sekyung; Ibrahim, Sharly; Traggis, Nick

    2009-05-01

    This paper describes MER's recent advances on the development of high strength, transparent magnesium aluminum spinel technology for large IR windows and domes. The novel spinel material exhibits high optical and IR transparency in the 0.2 - 5.5 μm wavelength, is very resistant to abrasion, with density higher than 99.9% of theoretical, with very fine and uniform grain size, and flexural strength of 300 MPa. Spinel domes technology has been scaled up to produce hemispherical 180° aperture domes in sizes up to 7" in diameter using freeze casting technology to produce the green dome preforms. MER is also pursuing the production of large size spinel windows by either producing monolithic large single windows or by edge bonding several smaller size windows. Both approaches present challenges. Production of monolithic large size windows is limited by equipment size, availability, and investment capital while the edge bonding approach requires perfect transparency and strength at the bonded edge. MER together with Precision Photonics Corp. are developing high strength, edge bonded, transparent magnesium aluminum spinel windows for next generation aircraft and other defense armor applications which require windows as large as 30"x30"x0.5" at an affordable cost. MER has further improved strength of the spinel by accurate control of the average grain size and grain size scatter while remarkable transmission is obtained by elimination of the intergrain/intragrain porosity, and by eliminating all possible contamination. The spinel bonding technology under development consists of chemically activated direct bonding (CADB®), an epoxy-free solution-assisted optical-contacting process developed by Precision Photonics Corporation (PPC).

  19. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  20. Elemental concentrations and inorganic isotopic ratios in surface snow along the route to Dome Fuji, Antarctica

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Nakazawa, F.; Azuma, K. G.; Motoyama, H.

    2015-12-01

    Snow ice sample in Antarctica contains particulate matter. Particulates originate from continent, volcano, sea, space, and organism. The particulate matter of continental origin contains many elements from minerals and rocks. The isotopic ratio of an element reflects the origin and the history of the particle. Since the isotopic ratio of inorganic species depends on the source, the information about the source contribution of particulate matter can be estimated by analyzing the isotopic ratios of inorganic species. In this research, concentrations of inorganic species and isotopic ratios of inorganic species (Ca, Sr, Nd) in snow collected on the route form coastal area to Dome Fuji station in Antarctica were analyzed. The snow samples were collected along ca. 1000 km traverse route from Mikaeridai (S16; 69°01'S, 40°03'E, 590 m) to Dome Fuji station (77°19'S, 39°42'E, 3810 m) by the Japan Antarctica research expedition. Those samples were collected in the 2007/2008 and 2009/2010 austral summer. The samples were transported to Japan without thawing. The quantitative analyses of inorganic species were measured using ICP quadrupole type mass spectrometer. The isotopic ratios of isolated inorganic species were measured using ICP magnetic field type mass spectrometer. Further results and discussion about the behavior and origin of sulfur species in snow will be presented.

  1. Upgrading, monitoring and operation of a dome drive system

    NASA Astrophysics Data System (ADS)

    Bauman, Steven E.; Cruise, Bill; Look, Ivan; Matsushige, Grant; Roberts, Larry; Salmon, Derrick; Taroma, Ralph; Vermeulen, Tom; Richards, Krieg

    2014-08-01

    CFHT's decision to move away from classical observing prompted the development of a remote observing environment aimed at producing science observations from headquarters facility in Waimea, HI. This remote observing project commonly referred to as the Observatory Automation Project (OAP ) was completed at the end of January 2011 and has been providing the majority of science data ever since. A comprehensive feasibility study was conducted to determine the options available to achieve remote operations of the observatory dome drive system. After evaluation, the best option was to upgrade the original hydraulic system to utilize variable frequency drive (VFD) technology. The project upgraded the hydraulic drive system, which initially utilized a hydraulic power unit and three (3) identical drive units to rotate the dome. The new electric drive system replaced the hydraulic power unit with electric motor controllers, and each drive unit reuses the original drive and swaps one for one the original hydraulic motors with an electric motor. The motor controllers provide status and monitoring parameters for each drive unit which convey the functionality and health of the system. This paper will discuss the design upgrades to the dome drive rotation system, as well as some benefits, control, energy savings, and monitoring.

  2. An Operationally Based Vision Assessment Simulator for Domes

    NASA Technical Reports Server (NTRS)

    Archdeacon, John; Gaska, James; Timoner, Samson

    2012-01-01

    The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.

  3. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  4. Small domes on Venus: probable analogs of Icelandic lava shields

    USGS Publications Warehouse

    Garvin, James B.; Williams, Richard S.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, we interpret small, dome-like features on radar images of Venus to be analogs of Icelandic lava-shield volcanoes. Using morphometric data for venusian domes in Aubele and Slyuta (in press), as well as our own measurements of representative dome volumes and areas from Tethus Regio, we demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS ). LILS are slightly convex in cross-section with typical flank slopes of ∼3°. Plausible lava-shield-production rates for the venusian plains suggest formation of ∼53 million shields over the past 0.25 Ga. The cumulative global volume of lava that would be associated with this predicted number of lava shields is only a factor of 3–4 times that of a single oceanic composite shield volcano such as Mauna Loa. The global volume of all venusian lava shields in the 0.5–20-km size range would only contribute a meter of resurfacing over geologically significant time scales. Thus, venusian analogs to LILS may represent the most abundant landform on the globally dominant plains of Venus, but would be insignificant with regard to the global volume of lava extruded. As in Iceland, associated lavas from fissure eruptions probably dominate plains volcanism and should be evident on the higher resolution Magellan radar images.

  5. Dome petroleum puts Lindbergh and Primrose Projects on hold

    SciTech Connect

    Not Available

    1986-09-01

    During 1985 Dome Petroleum Limited announced two new commercial oil sands projects in Alberta, Canada. The Lindbergh Commercial Project was to produce approximately 12,000 barrels per day (15,000 barrels per day total including pilot projects in the same area) by 1989. The Primrose Lake Project was to produce 25,000 barrels per day in 5000 barrels per day stages over a give year period. In June both projects were put on hold by Dome due to the dramatic decline in oil prices that has occurred since the beginning of 1986. At the Lindbergh Project, drilling on the first phase was halted after 31 wells were completed. These wells have been placed on primary production. Steaming, gathering, and processing equipment was committed prior to the oil price decline, and is being stored for use when the oil price recovers. With regard to the Primrose Lake Project, Dome has postponed the proposed 1986 drilling program completely. The project will be re-activated when oil prices return to levels that make it economically viable.

  6. ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME

    SciTech Connect

    Pontin, D. I.; Priest, E. R.; Galsgaard, K.

    2013-09-10

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.

  7. Lunar Mare Dome Identification and Morphologic Properties Analysis Using Chang'E-2 Lunar Data

    NASA Astrophysics Data System (ADS)

    Zeng, Xingguo; Mu, Lingli; Li, Chunlai; Liu, Jianjun; Ren, Xin; Wang, Yuanyuan

    2016-04-01

    Identify the lunar mare dome and study the morphologic properties to know more knowledge about the structure will enhance the study of lunar volcanism. Traditionally, most lunar domes are identified by the scientists from exploring the images or topographic maps of the lunar surface with manual method, which already found out a bunch of lunar domes in specific local areas. For the purpose of getting more knowledge about global lunar dome, it is necessary to identify the lunar dome from the global lunar mare. However, it is hard to find new lunar domes from the global lunar mare only with manual method, since in that case, the large volume lunar data is needed and such work is too time consumed, so that, there are few researchers who have indentified and study the properties of the lunar dome from the perspective of lunar global scale. To solve the problem mentioned above, in this approach , CE-2 DEM, DOM data in 7m resolution were used in the detection and morphologic analysis of the lunar domes and a dome detection method based on topographic characteristics were developed.We firstly designed a method considering the morphologic characteristics to identify the lunar dome with Chang'E2(CE-2) lunar global data, after that, the initial identified result with properties is analyzed, and finally, by integrating the result with lunar domes already found by former researchers, we made some maps about the spatial distribution of the global lunar mare dome. With the CE-2 data covering the former lunar domes and the new found lunar domes, we surveyed and calculated some morphologic properties, and found that, lunar domes are circular or eclipse shaped, obviously different from background in topography,which has a average diameter between 3-25km, circular degree less than 1.54, with a average slope less than 10°, average height less than 650m and diameter/height less than 0.065. Almost all of the lunar domes are located in the extent of 58°N~54°S,167°W~180°E,and nearly

  8. Halogen Degassing during Emplacement and Crystallization of the Chaitén Rhyolitic Lava Dome(s)

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Bleick, H.; Castro, J. M.; Pallister, J. S.; Eichelberger, J. C.

    2010-12-01

    Despite relatively modest ash emissions, the 2008-2009 eruption at Chaitén volcano severely damaged as much as 400 km2 of forest vegetation to the N, E and S of the volcano (Pallister et al., Eos, in press). We explored the possibility that near-surface crystallization of the 0.5-0.8 km3 rhyolite lava dome released sufficient halogens to effect vegetation as far as 15 km away. Electron microprobe analysis of glass from melt inclusions (MI), pumice fallout, lava-dome groundmass, and juvenile lithics reveals evidence for open-system behavior during “second boiling” of the lava dome. The 2008-09 eruptive pumices are crystal-poor (0.1 to 1.0 vol.%), with rare crystals of plagioclase, orthopyroxene, Ti-magnetite, and either biotite or hornblende (depending on the sample). The dome samples are similar, but have groundmass that is variably crystallized to fine-grained microlites (generally < 5 µm in width) of plagioclase, orthopyroxene, and Ti-magnetite. Biotite and amphibole are absent from the groundmass, presumably because H2O-pressures in the surface-degassed melt dropped sufficiently to destabilize these hydrous phases. S and F are uniformly low in MI and pumiceous glasses, averaging < 50 ppm in each, consistent with low measured SO2 emissions (Carn et al., Eos, 90:205). Cl is more variable. Pumiceous glass averages 860±90 ppm, similar to two glassy lithics interpreted as quenched melts quarried from the conduit. MI in plagioclase from a hornblende-bearing pumice and from biotite-bearing dome rocks contained 990±280 ppm Cl. Higher Cl values (~3000 ppm) were reported by Castro & Dingwell (Nature, 2009, 461:780) for MI in biotite-bearing pumice, consistent with additional syn-eruptive release of HCl during the early weeklong explosive phase. Analysis of matrix glasses in dome samples demonstrate trends of increasing K and Si during crystallization of groundmass, and decreasing Al, Mg, Fe, and Ca. The 45% increase in K implies at least that amount of

  9. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    Main tectonic elements of West Chukotka are Alazey-Oloy, South-Anyui and Anyui-Chukotka fold systems, formed as a result of collision between structures of North-Asian continent active margin and Chukotka microcontinent [1-3]. South-Anyui fold system, separating Alazey-Oloy and Anyui-Chukotka systems, is considered as suture zon, formed as a result of oceanic basin closing [4-6]. Continent-microcontinent collision resulted in formation of large orogen with of northern and southern vergent structures, complicated by strike-slip deformations [7, 8]. Within Anyui-Chukotka fold system several rises, where most ancient deposits (crystalline basement and Paleozoic cover of Chukotka microcontinent) are exposed, were distinguished [2, 9-11]. Later they were considered as granite-metamorphic domes [12-14]. Alarmaut dome is located at West Chukotka to the north from Bilibino city and is traced from south to north in more than 120 km. General direction of structure is discordant to prevailing NW extensions of tectonic elements of the region. Paleozoic-Triassic deposits are exposed within the Alarmaut dome: 1) D3-C1 - crystalline schists, quartz-feldspar metasandstones, quartzites, marbles (700 m) [11]; 2) C1 - marblized limestones, quartz-feldspar metasandstones, quartzites, amphibole-pyroxene crystalline schists. Limestones contain corals, indicating Visean age of deposits [11]. Metamorphism reaches amphibolite facies, maximum P-T conditions are 660°С and 5 kbar. Migmatites, indicating in situ partial melting, are observed. Intensity of deformations of Paleozoic rocks increases at the boundary with Triassic deposits [11]; in the western part of dome slices of Pz rocks are separated by blastomylonite horizons [14]. Within Alramaut dome granitoids of Lupveem batholith (central part of dome), Bystrinsky pluton (southeastern part), and small Koyvel' and Kelil'vun plutons were studied. New U-Pb SHRIMP zircon data indicate Early Cretaceous (117-112 m.a.) age of granitoids [15

  10. Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity.

    PubMed

    An, Cheng Jin; Kang, Young Hun; Lee, A-Young; Jang, Kwang-Suk; Jeong, Youngjin; Cho, Song Yun

    2016-08-31

    We suggest the fabrication of foldable thermoelectric (TE) materials by embedding conducting polymers into Au-doped CNT webs. The CNT bundles, which are interconnected by a direct spinning method to form 3D networks without interfacial contact resistance, provide both high electrical conductivity and high carrier mobility. The ZT value of the spun CNT web is significantly enhanced through two simple processes. Decorating the porous CNT webs with Au nanoparticles increases the electrical conductivity, resulting in an optimal ZT of 0.163, which represents a more than 2-fold improvement compared to the ZT of pristine CNT webs (0.079). After decoration, polyaniline (PANI) is integrated into the Au-doped CNT webs both to improve the Seebeck coefficient by an energy-filtering effect and to decrease the thermal conductivity by the phonon-scattering effect. This leads to a ZT of 0.203, which is one of the highest ZT values reported for organic TE materials. Moreover, Au-doped CNT/PANI web is ultralightweight, free-standing, thermally stable, and mechanically robust, which makes it a viable candidate for a hybrid TE conversion device for wearable electronics. When a 20 K temperature gradient is applied to the TE module consisting of seven p-n couples, 1.74 μW of power is generated. PMID:27501827

  11. Systematic study of structural, transport, and magnetic properties of Ni52+xMn26-xAl22 (1 ≤ x ≤ 5) melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh Kumar; Srivastava, Vijay Kumar; Varga, Lajos K.; Khovaylo, Vladimir V.; Kainuma, Ryousuke; Nagasako, Makoto; Chatterjee, Ratnamala

    2011-04-01

    Structural, magnetic, and transport properties of Ni52+xMn26-xAl22 (1 ≤ x ≤ 5) melt-spun ribbons have been characterized by a variety of experimental techniques. As the composition changed from x = 1 to x = 5, the martensitic transition temperature T0 [ = (Ms + Af)/2] was found to increase from 277 K to 446 K which was attributed to an increase in the valence electron concentration e/a. In the martensitic state, all the samples demonstrate an anomalous semiconducting behavior of electrical resistivity ρ. This uncommon feature of the transport properties has been ascribed to the existence of a gap (Eg ˜ 0.1 eV) at the Fermi level. A crossover from semiconducting to metallic behavior of ρ observed in the martensitic state of Ni57Mn21Al22 is presumably related to a spin-density wave formation at the Neel temperature TN ≈ 300 K. Analysis of a low-temperature (T < 60 K) part of the resistivity curves and comprehensive magnetic measurements of a Ni57Mn21Al22 (x ≤ 5) sample provide grounds for the conclusion that the splitting of zero-field cooling and field cooling magnetization curves observed at low temperatures is due to a spin-glass state that is formed below the freezing temperature Tf.

  12. Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity.

    PubMed

    An, Cheng Jin; Kang, Young Hun; Lee, A-Young; Jang, Kwang-Suk; Jeong, Youngjin; Cho, Song Yun

    2016-08-31

    We suggest the fabrication of foldable thermoelectric (TE) materials by embedding conducting polymers into Au-doped CNT webs. The CNT bundles, which are interconnected by a direct spinning method to form 3D networks without interfacial contact resistance, provide both high electrical conductivity and high carrier mobility. The ZT value of the spun CNT web is significantly enhanced through two simple processes. Decorating the porous CNT webs with Au nanoparticles increases the electrical conductivity, resulting in an optimal ZT of 0.163, which represents a more than 2-fold improvement compared to the ZT of pristine CNT webs (0.079). After decoration, polyaniline (PANI) is integrated into the Au-doped CNT webs both to improve the Seebeck coefficient by an energy-filtering effect and to decrease the thermal conductivity by the phonon-scattering effect. This leads to a ZT of 0.203, which is one of the highest ZT values reported for organic TE materials. Moreover, Au-doped CNT/PANI web is ultralightweight, free-standing, thermally stable, and mechanically robust, which makes it a viable candidate for a hybrid TE conversion device for wearable electronics. When a 20 K temperature gradient is applied to the TE module consisting of seven p-n couples, 1.74 μW of power is generated.

  13. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  14. Features of West Hackberry SPR Caverns and Internal Structure Of the Salt Dome

    SciTech Connect

    Munson, Darrell Eugene

    2006-09-01

    The intent of this report is to examine the internal structure of the West Hackberry salt dome utilizing the information from the geometric configuration of the internal cavern surfaces obtained from graphical representations of sonar survey data. In a general sense, the caverns of West Hackberry are remarkable in the symmetry of their shapes. There are only rather moderate deviations from what would be considered an ideal cylindrical solution mining geometry in these caverns. This finding is in marked contrast to the directional solutioning found in the elliptical cross sectioned, sometimes winged, caverns of Big Hill. None of the persistent lineaments prevalent in Big Hill caverns are evident in West Hackberry caverns. Irregularities of the West Hackberry caverns are restricted to preferential solution formed pits and protuberances with moderate dimensions. In fact, the principal characteristic of West Hackberry caverns is the often large sections of smooth and cylindrical cavern wall. Differences in the cavern characteristics between West Hackberry and Big Hill suggest that the former dome is quite homogeneous, while the latter still retains strong remnants of the interbeds of the original bedded Louann salt. One possible explanation is that the source of the two domes, while both from the Louann mother salt, differs. While the source of the Big Hill dome is directly from the mother salt bed, it appears that the West Hackberry arises from a laterally extruded sill of the mother salt. Consequently, the amount of deformation, and hence, mixing of the salt and interbed material in the extruded sill is significantly greater than would be the case for the directly formed diapir. In West Hackberry, remnants of interbeds apparently no longer exist. An important aspect of the construction of the West Hackberry caverns is the evidence of an attempt to use a uniform solutioning construction practice. This uniformity involved the utilization of single well solutioning and

  15. Selected hydrologic data from the vicinity of Rayburns and Vacherie salt domes, northern Louisiana salt-dome basin

    USGS Publications Warehouse

    Ryals, G.N.; Hosman, R.L.

    1980-01-01

    The U.S. Department of Energy is considering salt domes in northern Louisiana as possible sites for storage of nuclear waste. As part of this National Waste Terminal Storage (NWTS) Program, the U.S. Geological Survey is conducting a regional study of the geohydrology of the northern Louisiana salt-dome basin. Field studies involving the collection of data began in 1977. Data-collection networks were established for both ground- and surface- water sources, primarily in the vicinity of two salt domes, Rayburns and Vacherie. Groundwater data collection involved measuring water levels and sampling existing production wells and test wells drilled by the Louisiana State University for Environmental Studies. Samples were analyzed for one or more of the following categories of chemical constituents: inorganic, trace metal, and radiochemical. A network of surface-water stations was set up for measuring discharge and collecting periodic samples. Initial sampling was for analysis for inorganic chemical constituents and radioactive elements. Subsequent sampling has been for inorganic chemical constituents. (USGS)

  16. The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions

    NASA Astrophysics Data System (ADS)

    Matthews, Stephen J.; Gardeweg, Moyra C.; Sparks, R. Stephen J.

    Lascar Volcano (5592m 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor.

  17. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert.

    PubMed

    Rasuk, Maria Cecilia; Kurth, Daniel; Flores, Maria Regina; Contreras, Manuel; Novoa, Fernando; Poire, Daniel; Farias, Maria Eugenia

    2014-10-01

    The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its

  18. Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole

    2015-04-01

    After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007

  19. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert.

    PubMed

    Rasuk, Maria Cecilia; Kurth, Daniel; Flores, Maria Regina; Contreras, Manuel; Novoa, Fernando; Poire, Daniel; Farias, Maria Eugenia

    2014-10-01

    The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its

  20. Venus pancake dome formation: Morphologic effects of a cooling-induced variable viscosity during emplacement

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1993-01-01

    The distinctive steep-sided 'pancake' domes discovered in the Magellan images of Venus have morphologies that suggest formation by a single continuous emplacement of a high viscosity magma. A resemblance of the venusian domes to much smaller terrestrial rhyolite and dacite volcanic domes has prompted some authors to suggest that the domes on Venus also have high silica compositions and thus, high viscosities. However, viscosity is a function of crystallinity as well as silica content in a magma, and thus increases as a result of magmatic cooling. To investigate the effect of a cooling-induced viscosity increase on dome morphology, we have modeled the domes as radial viscous gravity currents that cool during emplacement. Various aspects of the investigation are discussed.

  1. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  2. Variations in Iron Fluxes across Antarctica: a new record from Talos Dome in Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Barbante, C.; Cozzi, G.; Gabrieli, J.; Gaspari, V.; Spolaor, A.; Turetta, C.

    2012-04-01

    A new record of Iron (Fe) fluxes are presented from a coastal Antarctic site, Talos Dome. The Talos Dome ice core was drilled from 2005-2007, to a depth of 1620 m, covering more than 250 ky of climate variability. Iron fluxes at Talos Dome were consistently greater than at Dome C, particularly during interglacials when Talos Dome receives dust deflated from proximal ice-free areas. The 50-fold changes in Fe concentration variability over glacial-interglacial cycles, observed at Dome C, are not representative of deposition at this coastal site. Iron fluxes vary greatly from dust and calcium, which have been previously used as proxies for micronutrient deposition reconstructions. These differences in trace element fluxes across Antarctica are relevant for the reconstruction of Southern Ocean paleoproductivity and potential impacts on atmospheric CO2 drawdown over glacial-interglacial timescales.

  3. Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Varley, N. R.; Kueppers, U.; Lesage, P.; Reyes Davila, G. Á.; Dingwell, D. B.

    2013-01-01

    The most recent eruptive phase of Volcán de Colima, Mexico, started in 1998 and was characterized by episodic dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, growth at the dome was limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. This meant that no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment, could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events was then investigated. Larger events exhibited a correlation between the previously estimated volume of a rockfall and the surface temperature of the freshly exposed dome surface as well as the mean temperature of rockfall masses distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature at the newly formed cliff as well as the seismic energy. By calibrating the seismic signals using the volumes estimated from photographs, the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008 m3 s-1 to 0.02 m3 s-1 during 2010 and dropped down to 0.008 m3 s-1 again in March 2011. In June 2011, magma extrusion had come to a halt. The methodology

  4. Microstructure and electrochemical hydrogenation/dehydrogenation performance of melt-spun La-doped Mg{sub 2}Ni alloys

    SciTech Connect

    Hou, Xiaojiang; Hu, Rui; Zhang, Tiebang Kou, Hongchao; Song, Wenjie; Li, Jinshan

    2015-08-15

    This work focuses on microstructure and electrochemical hydrogen storage properties of La-doped Mg{sub 2}Ni alloys. The alloys with nominal compositions of Mg{sub 2}Ni{sub 1−x}La{sub x} (x = 0, 0.1, 0.3, 0.5) were prepared via metallurgical smelting and melt-spun on a rotating copper wheel. The scanning electron microscope, X-ray diffraction, differential scanning calorimetry and transition electron microscope, galvanostatic charging/discharging and other electrochemical measurements were employed to investigate. The results show that the increasing of La content and melt-spinning speed favors the formation of Mg–Ni–La amorphous/nanocrystalline alloys. It is found that the melt-spun ribbons display increased discharge capacities and superior cycle stabilities compared to the as-cast alloys with and without La. The potentiodynamic polarization results indicate that melt-spun La-doped Mg{sub 2}Ni ribbons possess more positive corrosion potential E{sub corr} and exhibit relatively high corrosion resistance against the alkaline solution. The mechanism for electrochemical hydrogenation/dehydrogenation has been proposed based on the effect of microstructures on the mass/charge transfer process for electrode electrochemical reaction. - Highlights: • Nanocrystalline/amorphous Mg–Ni–La alloys are obtained by melt-spinning. • Microstructures of as-cast and rapid quenched Mg{sub 2}Ni{sub 1−x}La{sub x} alloys are investigated. • Electrochemical hydrogenation properties of experimental alloys are characterized. • Electrochemical hydrogen absorption/desorption mechanism is proposed.

  5. Ferrule and use thereof for cooling a melt spun hollow glass fiber as it emerges from a spinnerette

    DOEpatents

    Brown, William E.

    1977-01-01

    An improvement in the process of melt spinning thin walled, hollow fibers from relatively low melting glasses results if cooling of the emerging fiber is accomplished by use of a thin layer of gas to transfer heat from the fiber to a ferrule which fits closely to the spinnerette face and the individual fiber. The ferrule incorporates or is in contact with a heat sink and is slotted or segmented so that it may be brought into position around the moving fiber. Thinner walled, more uniform fibers may be spun when this method of cooling is employed.

  6. The mechanical and microscopic aspects of the deformation and fracture of a poly (ether urethane-urea) spun arterial prosthesis.

    PubMed

    Williams, D F; Zhong, S P; Doherty, P J

    1991-01-01

    The mechanical properties of a microporous, electrostatically spun poly (ether urethane-urea), used in the construction of arterial prostheses, have been examined, with particular reference to anisotropic, crack initiation processes and preconditioning. The results demonstrate considerable anisotropy in relation to samples derived from circumferential and longitudinal directions of the tube wall structure related to the spinning process. There is also a considerable difference in crack initiation on inner and outer surface of the arterial wall, again related to the processing conditions. The results provide an important contribution to an understanding of structure-property relationships in microporous arterial prosthesis.

  7. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  8. A decade of dome growth at Mount St. Helens, 1980-90

    USGS Publications Warehouse

    Swanson, D.A.

    1990-01-01

    The growth of the dacite dome at Mount St. Helens between 1980 and 1986 has been more intensively studied than that of any other dome-building eruption. The growth has been complex in detail, but remarkably regular overall. This paper summarizes some of what has been learned and provides many references to additional information. Whether dome building has ended is an open question, particularly in view of the renewed, though minor, explosive activity of late 1989 and early 1990. -Author

  9. Limit dome height test of very thin brass sheet considering the scaling effect

    NASA Astrophysics Data System (ADS)

    Sahu, Jambeswar; Mishra, Sushil

    2016-08-01

    The effect of reduction of material geometry in metal forming process is important and is more effective when material size less than 100 micron. Thin brass sheet of 30. 50. 90 micron thickness were tested by in-plane uniaxial and out-of-plane limit dome height (LDH) test to investigate the size effect. The test was carried for both as-received and annealed specimen. The microstructure of all tests was determined in details by electron back scattered diffraction (EBSD) microscopy technique. There was a clear dependency of mechanical behaviour observed on part miniaturized of both tensile and LDH test. The limiting strain is obtained maximum at plane strain path in LDH test having more misorientation. The 50 micron sheet in biaxial strain path required more load and have larger major strain, more texture and Taylor factor value.

  10. Method of estimating time scales of the atmospheric piston and its application at Dome C (Antarctica).

    PubMed

    Kellerer, Aglae; Sarazin, Marc; du Foresto, Vincent Coudé; Agabi, Karim; Aristidi, Eric; Sadibekova, Tatyana

    2006-08-01

    Analysis of the first interferometric fringes recorded at Dome C, Antarctica are presented. Measurements were taken 31 January and 1 February 2005 during daytime. Our purpose in performing the analysis was to measure temporal fluctuations of the atmospheric piston, which are critical for interferometers, and determine their sensitivity. These scales are derived through the motion of the image that is formed in the focal plane of a Fizeau interferometer. We could establish a lower limit to the coherence time by studying the decay rate of correlation between successive fringes. Coherence times are measured to be larger than 10 ms, i.e., at least three times higher than the median coherence time measured at the site of Paranal (3.3 ms). PMID:16855670

  11. Method of estimating time scales of the atmospheric piston and its application at Dome C (Antarctica).

    PubMed

    Kellerer, Aglae; Sarazin, Marc; du Foresto, Vincent Coudé; Agabi, Karim; Aristidi, Eric; Sadibekova, Tatyana

    2006-08-01

    Analysis of the first interferometric fringes recorded at Dome C, Antarctica are presented. Measurements were taken 31 January and 1 February 2005 during daytime. Our purpose in performing the analysis was to measure temporal fluctuations of the atmospheric piston, which are critical for interferometers, and determine their sensitivity. These scales are derived through the motion of the image that is formed in the focal plane of a Fizeau interferometer. We could establish a lower limit to the coherence time by studying the decay rate of correlation between successive fringes. Coherence times are measured to be larger than 10 ms, i.e., at least three times higher than the median coherence time measured at the site of Paranal (3.3 ms).

  12. Seafloor doming driven by active mantle degassing offshore Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Ventura, Guido; Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Caliro, Stefano; Chiodini, Giovanni; Sacchi, Marco; Rizzo, Andrea

    2016-04-01

    Structures and processes associated with shallow water hydrothermal fluid discharges on continental shelves are poorly known. We report geomorphological, geophysical, and geochemical evidences of a 5.5 x 5.3 km seabed doming located 5 km offshore the Naples harbor (Italy). The dome lies between 100 and 170 m of water depth and it is 15-20 m higher than the surrounding seafloor. It is characterized by a hummocky morphology due to 280 sub-circular to elliptical mounds, about 660 cones, and 30 pockmarks. The mounds and pockmarks alignments follow those of the main structural discontinuity affecting the Gulf of Naples. The seafloor swelling and breaching require relatively low pressures (about 2-3 MPa), and the sub-seafloor structures, which consists of 'pagodas' affecting the present-day seabed, record the active upraise, pressurization, and release of magmatic fluids. The gas composition of the sampled submarine emissions is consistent with that of the emissions from the hydrothermal systems of Ischia, CampiFlegrei and Somma-Vesuvius active volcanoes, and CO2 has a magmatic/thermometamorphic origin. The 3He/4He ratios (1.66-1.96 Ra) are slightly lower than in the Somma-Vesuvius and Campi Flegrei volcanoes (~2.6-3.0 Ra) indicating the contamination of fluids originated from the same magmatic source by crustal-derived radiogenic 4He. All these evidences concur to hypothesize an extended magmatic reservoir beneath Naples and its offshore. Seabed doming, faulting, and hydrothermal discharges are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. We conclude that seabed deformations and hydrothermal discharge must be included in the coastal hazard studies.

  13. A Scalable and Modular Dome Illumination System for Scientific Microphotography on a Budget

    PubMed Central

    Kawada, Ricardo; Buffington, Matthew L.

    2016-01-01

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs remain expensive and inflexible with respect to new LED technology. Further, a one-size-fits-all dome cannot accommodate the large breadth of insect size encountered in nature, forcing the photographer to adapt, in some cases, to a less than ideal dome design. The dome described here is scalable, as it is based on a isodecahedron, and the template for the dome is available as a downloaded file from the internet that can be printed on any printer, on the photographer’s choice of media. As a result, a photographer can afford, using this design, to produce a series of domes of various sizes and materials, and LED ring lights of various sizes and color temperatures, depending on the need. PMID:27138573

  14. Identifying and inventorying cypress domes in the Florida panhandle using Landsat imagery

    NASA Astrophysics Data System (ADS)

    Calaminus, Andre Kyle

    Cypress domes are swamp ecosystems dominated by pond cypress (Taxodium ascendens), a conifer native to North America. Cypress domes can be found in flatland depressions throughout the southeast United States, hydrologically separated from other water bodies. Threatened by urbanization and land use change, these unique ecosystems have experienced degradation, destruction, and habitat loss over the past few decades. While many domes have been identified in central and southern Florida, literature is lacking on cypress domes found in the Florida panhandle. Cypress domes within the Florida panhandle were located, inventoried, and analyzed for landscape patterns, including size and shape. Additionally, the cypress dome areas were subject to pixel change detection for temporal comparison of dome size from 2000 to 2013. Using satellite imagery from the Landsat 8 spacecraft, support vector machine classification, and publicly available data, a total of 1,568 cypress domes were found to exist in the Florida panhandle, with a mean area of 1.28 hectares, ranging from a minimum of 0.13 ha to a maximum of 4.95 ha, occupying 19.79 km2, or 0.078% of the panhandle study area. A change detection analysis over the 13 year period show a net gain of 284.63 ha in cypress dome growth.

  15. A Scalable and Modular Dome Illumination System for Scientific Microphotography on a Budget.

    PubMed

    Kawada, Ricardo; Buffington, Matthew L

    2016-01-01

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs remain expensive and inflexible with respect to new LED technology. Further, a one-size-fits-all dome cannot accommodate the large breadth of insect size encountered in nature, forcing the photographer to adapt, in some cases, to a less than ideal dome design. The dome described here is scalable, as it is based on a isodecahedron, and the template for the dome is available as a downloaded file from the internet that can be printed on any printer, on the photographer's choice of media. As a result, a photographer can afford, using this design, to produce a series of domes of various sizes and materials, and LED ring lights of various sizes and color temperatures, depending on the need. PMID:27138573

  16. A preliminary report of the geohydrology of the Mississippi Salt-Dome Basin

    USGS Publications Warehouse

    Spiers, C.A.; Gandl, L.A.

    1980-01-01

    The U.S. Department of Energy is investigating the suitability of salt domes in the Mississippi salt-dome basin as repositories for storing radioactive wastes. The Department of Energy has requested that the U.S. Geological Survey describe the groundwater hydrology of the Mississippi salt-dome basin, giving special attention to direction and rate of movement of water. In this first part of a continuing investigation the data obtained from one year of extensive literature search and data compilation are summarized. The regional groundwater hydrology in the salt-dome basin is defined with respect to (1) groundwater flow, (2) facies changes, (3) geological structure, (4) recharge and discharge, (5) freshwater-saltwater relations, and (6) identification of localities where additional data are needed. From the 50 piercement-type salt domes in the Mississippi salt-dome basin three domes (Richton, Cypress Creek, and Lampton) were selected for more intensive study. To further evaluate the geohydrology of Richton, Lampton, and Cypress Creek domes as possible sites for storage of radioactive waste, an intensive geohydrologic study based on a comprehensive test drilling program near the domes is planned. (USGS)

  17. Investigation of easy axis orientation of Nd-Fe-B melt-spun ribbons produced by hot rolling and influence of Ti-C addition

    SciTech Connect

    Takezawa, M.; Nakanishi, Y.; Morimoto, Y.; Yamasaki, J.; Yagi, M.

    2012-04-01

    The c-axis orientation of Nd-Fe-B melt-spun ribbons caused by hot rolling and the influence of Ti-C addition were investigated. A small roll was placed on a steel wheel near a quartz tube in such a manner that the melt-spun ribbons were hot rolled immediately after quenching. X-ray diffraction patterns measured on both surfaces of the Nd-Fe-B-Ti ribbon indicate that the c-axis is oriented normal to the ribbon plane. The domain pattern of the Nd-Fe-B-Ti-C ribbon was observed with a Kerr microscope. Most of the grains exhibit a maze domain configuration, indicating that the c-axis is oriented normal to the ribbon plane. Furthermore, it was demonstrated that hot rolling and the addition of Ti-C promote c-axis orientation and high coercivity of Nd-Fe-B melt-spun ribbons.

  18. Static analysis of a sonar dome rubber window

    NASA Technical Reports Server (NTRS)

    Lai, J. L.

    1978-01-01

    The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.

  19. Field Survey of Cactus Crater Storage Facility (Runit Dome)

    SciTech Connect

    Douglas Miller, Terence Holland

    2008-10-31

    The US Department of Energy, Office of Health and Safety (DOE/HS-10), requested that National Security Technologies, LLC, Environmental Management directorate (NSTec/EM) perform a field survey of the Cactus Crater Storage Facility (Runit Dome), similar to past surveys conducted at their request. This field survey was conducted in conjunction with a Lawrence Livermore National Laboratory (LLNL) mission on Runit Island in the Enewetak Atoll in the Republic of the Marshall Islands (RMI). The survey was strictly a visual survey, backed up by digital photos and a written description of the current condition.

  20. Near-automatic generation of lava dome DEMs from photos

    NASA Astrophysics Data System (ADS)

    James, M. R.; Varley, N.

    2012-04-01

    Acquiring accurate digital elevation models (DEMs) of growing lava domes is critical for hazard assessment. However, most techniques require expertise and time (e.g. photogrammetry) or expensive equipment (e.g. laser scanning and radar-based techniques). Here, we use a photo-based approach developed within the computer vision community that offers the potential for near-automatic DEM construction using a consumer-grade digital camera and freely available software. The technique is based on a combination of structure-from-motion and multi-view stereo algorithms (SfM-MVS) and can generate dense 3D point clouds (millions of points) from multiple photographs of a scene taken from different positions. Processing is carried out by automated 'reconstruction pipeline' software downloadable from the internet, e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Such reconstructions are initally un-scaled and un-oriented so additional software (http://www.lancs.ac.uk/ staff/jamesm/software/sfm_georef.htm) has been developed to permit scaling or full georeferencing. Although this step requires the presence of some control points or knowledge of scale within the scene, it does not have the relatively strict image acquisition and control requirements of traditional photogrammetry. For accuracy and to allow error analysis, georeferencing observations are made within the image set, rather than requiring feature matching within the point cloud. Here we demonstrate the results of using the technique for deriving 3D models of the Volcán de Colima lava dome. 5 image sets have been collected by different people over a period of 12 months during overflights in a light aircraft. Although the resulting imagery is of variable quality for 3D reconstruction, useful data can be extracted from each set. Scaling and georeferencing is carried out using a combination of ortho-imagery (downloaded from Bing) and a few GPS points. Overall precisions are ~1 m and DEM qualities

  1. Arthroscopic management of talar dome lesions using a transmalleolar approach.

    PubMed

    Grady, John; Hughes, David

    2006-01-01

    Surgical treatment of posteromedial talar dome lesions is frequently necessary for Berndt and Harty grade IV osteochondral defects and nondisplaced osteochondral fragments resistant to conservative modalities. When operative intervention is indicated, the approach and management can be complicated by the location and extent of the injury. The operative technique we advocate allows direct exposure of the lesion and minimizes damage to healthy articular cartilage and surrounding soft tissue. Use of a drill guide assists the surgeon in precisely placing a transmalleolar portal through the tibia for subchondral drilling of osteochondral defects when the lesions are inaccessible through traditional arthroscopic portals. PMID:16707640

  2. Origin of sulfate in barite and calcite cements in the Jebel Madar salt dome (Oman)

    NASA Astrophysics Data System (ADS)

    Vandeginste, V.; John, C. M.; Gilhooly, W. P.

    2012-12-01

    Jebel Madar is a 500-m high mountain rising in the desert at the Oman Foothills. The Jebel consists of Triassic to Cretaceous carbonate host rocks forming the carapace of a salt dome. Halokinesis caused major fracturing and faulting at Jebel Madar, and the resulting structures acted as the main pathways for fluids that generated diagenetic cements composed of both barite and calcite. The spatial distribution of calcite and barite occurrences shows that calcite is formed in large abundance along the three main faults, whereas barite is more concentrated along faults further away from the three main ones. The stable carbon and oxygen isotope composition of calcite and fluid inclusion data from both calcite and barite show a distinct evolution of the fluid with a highly saline component towards more mixing with meteoric water. This is in agreement with clumped isotopes data on calcite cements indicating an evolution towards lower temperatures, consistent with doming of the Jebel and greater input of lower-temperature descending meteoric fluids. Here, we present sulphur and oxygen isotopic data on barite that suggest a link between the barite formation and the Precambrian salt underlying Jebel Madar. The average δ34S measured in barite is 33‰ CDT (1σ = 5‰; n = 33), which falls at the lower end of the δ34S range reported for the Ara Group anhydrite. The average δ18O in the same barite samples is 23‰ VSMOW (1σ = 2‰; n = 33). Data from the barite will be compared with sulphur isotopes from the carbonate-associate sulfate in the calcite cements. The overall goal of our research is to gain a better insight in the formation process of barite and calcite in Jebel Madar and its link with salt tectonics. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and the GSA Laubach fund for this study.

  3. 7-forming, superconducting filaments through bicomponent dry spinning

    DOEpatents

    Tuominen, Olli P.; Morgan, Carol W.; Burlone, Dominick A.; Blankenship, Keith V.

    2001-01-01

    Fibers which contain potentially superconducting material are dry spun by the steps of preparing a suspension of potentially superconducting powder in a thickened solvent; preparing a solution of fiber-forming polymer; supplying the suspension and the solution to a spinning apparatus; in the spinning apparatus, arranging the solution and the suspension in a bicomponent arrangement; extruding the arranged solution and suspension from a spinneret as a bicomponent filament; and removing the solvent from the filament.

  4. Comparative proteomics reveal diverse functions and dynamic changes of Bombyx mori silk proteins spun from different development stages.

    PubMed

    Dong, Zhaoming; Zhao, Ping; Wang, Chen; Zhang, Yan; Chen, Jianping; Wang, Xin; Lin, Ying; Xia, Qingyou

    2013-11-01

    Silkworms (Bombyx mori) produce massive amounts of silk proteins to make cocoons during the final stages of larval development. Although the major components, fibroin and sericin, have been the focus for a long time, few researchers have realized the complexity of the silk proteome. We collected seven kinds of silk fibers spun by silkworm larvae at different developmental stages: the silks spun by new hatched larvae, second instar day 0 larvae, third instar day 0 larvae, fourth instar day 0 larvae, and fourth instar molting larvae, the scaffold silk used to attach the cocoon to the substrate and the cocoon silk. Analysis by liquid chromatography-tandem mass spectrometry identified 500 proteins from the seven silks. In addition to the expected fibroins, sericins, and some known protease inhibitors, we also identified further protease inhibitors, enzymes, proteins of unknown function, and other proteins. Unsurprisingly, our quantitative results showed fibroins and sericins were the most abundant proteins in all seven silks. Except for fibroins and sericins, protease inhibitors, enzymes, and proteins of unknown function were more abundant than other proteins. We found significant change in silk protein compositions through development, being consistent with their different biological functions and complicated formation.

  5. TEM microstructural characterization of melt-spun aged Al-6Si-3Cu-xMg alloys

    SciTech Connect

    Lopez, Ismeli Alfonso . E-mail: post18@jupiter.umich.mx; Zepeda, Cuauhtemoc Maldonado; Gonzalez Reyes, Jose Gonzalo; Flores, Ariosto Medina; Rodriguez, Juan Serrato; Gomez, Luis Bejar

    2007-06-15

    Three Al-6Si-3Cu-xMg alloys (x = 0.59, 3.80 and 6.78 wt.%) were produced using melt-spinning. As-melt-spun ribbons were aged at 150, 180 and 210 deg. C for times between 0.05 and 100 h. Microstructural changes were examined using transmission electron microscopy (TEM) and microhardness was measured. TEM analysis of the as-melt-spun alloys revealed 5 nm nanoparticles and larger particles (50 nm) composed of Al{sub 2}Cu ({theta}) for the 0.59% Mg alloy and Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) for 3.80% and 6.78% Mg alloys. Silicon solid solubility was extended to 9.0 at.% and Mg in solid solution reached 6.7 at.%. After aging treatments the 6.78% Mg alloy exhibited the most significant increase in microhardness, reaching 260 kg/mm{sup 2}. TEM analysis of aged specimens also showed {theta} and Q phase (5-20 nm nanoparticles and 35-40 nm particles). The combination of the volume fraction and size of the particles plays an important role in microhardness variation.

  6. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano

    NASA Astrophysics Data System (ADS)

    Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick L.; McGimsey, Robert G.

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth. Effusion rates ranged from a maximum of 35 m3 s- 1 during the initial two weeks to a low of 2.2 m3 s- 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s- 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April-1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or inflation. These trends

  7. DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS

    SciTech Connect

    Selwa, M.; Poedts, S.; DeVore, C. R. E-mail: stefaan.poedts@wis.kuleuven.be

    2012-03-10

    Recent STEREO observations enabled the study of the properties of EUV waves in more detail. They were found to have a three-dimensional (3D) dome-shaped structure. We investigate, by means of 3D MHD simulations, the formation of EUV waves as the result of the interaction of twisted coronal magnetic loops. The numerical simulation is initialized with an idealized dipolar active region and is performed under coronal (low {beta}) conditions. A sheared rotational motion is applied to the central parts of both the positive and negative flux regions at the photosphere so that the flux tubes in between them become twisted. We find that the twisting motion results in a dome-shaped structure followed in space by a dimming and in time by an energy release (flare). The rotation of the sunspots is the trigger of the wave which initially consists of two fronts that later merge together. The resulting EUV wave propagates nearly isotropically on the disk and {approx}2 times faster in the upward direction. The initial stage of the evolution is determined by the driver, while later the wave propagates freely with a nearly Alfvenic speed.

  8. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    USGS Publications Warehouse

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  9. Performance limits of planar phased array with dome lens

    NASA Astrophysics Data System (ADS)

    Geren, W. P.; Taylor, Michael

    1998-10-01

    Communication systems based on low-earth-orbit (LEO) satellites have generated a requirement for high-performance phased array antennas with exceptional gain, sidelobe levels, and axial ratio over broad scan angles and 360 degree azimuth coverage. One approach to mitigating the effects of scan dependence is to cover the planar array with a hemispherical lens, or dome, which implements passive or active phase correction of the scanned beam. The phase correction over the dome surface may be represented as the function (Delta) (Phi) ((theta) , (phi) ), with (theta) and (phi) the polar and azimuth angles in a coordinate system having z-axis normal to the array. The purpose of this study was to determine the performance improvement achievable with such an ideal lens. Three cases were considered: a conventional lens with fixed optimum phase correction, an active lens with scan-dependent phase correction a function of polar angle only, and an active lens with phase correction a function of polar and azimuthal angles. In all cases, the planar array distribution had a fixed radial Taylor amplitude distribution and a phase taper consisting of a linear beam-pointing term and a non-linear focusing term.

  10. Characterization of Atmospheric Ekman Spirals at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Rysman, Jean-François; Lahellec, Alain; Vignon, Etienne; Genthon, Christophe; Verrier, Sébastien

    2016-08-01

    We use wind speed and temperature measurements taken along a 45-m meteorological tower located at Dome C, Antarctica (75.06°S, 123.19°E) to highlight and characterize the Ekman spiral. Firstly, temperature records reveal that the atmospheric boundary layer at Dome C is stable during winter and summer nights (i.e., >85 % of the time). The wind vector, in both speed and direction, also shows a strong dependence with elevation. An Ekman model was then fitted to the measurements. Results show that the wind vector follows the Ekman spiral structure for more than 20 % of the year (2009). Most Ekman spirals have been detected during summer nights, that is, when the boundary layer is slightly stratified. During these episodes, the boundary-layer height ranged from 25 to 100 m, the eddy viscosity from 0.004 to 0.06 m^2 s^{-1}, and the Richardson number from zero to 1.6.

  11. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA

    SciTech Connect

    Wang Lingzhi; Macri, Lucas M.; Krisciunas, Kevin; Wang Lifan; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Storey, John W. V.; Cui Xiangqun; Gong Xuefei; Yuan Xiangyan; Feng Longlong; Yang Ji; Zhu Zhenxi; Liu Qiang; Zhou Xu; Pennypacker, Carl R.; Shang Zhaohui; Yang Huigen; York, Donald G.

    2011-11-15

    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg{sup 2} region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearly uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes {delta} Scuti, {gamma} Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet.

  12. Measurement of air quality within storage domes in technical area 54, areas G and L

    SciTech Connect

    Anderson, E.

    1994-03-15

    The concentrations of volatile organic compounds (VOCs) and tritium inside of storage domes at TA-54 were measured to assess worker exposure and support the Area G site characterization, including the Radioactive Air Emissions Management (RAEM) program. Samples were collected at 2-3 locations within Domes 48, 49, and 153 on up to six days during the summer of 1994. Samples were collected to evaluate three scenarios: (1) normal working activities with the domes open; (2) after domes were closed overnight; and (3) after domes were closed for three days. Eight-hour integrated samples were collected and analyzed in Radian`s Austin laboratories. Tritium activities from 17.1 to 69,900 pCi/m{sup 3} were measured. About two dozen individual VOCs were identified in each sample, but most of the concentration levels were very low (e.g.; < 1 to 10 ppbv). The highest concentrations measured were bromomethane (56.5 ppbv), 1, 1,1-trichloroethane (75.4 ppbv), propane (958 ppbv), methylene chloride (1,450 ppbv), and toluene (22.8). The measured VOC concentrations were well below the action levels developed by the New Mexico Environment Department and the measured tritium concentrations were well below the DOE`s derived air concentration (DAC). The variability in concentration within a dome during a single sampling episode was small. The concentrations were about an order of magnitude (i.e., 10x) higher after the domes had been closed overnight compared with the domes when open. Closing the domes over the weekend did not result in significantly higher concentrations (e.g.; > 20%) than when the domes were closed only overnight. The data were used to generate estimated annual dome emission rates of 0.3 Ci/yr of tritium and less than 100 lbs/yr of VOCs. The measured VOC concentrations were collected during the warmest months of the year and therefore should represent worst-case air impacts.

  13. The use of digital periapical radiographs to study the prevalence of alveolar domes

    PubMed Central

    Xambre, Pedro Augusto Oliveira Santos; Valerio, Claudia Scigliano; e Alves Cardoso, Claudia Assunção; Custódio, Antônio Luís Neto

    2016-01-01

    Purpose In the present study, we coined the term 'alveolar dome' and aimed to demonstrate the prevalence of alveolar domes through digital periapical radiographs. Materials and Methods This study examined 800 digital periapical radiographs in regard to the presence of alveolar domes. The periapical radiographs were acquired by a digital system using a photostimulable phosphor (PSP) plate. The χ2 test, with a significance level of 5%, was used to compare the prevalence of alveolar domes in the maxillary posterior teeth and, considering the same teeth, to verify the difference in the prevalence of dome-shaped phenomena between the roots. Results The prevalence of alveolar domes present in the first pre-molars was statistically lower as compared to the other maxillary posterior teeth (p<0.05). No statistically significant difference was observed in the prevalence of alveolar domes between the maxillary first and second molars. Considering the maxillary first and second molars, it was observed that the palatal root presented a lower prevalence of alveolar domes when compared to the distobuccal and mesiobuccal roots (p<0.05). Conclusion The present study coined the term 'alveolar dome', referring to the anatomical projection of the root into the floor of the maxillary sinus. The maxillary first and second molars presented a greater prevalence of alveolar domes, especially in the buccal roots, followed by the third molars and second pre-molars. Although the periapical radiograph is a two-dimensional method, it can provide dentists with the auxiliary information necessary to identify alveolar domes, thus improving diagnosis, planning, and treatment.

  14. The use of digital periapical radiographs to study the prevalence of alveolar domes

    PubMed Central

    Xambre, Pedro Augusto Oliveira Santos; Valerio, Claudia Scigliano; e Alves Cardoso, Claudia Assunção; Custódio, Antônio Luís Neto

    2016-01-01

    Purpose In the present study, we coined the term 'alveolar dome' and aimed to demonstrate the prevalence of alveolar domes through digital periapical radiographs. Materials and Methods This study examined 800 digital periapical radiographs in regard to the presence of alveolar domes. The periapical radiographs were acquired by a digital system using a photostimulable phosphor (PSP) plate. The χ2 test, with a significance level of 5%, was used to compare the prevalence of alveolar domes in the maxillary posterior teeth and, considering the same teeth, to verify the difference in the prevalence of dome-shaped phenomena between the roots. Results The prevalence of alveolar domes present in the first pre-molars was statistically lower as compared to the other maxillary posterior teeth (p<0.05). No statistically significant difference was observed in the prevalence of alveolar domes between the maxillary first and second molars. Considering the maxillary first and second molars, it was observed that the palatal root presented a lower prevalence of alveolar domes when compared to the distobuccal and mesiobuccal roots (p<0.05). Conclusion The present study coined the term 'alveolar dome', referring to the anatomical projection of the root into the floor of the maxillary sinus. The maxillary first and second molars presented a greater prevalence of alveolar domes, especially in the buccal roots, followed by the third molars and second pre-molars. Although the periapical radiograph is a two-dimensional method, it can provide dentists with the auxiliary information necessary to identify alveolar domes, thus improving diagnosis, planning, and treatment. PMID:27672614

  15. Rift-related volcanism and karst geohydrology of the southern Ozark Dome

    USGS Publications Warehouse

    Harrison, Richard W.; Weary, David J.; Orndorff, Randall C.; Repetski, John E.; Pierce, Herbert A.; Lowell, Gary R.; Evans, Kevin R.; Aber, James S.

    2010-01-01

    This field trip examines the geology and geohydrology of a dissected part of the Salem Plateau in the Ozark Plateaus province of south-central Missouri. Rocks exposed in this area include karstified, flat-lying, lower Paleozoic carbonate platform rocks deposited on Mesoproterozoic basement. The latter is exposed as an uplift located about 40 mi southwest of the St. Francois Mountains and form the core of the Ozark dome. On day 1, participants will examine and explore major karst features developed in Paleozoic carbonate strata on the Current River; this will include Devil's Well and Round Spring Cavern as well as Montauk, Round, Alley, and Big Springs. The average discharge of the latter is 276 × 106 gpd and is rated in the top 20 springs in the world. Another, Alley Spring, is equally spectacular with an average discharge of 81 × 106 gpd. Both are major contributors to the Current and Eleven Point River drainage system which includes about 50 Mesoproterozoic volcanic knobs and two granite outcrops. These knobs are mainly caldera-erupted ignimbrites with a total thickness of 7–8 km. They are overlain by post-collapse lavas and intruded by domes dated at 1470 Ma. Volcaniclastic sediment and air-fall lapilli tuff are widely distributed along this synvolcanic unconformity. On day 2, the group will examine the most important volcanic features and the southernmost granite exposure in Missouri. The trip concludes with a discussion of the Missouri Gravity Low, the Eminence caldera, and the volcanic history of southern Missouri as well as a discussion of geologic controls on regional groundwater flow through this part of the Ozark aquifer.

  16. Teapot Dome: Site Characterization of a CO2- Enhanced Oil Recovery Site in Eastern Wyoming

    SciTech Connect

    Friedmann, S J; Stamp, V

    2005-11-01

    Naval Petroleum Reserve No. 3 (NPR-3), better known as the Teapot Dome oil field, is the last U.S. federally-owned and -operated oil field. This provides a unique opportunity for experiments to provide scientific and technical insight into CO{sub 2}-enhanced oil recovery (EOR) and other topics involving subsurface fluid behavior. Towards that end, a combination of federal, academic, and industrial support has produced outstanding characterizations of important oil- and brine-bearing reservoirs there. This effort provides an unparalleled opportunity for industry and others to use the site. Data sets include geological, geophysical, geochemical, geomechanical, and operational data over a wide range of geological boundary conditions. Importantly, these data, many in digital form, are available in the public domain due to NPR-3's federal status. Many institutions are already using portions of the Teapot Dome data set as the basis for a variety of geoscience, modeling, and other research efforts. Fifteen units, 9 oil-bearing and 6 brine-bearing, have been studied to varying degrees. Over 1200 wells in the field are active or accessible, and over 400 of these penetrate 11 formations located below the depth that corresponds to the supercritical point for CO{sub 2}. Studies include siliciclastic and carbonate reservoirs; shale, carbonate, and anhydrite cap rocks; fractured and unfractured units; and over-pressured and under-pressured zones. Geophysical data include 3D seismic and vertical seismic profiles. Reservoir data include stratigraphic, sedimentological, petrologic, petrographic, porosity, and permeability data. These have served as the basis for preliminary 3D flow simulations. Geomechanical data include fractures (natural and drilling induced), in-situ stress determination, pressure, and production history. Geochemical data include soil gas, noble gas, organic, and other measures. The conditions of these reservoirs directly or indirectly represent many reservoirs

  17. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts.

    PubMed

    Entcheva, Emilia; Bien, Harold

    2009-02-01

    This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions. PMID:20023805

  18. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts

    PubMed Central

    Bien, Harold

    2015-01-01

    This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions. PMID:20023805

  19. Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Barbante, C.; Cozzi, G.; Gabrieli, J.; Schüpbach, S.; Spolaor, A.; Turetta, C.

    2013-03-01

    Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.

  20. Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Barbante, C.; Cozzi, G.; Gabrieli, J.; Schüpbach, S.; Spolaor, A.; Turetta, C.

    2012-12-01

    Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and reorganization of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we conclude that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.

  1. The ongoing dome emplacement and destruction cyclic process at Popocatépetl volcano, Central Mexico

    NASA Astrophysics Data System (ADS)

    Gómez-Vazquez, Angel; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2016-09-01

    The ongoing eruptive activity of Popocatépetl volcano has been characterized by emplacement and subsequent destruction of a succession of lava domes. Between the onset of the current eruption in 1994 and the time of this submission, 38 episodes of lava dome formation and removal have been identified. Each dome has showed particular features related to the magma extrusion process. Among other manifestations, dome-emplacement events have been usually accompanied by relatively low-intensity, protracted explosions referred to as exhalations. After variable times of residence, emplacements have ended in partial or total destruction of the domes by strong vulcanian explosions that produced sizeable ash plumes, with most of them also ejecting incandescent debris onto the volcano flanks. Here, we present a detailed account for the observed activity related to the domes' growth and destruction, related seismic monitoring signals, and morphological features of the domes based on 19 years of visual observations and image analysis. We then discuss a model for the process of dome growth and destruction and its hazard implications.

  2. A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Instrumentation and observational basis

    NASA Astrophysics Data System (ADS)

    Ji, Qiang; Tsay, Si-Chee

    2010-04-01

    A new method for improving the ground-based pyranometer measurements of solar irradiance has been employed during the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate field experiment, Asian Monsoon Year in China in 2008. Depending on the temperature difference between its detector and domes, a pyranometer's thermal dome effect (TDE) can vary from a few W m-2 at night to over tens of W m-2 during daytime. Yet in traditional calibration procedures only a single calibration constant is determined, and consequently TDE is misrepresented. None of the methods that have been documented in the literature can capture TDE nonintrusively using the same instrument. For example, although adding a temperature sensor to the detector assembly is straightforward, attaching any sensor on a dome is intrusive and will affect its overall optical and physical properties. Furthermore, in response to the solar elevation and atmospheric variables, the dome temperature distribution is both dynamic and uneven, which makes it exceedingly difficult for locating a representative point on the dome for measuring TDE. However, the effective-dome-temperature is proportional to the pressure of the air trapped between the outer and the inner domes; therefore with a minor modification to a pyranometer, we can utilize the ideal gas law to gauge TDE without affecting the domes. Pyranometers can become climate-quality instruments once their TDE are nonintrusively determined.

  3. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  4. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  5. Improved manufacturing techniques for rf and laser hardening of missile domes, phase 1

    NASA Astrophysics Data System (ADS)

    Pawlewicz, W. T.; Mann, I. B.; Martin, P. M.; Hays, D. D.; Graybeal, A. G.

    1982-07-01

    The adaptation of an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high power fusion laser applications to the case of RF and laser hardening of plastic missile domes used by US Army (MICOM) is reported. RF hardening of Hellfire and Copperhead 1.06 micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings is demonstrated. The project involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat sensitive plastic domes used on laser guided missiles. Specific ITO coating property goals are an electrical sheet resistance of 10 ohms/square, a coated dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 ohms/square was expected to result in an RF attenuation of 30 dB at the frequencies of importance.

  6. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  7. A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific)

    NASA Astrophysics Data System (ADS)

    Merle, O.; Brothelande, E.; Lénat, J.-F.; Bachèlery, P.; Garaébiti, E.

    2013-12-01

    A structural study has been conducted on the resurgent Yenkahe dome (5 km long by 3 km wide) located in the heart of the Siwi caldera of Tanna Island (Vanuatu arc, south Pacific). This spectacular resurgent dome hosts a small caldera and a very active strombolian cinder cone - the Yasur volcano - in the west and exhibits an intriguing graben in its central part. Detailed mapping and structural observations make it possible to unravel the volcano-tectonic history of the dome. It is shown that, following the early formation of a resurgent dome in the west, a complex collapse (caldera plus graben) occurred and this was associated with the recent uplift of the eastern part of the present dome. Eastward migration of the underlying magma related to regional tectonics is proposed to explain this evolution.

  8. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

    2010-06-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  9. The Hangay Dome, central Mongolia: A relict Mesozoic landscape

    NASA Astrophysics Data System (ADS)

    McDannell, K. T.; Zeitler, P. K.; Ancuta, L. D.; Idleman, B. D.; Boulton, S. L.; Wegmann, K. W.

    2014-12-01

    The Hangay Dome is a broad upland in central Mongolia characterized by a high elevation (>3000-4000 m), low relief landscape within the greater Mongolian Plateau (~2000 m avg. elevation) of central Asia. We have assessed the long-term, large-scale landscape evolution of the region using thermochronologic analysis. Detrital apatite (U-Th-Sm)/He samples from the Selenga River (n = 55) and Orkhon River (n = 15) basins north of the Hangay Dome yield central ages of 134.2 ± 6 and 131.3 ± 9.8 (1σ) Ma, respectively. The regional granitic bedrock apatite (U-Th-Sm)/He single grain age distribution is approximately 95 to 200 Ma, with a homogenized grain central age of 131.2 ± 6.1 Ma. These low-temperature data, in conjunction with K-feldspar MDD 40Ar/39Ar ages of ~200-230 Ma, suggest regional exhumation in the Mesozoic. HeFTy (Ketcham, 2005) modeling corroborates these data and suggests cooling rates of ~3°C/Ma from 220-185 Ma, and applying a geothermal gradient of 21 ± 3°C/km for central Mongolia (Lysak and Dorofeeva, 2003), rock uplift rates from Late Triassic to Mid-Late Jurassic are approximately 100 m/My and from the Early Cretaceous (130 Ma) to the present approximately ≤ 30 m/My. Regional bedrock age patterns, detrital age populations, and thermal modeling suggest that significant recent, rapid rock uplift in central Mongolia is unlikely. Pecube thermo-kinematic models (Braun, 2003) indicate that any rapid (> 500 m/My) event in the Late Miocene-Pliocene would produce Early-Mid Cenozoic cooling ages in lower elevations of the Selenga River drainage basin, which is not supported by the detrital age signal. Pecube modeling of slow rock uplift rates of <50 m/My since the Early Triassic produce regional ages in agreement with geomorphic and geochronologic data. Regional apatite helium age-elevation patterns suggest long-term thermal stability of the upper crust and possible lowering of relief since Mesozoic exhumation. Basalt total fusion 40Ar/39Ar ages

  10. Long-term landscape evolution in the Hangay Dome, Mongolia

    NASA Astrophysics Data System (ADS)

    McDannell, K. T.; Ancuta, L. D.; Smith, S. G.; Idleman, B. D.; Wegmann, K. W.; Zeitler, P. K.

    2013-12-01

    The Hangay Dome in central Mongolia is an example of high-elevation (>3000 m), low-relief topography in a continental interior between the thick Siberian craton to the north and the active Himalaya deformation belt to the far south. Detrital and granitic bedrock apatite (U-Th)/He samples yield ages of ~85-200 Ma and ~95-120 Ma, respectively. These low-temperature data in conjunction with K-feldspar 40Ar/39Ar ages of ~200-225 Ma, raise questions about when this preserved, epeirogenic landscape was uplifted and how it has responded to minimal exhumation since the Mesozoic. Alpine cirques and intact moraine deposits are indicative of a more recent, climate-driven erosional signal in the higher elevation regions of the Hangay. Pecube modeling indicates that a recent, regional uplift signal produces younger, Early-Mid Cenozoic cooling ages in lower elevations of the Selenga River drainage basin to the north of the Hangay Dome. Modeled low exhumation rates of 0.038 mm/yr over 122 Ma generate cooling ages in agreement with preliminary geomorphic and geochronologic results. Basalt total fusion 40Ar/39Ar ages constrain the earliest surface exposure of the landscape to ~30 Ma in the Hangay, with flows as young as ~5 Ka present in a few areas. Geomorphic observations coupled with age-constrained basalt stratigraphy allow us to calculate minimum incision rates in the eastern Hangay for the Miocene and Late Pliocene-Holocene of 0.032 mm/yr and 0.039 mm/yr, respectively. In addition, basalt-bedrock contact mapping in one area places a ~10 Ma old basal flow erupted onto an undulated bedrock surface, suggesting the existence of topography at the time of eruption. Volumetric analysis reveals that rock removed in the past ~6 Ma (uppermost basalt flow age) yields a net erosion rate of 0.037 mm/yr. This rate is also comparable to our 10Be basin-averaged erosion rates from samples collected in adjacent drainages. In contrast to previous inferences that central Mongolia has undergone

  11. New Contributions on the Dome of the Pantheon in Rome: Comparison Between the Ideal Model and the Survey Model

    NASA Astrophysics Data System (ADS)

    Aliberti, L.; Canciani, M.; Alonso Rodriguéz, M. A.

    2015-02-01

    This work proposes an integrated survey and a study of the intrados of the dome of the Pantheon in Rome. An actualized architectural survey of the interior of the dome can generate useful material for future studies. The survey has been realized by using in a first stage the digital photogrammetry and in a second stage the three-dimensional laser scan technology. The compared analysis between different methods applied in the same object is useful towards a closer approximation to real dimension. Among several aspects that arise in dealing with the Pantheon this work focuses mainly on the study of the geometry of the inner surface of the dome. The specific goal of the research is to verify the spherical form of the surface and the coffers' distribution. In this sense it takes an important place the extracting data system. In order to realize the analysis it was applied a critical treatment of selected information contained in the point cloud. The use of plan and section drawings connects to the study of three dimensional models. The research is based on the construction of an ideal geometrical model that derives from the theoretical model described in the historical documents. The survey points model, which keeps the irregularities of the actual form, determines the creation of an average sphere, that is a regular model defined by clarifying geometrical laws. The direct comparison between the survey model and the ideal model contributes to the building understanding. It detects irregularities or deformities where they exist, and provides objective and quantifiable data.

  12. The Laurentide Ice Sheet at LGM: Space Geodetic and Absolute Gravity Observations Require a Multi-domed Model

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.

    2002-05-01

    Although surface geomorphological evidence has continued to suggest that the LGM form of the LIS was multi-domed, both explicit ice-mechanics based reconstructions such as that produced in the CLIMAP project, and models based upon the inversion of relative sea level observations such as ICE-4G(VM2), have led to the inference of single domed structures. Three recent sets of observations related to the isostatic adjustment process require that these single domed reconstructions be abandoned. The first of these consists of the VLBI based measurement of the rate of present day vertical motion at Yellowknife in the Northwest Territories of Canada, demonstrating that the rate predicted by the ICE-4G(VM2) model is more than a factor of two less than observed(Argus et al., 1999). The second consists of absolute gravity measurements on a traverse south from Churchill on Hudson Bay across the southern margin of the former LIS into the United States(Lambert et al., 2001). Finally there is the recent demonstration that the ICE-4G reconstruction of the process of post-LGM deglaciation has too little LGM mass (Peltier,2002). Analyses to be presented in this paper show that the additional LGM ice required by the latter analysis very precisely suffices to reconcile the misfits to the first two sets of observations when it is placed in a Keewatin Dome centred over the Yellowknife region. The resulting model of the LGM form of the LIS is then very close to that originally suggested by Dyke and Prest (1987). This modified form of the ICE-4G model is viable if and only if the depth dependence of mantle viscosity is very close to VM2. Models with higher viscosity in the lower mantle are ruled out by the data as they overpredict both the space geodetic and absolute gravity observations when ice thickness over Keewatin is significantly increased so as to satisfy far field requirements concerning the eustatic sea level depression at LGM.

  13. Tectonic uplift mechanism of the Goodenough and Fergusson Island gneiss domes, eastern Papua New Guinea: Constraints from seismic reflection and well data

    NASA Astrophysics Data System (ADS)

    Fitz, Guy; Mann, Paul

    2013-10-01

    The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded domes with ˜2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites exhumed in an Oligocene-Miocene arc-continent collision and subduction zone subject to Late Miocene to Recent continental extension. To study the style of continental extension accompanying exhumation of the DEI gneiss domes, a grid of 1518 km of 2-D multichannel seismic (MCS) reflection data and well data is interpreted from the offshore areas surrounding the DEI, including the Trobriand basin and the Goodenough basin. The offshore study is combined with onshore geologic information to constrain the Oligocene to Recent tectonic evolution of the basins. MCS and well data are consistent with the Trobriand basin forming as a forearc basin caused by southward Miocene subduction at the Trobriand trench. At ˜8 Ma, the margin transitioned to an extensional tectonic environment. Since then, the Trobriand basin has subsided 1-2.5 km with few normal faults deforming the basin fill. South of the DEI, the Goodenough rift basin developed after extension began (˜8 Ma) with the hanging wall of the north-dipping Owen-Stanley normal fault bounding the southern margin of the basin. The lack of evidence of upper crustal extension accompanying subsidence in the Trobriand and Goodenough basins suggests depth-dependent lithospheric extension from 8 to 0 Ma has accompanied uplift of the DEI gneiss domes and supports schematic model of uplift of the DEI domes involving vertical exhumation of buoyant, postorogenic lower crust, far-field extension from slab rollback, and an inverted two-layer crustal density structure.

  14. Citronelle Dome: A giant opportunity for multizone carbon storage and enhanced oil recovery in the Mississippi Interior Salt Basin of Alabama

    USGS Publications Warehouse

    Esposito, R.A.; Pashin, J.C.; Walsh, P.M.

    2008-01-01

    The Citronelle Dome is a giant, salt-cored anticline in the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbl of 42-46?? API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir is underfilled such that oil-water contacts are typically elevated 30-60 m (100-200 ft) above the structural spill point. Approximately 31-34% of the original oil in place has been recovered by primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 20%. Structural contour maps of the dome demonstrate that the area of structural closure increases upward in section. Sandstone units providing prospective carbon sinks include the Massive and Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper Tuscaloosa Group and the Eutaw Formation. Many of these sandstone units are characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw interval is capped by up to 610 m (2000 ft) of chalk and marine shale that are proven reservoir seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR. Copyright ?? 2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  15. New U-Pb SHRIMP dating for the Leo Pargil gneiss dome, western Himalaya

    NASA Astrophysics Data System (ADS)

    Leech, M. L.; Sas, R.

    2006-12-01

    The Leo Pargil gneiss dome is comprised of upper amphibolite-facies metasedimentary rocks of the lower Tethyan Himalayan sequence (the Haimantas unit) that are intruded by numerous small granitoid bodies and leucogranite dikes. The dome is exposed in northern India/southwestern Tibet at the confluence of the Sutlej and Spiti rivers west of the Zada basin. The dome is bound by generally N-S trending normal faults; the western boundary is termed the Kaurik-Chango normal fault and has a history of recent seismicity. The Leo Pargil dome differs from other North Himalayan domes in that it exhibits orogen-parallel stretching lineations and a uniform top-to-the-northwest sense-of-shear on its western flank (in contrast to approximately arc-normal stretching lineations and variable sense-of-shear in other North Himalayan domes; the youngest phase of Leo Pargil dome development is related to an orogen-parallel extensional structure similar to that which bounds the Gurla Mandhata dome to the southeast. New U-Pb SHRIMP dating of zircon yields Late Archean to Late Proterozoic ages for Leo Pargil paragneisses (c. 800-900 Ma and rarer 2-3 Ga zircons) and Late Oligocene to Early Miocene ages for granitoid intrusions (c. 27-16 Ma). These Oligocene to Miocene ages for Leo Pargil granitoids may correspond to magmatism associated with the widespread leucogranite bodies exposed througout the Himalaya. The Leo Pargil dome, like other similar Himalayan gneiss domes, may be exposures of a ductile mid-crustal channel.

  16. Effect of microstructure and texture on the magnetic and magnetocaloric properties of the melt-spun rare earth intermetallic compound DyNi

    NASA Astrophysics Data System (ADS)

    Rajivgandhi, R.; Chelvane, J. Arout; Nigam, A. K.; Park, Je-Geun; Malik, S. K.; Nirmala, R.

    2016-11-01

    Magnetization measurements have been carried out on the melt-spun ribbon sample of the rare earth intermetallic compound DyNi (Orthorhombic, FeB-type, Space group Pnma) and its magnetic and magnetocaloric properties are compared with those of the arc-melted analog. The arc-melted DyNi orders ferromagnetically at around 61 K (TC) whereas the melt-spun DyNi orders ferromagnetically at about 47 K. The maximum isothermal magnetic entropy change, ∆Smmax , near TC of the arc-melted and the melt-spun DyNi is found to be -32.7 J/kg K and -22.4 J/kg K, respectively, for a field change of 140 kOe. For low magnetic field changes of ~20 kOe, the relative cooling power (RCP) is ~660 J/kg for the arc melted DyNi and ~460 J/kg for the melt-spun ribbon. The reduction in TC and magnetocaloric effect may be attributed to the microstructure-induced anisotropy developed during the melt-spinning process.

  17. Residual Porosity as An Explanation for Ductile-Brittle Behaviour During Dome Extrusion: Experimental Constraints

    NASA Astrophysics Data System (ADS)

    Kennedy, L.; Russell, J. K.; Nelles, E.

    2009-12-01

    sliding creates more gouge but does not create more fine grained material. We propose that the fine grained gouge developed at Mount Saint Helen’s formed as a result of the microseismicity and that transport of the material to the surface did not appreciably reduce the grain size below ~ 20 μm. In contrast, the high porosity dacites are 3-4 times weaker than low porosity dacite. The mechanism of deformation is dominated by distributed cataclastic flow rather than localized faulting. There is no stress drop, no discrete slip surface and no gouge production. Our experiments suggest that domes with low residual porosity will extrude via brittle fault zones accompanied by microseismicity (e.g., Mt. St. Helens), and feature carapaces of cataclastic gouge (e.g., ‘whalebacks’) such as observed at Unzen, Montserrat (Watts et al. 2002) and Mount St. Helen’s (Cashman et al. 2009; Pallister et al. 2009). Conversely domes extruded at or below Tg and having high porosity will lack microseismicity, deform by distributed cataclastic flow rather than localize faulting, and may produce more stable structures.

  18. Computer vision: automating DEM generation of active lava flows and domes from photos

    NASA Astrophysics Data System (ADS)

    James, M. R.; Varley, N. R.; Tuffen, H.

    2012-12-01

    Accurate digital elevation models (DEMs) form fundamental data for assessing many volcanic processes. We present a photo-based approach developed within the computer vision community to produce DEMs from a consumer-grade digital camera and freely available software. Two case studies, based on the Volcán de Colima lava dome and the Puyehue Cordón-Caulle obsidian flow, highlight the advantages of the technique in terms of the minimal expertise required, the speed of data acquisition and the automated processing involved. The reconstruction procedure combines structure-from-motion and multi-view stereo algorithms (SfM-MVS) and can generate dense 3D point clouds (millions of points) from multiple photographs of a scene taken from different positions. Processing is carried out by automated software (e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/). SfM-MVS reconstructions are initally un-scaled and un-oriented so additional geo-referencing software has been developed. Although this step requires the presence of some control points, the SfM-MVS approach has significantly easier image acquisition and control requirements than traditional photogrammetry, facilitating its use in a broad range of difficult environments. At Colima, the lava dome surface was reconstructed from recent and archive images taken from light aircraft over flights (2007-2011). Scaling and geo-referencing was carried out using features identified in web-sourced ortho-imagery obtained as a basemap layer in ArcMap - no ground-based measurements were required. Average surface measurement densities are typically 10-40 points per m2. Over mean viewing distances of ~500-2500 m (for different surveys), RMS error on the control features is ~1.5 m. The derived DEMs (with 1-m grid resolution) are sufficient to quantify volumetric change, as well as to highlight the structural evolution of the upper surface of the dome following an explosion in June 2011. At Puyehue Cord

  19. Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan

    USGS Publications Warehouse

    Symonds, R.B.; Mizutani, Y.; Briggs, P.H.

    1996-01-01

    This study investigates 31 years of fumarole gas and condensate (trace elements) data from Showa-Shinzan, a dacitic dome-cryptodome complex that formed during the 1943-1945 eruption of Usu volcano. Forty-two gas samples were collected from the highest-temperature fumarole, named A-1, from 1954 (800??C) to 1985 (336??C), and from lower-temperature vents. Condensates were collected contemporaneously with the gas samples, and we reanalyzed ten of these samples, mostly from the A-1 vent, for 32 cations and three anions. Modeling using the thermochemical equilibrium program, SOLVGAS, shows that the gas samples are mild disequilibrium mixtures because they: (a) contain unequilibrated sedimentary CH4 and NH3; (b) have unequilibrated meteoric water; or (c) lost CO, either by air oxidation or by absorption by the sodium hydroxide sampling solution. SOLVGAS also enabled us to restore the samples by removing these disequilibrium effects, and to estimate their equilibrium oxygen fugacities and amounts of S2 and CH4. The restored compositions contain > 98% H2O with minor to trace amounts of CO2, H2, HCl, SO2, HF, H2S, CO, S2 and CH4. We used the restored gas and condensate data to test the hypotheses that these time-series compositional data from the dome's fumaroles provide: (1) sufficient major-gas data to analyze long-term degassing trends of the dome's magma-hydrothermal system without the influence of sampling or contamination effects; (2) independent oxygen fugacity-versus-temperature estimates of the Showa-Shinzan dacite; (3) the order of release of trace elements, especially metals, from magma; and (4) useful information for assessing volcanic hazards. The 1954-1985 restored A-1 gas compositions confirm the first hypothesis because they are sufficient to reveal three long-term degassing trends: (1) they became increasingly H2O-rich with time due to the progressive influx of meteoric water into the dome; (2) their C/S and S/Cl ratios decreased dramatically while their Cl

  20. A robotic reflective Schmidt telescope for Dome C

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Andersen, M. I.; Steinbach, M.

    2004-10-01

    This paper lays out a wide-field robotic Schmidt telescope (RST) for the Antarctic site Dome C. The telescope is based on 80/120cm reflective Schmidt optics, built originally for a space project, and a mosaic of four 7.5k×7.5k 8-μm thinned CCDs from the PEPSI/LBT wafer run. The telescope's total field of view (FOV) would be 5o circular (minimum 3o× 3o square) with a plate scale of 0.7 arcsec per pixel. Limiting magnitude is expected to be V=21.5mag in 60 sec for a field of 9 square degrees.

  1. Strategies for estimating mirror and dome seeing for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Angeli, George Z.

    2006-06-01

    Mirror and dome seeing greatly influence the optical performance of large ground-based telescopes. This study describes a strategy for modeling the effects of passive ventilation on the optical performance of the Thirty Meter Telescope (TMT). Computational Fluid Dynamic (CFD) analyses are combined with thermal analyses to model the effects of turbulence and thermal variations within the airflow around the TMT telescope-enclosure configuration. An analytical thermal model based on Newton's cooling law and incorporating a conduction heat flux and a radiation term is used to track the primary mirror temperature throughout the night. A semi-empirical seeing model is used to relate mirror temperature and wind speed to seeing. Different external wind speeds, mirror heat fluxes and ambient thermal temporal gradients are investigated and comparisons are made.

  2. Prospective Type Ia Supernova Surveys From Dome A

    SciTech Connect

    Kim, A.; Bonissent, A.; Christiansen, J.L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.; /Texas A-M /Purple Mountain Observ.

    2010-02-01

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over five years can yield a spectro-photometric time series of {approx}1000 z < 0.08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture ({approx}>4-m) telescopes are capable of discovering supernovae shortly after explosion out to z {approx} 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  3. Prospective Type Ia supernova surveys from Dome A

    SciTech Connect

    Kim, A.; Bonissent, A.; Christiansen, J. L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.

    2010-03-10

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over 5 years can yield a spectro-photometric time series of ~;; 1000 z< 0:08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture (>=4-m) telescopes are capable of discovering supernovae shortly after explosion out to z ~;; 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  4. Sojourner Rover View of Shark and Half Dome

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The rounded knobs (arrows) up to 3 or 4 cm wide on Shark (left; approximately 70 cm wide)) and Half Dome (upper right) and in the foreground could be pebbles in a cemented matrix of clays, silts, and sands; such rocks are called conglomerates. Well-rounded objects like these were not seen at the Viking sites.

    NOTE: original caption as published in Science Magazine.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  5. Cambrian to Holocene structural and burial history of Nashville dome

    SciTech Connect

    Stearns, R.G.; Reesman, A.L.

    1986-02-01

    About 14,000 ft (4270 m) of strata covered basement over the present crest of the Nashville dome by the end of the Paleozoic (calculated by estimating the geothermal gradient, and using temperatures of veins in Stones River Group and Knox Dolomite). At least 7500 ft (2290 m) of post-Devonian strata have been removed by subsequent erosion. Estimates of other erosional episodes include 350 ft (107 m) of upper Knox (during the Middle Ordovician) and 500 ft (152 m) of Devonian-Ordovician (during the Late Devonian). Mesozoic to Holocene uplift was at least 6350 ft (1940 m), 1500 ft or 460 m (25%) of which occurred in the latest 100 m.y. and 450 ft or 140 m (7%) during the latest 2 m.y., a rate ranging from about 15 ft/m.y. (4.6 m/m.y.) for the longer term to over 225 ft/m.y. (70 m/m.y.) in the Pleistocene to Holocene. Earliest structure of the area was a series of elongate basins, probably rifts synchronous with Reelfoot rift to the west. Uplifts trending N10/sup 0/E moved about 40 mi (65 km) westward during the Middle Ordovician. These may relate to similar trending (and moving) Appalachian orogenic events. A change to uplifts trending N50/sup 0/E (parallel to strikes of Appalachian thrusts) occurred in the Late Ordovician and continued to the Devonian; this may reflect a similar Late Ordovician change in the orientation of Appalachian tectonism. In the interval from post-Mississippian to Late Cretaceous, the dome curved westward to join the Pascola arch in response to Ouachita activity. 11 figures, 3 tables.

  6. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure.

    PubMed

    Mai, Fang; Wang, Ke; Yao, Meijun; Deng, Hua; Chen, Feng; Fu, Qiang

    2010-08-26

    The formation of a shish kebab (SK) structure, where carbon nanotubes (CNTs) serve as shish and polymer lamellae serve as kebab, is particularly interesting and provides a novel way to enhance the polymer-CNT interface. A fine SK structure is achieved through melt spinning. High density polyethylene and pristine CNTs were first compounded in an extruder. The compound was then spun into fibers with different draw ratios with the aid of a capillary rheometer. The crystalline structure and mechanical behavior were characterized by scanning electron microscopy, differential scanning calorimetry, two-dimensional wide-angle X-ray scattering, polarized Raman spectroscopy, and tensile testing. An increase in tensile strength as high as 3 times has been achieved in the fiber. The formation of SKs is considered as the main mechanism responsible for the enhanced interfacial interaction and excellent tensile property. PMID:20677770

  7. Large magnetoresistance in highly textured Mn44.7Ni43.5Sn11.8 melt spun ribbons

    NASA Astrophysics Data System (ADS)

    Chen, Fenghua; Huang, Qingxue; Jiang, Zhengyi; Xuan, Haicheng; Zhang, Mingang; Xu, Xiaohong; Zhao, Jingwei

    2016-05-01

    Highly textured Heusler alloy Mn44.7Ni43.5Sn11.8 ribbons were prepared by melt spinning. The magnetoresistance (MR) properties were evaluated by the magnetic field perpendicular to the ribbon surface with the field up to 30 kOe. A large MR (about 25%) with a lower magnetic field (10 kOe) was obtained at 276 K. Due to the rapid solidification. The ribbons with a specific texture can get a large MR twice than polycrystalline alloys at the same magnetic field. The highly textured Mn-Ni-Sn melt spun ribbons may be broadly applied in magnetic memory and as temperature and magnetic sensors as well.

  8. Characterization of the martensitic transformation in melt-spun NiMnGa ribbons by magnetoinductive effect

    NASA Astrophysics Data System (ADS)

    Pérez-Landazábal, J. I.; Gomez-Polo, C.; Recarte, V.; Seguí, C.; Cesari, E.; Ochin, P.

    2005-04-01

    The magnetoinductance effect, in particular, the temperature dependence of the AC complex impedance, Z(T), has been employed in the characterization of the martensitic transformation (MT) in a melt-spun Ni 52.5Mn 24.5Ga 23 ribbon. While the resistive component shows the characteristic decrease associated with the martensite-to-austenite transformation, the inductive component reflects the temperature dependence of the magnetic permeability of the sample. These structural and magnetic changes associated with the characteristic MT were experimentally checked by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The results indicate that the AC impedance technique can be employed as a very simple and versatile characterization technique in the analysis of MT in magnetic memory shape alloys.

  9. Texture analysis of melt-spun Ni-Mn-Ga tapes by means of electron backscatter diffraction (EBSD)

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Mitra, A.; Panda, A. K.

    2010-01-01

    A texture analysis is performed by means of the electron-backscatter diffraction technique (EBSD) on melt-spun ribbon-like samples of the composition Ni52.5Mn24.5Ga23 (at.-%) were prepared. A dedicated surface treatment is required in order to achieve high quality Kikuchi patterns. For this purpose, mechanical polishing plus ion polishing was employed. EBSD analysis and transmission electron microscopy revealed that the samples have a polycrystalline, granular morphology, with grain sizes around 1 - 2 μm. Several larger grains being present in the region selected for EBSD analysis, and many small grains are found, even embedded in the larger ones. The larger grains exhibit a common direction of elongation, yielding to a specific texture.

  10. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices.

  11. E-Spun Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation

    PubMed Central

    2015-01-01

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen–silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  12. Phase transformation sequence and magnetic properties of melt-spun SmCo-based alloy after isochronal heat treatment

    SciTech Connect

    Xiong, X. Y.; Finlayson, T. R.

    2008-11-15

    The phase transformation sequence, microstructure and compositions, and magnetic properties for a melt-spun Sm(Co{sub 0.68}Fe{sub 0.2}Cu{sub 0.1}Zr{sub 0.02}){sub 7.5} alloy after isochronal heat treatments have been studied by using x-ray diffraction, transmission electron microscopy, three-dimensional atom probe (3DAP), and magnetometry. The as-spun ribbons had a single phase with the Cu{sub 7}Tb structure. After being aged at 720 deg. C, the single phase decomposed into two major phases: 2:17R and 1:5H, and one minor CoFeZr-rich phase. The formation of the Z-phase happened after the cellular structure, requiring a higher temperature than that for the cellular structure. The 3DAP analysis showed that Zr was depleted from the 2:17R and 1:5H phases by a half while the other elements remained almost unchanged when the aging temperature increased from 720 to 840 deg. C. In contrast to the sintered permanent magnets, Cu was enriched in the 1:5H phase with a much higher concentration (>40 at. %). The Cu enrichment also occurred at the boundary of the Z-phase. The coercivity achieved was H{sub c}=4.34 kOe following aging at 720 deg. C. The highest maximum energy product, (BH){sub max}, was 6.48 MG Oe after aging at 800 deg. C and the remanence to saturation magnetization ratio, M{sub r}/M{sub s}, was 0.69. This relatively low H{sub c} and high M{sub r}/M{sub s} ratio may be a consequence of the formation of a significant volume fraction of the CoFeZr-rich nanocrystalline phase.

  13. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  14. Real-Time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce; Ewing, Mark; Albrechtsen, Kevin; Noble, Todd; Longaker, Matt

    2004-01-01

    Real-time erosion of aft dome internal insulation was measured with internal instrumentation on a static test of a lengthened version of the Space Shuffle Reusable Solid Rocket Motor (RSRM). This effort marks the first time that real-time aft dome insulation erosion (Le., erosion due to the combined effects of thermochemical ablation and mechanical abrasion) was measured in this kind of large motor static test [designated as Engineering Test Motor number 3 (ETM3)I. This paper presents data plots of the erosion depth versus time. The data indicates general erosion versus time behavior that is in contrast to what would be expected from earlier analyses. Engineers have long known that the thermal environment in the aft dome is severe and that the resulting aft dome insulation erosion is significant. Models of aft dome erosion involve a two-step process of computational fluid dynamics (CFD) modeling and material ablation modeling. This modeling effort is complex. The time- dependent effects are difficult to verify with only prefire and postfire insulation measurements. Nozzle vectoring, slag accumulation, and changing boundary conditions will affect the time dependence of aft dome erosion. Further study of this data and continued measurements on future motors will increase our understanding of the aft dome flow and erosion environment.

  15. Bayesian Inversion using Physics-based Models Applied to Dome Extrusion at Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Wong, Y. Q.; Segall, P.; Anderson, K. R.; Bradley, A. M.

    2015-12-01

    Physics-based models of volcanic eruptions have grown more sophisticated over the past few decades. These models, combined with Bayesian inversion, offer the potential of integrating diverse geological and geophysical datasets to better understand volcanic systems. Using a Markov Chain Monte Carlo (MCMC) algorithm with a physics-based conduit model, we invert data from the 2004-2008 dome-forming eruption at Mount St. Helens, USA. We extend the 1D cylindrical conduit model of Anderson and Segall [2011] to include vertical and lateral gas loss from the magma, as well as equilibrium crystallization. The melt viscosity increases strongly with crystal content. Magma permeability obeys the Kozeny-Carman law with a threshold porosity. Excess pressure in the magma chamber drives Newtonian flow of magma upwards until the viscous resistance to flow exceeds the rate-dependent frictional strength on the conduit wall, at which point the magma transitions from viscous flow to plug flow. We investigate the steady-state solutions for lava dome growth between March and December 2005, in which magma chamber pressure, initial water content, permeability and friction parameters are unknown model parameters. These parameters are constrained by: dome rock porosity, extrusion rate from photogrammetry, plug depth from drumbeat earthquakes, and crystallization pressure from petrologic studies. Posterior probability density functions (PDFs) reveal the constraints on the model parameters and their correlations. Assuming lithostatic normal stress on the plug, low coefficients of friction (0.1-0.3) are required to allow extrusion at the observed rate while maintaining reasonable magma chamber pressures. Lower effective normal stress or melt viscosity could allow for larger friction coefficients. Future work will investigate the time-dependent system, thereby allowing us to incorporate time-evolving geodetic and eruption rate data into the inversion.

  16. Degassing history of a mid-ocean ridge rhyolite dome on the Alarcon Rise, Gulf of California

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Dreyer, B. M.; Clague, D. A.; Lowenstern, J. B.; Head, J. W., III; Saal, A. E.

    2014-12-01

    A 2350 meter deep rhyolite lava dome and surrounding intermediate-mafic complex on the Alarcon Rise mid-ocean ridge in the Gulf of California was sampled extensively during a 2012 MBARI expedition. The dome is predominantly composed of sparsely vesicular (<10%) obsidian with local deposits of pumiceous breccia. Pumiceous lapilli comprise highly vesicular (40-60%) fracture networks that separate non-vesicular obsidian "pseudoclasts". Textures and major element geochemistry suggest that both lithologies originated from the same magma that formed the majority of the dome. This is corroborated by comparable major element compositions (~75% SiO2) and near-equilibrium phenocryst assemblages including olivine (Fo10) and plagioclase (An17). Attenuated total reflectance (ATR) and transmission FTIR spectroscopy was used to measure H2O concentrations in olivine and plagioclase melt inclusions as well as host glasses (CO2 was below detection, <30 ppm). Rhyolite host glass contains 1.5-2.0 wt% H2O, similar to nearby andesite and dacite. These concentrations agree with saturation limits for H2O (1.7%) at the depth of Alarcon Rise, but are slightly less than what is predicted by fractional crystallization modeling. Melt inclusions from plagioclase and olivine in rhyolite contain a maximum of 3.5-4.5% H2O suggesting that up to 3.0% H2O exsolved into bubbles during a 3 km ascent. Hydrostatic pressures (23 MPa) at the eruptive vent would have permitted 53% vesiculation in agreement with petrographic observations. Although ~50% vesiculation and exsolved H2O contents of 3.0 wt% are less than the ideal threshold for magmatic fragmentation, the presence of highly vesicular ash particles representing fragmented pumiceous breccia argues otherwise. We posit that decoupled volatiles from a deeper magma body migrated through fracture networks to the surface causing mild explosivity.

  17. An Attempt to Asses Suitability of Middle-Poland Salt Domes for Natural Gas Storage / Ocena Przydatności Środkowopolskich Wysadów Solnych Do Magazynowania Gazu Ziemnego

    NASA Astrophysics Data System (ADS)

    Ślizowski, Jarosław; Urbańczyk, Kazimierz

    2012-11-01

    The aim of the paper is to assess geological conditions in Middle-Poland salt domes and their suitability for natural gas storage. The starting point to the assessment were statistical distributions of caverns depth and volume in Mogilno CUGS. The distributions were generalized to other domes using the part of anticline forms in the salt mirror surface. The expected average cavern volumes, depths with their standard deviations are evaluated. Storing capacity of the caverns and the risk of a borehole unsuitable for cavern location are also given.

  18. Selected Aspects of the Structural Analysis of the North Dome in the 'Four Domes Pavilion'/ Wybrane Aspekty Analizy Konstrukcyjnej Kopuły Północnej W Pawilonie Czterech Kopuł

    NASA Astrophysics Data System (ADS)

    Jasieńko, Jerzy; Raszczuk, Krzysztof; Moczko, Marta; Piechówka-Mielnik, Magdalena

    2015-06-01

    The subject of the paper is north dome of the Four Domes Pavilion in Wroclaw, which was erected according to the project by architect Hans Poelzig in 1913. The geometry of the dome (plan, rise, thickness) has an essential influence on the stress distribution in the structure and may be a crucial factor determining the cracking pattern. The results of the study of archival documents and numerical analysis indicate that there is a need for increasing the bearing capacity of the structure. After carrying out 3D FEM analysis, it was decided to apply strengthening technology based on the FRCM system with carbon and P.B.O. fibers on the surface and on the external ring of the dome. Powszechnie występującą na całym świecie formą przekryć historycznych jest kopuła, która może być realizowana m.in. na rzucie koła, elipsy czy ośmioboku. Geometria kopuły (rzut, wyniesienie oraz grubość) wpływa na rozkład naprężeń w konstrukcji i może być decydującym czynnikiem wpływającym na propagację rys. Przedmiotem pracy jest Pawilon Czterech Kopuł we Wrocławiu, który powstał wg projektu Hansa Poelziga w 1913r. Analiza dokumentacji archiwalnej wykazuje, iż wszelkie zmiany jakich się podejmowano w trakcie realizacji prac były wynikiem: braku czasu, opóźnień w wykonaniu oceny statycznej, przekazaniu rysunków projektowych w nieodpowiedniej skali oraz prowadzenia prac budowlanych w zimie. Efektem powyższych działań jest niedostateczne zbrojenie kopuły, która uległa uszkodzeniom w formie pęknięć południkowych i równoleżnikowych od strony zewnętrznej i wewnętrznej. W wyniku przeprowadzonej analizy konstrukcyjnej przy użyciu Metody Elementów Skończonych (MES) podjęto decyzję o wzmocnieniu przekrycia przy użyciu siatek z włókien węglowych w systemie FRCM oraz wzmocnienie pierścienia górnego przy użyciu siatek z włókien P.B.O. w matrycy mineralnej.

  19. Target detection performance in helmet-mounted and conventional dome displays.

    PubMed

    Hettinger, L J; Nelson, W T; Haas, M W

    1996-01-01

    An experiment was conducted to assess visual target detection performance using a helmet-mounted display (HMD) and a conventional flight simulation dome display. Measures of workload and mood were also obtained. Participants in both viewing conditions scanned an area 120 degrees vertical by 240 degrees horizontal while attempting to locate targets that appeared to be approaching them from one of a possible 18 locations. Results indicated significantly superior performance in the conventional dome display. Workload and mood measures also showed a significant advantage for the dome display. Results are discussed in terms of their implications for the design and use of HMD systems as components of airborne virtual environment interfaces.

  20. High-resolution ground layer turbulence from inside the CFHT dome using a lunar scintillometer

    NASA Astrophysics Data System (ADS)

    Pfrommer, T.; Hickson, P.

    2015-04-01

    For ground layer adaptive optics systems, knowledge of the local height- and time- resolved ground layer (GL) turbulence is crucial to link local topography with optical turbulence. Such turbulence profiles have been obtained in the years 2009 and 2010 over 250 hours on Mauna Kea, Hawaii. Results from measurements inside the Canada-France-Hawaii Telescope (CFHT) dome indicate severe degradation of image quality due to a poorly vented dome and thus provide input for dome modifications and design aspects for a new ground layer adaptive optics system. The outside median GL seeing above 6 metres was determined to be 0.48±0.01”.

  1. Origin of Domes on Europa: The Role of Thermally Induced Compositional Buoyancy,

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    The surface of Jupiter's moon Europa is peppered by topographic domes, interpreted as sites of intrusion and extrusion. Diapirism is consistent with dome morphology, but thermal buoyancy alone cannot produce sufficient driving pressures to create the observed dome elevations. Instead, diapirs may initiate by thermal convection that induces compositional segregation. Exclusion of impurities from warm upwellings allows sufficient buoyancy for icy plumes to create the observed surface topography, provided the ice shell has a small effective elastic thickness (0.2 to 0.5 km) and contains low-eutectic point impurities at the few percent level. This model suggests that the ice shell may be depleted in impurities over time.

  2. Non-Newtonian Convection and Compositional Buoyancy: Advances in Modeling Convection and Dome Formation on Europa

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Barr, A. C.

    2004-01-01

    Numerical modeling of non-Newtonian convection in ice shows that convection controlled by grain boundary sliding rheology may occur in Europa. This modeling confirms that thermal convection alone cannot produce significant dome elevations. Domes may instead be produced by diapirs initiated by thermal convection that in turn induces compositional segregation. Exclusion of impurities from warm upwellings would allow sufficient buoyancy for icy plumes to account for the observed approximately 100 m topography of domes, provided the ice shell has a small effective elastic thickness (approximately 0.2 to 0.5 km) and contains low eutectic-point impurities at the few percent level.

  3. Finite element analysis/hydroburst test data correlation for reverse dome integrated stage application

    NASA Astrophysics Data System (ADS)

    Burson, K. S.; Nowakowski, M.; Tiwari, S.

    1993-02-01

    The U.S. Army's Missile Integrated Stage ('MIST') program has undertaken the development of an advanced strategic interceptor booster's solid-fueled rocket motor. The primary structural components of this booster are a composite case with full-diameter aft closure opening, a titanium reverse dome, and a forced-deflection nozzle plug housing. Attention is presently given to the correlation between the analytical models used in this program and the hydroburst test data obtained for the MIST reverse dome. It is found that the reverse dome exceeded the minimum required burst pressure of 2300 psig.

  4. Volcanism in southern Guinevere Planitia, Venus: Regional volcanic history and morphology of volcanic domes

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Stofan, Ellen R.; Plaut, Jeffrey J.

    1993-01-01

    Guinevere Planitia is a low-lying region located between the highlands of Beta Regio and Eistla Regio. Analyses of Pioneer Venus, Goldstone, and Arecibo radar data suggested that the surface of Guinevere Planitia is dominated by volcanism, primarily in the form of bright, dark, and mottled plains units. Also identified in this region was the Beta-Eistla Deformation Zone, composed of ovoids and discontinuous segments of lineament belts that have been embayed by the surrounding plains. The resolution of Magellan SAR images allows detailed investigations of the volcanic deposits found in the area in order to determine the types of eruptive activity which have occurred and to constrain the regional volcanic history. Analyses of an area of southern Guinevere Planitia between 0-25 deg N and 300-330 deg indicate the presence of a wide variety of volcanic land forms, including large shield volcanoes, widespread plains, lava flow fields, and small domes, cones, and shields as well as coronae and other circular structures that have associated volcanic deposits.

  5. Precipitation regime and stable isotopes at Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Dittmann, Anna; Schlosser, Elisabeth; Masson-Delmotte, Valérie; Powers, Jordan G.; Manning, Kevin W.; Werner, Martin; Fujita, Koji

    2016-06-01

    A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55° S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the

  6. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films.

    PubMed

    Song, Can-Li; Zhang, Hui-Min; Zhong, Yong; Hu, Xiao-Peng; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-15

    We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-T_{c} dome, whereas in the heavily electron-doped higher-T_{c} dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper-pairing mechanism. Furthermore, the heavily K-doped multilayer FeSe films all reveal a large superconducting gap of ∼14  meV, irrespective of film thickness, verifying the higher-T_{c} superconductivity only in the topmost FeSe layer. The unusual finding of a double-dome superconducting phase is a step towards the mechanistic understanding of superconductivity in FeSe-derived superconductors.

  7. Hydrogen-isotope evidence for extrusion mechanisms of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Anderson, Steven W.; Fink, Jonathan H.

    1989-01-01

    Hydrogen isotope analyses were used to determine water content and deuterium content for 18 samples of the Mount St Helens dome dacite in an attempt to identify the triggering mechanisms for periodic dome-building eruptions of lava. These isotope data, the first ever collected from an active lava dome, suggest a steady-state process of magma evolution combining crystallization-induced volatile production in the chamber with three different degassing mechanisms: closed-system volatile loss in the magma chamber, open-system volatile release during ascent, and kinetically controlled degassing upon eruption at the surface. The data suggest the future dome-building eruptions may require a new influx of volatile-rich magma into the chamber.

  8. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  9. Salt-dome locations in the Gulf Coastal Plain, South-Central United States

    USGS Publications Warehouse

    Beckman, J.D.; Williamson, A.K.

    1990-01-01

    Information on salt domes in Gulf of Mexico Coastal Plain, south-central United States and the adjacent Continental Shelf were compiled from major published sources, 1973-84. The location of 624 salt domes is shown on a map at a scale of 1:1 ,500,000. A color-coding system was used to show that the occurrence, size, shape, and location of these domes varies among sources. Two tables of additional data accompany the map and include other available information such as: identifying sources, depth to salt and caprock, diameter, volume, name, and uppermost zone of surrounding sediment that is penetrated, as well as the number of matches between sources. The locations of salt domes that penetrate specific zones within the gulf coast regional aquifer system are shown on maps. (USGS)

  10. Lunar red spots: Stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Head, J. W.; Wolf, U.; Neukum, G.

    2010-06-01

    Basaltic mare materials extruded between ˜ 4 Ga and ˜ 1.2 Ga ago and formed large expanses on the lunar nearside. In contrast to the maria, volcanic shields, domes, and cones also occur but cover only a small area of the total lunar surface. One specific type of dome is characterized (1) by steep slopes, (2) by a high albedo similar to lunar highlands, and (3) by a strong absorption in the ultraviolet. Because of this latter feature they appear spectrally red and therefore were termed red spots. Their morphology suggests that these domes were created by much more viscous, silica-rich lava. Also, red spots which are believed to be possibly volcanic in origin are associated with light plains materials. In order to constrain the formation of these presumed volcanic features in context with the formation of the surrounding mare and highland materials, we carried out (1) geologic and morphologic mapping of high-resolution Lunar Orbiter IV and Apollo 16 frames and (2) measurements of superimposed crater frequencies on geologic units in order to assess stratigraphy and geological history in the following two volcanic provinces in which red spots occur: (1) the Hansteen region, dominated by the dome Hansteen α (also known as the Arrowhead), and (2) the Helmet region, dominated by light plains, possibly of volcanic origin, such as the feature called the Helmet and Darney χ, and the southern Montes Riphaeus. In the Hansteen region, the dome Hansteen α postdates craters Billy (3.88 Ga) and Hansteen (3.87 Ga) but predates most of the mare materials (3.51 Ga). Cratering model ages of the dome range from 3.74 to 3.65 Ga, placing its major activity as extending into the late Imbrian. In the Helmet region, presumed highland volcanism associated with red spots started in the Nectarian with Darney χ (3.94 Ga). Cratering model ages measured on the Helmet light plains range from 3.8 to 2.08 Ga. The origin of these light plains and local resurfacing processes in this unit

  11. High precision metrology of domes and aspheric optics

    NASA Astrophysics Data System (ADS)

    Murphy, Paul E.; Fleig, Jon; Forbes, Greg; Tricard, Marc

    2005-05-01

    Many defense systems have a critical need for high-precision, complex optics. However, fabrication of high quality, advanced optics is often seriously hampered by the lack of accurate and affordable metrology. QED's Subaperture Stitching Interferometer (SSI®) provides a breakthrough technology, enabling the automatic capture of precise metrology data for large and/or strongly curved (concave and convex) parts. QED"s SSI complements next-generation finishing technologies, such as Magnetorheological Finishing (MRF®), by extending the effective aperture, accuracy and dynamic range of a phase-shifting interferometer. This workstation performs automated sub-aperture stitching measurements of spheres, flats, and mild aspheres. It combines a six-axis precision stage system, a commercial Fizeau interferometer, and specially developed software that automates measurement design, data acquisition, and the reconstruction of the full-aperture figure error map. Aside from the correction of sub-aperture placement errors (such as tilts, optical power, and registration effects), our software also accounts for reference-wave error, distortion and other aberrations in the interferometer"s imaging optics. The SSI can automatically measure the full aperture of high numerical aperture surfaces (such as domes) to interferometric accuracy. The SSI extends the usability of a phase measuring interferometer and allows users with minimal training to produce full-aperture measurements of otherwise untestable parts. Work continues to extend this technology to measure aspheric shapes without the use of dedicated null optics. This SSI technology will be described, sample measurement results shown, and various manufacturing applications discussed.

  12. Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2007-01-01

    Behind the single-file chain of stratovolcanoes on the Alaska Peninsula, independent rear-arc vents for mafic magmas are uncommon, and for silicic magmas rarer still. We report here the characteristics, compositions, and ages of two andesite-dacite dome clusters and of several nearby basaltic units, all near Becharof Lake and 15 to 20 km behind the volcanic front. Blue Mountain consists of 13 domes (58-68 weight percent SiO2) and The Gas Rocks of three domes (62-64.5 weight percent SiO2) and a mafic cone (52 weight percent SiO2). All 16 domes are amphibole-biotite-plagioclase felsite, and nearly all are phenocryst rich and quartz bearing. Although the two dome clusters are lithologically and chemically similar and only 25 km apart, they differ strikingly in age. The main central dome of Blue Mountain yields an 40Ar/39Ar age of 632?7 ka, and two of the Gas Rocks domes ages of 25.7?1.4 and 23.3?1.2 ka. Both clusters were severely eroded by glaciation; surviving volumes of Blue Mountain domes total ~1 km3, and of the Gas Rocks domes 0.035 km3. Three basaltic vents lie close to The Gas Rocks, another lies just south of Blue Mountain, and a fifth is near the north shore of Becharof Lake. A basaltic andesite vent 6 km southeast of The Gas Rocks appears to be a flank vent of the arc-front center Mount Peulik. The basalt of Ukinrek Maars has been called transitionally alkalic, but all the other basaltic rocks are subalkaline. CO2-rich gas emissions near the eponymous Gas Rocks domes are not related to the 25-ka dacite dome cluster but, rather, to intracrustal degassing of intrusive basalt, one batch of which erupted 3 km away in 1977. The felsic and mafic vents all lie along or near the Bruin Bay Fault where it intersects a broad transverse structural zone marked by topographic, volcanologic, and geophysical discontinuities.

  13. Regional tectonic context, timing, and intrusion mechanism of gneiss domes, eastern Papua New Guinea, from offshore seismic reflection and well data

    NASA Astrophysics Data System (ADS)

    Fitz, G. G.; Mann, P.; Lavier, L. L.

    2011-12-01

    The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded topographic domes with ~2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites that began to exhume ~8 Ma in a zone of continental extension 120 km west of the tip of the westward propagating Woodlark seafloor spreading. Two previous models for the origin and emplacement of the gneiss domes include: 1) the domes are metamorphic core complexes formed as footwall blocks on north-dipping, low-angle (<30 deg.) normal faults of Plio-Pleistocene age; and 2) the domes are diapirs of buoyant lower crustal material extruding vertically through narrow zones of extension (~30 km wide) in an overlying dense layer of ultramafic rock. To study the style of continental extension accompanying exhumation of the DEI gneiss domes, we interpreted a loose grid of 1,518 km of 2-D multi-channel seismic (MCS) reflection data and well data from the offshore areas surrounding the DEI, including the Trobriand basin and the Goodenough basin. MCS and well data show the Trobriand basin initially formed as an asymmetrical Miocene forearc basin overlying the south-dipping Trobriand subduction zone that underwent a late Miocene (~11-9 Ma) inversion event that deformed and uplifted the basin's southern and northern margins. Since extension began 8 Ma, the Trobriand basin has evolved as a symmetrical sag basin with 1-3 km of subsidence and few normal faults deforming the upper crust. The Goodenough basin to the south of the Trobriand basin formed as an asymmetrical and southward-tilted half-graben whose master normal fault is the Owen-Stanley fault zone (OSFZ) along the southern edge of the basin. Reconstruction on this structure based on the geometry of faults in the hanging wall indicates a minimum slip on the order of 10 km along a listric fault plane shallowly dipping to the north. The western extension of the OSFZ dips 18 deg. to 24 deg. north along the northern edge of the

  14. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    NASA Astrophysics Data System (ADS)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  15. VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington

    USGS Publications Warehouse

    Towle, J.N.

    1983-01-01

    A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.

  16. Why there was a useful plausible analogy between geodesic domes and spherical viruses.

    PubMed

    Morgan, Gregory J

    2006-01-01

    In 1962, Donald Caspar and Aaron Klug published their classic theory of virus structure. They developed their theory with an explicit analogy between spherical viruses and Buckminster Fuller's geodesic domes. In this paper, I use the spherical virus-geodesic dome case to develop an account of analogy and deductive analogical inference based on the notion of an isomorphism. I also consider under what conditions there is a good reason to claim an experimentally untested analogy is plausible. PMID:17702504

  17. Results of water quality sampling near Richton, Cypress Creek and Lampton Salt Domes, Mississippi

    USGS Publications Warehouse

    Gandl, L.A.; Spiers, C.A.

    1980-01-01

    In the Mississippi salt basin in southern Mississippi, chemical quality studies of surface water and ground water have been made to determine present water-quality conditions near three salt domes being studied by the Department of Energy as potential repositories for radioactive wastes. Chloride concentrations in excess of 60 milligrams per liter in surface water and ground water in Perry County indicate that contamination could be occurring from industrial wastes, oil test wells, or dissolution of Richton or Cypress Creek domes. (USGS)

  18. Eruptive Variations During the Emplacement of Cerro Pinto, an Ambitious Rhyolite Dome, Puebla, Mexico

    NASA Astrophysics Data System (ADS)

    Zimmer, B.; Riggs, N.; Carrasco-Nunez, G.

    2006-12-01

    Cerro Pinto is a rhyolite dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three distinct eruptive stages marked by changes in vent location and eruptive character. Each of these stages contained eruptive sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. However, some aspects of the eruptive history, such as the occurrence of explosive reactivation and dome destruction through a lateral blast are uncommon in small rhyolitic structures and are more commonly associated with polygenetic structures, such as stratovolcanoes or calderas. In these larger structures, new pulses of magma often initiate reactivation, but at Cerro Pinto the story is different. Major and trace element geochemistry suggest that Cerro Pinto was sourced by a small, isolated magma chamber, unassociated with any surrounding silicic centers and did not experience any change in chemical composition over the course of the eruption. Based on these data and field observations, it is inferred that Cerro Pinto's eruptive variations were not the result of the influx of a new magma batch, but were the result of both phreatomagmatic interactions and the presence of a small magma chamber that was zoned with respect to volatiles. Both of these factors are commonly encountered in volcanologic studies, but documentation of their influence on smaller structures is under represented. Rhyolite domes have long been considered relatively simple volcanic structures with only localized hazard implications. However, the eruptive variations displayed by Cerro Pinto suggest that isolated rhyolite dome evolutions can be much more complex with the potential for explosive reactivation and dome collapse; events that must be taken into consideration when making hazard assessments.

  19. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    SciTech Connect

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

  20. Intrapelvic reduction and buttress screw stabilization of dome impaction of the acetabulum: a technical trick.

    PubMed

    Casstevens, Christopher; Archdeacon, Michael T; dʼHeurle, Albert; Finnan, Ryan

    2014-06-01

    Superomedial impaction of the anterior dome of the acetabulum is a known risk factor for poor outcomes after open reduction and internal fixation of acetabular fractures. The authors, using the anterior intrapelvic (modified Stoppa) approach to the acetabulum, describe a novel technique to help reduce and stabilize marginal impaction of the acetabular dome. In the senior author's experience, this technique has been helpful to achieve adequate reduction and stabilization.

  1. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  2. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  3. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  4. A user`s perspective on aluminum dome roofs for aboveground tanks

    SciTech Connect

    Myers, P.E.

    1995-12-31

    There is a trend in the petroleum industry to install aluminum dome roofs on storage tanks of all kinds. Although most dome roofs have been installed on floating roof tanks, there is a trend to install them on fixed roof tanks as well, substituting the familiar shallow fixed cone roof with a geodesic dome. In part, this trend has been caused by EPA requirements causing a greater number of closed tanks to be vented to vapor recovery or vapor destruction systems. Both the aluminum roof manufacturing community and the user have moved into a whole new set of problems associated with the change in dome roof applications from atmospheric to those requiring internal pressure. New problems are just now being dealt with and solved because cost factors tend to make the aluminum dome an economic solution for many cases where sealed tank systems must be used. Because of the increased numbers of geodesic domes as either an alternative to a fixed cone roof tank or as a way to convert an external floating roof tank to an internal floating roof tank or as their potential to serve as tools in the environmental arena, it is the intent of this paper to examine them from the user`s perspective. In addition, some areas of research that should resolve some reliability and safety issues are presented for consideration and research by not only manufacturers but the users as well.

  5. The Effectiveness of Modified Vertical Dome Division Technique in Reducing Nasal Tip Projection in Rhinoplasty

    PubMed Central

    Gandomi, Behrooz; Arzaghi, Mohammad Hossein; Rafatbakhsh, Mohammad

    2011-01-01

    Background: The technique of vertical dome division or tip defining, involves incising the lateral crura and vestibular skin at or lateral to the dome or tip defining point. The incision divides the lower lateral cartilage into a lateral segment and a medial segment, which are advanced anteriorly and sutured together to increase tip projection. The present study aimed at assessing a new vertical dome division, which is a modified version of vertical dome technique to decrease nasal tip projection, and increase or decrease nasal tip rotation and other tip deformities. Methods: The medical files of patients undergone rhinoplasty from 2003 to 2008 were retrospectively analyzed. The files were selected from a computerized rhinoplasty database of patients, who had been operated using a modified vertical dome technique and followed-up for one year or more after the surgery. Results: A total of 3756 patients were operated. Complications related to the nasal tip such as bossae, bifidity, persistent tip projection or tip asymmetry was seen in 81 patients (2.1%). Revisions for tip-related problems were performed in 42 patients (1.1%). Conclusions: The findings suggest that the modified vertical dome technique is an effective method for nasal tip deprojection and narrowing via an open approach. The length of follow-up and the large sample size support effectiveness of the technique. PMID:23359623

  6. Percutaneous Ethanol Injection via an Artificially Induced Right Hydrothorax for Hepatocellular Carcinoma in the Hepatic Dome

    SciTech Connect

    Kume, Akimichi Nimura, Yuji; Kamiya, Junichi; Nagino, Masato; Kito, Yasushi

    2003-11-15

    To evaluate the efficacy of sonographically (US) guided percutaneous ethanol injection (PEI) via an artificially induced right hydrothorax (transthoracic PEI) to treat US-invisible hepatocellular carcinoma (HCC) in the hepatic dome. Five cirrhotic patients with US-invisible HCC in the hepatic dome, who were poor surgical candidates, underwent transthoracic PEI. An artificial right hydrothorax was created by instilling 500 ml saline, and absolute ethanol was injected transhydrothoracically into the hepatic dome lesion under local anesthesia. The success and complications were assessed radiologically. The patients were followed up serologically and radiologically for 12-44 (mean 28.4) months. Twenty-five hydrothoraces were induced. All hydrothoraces enabled US visualization of the entire hepatic dome. Eight of the nine small lesions were treated successfully by the treatment. Two of the three local recurrences were eradicated by repeat transthoracic PEI. One large lesion was treated by a combination of transthoracic and regular PEI. The only complication was one clinically insignificant pneumothorax. Induction of a right hydrothorax is feasible and safe. The hydrothorax enables US visualization of the entire hepatic dome and permits US-guided PEI for HCC in the hepatic dome that otherwise would not be possible.

  7. Performance analysis of the retractable dome for the Chinese Large Telescope.

    PubMed

    Nian, Pan; Wen-Li, Ma

    2015-10-01

    In order to quantitatively assess the influence of the retractable dome on the observational performance of the 4-m Chinese Large Telescope (CLT), an integrated analysis method based on computational fluid dynamics (CFD) and sub-harmonic phase screen is proposed in this paper. The pressure, the temperature, and the speed of air surrounding the retractable dome are attained by CFD simulations, and then the fluctuation of refractive index of air is calculated. Based on sub-harmonic phase screen algorithm, three kinds of performance evaluation parameters are presented: irradiance, phase of the target, and Full Width Half Maximum (FWHM). The wind tunnel tests (WT) with a 1:120 scaled model of the retractable dome for the CLT are conducted to verify the calculated precision of the CFD. The results show that the fluctuation of air refractive index surrounding the CLT is mainly caused by the inhomogeneous distribution of temperature and speed, and with the help of pier's height the impact of inhomogeneous air temperature from the ground layer on the fluctuation of air refractive index can be effectively decreased. Furthermore, the lower of the air speed is, the better performance of the retractable dome will be, and when the speed of air is less than 5m/s, the dome seeing induced by the retractable dome on the observational wave front is less than 0.13 arcsec.

  8. Buyer's guide to telescopes at the best sites: Dome A, L2, and Shackleton Rim

    NASA Astrophysics Data System (ADS)

    Angel, J. Roger P.

    2004-10-01

    Future optical/infrared telescopes will need to be much larger than today"s, if they are to address such key challenges as direct observations of Earth-like exoplanets and of the first stars formed after the big bang. In this paper I consider the most promising of the new sites, both on the ground and in space, and telescope concepts to take advantage of their complementary scientific potential. Ground based telescopes with adaptive optics will be capable of diffraction limited imaging, down to a short wavelength limit set by the amplitude and speed of the atmospheric turbulence. The best conditions are on the high Antarctic plateau, where recent measurements at Dome C show turbulence typically half the amplitude of the best temperate sites, with temporal evolution at half the speed1. Thus uniquely in Antarctica, diffraction limited imaging at optical wavelengths should be practical. Conditions there are also best for infrared astronomy, given the combination of minimal aberration and winter temperatures averaging as low as 200K at Dome A (the highest point). In space, well away from the warm Earth, conditions are even better, with 24 hour/day observing free from all atmospheric aberration, and the potential for passive cooling to 50K or less by use of a sunshield. L2 and the Moon's south pole are such optimal space locations. A telescope at L2 requires only a little fuel to stay on orbit, and can be accurately pointed despite solar torques by well established active methods based on star trackers, gyros and reaction wheels. By contrast, the Moon provides a completely stable platform where a telescope with no moving parts can remain pointed indefinitely along the spin axis, or a telescope on a hexapod mount can be oriented and tracked by reaction to the turning lunar surface. Solar shielding on the Moon requires a polar location such as the high rim of the Shackleton crater, adjacent to the south pole, where there is also nearly continuous solar power. Long term

  9. Buyer's guide to telescopes at the best sites: Dome A, L2, and Shackleton Rim

    NASA Astrophysics Data System (ADS)

    Angel, J. Roger P.

    2004-10-01

    Future optical/infrared telescopes will need to be much larger than today"s, if they are to address such key challenges as direct observations of Earth-like exoplanets and of the first stars formed after the big bang. In this paper I consider the most promising of the new sites, both on the ground and in space, and telescope concepts to take advantage of their complementary scientific potential. Ground based telescopes with adaptive optics will be capable of diffraction limited imaging, down to a short wavelength limit set by the amplitude and speed of the atmospheric turbulence. The best conditions are on the high Antarctic plateau, where recent measurements at Dome C show turbulence typically half the amplitude of the best temperate sites, with temporal evolution at half the speed1. Thus uniquely in Antarctica, diffraction limited imaging at optical wavelengths should be practical. Conditions there are also best for infrared astronomy, given the combination of minimal aberration and winter temperatures averaging as low as 200K at Dome A (the highest point). In space, well away from the warm Earth, conditions are even better, with 24 hour/day observing free from all atmospheric aberration, and the potential for passive cooling to 50K or less by use of a sunshield. L2 and the Moon's south pole are such optimal space locations. A telescope at L2 requires only a little fuel to stay on orbit, and can be accurately pointed despite solar torques by well established active methods based on star trackers, gyros and reaction wheels. By contrast, the Moon provides a completely stable platform where a telescope with no moving parts can remain pointed indefinitely along the spin axis, or a telescope on a hexapod mount can be oriented and tracked by reaction to the turning lunar surface. Solar shielding on the Moon requires a polar location such as the high rim of the Shackleton crater, adjacent to the south pole, where there is also nearly continuous solar power. Long term

  10. Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Taylor, L. C.

    2005-01-01

    Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.

  11. Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska

    SciTech Connect

    Miller, E.L.; Calvert, A.T.; Little, T.A. )

    1992-06-01

    Unusually closely spaced Barrovian series isograds have been described along the flanks of the Kigluaik Mountains, Seward Peninsula, Alaska, where they separate a high-grade gneiss complex intruded by granites of Cretaceous age from surrounding, regionally developed, blueschist to greenschist facies rocks. Structural mapping of the transition zone between the two metamorphic types indicates that their juxtaposition was aided by significant syn- to late-metamorphic solid-state flow that served to attenuate the overlying rock column and thus collapse the field metamorphic gradient. On the basis of field relations, structural data, petrography, and geochronologic data, strain appears to have accompanied the rapid (adiabatic) rise of high-temperature rocks from several tens of kilometers to less than 10 km depth during the Cretaceous, in an event younger than the unrelated to high-P metamorphism. Granite-cored gneiss domes on the Seward Peninsula may have formed during extension of previously thickened continental crust, resulting in the {approximately}35-km-thick crust and near-sea-level elevations of the region today.

  12. Fast neutrons measured in copper from the Hiroshima atomic bomb dome.

    PubMed

    Marchetti, A A; McAninch, J E; Rugel, G; Rühm, W; Korschinek, G; Martinelli, R E; Faestermann, T; Knie, K; Egbert, S D; Wallner, A; Wallner, C; Tanaka, K; Endo, S; Hoshi, M; Shizuma, K; Fujita, S; Hasai, H; Imanaka, T; Straume, T

    2009-01-01

    The first measurements of (63)Ni produced by A-bomb fast neutrons (above approximately 1 MeV) in copper samples from Hiroshima encompassed distances from approximately 380 to 5062 m from the hypocenter (the point on the ground directly under the bomb). They included the region of interest to survivor studies (approximately 900 to 1500 m) and provided the first direct validation of fast neutrons in that range. However, a significant measurement gap remained between the hypocenter and 380 m. Measurements close to the hypocenter are important as a high-value anchor for the slope of the curve for neutron activation as a function of distance. Here we report measurements of (63)Ni in copper samples from the historic Hiroshima Atomic Bomb Dome, which is located approximately 150 m from the hypocenter. These measurements extend the range of our previously published data for (63)Ni providing a more comprehensive and consistent A-bomb activation curve. The results are also in good agreement with calculations based on the current dosimetry system (DS02) and give further experimental support to the accuracy of this system that forms the basis for radiation risk estimates worldwide.

  13. Fast neutrons measured in copper from the Hiroshima atomic bomb dome.

    PubMed

    Marchetti, A A; McAninch, J E; Rugel, G; Rühm, W; Korschinek, G; Martinelli, R E; Faestermann, T; Knie, K; Egbert, S D; Wallner, A; Wallner, C; Tanaka, K; Endo, S; Hoshi, M; Shizuma, K; Fujita, S; Hasai, H; Imanaka, T; Straume, T

    2009-01-01

    The first measurements of (63)Ni produced by A-bomb fast neutrons (above approximately 1 MeV) in copper samples from Hiroshima encompassed distances from approximately 380 to 5062 m from the hypocenter (the point on the ground directly under the bomb). They included the region of interest to survivor studies (approximately 900 to 1500 m) and provided the first direct validation of fast neutrons in that range. However, a significant measurement gap remained between the hypocenter and 380 m. Measurements close to the hypocenter are important as a high-value anchor for the slope of the curve for neutron activation as a function of distance. Here we report measurements of (63)Ni in copper samples from the historic Hiroshima Atomic Bomb Dome, which is located approximately 150 m from the hypocenter. These measurements extend the range of our previously published data for (63)Ni providing a more comprehensive and consistent A-bomb activation curve. The results are also in good agreement with calculations based on the current dosimetry system (DS02) and give further experimental support to the accuracy of this system that forms the basis for radiation risk estimates worldwide. PMID:19138052

  14. Structural analysis of the collar of the Vredefort Dome, South Africa—Significance for impact-related deformation and central uplift formation

    NASA Astrophysics Data System (ADS)

    Wieland, Frank; Gibson, Roger L.; Reimold, Wolf Uwe

    2005-10-01

    Landsat TM, aerial photograph image analysis, and field mapping of Witwatersrand supergroup meta-sedimentary strata in the collar of the Vredefort Dome reveals a highly heterogeneous internal structure involving folds, faults, fractures, and melt breccias that are interpreted as the product of shock deformation and central uplift formation during the 2.02 Ga Vredefort impact event. Broadly radially oriented symmetric and asymmetric folds with wavelengths ranging from tens of meters to kilometers and conjugate radial to oblique faults with strike-slip displacements of, typically, tens to hundreds of meters accommodated tangential shortening of the collar of the dome that decreased from ˜17% at a radius from the dome center of 21 km to <5% at a radius of 29 km. Ubiquitous shear fractures containing pseudotachylitic breccia, particularly in the metapelitic units, display local slip senses consistent with either tangential shortening or tangential extension; however, it is uncertain whether they formed at the same time as the larger faults or earlier, during the shock pulse. In addition to shatter cones, quartzite units show two fracture types—a cmspaced rhomboidal to orthogonal type that may be the product of shock-induced deformation and later joints accomplishing tangential and radial extension. The occurrence of pseudotachylitic breccia within some of these later joints, and the presence of radial and tangential dikes of impact melt rock, confirm the impact timing of these features and are suggestive of late-stage collapse of the central uplift.

  15. Late Miocene uplift and doming of Madagascar: topographic implications

    NASA Astrophysics Data System (ADS)

    Delaunay, Antoine; Robin, Cecile; Guillocheau, François; Dall'Asta, Massimo; Calves, Gérôme

    2016-04-01

    and (3) a major stepping of dated planation surfaces. (3) The end result of this uplift is a convex up shape pattern for the end Cretaceous surface weathered during Eocene times, creating the present-day dome morphology (with a central plateau) of Madagascar. (4) The amplitude of this uplift can be estimated based on the present-day elevation of Late Eocene lagoonal sediments located 100 km north-east of Toliara and now at an elevation of 900m. If the absolute sea level was around 50 m (Miller et al., 2005) above present-day sea level during Late Eocene times, this means a surface uplift of around 850 m. (5) The mechanism of this uplift has to explain a very long wavelength deformation (x1000 km) necessary due to mantle dynamics. The relationships with the other East African domes (Ethiopia, East Africa, South Africa) are discussed. This study was founded by TOTAL and IFREMER in the frame of the research project PAMELA (Passive Margin Exploration Laboratories).

  16. 238U-230Th crystallization ages for the oldest domes of the Mono Craters, eastern California

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.

    2014-12-01

    The Mono Craters volcanic chain is one of the youngest areas of rhyolitic volcanism in the Mono Lake-Long Valley region of eastern California. Located just south of Mono Lake, the Mono Craters comprise at least 28 individual domes and flows (numbered 3-30, north to south); however, the timing and frequency of eruptions remain poorly resolved. The earliest signs of volcanic activity are preserved as numerous tephra layers (Ashes 1-19, top to bottom) in the late Pleistocene Wilson Creek formation of ancestral Mono Lake, which indicate that rhyolitic volcanism from Mono Craters began by at least ca. 62 ka [1]. Although the current chronology indicates that most of the Mono Craters are younger than ca. 20 ka [2-4], similar compositions of titanomagnetite from both pumice and lava potentially correlate several Wilson Creek tephras to porphyritic biotite-bearing domes 11, 24, and 19 of the Mono Craters [5], suggesting that multiple domes in the Mono Craters chain reflect volcanism older than ca. 20 ka. Ash 3 is correlated to dome 11 based on similar ca. 20 ka ages and titanomagnetite compositions [6]. More recently, we performed ion microprobe 238U-230Th dating of unpolished rims of allanite and zircon from domes 24 and 19, yielding isochron ages of ca. 38 ka and ca. 42 ka, respectively. The age of dome 24 is consistent with the ca. 38 ka age of its potential correlative tephra layers [1, 5], indicating that dome 24 is likely the extrusive equivalent of Ashes 9-10. Dome 19 has titanomagnetite crystals with similar bimodal chemistry to titanomagnetites from Ash 15 [5]. The age of dome 19 is indistinguishable from the 238U-230Th age of Ash 15 [1], which erupted during a prominent geomagnetic excursion, originally designated as the "Mono Lake" excursion. Combining geochronological and titanomagnetite compositional data confirms that Ash 15 and its extrusive equivalent, dome 19, erupted during the Laschamp excursion. [1] Vazquez, J.A. and Lidzbarski, M.I. (2012) EPSL 357

  17. In Situ Production of Methyl Chloride in Siple Dome and WAIS Divide Ice Cores from Antarctica

    NASA Astrophysics Data System (ADS)

    Frausto-Vicencio, I.; Verhulst, K. R.; Aydin, M.; Saltzman, E. S.

    2013-12-01

    Methyl chloride (CH3Cl) is a naturally-occurring halocarbon with a global mean abundance of 550 pmol mol-1 and a lifetime of about 1 year. It constitutes about 16% of the total chlorine burden in the stratosphere. The sources of methyl chloride are mainly natural and include tropical vegetation, oceans and biomass burning. Oxidation with the hydroxyl radical is the primary removal mechanism with additional loss via microbial degradation in soils and in the oceans. Previous measurements suggest ice cores from cold Antarctic sites (Dome Fuji, South Pole, Taylor Dome) preserve a record of atmospheric CH3Cl variability during the Holocene (Saito et al., 2007; Williams et al., 2007; Verhulst et al., in review). However, measurements at Siple Dome displayed evidence of in situ enhancement (Saltzman et al., 2009). This study involves new CH3Cl measurements in 117 ice core samples from the West Antarctic Ice Sheet Divide (WAIS-D) 06A ice core. Measurements from the Holocene are compared with earlier CH3Cl measurements from Taylor Dome and Siple Dome. In Late Holocene ice (5-0 ky BP), the WAIS-D and Siple Dome show evidence of in situ CH3Cl enrichment. The mean level and scatter are both larger than in Taylor Dome ice of the same age. The in situ enrichment is not time or depth-dependent. Interestingly, for most of the Early Holocene (11-5 ky BP), Siple Dome and WAIS-D exhibit less scatter and are closer to the Taylor Dome ice core data. In situ CH3Cl production may be purely chemical or involve biological reactions. Here, we investigate whether the excess CH3Cl in the Siple Dome and the WAIS-D ice cores can be explained by differences in ice chemistry between the various Antarctic sites. The results of this research will help establish the causes of CH3Cl production in ice cores and provide a basis to assess the possibility of studying long-term atmospheric CH3Cl variability using ice core data.

  18. Transiting planet candidates with ASTEP 400 at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Guillot, T.; Rivet, J.-P.; Schmider, F.-X.; Abe, L.; Gonçalves, I.; Agabi, A.; Crouzet, N.; Fruth, T.; Barbieri, M.; Bayliss, D. D. R.; Zhou, G.; Aristidi, E.; Szulagyi, J.; Daban, J.-B.; Fanteï-Caujolle, Y.; Gouvret, C.; Erikson, A.; Rauer, H.; Bouchy, F.; Gerakis, J.; Bouchez, G.

    2016-08-01

    ASTEP 400, the main instrument of the ASTEP (Antarctica Search for Transiting ExoPlanets) programme, is a 40-cm telescope, designed to withstand the harsh conditions in Antarctica, achieving a photometric accuracy of a fraction of milli-magnitude on hourly timescales for planet-hosting southern bright (R˜12 mag) stars. We review the performances of this instrument, describe its operating conditions, and present results from the analysis of observations obtained during its first three years (2010-2012) of operation, before its repatriation in 2014. During this time, we observed a total of 22 stellar fields (1° × 1° FoV). Each field, in which we measured stars up to magnitude R=18 mag, was observed continuously during ˜7 to ˜30 days. More than 200 000 frames were recorded and 310 000 stars processed, using an implementation of the optimal image subtraction (OIS) photometry algorithm. We found 43 planetary transit candidates. Twenty of these candidates were observed using spectroscopic follow-ups including four targets classified as good planet candidates. Our results demonstrate that accurate near-continuous photometric observations are achievable from the Concordia station at Dome C in Antarctica, even if we were not able to reach the nominal photometric precision of the instrument. We conducted a correlation analysis between the RMS noise and a large number of external parameters and found that source of the ˜1 mmag correlated noise is not obvious and does not depend on a single parameter. However, our analysis provided some hints and guidance to increase the photometric accuracy of the instrument. These improvements should equip any future telescope operating in Antarctica.

  19. EPICA Dome C record of glacial and interglacial intensities

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Stenni, B.; Pol, K.; Braconnot, P.; Cattani, O.; Falourd, S.; Kageyama, M.; Jouzel, J.; Landais, A.; Minster, B.; Barnola, J. M.; Chappellaz, J.; Krinner, G.; Johnsen, S.; Röthlisberger, R.; Hansen, J.; Mikolajewicz, U.; Otto-Bliesner, B.

    2010-01-01

    Climate models show strong links between Antarctic and global temperature both in future and in glacial climate simulations. Past Antarctic temperatures can be estimated from measurements of water stable isotopes along the EPICA Dome C ice core over the past 800 000 years. Here we focus on the reliability of the relative intensities of glacial and interglacial periods derived from the stable isotope profile. The consistency between stable isotope-derived temperature and other environmental and climatic proxies measured along the EDC ice core is analysed at the orbital scale and compared with estimates of global ice volume. MIS 2, 12 and 16 appear as the strongest glacial maxima, while MIS 5.5 and 11 appear as the warmest interglacial maxima. The links between EDC temperature, global temperature, local and global radiative forcings are analysed. We show: (i) a strong but changing link between EDC temperature and greenhouse gas global radiative forcing in the first and second part of the record; (ii) a large residual signature of obliquity in EDC temperature with a 5 ky lag; (iii) the exceptional character of temperature variations within interglacial periods. Focusing on MIS 5.5, the warmest interglacial of EDC record, we show that orbitally forced coupled climate models only simulate a precession-induced shift of the Antarctic seasonal cycle of temperature. While they do capture annually persistent Greenland warmth, models fail to capture the warming indicated by Antarctic ice core δD. We suggest that the model-data mismatch may result from the lack of feedbacks between ice sheets and climate including both local Antarctic effects due to changes in ice sheet topography and global effects due to meltwater-thermohaline circulation interplays. An MIS 5.5 sensitivity study conducted with interactive Greenland melt indeed induces a slight Antarctic warming. We suggest that interglacial EDC optima are caused by transient heat transport redistribution comparable with

  20. Transiting planet candidates with ASTEP 400 at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Guillot, T.; Rivet, J.-P.; Schmider, F.-X.; Abe, L.; Gonçalves, I.; Agabi, A.; Crouzet, N.; Fruth, T.; Barbieri, M.; Bayliss, D. D. R.; Zhou, G.; Aristidi, E.; Szulagyi, J.; Daban, J.-B.; Fanteï-Caujolle, Y.; Gouvret, C.; Erikson, A.; Rauer, H.; Bouchy, F.; Gerakis, J.; Bouchez, G.

    2016-11-01

    ASTEP 400, the main instrument of the ASTEP (Antarctica Search for Transiting ExoPlanets) programme, is a 40 cm telescope, designed to withstand the harsh conditions in Antarctica, achieving a photometric accuracy of a fraction of millimagnitude on hourly time-scales for planet-hosting southern bright (R ˜ 12 mag) stars. We review the performances of this instrument, describe its operating conditions, and present results from the analysis of observations obtained during its first three years (2010-2012) of operation, before its repatriation in 2014. During this time, we observed a total of 22 stellar fields (1° × 1° field of view). Each field, in which we measured stars up to magnitude R = 18 mag, was observed continuously during ˜7 to ˜30 d. More than 200 000 frames were recorded and 310 000 stars processed, using an implementation of the optimal image subtraction photometry algorithm. We found 43 planetary transit candidates. 20 of these candidates were observed using spectroscopic follow-ups including four targets classified as good planet candidates. Our results demonstrate that accurate near-continuous photometric observations are achievable from the Concordia station at Dome C in Antarctica, even if we were not able to reach the nominal photometric precision of the instrument. We conducted a correlation analysis between the rms noise and a large number of external parameters and found that source of the ˜1 mmag correlated noise is not obvious and does not depend on a single parameter. However, our analysis provided some hints and guidance to increase the photometric accuracy of the instrument. These improvements should equip any future telescope operating in Antarctica.

  1. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  2. Public Education and Outreach Through Full-Dome Video Technology

    NASA Astrophysics Data System (ADS)

    Pollock, John

    2009-03-01

    My long-term goal is to enhance public understanding of complex systems that can be best demonstrated through richly detailed computer graphic animation displayed with full-dome video technology. My current focus is on health science advances that focus on regenerative medicine, which helps the body heal itself. Such topics facilitate science learning and health literacy. My team develops multi-media presentations that bring the scientific and medical advances to the public through immersive high-definition video animation. Implicit in treating the topics of regenerative medicine will be the need to address stem cell biology. The topics are clarified and presented from a platform of facts and balanced ethical consideration. The production process includes communicating scientific information about the excitement and importance of stem cell research. Principles of function are emphasized over specific facts or terminology by focusing on a limited, but fundamental set of concepts. To achieve this, visually rich, biologically accurate 3D computer graphic environments are created to illustrate the cells, tissues and organs of interest. A suite of films are produced, and evaluated in pre- post-surveys assessing attitudes, knowledge and learning. Each film uses engaging interactive demonstrations to illustrate biological functions, the things that go wrong due to disease and disability, and the remedy provided by regenerative medicine. While the images are rich and detailed, the language is accessible and appropriate to the audience. The digital, high-definition video is also re-edited for presentation in other ``flat screen'' formats, increasing our distribution potential. Show content is also presented in an interactive web space (www.sepa.duq.edu) with complementing teacher resource guides and student workbooks and companion video games.

  3. Discovery of Critical Oxygen Content for Glass Formation in Zr80Pt20 Melt Spun Ribbons

    SciTech Connect

    D.J. Sordelet; E.A. Rozhkova; X. Yang; M.J. Kramer

    2004-09-30

    Zr{sub 80}Pt{sub 20} alloys may form meta-stable quasicrystals either during devitrification of an amorphous phase or directly upon cooling from a liquid depending on processing conditions. To date, little attention has been given to the role of oxygen on the glass formation or devitrification behavior of Zr-Pt and similar alloys. This study reveals that oxygen content during melt spinning indeed strongly influences the formation of the as-quenched structure. A critical amount of oxygen was found to be required to form amorphous ribbons at a fixed quench rate. At lower oxygen levels (i.e., <500 ppm mass), a fully crystallized is formed; the structure is composed mainly of meta-stable {beta}-Zr with a small fraction of a quasicrystalline phase. At higher oxygen levels, the as-quenched structure transitions to a fully amorphous structure ({approx}1000 ppm mass), and with further oxygen addition forms a mixture of amorphous and quasicrystalline ({approx}1500 ppm mass) or crystalline phases (>2500 ppm mass). Details regarding the structure of the meta-stable {beta}-Zr phase in the low-oxygen ribbons are provided along with a discussion of the structural similarity between this phase and the quasicrystal structure that formed in this alloy.

  4. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.

    PubMed

    Wang, Zifeng; Huang, Yan; Sun, Jinfeng; Huang, Yang; Hu, Hong; Jiang, Ruijuan; Gai, Weiming; Li, Guangming; Zhi, Chunyi

    2016-09-21

    Smart yarns and textiles are an active field of researches nowadays due to their potential applications in flexible and stretchable electronics, wearable devices, and electronic sensors. Integration of ordinary yarns with conductive fillers renders the composite yarns with new intriguing functions, such as sensation and monitoring of strain and stress. Here we report a low cost scalable fabrication for highly reliable, stretchable, and conductive composite yarn as effective strain sensing material for human motion monitoring. By incorporating highly conductive single-wall carbon nanotubes (SWCNTs) into the elastic cotton/polyurethane (PU) core-spun yarn through a self-designed coating approach, we demonstrated that the yarn is able to detect and monitor the movement of human limbs, such as finger and elbow, and even the wink of eyes. By virtue of the covered structure of the cotton/PU yarn and the reinforcement effect of SWCNTs, the composite yarn can bear up to 300% strain and could be cycled nearly 300,000 times under 40% strain without noticeable breakage. It is promising that this kind of conductive yarn can be integrated into various fabrics and used in future wearable devices and electronic skins. PMID:27558025

  5. Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites.

    PubMed

    Yang, Jinghui; Chen, Qiyi; Chen, Feng; Zhang, Qin; Wang, Ke; Fu, Qiang

    2011-09-01

    Strong interfacial interaction is extremely important for achieving efficient mechanical reinforcement in polymer/inorganic nanoparticle composites. In this study, it was demonstrated for the first time that largely improved interfacial interaction could be obtained in continuously melt-spun fibers of poly(vinylidene fluoride) (PVDF)/multi-walled carbon nanotube (MWCNTs) composites, just by an increasing of the deformation extent (draw ratio). The superior interaction is attributed to high deformation inducing a formation of charge-transfer-type F-C bonding between all-trans conformation PVDF chains and extended MWCNTs. As a result, a large mechanical enhancement has been achieved. For the fibers prepared at the highest draw ratio of 200, the tensile strength and modulus are improved for 235% and 109%, respectively, after adding only 0.5 wt% MWCNTs to PVDF. More importantly, a mechanical model fitting, based on the rule of mixtures, indicates that in the case of the highest draw ratio the theoretical strength of MWCNTs is comparable to its real failure strength measured directly between two opposing AFM cantilever tips (Yu et al 2000 Science 287 637). Our present study suggests a great deal of promise for achieving highly efficient CNT enhancement via the non-covalent interaction arising from simple physical fabrication like melt-spinning. PMID:21821872

  6. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.

    PubMed

    Andrews, Kirstie D; Hunt, John A; Black, Richard A

    2007-02-01

    Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.

  7. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.

    PubMed

    Wang, Zifeng; Huang, Yan; Sun, Jinfeng; Huang, Yang; Hu, Hong; Jiang, Ruijuan; Gai, Weiming; Li, Guangming; Zhi, Chunyi

    2016-09-21

    Smart yarns and textiles are an active field of researches nowadays due to their potential applications in flexible and stretchable electronics, wearable devices, and electronic sensors. Integration of ordinary yarns with conductive fillers renders the composite yarns with new intriguing functions, such as sensation and monitoring of strain and stress. Here we report a low cost scalable fabrication for highly reliable, stretchable, and conductive composite yarn as effective strain sensing material for human motion monitoring. By incorporating highly conductive single-wall carbon nanotubes (SWCNTs) into the elastic cotton/polyurethane (PU) core-spun yarn through a self-designed coating approach, we demonstrated that the yarn is able to detect and monitor the movement of human limbs, such as finger and elbow, and even the wink of eyes. By virtue of the covered structure of the cotton/PU yarn and the reinforcement effect of SWCNTs, the composite yarn can bear up to 300% strain and could be cycled nearly 300,000 times under 40% strain without noticeable breakage. It is promising that this kind of conductive yarn can be integrated into various fabrics and used in future wearable devices and electronic skins.

  8. The microstructure and magnetic properties of melt-spun CeFeB ribbons with varying Ce content

    NASA Astrophysics Data System (ADS)

    Wang, Xuchao; Zhu, Minggang; Li, Wei; Zheng, Liyun; Zhao, Dongliang; Du, Xiao; Du, An

    2015-01-01

    The microstructural and magnetic properties of melt-spun ribbons with the composition (CexNd100-x)30FebalCo4Ga0.2B0.92 (where x = 50, 60, 70, 80, and 90) were investigated. The ribbons were examined with Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Vibrating Sample Magnetometry (VSM). It was found that the grain size of the ribbons is on the nanometer scale, and the grain size decreases with decreasing Ce content. The magnetic hysteresis loops showed that the magnetic properties of the ribbons gradually deteriorated with increasing Ce content. This is because the magnetic polarization ( J s ) and magnetocrystalline anisotropy field ( H A ) of Ce2Fe14B are smaller than those of Nd2Fe14B. Furthermore, from the initial magnetization curve it was found that increasing the Ce content changes the coercive force mechanism to the nucleation mechanism. When Ce content accounts for 90% of total rare earth metals, the coercive force mechanism mainly appears to be a nucleation mechanism.

  9. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects.

    PubMed

    Ye, Zhou; Nain, Amrinder S; Behkam, Bahareh

    2016-07-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10(-7) m(2) s(-1)) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b(1.5)∝D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.

  10. Effect of magnetizing field on the martensitic transformations in a melt spun NiMnGa alloy

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Singh, Satnam; Das, S. K.; Mitra, A.; Koblischka, M.; Jamieson, Brice; Roy, Saibal

    2009-12-01

    The investigation addresses the effect of magnetizing field on the magnetic properties of melt spun Ni52.84Mn19.6Ga27.56 (at%) alloy ribbons. Magnetization behaviour at different fields was observed using a superconducting quantum interference device magnetometer for heating and cooling cycles. The plots showed distinct changes in magnetization around the characteristic temperatures at austenitic start and finish (AS, AF), martensitic start and finish (MS, MF). With increasing field AS, MF were unaffected. In the range of martensitic start and its finish temperature, the zero field cooled and field cooled measurements indicated magnetization drops indicating antiferromagnetic interactions, which is characteristic of the martensitic phase formation. It was shown from x-ray diffraction analysis that the low martensitic fraction in the majority austenite phase induced the splitting in the L21 austenitic ordering. This was further corroborated by the evidence of a few martensitic plates around grain boundaries at room temperature which is close to martensitic start temperature.

  11. Transformation characteristics of organic pollutants in Fered-Fenton process for dry-spun acrylic fiber wastewater treatment.

    PubMed

    Wei, Jian; Song, Yonghui; Meng, Xiaoguang; Tu, Xiang; Pic, Jean-Stéphane

    2014-01-01

    The Fered-Fenton process using Ti sheet as cathode and RuO2/Ti as anode was employed for the pretreatment of dry-spun acrylic fiber manufacturing wastewater. The effects of feeding mode and concentration of H2O2 on chemical oxygen demand (COD) removal efficiency as well as the biodegradability variation during the Fered-Fenton process were investigated. The feeding mode of H2O2 had significant influence on COD removal efficiency: the removal efficiency was 44.8% if all the 60.0 mM H2O2 was fed at once, while it could reach 54.1% if the total H2O2 was divided into six portions and fed six times. The biochemical oxygen demand/COD ratio increased from 0.29 to above 0.68 after 180 min treatment. The transformation characteristics of organic pollutants during the Fered-Fenton process were evaluated by using gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR) and fluorescence excitation-emission matrix (EEM) spectroscopy. Most of the refractory organic pollutants with aromatic structure or large molecular weight were decomposed during the Fered-Fenton process.

  12. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects.

    PubMed

    Ye, Zhou; Nain, Amrinder S; Behkam, Bahareh

    2016-07-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10(-7) m(2) s(-1)) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b(1.5)∝D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features. PMID:27283144

  13. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  14. LED package with Dome/side-emitting-enhancement silicone lens achieved by dispensing and geometry transferring

    NASA Astrophysics Data System (ADS)

    Chang Chien, Chien-Lin; Huang, Yu-Che; Hu, Syue-Fong; Sun, Chang-Wen; Chang, Chung-Min; Hsu, Chih-Peng; Yip, Ming-Chuen; Fang, Weileun

    2012-10-01

    This study presents a structure design and process method for lens type LED package. Dome type or side-emitting-enhancement silicone lens without molding process are achieved. The ceramic ring is adopted as the confine for the encapsulant. The surface intension along the sidewall of ceramic ring and silicone surface, the cohesion force and the gravity of silicone determine the shape of dome type silicone lens. The cone shape tooling coated with a releasing material is immersed into the dome type silicone lens before the silicone fully hardening. After curing simultaneously, to remove the tooling from package, the package with side-emitting-enhancement silicone lens is finished. With the mentioned architecture and process, this LED package herein has three merits, (1) to improve light extraction efficiency: reduce the chance of total internal reflection by the geometry of dome type silicone lens. (2)To enhance the flexibility of LED package design, the die placement location would be constrained by the mold in the traditional package process. (3) Mold-less side-emitting-enhancement silicone lens. Furthermore, two types of cone shape tooling are implemented and compared for side-emitting-enhancement silicone lens. Measurement results show the ratio between the lens high and lens radius could achieve 0.9:1. The view angles of dome type and side-emitting-enhancement LED packaged devices can reach 153° and 180 °, respectively. As using the same brightness grade of LED chip, the luminous flux is increasing 15% as compared the dome type package with the commercial PLCC (Plastic Leaded Chip Carrier) type package. The luminous flux of side-emitting-enhancement LED package decreases 8% as compared with the dome type one.

  15. Cranial Ontogeny in Stegoceras validum (Dinosauria: Pachycephalosauria): A Quantitative Model of Pachycephalosaur Dome Growth and Variation

    PubMed Central

    Schott, Ryan K.; Evans, David C.; Goodwin, Mark B.; Horner, John R.; Brown, Caleb Marshall; Longrich, Nicholas R.

    2011-01-01

    Historically, studies of pachycephalosaurs have recognized plesiomorphically flat-headed taxa and apomorphically domed taxa. More recently, it has been suggested that the expression of the frontoparietal dome is ontogenetic and derived from a flat-headed juvenile morphology. However, strong evidence to support this hypothesis has been lacking. Here we test this hypothesis in a large, stratigraphically constrained sample of specimens assigned to Stegoceras validum, the best known pachycephalosaur, using multiple independent lines of evidence including conserved morphology of ornamentation, landmark-based allometric analyses of frontoparietal shape, and cranial bone histology. New specimens show that the diagnostic ornamentation of the parietosquamosal bar is conserved throughout the size range of the sample, which links flat-headed specimens to domed S. validum. High-resolution CT scans of three frontoparietals reveal that vascularity decreases with size and document a pattern that is consistent with previously proposed histological changes during growth. Furthermore, aspects of dome shape and size are strongly correlated and indicative of ontogenetic growth. These results are complementary and strongly support the hypothesis that the sample represents a growth series of a single taxon. Cranial dome growth is positively allometric, proceeds from a flat-headed to a domed state, and confirms the synonymy of Ornatotholus browni as a juvenile Stegoceras. This dataset serves as the first detailed model of growth and variation in a pachycephalosaur. Flat-headed juveniles possess three characters (externally open cranial sutures, tuberculate dorsal surface texture, and open supratemporal fenestrae) that are reduced or eliminated during ontogeny. These characters also occur in putative flat-headed taxa, suggesting that they may also represent juveniles of domed taxa. However, open cranial sutures and supratemporal fenestrae are plesiomorphic within Ornithischia, and thus

  16. Effect of boron additions on phase formation and magnetic properties of TbCu7-type melt spun SmFe ribbons

    NASA Astrophysics Data System (ADS)

    Zheng, Chuanjiang; Yu, Dunbo; Li, Kuoshe; Luo, Yang; Jin, Jinling; Lu, Shuo; Li, Hongwei; Mao, Yongjun; Quan, Ningtao

    2016-08-01

    Melt spun ribbons of a series of SmFe12Bx (x=0.0, 0.5, 0.75, 1.0, 1.25, and 1.5) have been prepared by the melt spinning technique. Sm-Fe-B melt spun ribbons with single phase TbCu7-type structure were prepared from the SmFe12Bx (x=0.5, 0.75, and 1.0) alloys at the surface velocity around 40 m/s. The addition of boron not only inhibits the appearance of soft magnetic phase α-Fe, but also enhances the ability of amorphous formation for melt spun Sm-Fe ribbons. The concentration of boron atoms, however, exceeds the limit of the solubility (x>1.0) of Sm-Fe alloys, which does not impede the appearance of α-Fe but accelerates the formation of metastable phase Sm2Fe23B3 that is unfavorable to their magnetic properties. Moreover, it is found that the addition of boron whose concentration is 0.0≤x≤0.75 can stabilize the metastable TbCu7-type structure because of the increase of the lattice parameter ratio c/a. The magnetic properties of as-annealed SmFe12B1.0 melt spun ribbons with an energy product of 2.19MGOe, a coercivity of 2.36 kOe and a remanence of 4.8 kGs have been achieved. The microstructural characteristics of as-annealed melt spun SmFe12 and SmFe12B1.0 ribbons have been discussed as well. The following sequence of the hyperfine field H(6l)

  17. Were the world's youngest eclogites (NW D'Entrecasteaux Islands, Papua New Guinea) exhumed in rising gneiss domes or by shear on a deep-seated fault?

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Hacker, B.; Seward, G.

    2008-12-01

    The up to ~2.5 km-high gneiss domes of the NW D'Entrecasteaux Islands of Papua New Guinea host the world's youngest terrane of HP (eclogite-facies, ~2-4 Ma) to UHP (coesite-bearing) gneissic rocks (~8 Ma). Previous models for their exhumation at >2 cm/yr have called upon: 1) buoyant rise of crustal diapers, or 2) normal-slip on deeply penetrating faults. A recent variant of the latter suggests that a paleo- subduction zone near the southern edge of the Solomon Sea has been inverted as a result of microplate tectonics. We present structural, microstructural, and electron back-scatter diffraction data of lattice preferred orientations (LPO's) from gneisses of Goodenough and Fergusson Islands to further explore mechanisms of exhumation. Relict eclogite-facies assemblages occur in mafic dikes and boudins, but most HP deformational fabrics are overprinted. The enclosing felsic gneisses are pervaded by amphibolite-facies ductile fabrics formed during their exhumation from the lower crust. These migmatitic rocks (metatexites) were partially molten during their deformation at temperatures of 570-730°C and pressures of 7-11 kb, but today are dominated by solid-state fabrics. The gneisses are capped by remnants of an ultramafic sheet that did not experience HP metamorphism. Below the ultramafics is a ~1 km-thick carapace zone. These high-strain gneisses generally have domal fabrics parallel to, and gradational to, those in the underlying core zone, which they locally rework. Active NE-dipping normal faults on the NE flank of the domes cut across the ultramafic contact and are underlain by a m-thick zone of pseudotachylite-bearing S/C fabrics. A sweeping pattern of stretching lineations reveals a 3-D pattern of ductile flow. In both the carapace and upper core zone, lineations are mostly EW: subparallel to the long dimension of the domes and perpendicular to plate motion in the Woodlark Rift. At greater structural depth, within the core zone, they deflect to become more

  18. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D.

    2007-01-01

    The Killingworth dome of south-central Connecticut occurs at the southern end of the Bronson Hill belt. It is composed of tonalitic and trondhjemitic orthogneisses (Killingworth complex) and bimodal metavolcanic rocks (Middletown complex) that display calc-alkaline affinities. Orthogneisses of the Killingworth complex (Boulder Lake gneiss, 456 ?? 6 Ma; Pond Meadow gneiss, ???460 Ma) were emplaced at about the same time as eruption and deposition of volcanic-sedimentary rocks of the Middletown complex (Middletown Formation, 449 ?? 4 Ma; Higganum gneiss, 459 ?? 4 Ma). Hidden Lake gneiss (339 ?? 3 Ma) occurs as a pluton in the core of the Killingworth dome, and, on the basis of geochemical and isotopic data, is included in the Killingworth complex. Pb and Nd isotopic data suggest that the Pond Meadow, Boulder Lake, and Hidden Lake gneisses (Killingworth complex) resulted from mixing of Neoproterozoic Gander terrane sources (high 207Pb/204Pb and intermediate ??Nd) and less radiogenic (low 207Pb/204Pb and low ??Nd) components, whereas Middletown Formation and Higganum gneiss (Middletown complex) were derived from mixtures of Gander basement and primitive (low 207Pb/204Pb and high ??Nd) sources. The less radiogenic component for the Killingworth complex is similar in isotopic composition to material from Laurentian (Grenville) crust. However, because published paleomagnetic and paleontologic data indicate that the Gander terrane is peri-Gondwanan in origin, the isotopic signature of Killingworth complex rocks probably was derived from Gander basement that contained detritus from non-Laurentian sources such as Amazonia, Baltica, or Oaxaquia. We suggest that the Killingworth complex formed above an east-dipping subduction zone on the west margin of the Gander terrane, whereas the Middletown complex formed to the east in a back-arc rift environment. Subsequent shortening, associated with the assembly of Pangea in the Carboniferous, resulted in Gander cover terranes over the

  19. Petrology and emplacement dynamics of the intrusive and extrusive rhyolites of Obsidian Dome Inyo Craters volcanic chain, eastern California

    SciTech Connect

    Vogel, T.A.; Schuraytz, B.C.; Eichelberger, J.C.; Stockman, H.W.; Westrich, H.R.; Younker, L.W.; Horkowitz, J.P.

    1989-01-01

    Drilling at Obsidian Dome has provided continuous core samples of the distal and proximal portions of Obsidian Dome, its conduit, and an associated feeder dike. Both the dome and conduit are chemically and mineralogically zoned and consist of a finely porphyritic, high-Ba, low-silica rhyolite occurring in the basal portion of the dome and margins of the conduit and a finely porphyritic, low-Ba, higher silica rhyolite in the upper portion of the dome and center of the conduit. The high-Ba rhyolite contains two distinct phenocrysts assemblages with two distinct compositions, and represents mingled magmas. The low-Ba rhyolite in the dome and conduit contains significantly fewer disequilibrium phenocrysts and is only slightly mingled. The dike, sampled at 600 m depth, as well as a related tephra fall from Obsidian Dome vent, are entirely low-Ba rhyolite that contain no evidence of magma mingling. End members of the mingled magma, calculated using two different methods, are a 63 percent silica end member, and a silicic end member identical in composition to the dike and tephra fall from Obsidian Dome vent. This silicic end member was the first magma emplaced in the dike, and comprised much or all of the first magma vented to the surface during formation of the Obsidian Dome vent when eruption rates were high. Magma mingling of mafic and rhyolite magmas occurred during formation of the conduit. 59 refs., 16 figs., 10 tabs.

  20. New approaches to inferences for steep-sided domes on Venus

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.; Stofan, Ellen R.

    2016-06-01

    New mathematical approaches for the relaxation and emplacement of viscous lava domes are presented and applied to steep-sided domes on Venus. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry for two distinct scenarios. In the first scenario, dome relaxation is explored assuming a constant volume of fluid (i.e. lava) has been rapidly emplaced onto the surface. Cooling of lava is represented by a time-variable viscosity and singularities inherent in previous models for dome relaxation have been eliminated. At the onset of relaxation, bulk dynamic viscosities lie in the range between 1010-1016 Pa s, consistent with basaltic-andesite to rhyolitic compositions. Plausible relaxation times range from 5 to 5000 years, depending on initial lava viscosity. The first scenario, however, is only valid during the final stages of dome relaxation and does not consider the time taken for lava to be extruded onto the surface. In the second scenario, emplacement and growth of a steep-sided dome is considered when the volume of lava on the surface increases over time (i.e. time-variable volume approach). The volumetric flowrate may depend on an arbitrary power of the dome thickness, thus embracing Newtonian as well as other rheologies for describing terrestrial and planetary mass flows. The approach can be used to distinguish between basic flowrate models for fluid emplacement. The formalism results in radial expansion of a dome proportional to t1/2, consistent with the diffusive nature of the governing equation. The flow at the front is shown to thicken as the front advances for a constant rate of lava supply. Emplacement times are intimately correlated with the bulk rheology. Comparison of the theoretical profiles with the shape of a typical dome on Venus indicates that a Newtonian bulk rheology is most appropriate, consistent with prior studies. However, results here suggest a bulk dynamic viscosity of 1012-1013 Pa s and

  1. Alteration minerals on the Santiaguito lava dome complex, Santa María volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Calder, E. S.; Giese, R.

    2010-12-01

    Santiaguito is a relatively young complex of four lava domes located at the foot of the Santa María volcano in Guatemala. The domes have been erupting intermittently since 1922, and have shown various degrees of hydrothermal activity throughout their development. Hydrothermal systems in older volcanic edifices (Casita in Nicaragua, La Soufriere of Guadeloupe) are known to weaken rock and promote collapses, but their effects and development in young lava domes is less well constrained. Santiaguito has experienced several relatively small dome collapses (≦ 3 million m3) in the past, but it is unclear what role hydrothermal processes have played in these collapses. Currently, low-temperature active fumaroles are present on the domes, indicating the presence of a hydrothermal system. Samples of unconsolidated ash and sediment and rock chips were collected from the interior of fumaroles on the El Brujo lava dome to determine if hydrothermal alteration minerals were present. X-ray diffraction (XRD) was used to identify the presence of clay minerals in the powdered samples. Additional semi-quantitative identification was obtained using backscattered electron images (BSE) collected with a scanning electron microscope (SEM). Both analyses were performed at the University at Buffalo. Preliminary XRD analyses were unable to conclusively detect alteration minerals in powdered samples; however, BSE images of the same samples appeared to show alteration minerals (montmorillonite, saponite) adhering to individual ash grains. Further SEM analyses are being conducted on thin sections of the rock chips to determine if alteration minerals are present in dome rock as well as in the unconsolidated material. Development of alteration minerals on the relatively young (~50-90 year old) Santiaguito lava domes may indicate an increased risk for alteration-driven instabilities and collapses. Altered volcanic rocks are less competent, have lower shear strength and are more susceptible to

  2. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    SciTech Connect

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J.

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  3. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  4. Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing.

    PubMed

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Asadnia, Mohsen; Subramaniam, Vignesh; Miao, Jianmin; Triantafyllou, Michael

    2016-01-01

    Passive mechanosensing is an energy-efficient and effective recourse for autonomous underwater vehicles (AUVs) for perceiving their surroundings. The passive sensory organs of aquatic animals have provided inspiration to biomimetic researchers for developing underwater passive sensing systems for AUVs. This work is inspired by the 'integumentary sensory organs' (ISOs) which are dispersed on the skin of crocodiles and are equipped with slowly adapting (SA) and rapidly adapting (RA) receptors. ISOs assist crocodiles in locating the origin of a disturbance, both on the water surface and under water, thereby enabling them to hunt prey even in a dark environment and turbid waters. In this study, we construct SA dome receptors embedded with microelectromechanical systems (MEMS) piezoresistive sensors to measure the steady-state pressures imparted by flows and RA dome receptors embedded with MEMS piezoelectric sensors to detect oscillatory pressures in water. Experimental results manifest the ability of SA and RA dome receptors to sense the direction of steady-state flows and oscillatory disturbances, respectively. As a proof of concept, the SA domes are tested on the hull of a kayak under various pressure variations owing to different types of movements of the hull. Our results indicate that the dome receptors are capable of discerning the angle of attack and speed of the flow. PMID:27545614

  5. Detailed studies of selected, well-exposed fracture zones in the Adirondack Mountains dome, New York

    SciTech Connect

    Wiener, R.W.; Isachsen, Y.W.

    1987-01-01

    The Adirondack Mountains constitute a relatively young (Mesozoic, Cenozoic) dome on the craton. The dome is undergoing contemporary uplift, based on geodetic releveling, and is seismically active. The breached dome provides a very large window through Paleozoic cover and thus permits ground study of the fracture systems that characterize the seismogenic basement and influence the patterns of brittle deformation that are found in overlying Paleozoic rocks of the platform. The predominant fracture zones are linear valleys that trend NNE to NE, parallel to the long axis of the dome. The 36 field studies of the lineament segments discussed in this report suggest that the prominent NE to NNE fracture systems in the eastern Adirondacks are dominantly high angle faults down-stepped to the east, whereas those in the central Adirondacks are dominantly zero-displacement crackle zones. The origin of these features is related to the rapid uplift of the Adirondack dome. Similar features can be expected to be found in other areas of domal uplift or rapid regional uplift.

  6. New radiometric ages on gneisses of the Oliverian domes in New Hampshire and Massachusetts

    SciTech Connect

    Zartman, R.E.; Leo, G.W.

    1985-03-01

    Gneissic plutons of the Oliverian domes, mantled by Ammonoosuc Volcanics, are located along the axis of the Bronson Hill anticlinorium from New Hampshire to Connecticut. The contacts between the plutonic and volcanic rocks appear to be concordant on a regional scale, but gneiss intrudes the volcanics in several domes. Available radiometric and fossil evidence suggests that the Ammonoosuc Volcanics have a Middle Ordovician age but are somewhat older than the Oliverian gneisses. New U-Pb zircon data from Oliverian gneisses of six domes plot on a concordia diagram as an almost colinear array that yields an upper intercept age of about 444 m.y. The plotted data vary from nearly concordant to moderately discordant, the degree of discordance, correlating with /sup 207/Pb//sup 206/Pb ages that range from 459 to 415 m.y. The pattern of discordance does not relate to the uranium contents of the zircons nor to the geographic distribution of the domes. If /sup 207/Pb//sup 206/Pb ages are considered individually without an assumed consanguinity of the units, however, they do not find particular support in geologic relationships. Thus, they prefer the concordia intercept age of 444 +/- 8 m.y. for the suite as the best estimate for the time of crystallization of the Oliverian gneisses. Possibly, the Whitefield, Gneiss in the Jefferson dome represents a 10 to 15 m.y. older unit, although they are cautious about claiming such resolution with the present data.

  7. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  8. Parameter optimization of Dome A site testing DIMM by data mining

    NASA Astrophysics Data System (ADS)

    Xu, Lingzhe; Pei, Chong

    2012-10-01

    The extreme environment of Antarctic is valuable for astronomical observations. Dome C is proved has excellent seeing and transmission by site testing works. While the higher, colder inland plateau Dome A is widely predicted as even better astronomical site than Dome C. Preliminary site testing developed since the beginning of 2008 shows that Dome A has lower boundary layer and lower precipitable water vapour. Now the automated seeing monitor is urgently needed to quantify the site's optical character which is necessary for the telescope design and deployment. In addition, it has the requirement that DIMM must realize automatic measurement for nearly one year under the case of unmanned intervention during which a great quantity of data will be generated because of the limitation of Dome A. This paper aims at researching how to use the method of mining association rules to automatically analyze observation data, what the relationship between various parameters effecting on optical quality is, and improving the efficiency of telescope observation by parameter optimization. We have modified a commercial telescope with diameter of 35cm to function as site testing DIMM which has been installed at XingLong observation station of National Astronomical Observatories, Chinese Academy of Sciences, acquired long term observation data, and identified that this method is suitable for optimizing the parameters of DIMM system.

  9. Conceptual design of a 5-m terahertz telescope at Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Wang, Hai; Zhang, Yong; Chen, Yi; Zhou, Guohua; Cheng, Jingquan; Li, Guoping

    2012-09-01

    A 5-meter terahertz telescope is proposed by the Chinese Center for Antarctic Astronomy (CCAA) for the East Antarctica site of the Dome A plateau. The Dome A 5-m terahertz telescope (DATE 5) will be operated at sub-millimeter waveband taking the unique advantage of the transparent atmospheric windows between 200 and 350 μm wavelengths at Dome A. A preliminary design has been conducted according to the given technical requirements and the special environmental conditions at Dome A. A symmetric R-C Cassegrain optical system is designed for the telescope, with a primary f-ratio of 0.4 and a wide field of view of 10 arcmin. The magnification of the sub-reflector is 9.4, leading to the final focal ratio of 3.76 and the focus 0.2 m below the vertex of the primary reflector. To ensure surface accuracy of the reflectors precise as small as 10 um RMS, we consider using Carbon Fiber Reinforced Plastics (CFRP) to build the backup structure (BUS) of the primary reflector and the sub-reflector itself. An alt-azimuthal mounting is adopted and a tall base structure beneath the telescope is set up to lift the telescope above the low atmosphere turbulent layer. All the mechanics, as well as control electronics, are strictly designed to fit the lower temperature operation in the Dome A environment. This paper is to generally present the mentioned systematic optical, structural and electronic design of the DATE 5 telescope.

  10. Partial melting of the South Qinling orogenic crust, China: Evidence from Triassic migmatites and diorites of the Foping dome

    NASA Astrophysics Data System (ADS)

    Zhang, He; Ye, Ri-Sheng; Liu, Bing-Xiang; Wang, Yan; Zhang, Yuan-Shuo; Siebel, Wolfgang; Chen, Fukun

    2016-09-01

    The Qinling orogen was ultimately formed by suturing of the South Qinling and Yangtze blocks, but the exact timing of the final amalgamation of the two blocks has not been well established so far. Partial melting of the Qinling orogenic continental crust resulted in the generation of migmatites, and such rocks may help to decipher the chronology of such event. In this paper, we report U-Pb ages, trace element, and Hf isotopic compositions of zircons from migmatites and diorite gneisses of the Foping dome, South Qinling. Zircons from migmatites form anhedral grains of variable sizes that are characterized by complex trace element compositions. Based on zircon U-Pb ages, the migmatites can be subdivided into two groups: Group 1 migmatites mainly retain Triassic zircons with U-Pb ages of 214-211 Ma and Hf model ages of ~ 1.46 Ga in core and rim domains; zircons from Group 2 migmatites record both Triassic (~ 210 Ma) and Neoproterozoic U-Pb ages, analogous to igneous rocks of the Wudang and Yaolinghe Groups exposed in South Qinling. Zircons from the diorite gneisses yield U-Pb ages of 216-210 Ma with Hf isotopic composition (TDM2 ages of ~ 1.46 Ga) similar to the migmatites. Evidence from whole-rock Nd isotopic analyses also points to a similar genesis between migmatites and diorite gneisses. It is proposed that Group 1 migmatites were derived by melting of Triassic diorites, while Group 2 migmatites were derived from Neoproterozoic igneous rocks, a major basement lithology of South Qinling. Partial melting of the orogenic crust took place at ~ 214-210 Ma, approximately consistent with the retrograde metamorphism of granulites exposed along the suture zone between the South Qinling and Yangtze blocks. We suggest that the collision of these two blocks occurred prior to ~ 215 Ma and that the Foping dome resulted from rapid collapse of an overthickened crust followed by partial melting enhanced by asthenospheric influx.

  11. Fragmentation and Cataclasis of Lava Domes: Field Evidence of Conduit-Margin Faulting and Cryptodome Unloading at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Hagstrum, J.; Cashman, K.; Tuffen, H.

    2007-12-01

    Structures and textures preserved in dome rocks reveal much about ascent history, seismicity, and dynamics of eruptions. The current eruption of Mount St. Helens (MSH) produced dacite spines mantled by fault gouge and breccia. Flow-banded spine interiors attest to early degassing and ductile deformation; micro-textures and structures in the spine margins indicate entirely brittle shear, rock breakage, grain-flow and gas-escape along fractures. Paleomagnetic pole positions and demagnetization data constrain cataclasis to the sub-vertical volcanic conduit at temperatures above 500°-570°C. Low water content of matrix glass and presence of tridymite require nearly complete decompression-driven solidification at depths <1 km, coincident with the eruption's seismogenic zone. 1-3 m thick cataclastic breccia of spine margins contains multiple Reidel shears in a conjugate set formed by shear between the vertically extruding spines and conduit walls. This breccia is overlain by a thin (<10 cm) outer mantle of finely comminuted gouge with 1-3 mm-thick, surface-parallel layers of slickenside-bearing ultracataclasite, forming through-going fault planes. Slickenside lineations and direction indicators are consistent with upward transport of the spines. These relations document two dominant modes of brittle failure in the spine margins, similar to the brittle S-C fabrics seen in tectonic fault zones. The Reidel shears represent limited-slip planes (S-shears), which are inclined relative to the primary bounding fault planes (C-surfaces). We infer that the Reidel shears formed as multiple, domino-like episodes of fracture, prior to transfer of slip to the bounding C-surfaces. Because the depth of deformation is the same as the depth of the seismogenic zone, and because there are two distinct modes of brittle fracture (S and C fabrics) as well as two distinct types of earthquakes (volcano-tectonic and longer-period hybrids) it is logical to infer that these structures are sources

  12. On the Structural Stability of Melt Spun Ribbons of Fe95- x Zr x B4Cu1 ( x = 7 and 9) Alloys and Correlation with Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Arvindha Babu, D.; Majumdar, Bhaskar; Sarkar, Rajdeep; Murty, B. S.; Chattopadhyay, K.

    2016-01-01

    Melt spun ribbons of Fe95- x Zr x B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mössbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline α-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline α-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mössbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, α-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, α-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4.

  13. Mid-Cretaceous oblique rifting of West Antarctica: Emplacement and rapid cooling of the Fosdick Mountains migmatite-cored gneiss dome

    NASA Astrophysics Data System (ADS)

    McFadden, R. R.; Teyssier, C.; Siddoway, C. S.; Cosca, M. A.; Fanning, C. M.

    2015-09-01

    In Marie Byrd Land, West Antarctica, the Fosdick Mountains migmatite-cored gneiss dome was exhumed from mid- to lower middle crustal depths during the incipient stage of the West Antarctic Rift system in the mid-Cretaceous. Prior to and during exhumation, major crustal melting and deformation included transfer and emplacement of voluminous granitic material and numerous intrusions of mantle-derived diorite in dikes. A succession of melt- and magma-related structures formed at temperatures in excess of 665 ± 50 °C based on Ti-in-zircon thermometry. These record a transition from wrench to oblique extensional deformation that culminated in the development of the oblique South Fosdick Detachment zone. Solid-state fabrics within the detachment zone and overprinting brittle structures record translation of the detachment zone and dome to shallow levels. To determine the duration of exhumation and cooling, we sampled granite and gneisses at high spatial resolution for U-Pb zircon geochronology and 40Ar/39Ar hornblende and biotite thermochronology. U-Pb zircon crystallization ages for the youngest granites are 102 Ma. Three hornblende ages are 103 to 100 Ma and 12 biotite ages are 101 to 99 Ma. All overlap within uncertainty. The coincidence of zircon crystallization ages with 40Ar/39Ar cooling ages indicates cooling rates > 100 °C/m.y. that, when considered together with overprinting structures, indicates rapid exhumation of granite and migmatite from deep to shallow crustal levels within a transcurrent setting. Orientations of structures and age-constrained crosscutting relationships indicate counterclockwise rotation of stretching axes from oblique extension into nearly orthogonal extension with respect to the Marie Byrd Land margin. The rotation may be a result of localized extension arising from unroofing and arching of the Fosdick dome, extensional opening within a pull-apart zone, or changes in plate boundary configuration. The rapid tectonic and temperature

  14. Monitoring of the environmental conditions inside the dome of the 4m Blanco Telescope at CTIO

    NASA Astrophysics Data System (ADS)

    Els, S. G.; Abbott, T. M. C.; Bustos, E. B.; Seguel, J.; Walker, D. E.; Berdja, A.; Riddle, R.; Schöck, M.; Skidmore, W.; Travouillon, T.

    2010-07-01

    Between February and April 2009 a number of ultrasonic anemometers, temperature probes and dust sensors were operated inside the CTIO Blanco telescope dome. These sensors were distributed in a way that temperature and 3 dimensional wind speeds were monitored along the line of sight of the telescope. During telescope operations, occasional seeing measurements were obtained using the Mosaic CCD imager and the CTIO site monitoring MASS-DIMM system. In addition, also a Lunar Scintillometer (LuSci) was operated over the course of a few nights inside the dome. We describe the instrumental setup and first preliminary results on the linkage of the atmospheric conditions inside the dome to the overall image quality.

  15. Intrusive and extrusive growth of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Malin, Michael C.; Anderson, Steven W.

    1990-01-01

    High-resolution, digital topographic maps of the Mount St. Helens dome derived from aerial photographs are used here to make a quantitative assessment of the partitioning of magma into endogenous intrusion and exogenous lobes. The endogenous growth is found to be predictable, which shows that the cooling dome controls its own development independently of such deep-seated factors as magma overpressure and extrusion rate. The observed regular decrease in exogenous growth rate also allows volume prediction. Knowledge of the volume can be used to determine when an ongoing eruptive event should end. Finally, the observed transition from predominantly exogenous to predominantly endogenous growth reflects the increase in crust thickness, which in turn seems to depend on long repose periods rather than some fundamental change in the character of the dome.

  16. A Neogene structural dome in the Klamath Mountains, California and Oregon

    NASA Astrophysics Data System (ADS)

    Mortimer, N.; Coleman, R. G.

    1985-04-01

    Regional structural doming of Neogene age has affected rocks of the Klamath and Cascade mountains near the California-Oregon border. Evidence for this is seen in (1) subannular outcrop patterns of pre-Cretaceous lithotectonic units, (2) a crude pattern of radially oriented high-angle faults, (3) tilted Jurassic plutons, (4) tilted Cretaceous to Miocene strata, and (5) various geomorphological features. The age of doming is constrained by a major middle Miocene to earliest Pliocene angular unconformity within the Cascade Mountains and uplifted upper Miocene marine beds on the western edge of the Klamath Mountains. Uplift and doming may be the result of shortening in the Cascade fore-arc region or, more speculatively, the recent accretion of subducted material to the North American plate beneath the Klamath Mountains. *Present addresses: Mortimer, Department of Geological Sciences, University of British Columbia, Vancouver, British Columbia V6T 2B4, Canada; Coleman, U.S. Geological Survey, Menlo Park, California 94025

  17. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects

    NASA Astrophysics Data System (ADS)

    Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh

    2016-06-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for

  18. An experimental insight into the evolution of permeability at high temperatures and applications for shallow conduit and lava dome degassing

    NASA Astrophysics Data System (ADS)

    Chadderton, Amy; Sammonds, Peter; Meredith, Philip; Smith, Rosanna; Tuffen, Hugh; Gaunt, Elizabeth

    2016-04-01

    Two recent eruptions in Chile, at Chaitén Volcano in 2008-10 and Cordón Caulle in 2011-12, allowed the first detailed observations of rhyolitic activity and provided insights into the evolution of highly silicic eruptions. Both events exhibited simultaneous explosive and effusive activity, with both lava and ash plumes emitted from the same vent [1]. The permeability of fracture networks that act as fluid flow pathways is key to understanding such eruptive behaviour. Here, we report results from a systematic experimental investigation of permeability in volcanic rocks at magmatic temperatures and pressures, in the presence of pore fluids using our newly-developed high-temperature permeability facility. Enhancements to the High Temperature Triaxial Deformation Cell at UCL [2] have enabled us to make permeability measurements on 25mm x 50mm cores at both elevated temperature and elevated hydrostatic pressure [3]. We present results from several suites of permeability measurements on samples of dome dacite from the 2004-08 eruption of Mount St Helens, and rhyolite collected from the lava dome formed during the 2008-10 eruption of Chaitén, Chile. Tests were conducted at temperatures up to 900oC and under an effective pressure of 5 MPa, using the steady-state flow technique. Samples were cooled to room temperature between each high temperature test, and the permeability of each sample was re-measured before heating to the next temperature increment in the series. Additional longer duration high temperature tests were also conducted to investigate the development of a permeable network at high temperatures over time. The results show a complex permeability evolution that includes a reduction in permeability by approximately 3 orders of magnitude up to 600oC. Together with thermal cracking tests, AE data and SEM/thin section analysis these new experimental permeability results are applied to enhance our understanding of the complex issue of shallow conduit and lava

  19. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  20. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  1. Volumes and eruption rates for the 2008-2009 Chaitén rhyolite lava dome

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Diefenbach, A. K.; Griswold, J.; Muñoz, J.; Lara, L. E.; Valenzuela, C.; Burton, W. C.; Keeler, R.

    2010-12-01

    The 2008 eruption of Chaitén caldera, southern Chile, was one of the most explosive on Earth in the past two decades. The eruption began early on 2 May 2008 (UTC) and produced sub-plinian to plinian ash columns between 2 May and 9 May, before transitioning from explosive eruption of tephra to effusive eruption of rhyolite lava. A series of lava flow lobes accumulated within the caldera between late May and the end of the year, burying most of Chaitén’s prehistoric lava dome. A prominent lava spine was also extruded, starting in late 2008. The spine collapsed on 19 February 2009, producing a pyroclastic flow that extended out of the caldera and 7 km down the Río Chaitén. Dome growth continued through 2009, filling in much of the spine-collapse area and further expanding the composite dome through endogenous growth. Dome volumes are computed and eruption rates estimated using satellite data from 2008-10, photogrammetric analysis of oblique aerial photographs taken in January 2010, and digital elevation models derived from ASTER, SRTM, LIDAR and topographic maps. The 2008-10 dome has a total volume of approximately 0.8 km3. About 0.5 km3 erupted within the first four months, when extrusion rates were in the range 10-100 m3s-1. Extrusion rates decreased exponentially over the eruptive period. The 2008-10 dome is similar in volume and composition to the prehistoric lava dome, which has a volume of at least 0.5 km3. Together the two domes constitute about 20-40% of the 3.5-7 km3 collapse volume of the prehistoric caldera. The unusually rapid extrusion rates during the first four months are among the highest ever measured for silicic lava. Chaitén’s 2008-10 lava is obsidian and microcrystalline rhyolite with 75.35+/-0.02% SiO2. A large volume of low viscosity crystal-poor magma (about 0.1% phenocrysts) coupled with high extrusion pressures during the extended transition from explosive to effusive eruption style resulted in these exceptionally high extrusion rates.

  2. Drilling investigation of a young magmatic intrusion beneath Inyo Dome, Long Valley Caldera, California. Progress report

    SciTech Connect

    Vogel, T.A.

    1985-01-01

    Progress to date indicates: (1) the conduit and lava flow at Obsidian Dome consist of two magma types; (2) the more mafic magma occurs at the base of Obsidian Dome and at the margins of the conduit and was emplaced first; (3) the more silicic magma occurs in the center of the conduit and in the dike; (4) the ilmenite-magnetite and orthopyroxene-augite geothermometers have not reequilibrated in the conduit or dike; (5) the more mafic magma's emplacement temperature was 974/sup 0/C compared to the silicic magma's 951/sup 0/C; and (6) trace elements are characteristic of each magma type. (ACR)

  3. A Review of Optical Sky Brightness and Extinction at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Kenyon, S. L.; Storey, J. W. V.

    2006-03-01

    The recent discovery of exceptional seeing conditions at Dome C, Antarctica, raises the possibility of constructing an optical observatory there with unique capabilities. However, little is known from an astronomer's perspective about the optical sky brightness and extinction at Antarctic sites. We review the contributions to sky brightness at high-latitude sites and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites and review optical extinction data from the South Pole. Finally, we examine the proposal of Baldry & Bland-Hawthorn to extend the amount of usable dark time through the use of polarizing filters.

  4. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer. PMID:27486917

  5. Exploring Subglacial Lake Connectivity via Groundwater Aquifers in the Dome C Region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Carter, S. P.; Blankenship, D. D.

    2011-12-01

    Subglacial lakes lying under the Antarctic Ice Sheet form part of a dynamic, interconnected hydraulic system. Most research exploring the nature of this system has focused on flow along the ice-bed interface, neglecting the effects of groundwater transport, as such systems are thought to lack the transmissivity necessary to accommodate the inferred meltwater volume. In the Dome C region of East Antarctica, however, inferred melt water volumes are relatively low due to proximity to the ice divide and hydraulic gradients are relatively high due to steep subglacial bedrock topography, such that groundwater flow might be viable as a dominant means of water transport. This region contains many small subglacial lakes residing in bedrock depressions of steep basal topography. Preliminary analysis of radar sounding data does not always reveal an obvious hydraulic connection between these lakes despite readily apparent sources of melt feeding these bodies. Here we test several simple models for groundwater flow, including both fractured rock and porous media systems using ice-surface and bedrock geometry inferred from radio-echo sounding data and a published map of melt rates, with the purpose of defining a region in which a groundwater system can account for the majority of the water budget. We then compare these results against maps of basal reflectivity and subglacial lake distribution, as determined from radar sounding data. Areas in which groundwater flow is the dominant process will lack basal lubrication and demonstrate low basal reflectivities, but could still contain small subglacial lakes. While not spatially extensive with respect to the ice sheet, these groundwater-dominated areas could occupy the headwaters of most glacial catchments representing a unique and relatively stable subglacial environment.

  6. Fine-scale wavelike structures in the surface-based turbulent layer at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Petenko, Igor; Argentini, Stefania; Kallistratova, Margarita; Mastrantonio, Giangiuseppe; Casasanta, Giampietro; Sozzi, Roberto; Conidi, Alessandro

    2016-04-01

    A long-term experiment to study the spatial and temporal structure of thermal turbulence in the extremely stable boundary layer was carried out at the Concordia station, Dome C in Antarctica during 2012. The atmospheric boundary layer at this site during the winter is strongly stably stratified with temperature inversions reaching a strength 35°C in 100-200 m. Despite high static stability, intense thermal turbulence occurs sometimes in the surface layer extending from the surface to heights of a few - a few tens of metres. The spatial and temporal structure of the turbulence was observed by an advanced high-resolution sodar in the height range from 2 m to 150 m with vertical resolution ≈ 2 m and time resolution of 2 s. The variation and statistics of the depth of the surface-based turbulent layer (STL) is determined for the entire winter period. The median value of the STL depth is found to be l6 m, while the depth of the inversion layer is of 125 m. The wind speed is a parameter that affects the formation and development of the STL. Typical patterns of turbulence structure as shown by the sodar echograms are analysed and classified. Wave activity within the STL is observed for a significant part of the time; the time scales that characterize these undulation processes are determined. Often regular trains of waves with periods of 30-60 s and a periodicity of 5-10 minutes are observed. Some characteristics of the wavelike structures (form, spatial and temporal scales) are determined and the correlation with meteorological parameters is analysed. The Richardson number estimated using the vertical profiles of temperature and wind velocity from the 45-m meteorological tower, indicates that in some cases significant turbulence may occurr even when Ri is larger than the critical value equal to 0.25.

  7. Dry spun 3D woven carbon nanotube anode electrode for Li-lon batteries.

    PubMed

    Ryu, Seongwoo; Kim, Yunkyoung; Lee, Haeshin; Hong, Soon Hyung

    2014-12-01

    Although carbon nanotubes (CNTs) have extraordinary mechanical, thermal, and electrical properties, application of CNTs remains limited due to their unique nano-sized tubular forms. CNT electrodes have relatively high sheet resistance, which does not meet the industrial requirements of various electrode materials. Thus, there are still challenges for improving the performance of CNTs in real applications, particularly in terms of satisfying industrial requirements. In this study, to utilize CNTs in bulk scale electrode applications, we developed a dry spinning technique. The dry spinning technique is a solid state fiber spinning technique that provides an adjustable aligned structure. The dry spinning approach also offers a facile and inexpensive fabrication process, factors which are favorable for industrial scalability for fabricating electrodes. We demonstrate a multilayer stacking process for enhancing the performance for Li-ion batteries. Multi-layer CNT textiles have low sheet resistance and a 3D woven structure provides high surface area. The fabricated 3D woven structured electrode delivers a higher reversible capacity of more than 400 mA hr/g with high cycle stabilities. PMID:25971028

  8. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.

    PubMed

    Zhang, Daohong; Miao, Menghe; Niu, Haitao; Wei, Zhixiang

    2014-05-27

    Linear (fiber or yarn) supercapacitors have demonstrated remarkable cyclic electrochemical performance as power source for wearable electronic textiles. The challenges are, first, to scale up the linear supercapacitors to a length that is suitable for textile manufacturing while their electrochemical performance is maintained or preferably further improved and, second, to develop practical, continuous production technology for these linear supercapacitors. Here, we present a core/sheath structured carbon nanotube yarn architecture and a method for one-step continuous spinning of the core/sheath yarn that can be made into long linear supercapacitors. In the core/sheath structured yarn, the carbon nanotubes form a thin surface layer around a highly conductive metal filament core, which serves as current collector so that charges produced on the active materials along the length of the supercapacitor are transported efficiently, resulting in significant improvement in electrochemical performance and scale up of the supercapacitor length. The long, strong, and flexible threadlike supercapacitor is suitable for production of large-size fabrics for wearable electronic applications. PMID:24754666

  9. Dry spun 3D woven carbon nanotube anode electrode for Li-lon batteries.

    PubMed

    Ryu, Seongwoo; Kim, Yunkyoung; Lee, Haeshin; Hong, Soon Hyung

    2014-12-01

    Although carbon nanotubes (CNTs) have extraordinary mechanical, thermal, and electrical properties, application of CNTs remains limited due to their unique nano-sized tubular forms. CNT electrodes have relatively high sheet resistance, which does not meet the industrial requirements of various electrode materials. Thus, there are still challenges for improving the performance of CNTs in real applications, particularly in terms of satisfying industrial requirements. In this study, to utilize CNTs in bulk scale electrode applications, we developed a dry spinning technique. The dry spinning technique is a solid state fiber spinning technique that provides an adjustable aligned structure. The dry spinning approach also offers a facile and inexpensive fabrication process, factors which are favorable for industrial scalability for fabricating electrodes. We demonstrate a multilayer stacking process for enhancing the performance for Li-ion batteries. Multi-layer CNT textiles have low sheet resistance and a 3D woven structure provides high surface area. The fabricated 3D woven structured electrode delivers a higher reversible capacity of more than 400 mA hr/g with high cycle stabilities.

  10. Crowning the Cathedral of Florence: Brunelleschi Builds His Dome. A Unit of Study for Grades 7-10.

    ERIC Educational Resources Information Center

    Symcox, Linda

    This unit focuses on a dramatic moment in the Renaissance from about 1420 when Filippo Brunelleschi single handedly created, defined, and engineered a new architecture by building the great dome of the cathedral of Santa Maria del Fiore in Florence. The dome became the symbol of Florence's grandeur during the Renaissance, and a model for great…

  11. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    SciTech Connect

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  12. Metallic sulfide deposits in Winnefield salt dome, Louisiana: evidence for episodic introduction of metalliferous brines during cap rock formation

    SciTech Connect

    Ulrich, M.R.

    1984-09-01

    Winnfield dome is a shallow piercement salt structure that penetrates Late Jurassic through early Tertiary siliciclastic and carbonate strata of the North Louisiana basin. Quarrying operations in the calcite and anhydrite portions of the cap rock have exposed zones of metallic sulfides and barite. A roughly laminated massive sulfide lens is exposed at the calcite to anhydrite transition zone. These sulfide concentrations are believed to have originated from the interaction of metalliferous basinal brines with reduced sulfur trapped within the cap rock. Textural relationships and variations in chemical compositions between the sulfide layers in the anhydrite portion of the cap rock suggest that distinct pulses of metalliferous brines were responsible for the sulfide concentrations. Anhydrite grains outside the mineralized areas are deformed and tightly intergrown. These textures suggest that mineralizing fluids were introduced episodically along the salt and anhydrite interface at the zone of salt dissolution before that portion of the anhydrite zone was compressed and accreted to overlying anhydrite cap rock. Therefore, the earliest formed sulfides originating by this mechanism occur at the top of the anhydrite cap rock zone, whereas the last sulfides to form are found at the base. Extensive sulfide concentrations along the anhydrite-calcite contact suggest that this contact also acted as a permeable zone allowing metalliferous brines into the cap rock. Textural and compositional relationships suggest that sulfides that formed along the anhydrite-calcite contact are locally superimposed on sulfides that formed at the salt-anhydrite contact.

  13. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  14. Graphene in macroscopic order: liquid crystals and wet-spun fibers.

    PubMed

    Xu, Zhen; Gao, Chao

    2014-04-15

    In nanotechnology, the creation of new nanoparticles consistently feeds back into efforts to design and fabricate new macroscopic materials with specific properties. As a two-dimensional (2D) building block of new materials, graphene has received widespread attention due to its exceptional mechanical, electrical, and thermal properties. But harnessing these attributes into new materials requires developing methods to assemble single-atom-thick carbon flakes into macroscopically ordered structures. Because the melt processing of carbon materials is impossible, fluid assembly is the only viable approach for meeting this challenge. But in the meantime, researchers need to solve two fundamental problems: creating orientational ordering in fluids and the subsequent phase-transformation from ordered fluids into ordered solid materials. To address these problems, this Account highlights our graphene chemistry methods that take advantage of liquid crystals to produce graphene fibers. We have successfully synthesized graphene oxide (GO) from graphite in a scalable manner. Using the size of graphite particles and post fractionation, we successfully tuned the lateral size of GO from submicron sizes to dozens of microns. Based on the rich chemistry of GO, we developed reliable methods for chemical or physical functionalization of graphene and produced a series of functionalized, highly soluble graphene derivatives that behave as single layers even at high concentrations. In the dispersive system of GO and functionalized graphenes, rich liquid crystals (LCs) formed spontaneously. Some of these liquid crystals had a conventional nematic phase with orientational order; others had a lamellar phase. Importantly, we observed a new chiral mesophase featuring a helical-lamellar structural model with frustrated disinclinations. The graphene-based LCs show ordered assembly behaviors in the fluid state of 2D colloids and lay a foundation for the design of ordered materials with optimal

  15. Graphene in macroscopic order: liquid crystals and wet-spun fibers.

    PubMed

    Xu, Zhen; Gao, Chao

    2014-04-15

    In nanotechnology, the creation of new nanoparticles consistently feeds back into efforts to design and fabricate new macroscopic materials with specific properties. As a two-dimensional (2D) building block of new materials, graphene has received widespread attention due to its exceptional mechanical, electrical, and thermal properties. But harnessing these attributes into new materials requires developing methods to assemble single-atom-thick carbon flakes into macroscopically ordered structures. Because the melt processing of carbon materials is impossible, fluid assembly is the only viable approach for meeting this challenge. But in the meantime, researchers need to solve two fundamental problems: creating orientational ordering in fluids and the subsequent phase-transformation from ordered fluids into ordered solid materials. To address these problems, this Account highlights our graphene chemistry methods that take advantage of liquid crystals to produce graphene fibers. We have successfully synthesized graphene oxide (GO) from graphite in a scalable manner. Using the size of graphite particles and post fractionation, we successfully tuned the lateral size of GO from submicron sizes to dozens of microns. Based on the rich chemistry of GO, we developed reliable methods for chemical or physical functionalization of graphene and produced a series of functionalized, highly soluble graphene derivatives that behave as single layers even at high concentrations. In the dispersive system of GO and functionalized graphenes, rich liquid crystals (LCs) formed spontaneously. Some of these liquid crystals had a conventional nematic phase with orientational order; others had a lamellar phase. Importantly, we observed a new chiral mesophase featuring a helical-lamellar structural model with frustrated disinclinations. The graphene-based LCs show ordered assembly behaviors in the fluid state of 2D colloids and lay a foundation for the design of ordered materials with optimal

  16. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island salt dome

    SciTech Connect

    Sattler, A.R.

    1996-04-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the US Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to Provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run. Neutron and density logs were run from inside the well casing because of the extremely unstable condition of the deltaic alluvium overburden above the salt dome. The logging program provided important information about the salt dome and the overburden in that (1) the top of the salt dome was identified at {approximately}189 ft bgl (103 ft msl), and the top of the dome contains relatively few fractures; (2) the water table is approximately 1 ft msl, (3) this aquifer appears to become steadily more saline with depth; and (4) the water saturation of much of the alluvium over the salt dome is shown to be influenced by the prevalent heavy rainfall. This logging program, a part of the sinkhole diagnostics, provides unique information about this salt dome and the overburden.

  17. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  18. Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)

    NASA Astrophysics Data System (ADS)

    Allen, C.; Oehler, D.

    2010-12-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  19. Domes, Ash and Dust - Controls on soil genesis in a montane catchment of the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Meding, S. M.; Vazquez, A.; Chorover, J.

    2011-12-01

    discontinuities in backslope, footslope and toeslope positions that suggest post dome resurgence ash deposition and redistribution via physical erosion. Additionally, the majority of sites contained a modern dust signal in the upper 5 to 10 cm of the soil profile based on Ti:Zr, mica content, and particle size distribution. The dominant weathering patterns include feldspar transformation to kaolinite and alteration of volcanic glass and/or 2:1 primary minerals to smectite. Smectite is a combination of both authigenic smectite formed during hydrothermal alteration of the tuff and neogenic smectite as suggested by Si-rich soil solution and surface waters. The data indicate a sequence of dome uplift followed by periods of pedogenesis and ash input, subsequent ash redistribution via physical erosion, and modern mass input via eolian dust. The timing and magnitude of these events and impacts on chemical weathering are the subjects of ongoing model and measurement activities.

  20. Domes, Ash and Dust - Controls on soil genesis in a montane catchment of the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Meding, S. M.; Vazquez, A.; Chorover, J.

    2012-12-01

    discontinuities in backslope, footslope and toeslope positions that suggest post dome resurgence ash deposition and redistribution via physical erosion. Additionally, the majority of sites contained a modern dust signal in the upper 5 to 10 cm of the soil profile based on Ti:Zr, mica content, and particle size distribution. The dominant weathering patterns include feldspar transformation to kaolinite and alteration of volcanic glass and/or 2:1 primary minerals to smectite. Smectite is a combination of both authigenic smectite formed during hydrothermal alteration of the tuff and neogenic smectite as suggested by Si-rich soil solution and surface waters. The data indicate a sequence of dome uplift followed by periods of pedogenesis and ash input, subsequent ash redistribution via physical erosion, and modern mass input via eolian dust. The timing and magnitude of these events and impacts on chemical weathering are the subjects of ongoing model and measurement activities.