Sample records for sputtering method pembuatan

  1. Anomalous effects in the aluminum oxide sputtering yield

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Depla, D.

    2018-04-01

    The sputtering yield of aluminum oxide during reactive magnetron sputtering has been quantified by a new and fast method. The method is based on the meticulous determination of the reactive gas consumption during reactive DC magnetron sputtering and has been deployed to determine the sputtering yield of aluminum oxide. The accuracy of the proposed method is demonstrated by comparing its results to the common weight loss method excluding secondary effects such as redeposition. Both methods exhibit a decrease in sputtering yield with increasing discharge current. This feature of the aluminum oxide sputtering yield is described for the first time. It resembles the discrepancy between published high sputtering yield values determined by low current ion beams and the low deposition rate in the poisoned mode during reactive magnetron sputtering. Moreover, the usefulness of the new method arises from its time-resolved capabilities. The evolution of the alumina sputtering yield can now be measured up to a resolution of seconds. This reveals the complex dynamical behavior of the sputtering yield. A plausible explanation of the observed anomalies seems to originate from the balance between retention and out-diffusion of implanted gas atoms, while other possible causes are commented.

  2. Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Shaltens, R. K. (Inventor)

    1973-01-01

    The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.

  3. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  4. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  5. Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility

    NASA Astrophysics Data System (ADS)

    Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao

    2017-03-01

    The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.

  6. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  7. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  8. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  9. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  10. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  11. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen

    1994-01-01

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

  12. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  13. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  14. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

    1994-02-08

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

  15. Angular and velocity distributions of tungsten sputtered by low energy argon ions

    NASA Astrophysics Data System (ADS)

    Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.

    2017-12-01

    Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.

  16. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  17. The new applications of sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.

  18. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1982-01-01

    The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.

  19. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  20. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-01-13

    Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

  1. Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu

    2018-04-01

    Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.

  2. Experimental study on TiN coated racetrack-type ceramic pipe

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-11-01

    TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)

  3. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-04-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  4. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-06-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  5. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  6. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  7. Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.

    PubMed

    Ishida, Yohei; Corpuz, Ryan D; Yonezawa, Tetsu

    2017-12-19

    Noble metal nanoclusters are believed to be the transition between single metal atoms, which show distinct optical properties, and metal nanoparticles, which show characteristic plasmon absorbance. The interesting properties of these materials emerge when the particle size is well below 2 nm, such as photoluminescence, which has potential application particularly in biomedical fields. These photoluminescent ultrasmall nanoclusters are typically produced by chemical reduction, which limits their practical application because of the inherent toxicity of the reagents used in this method. Thus, alternative strategies are sought, particularly in terms of physical approaches, which are known as "greener alternatives," to produce high-purity materials at high yields. Thus, a new approach using the sputtering technique was developed. This method was initially used to produce thin films using solid substrates; now it can be applied even with liquid substrates such as ionic liquids or polyethylene glycol as long as these liquids have a low vapor pressure. This revolutionary development has opened up new areas of research, particularly for the synthesis of colloidal nanoparticles with dimensions below 10 nm. We are among the first to apply the sputtering technique to the physical synthesis of photoluminescent noble metal nanoclusters. Although typical sputtering systems have relied on the effect of surface composition and viscosity of the liquid matrix on controlling particle diameters, which only resulted in diameters ca. 3-10 nm, that were all plasmonic, our new approach introduced thiol molecules as stabilizers inspired from chemical methods. In the chemical syntheses of metal nanoparticles, controlling the concentration ratio between metal ions and stabilizing reagents is a possible means of systematic size control. However, it was not clear whether this would be applicable in a sputtering system. Our latest results showed that we were able to generically produce a variety of photoluminescent monometallic nanoclusters of Au, Ag, and Cu, all of which showed stable emission in both solution and solid form via our matrix sputtering method with the induction of cationic-, neutral-, and anionic-charged thiol ligands. We also succeeded in synthesizing photoluminescent bimetallic Au-Ag nanoclusters that showed tunable emission within the UV-NIR region by controlling the composition of the atomic ratio by a double-target sputtering technique. Most importantly, we have revealed the formation mechanism of these unique photoluminescent nanoclusters by sputtering, which had relatively larger diameters (ca. 1-3 nm) as determined using TEM and stronger emission quantum yield (max. 16.1%) as compared to typical photoluminescent nanoclusters prepared by chemical means. We believe the high tunability of sputtering systems presented here has significant advantages for creating novel photoluminescent nanoclusters as a complementary strategy to common chemical methods. This Account highlights our journey toward understanding the photophysical properties and formation mechanism of photoluminescent noble metal nanoclusters via the sputtering method, a novel strategy that will contribute widely to the body of scientific knowledge of metal nanoparticles and nanoclusters.

  8. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, Marc; Görtz, Björn; Ristau, Detlev

    2006-03-01

    Methods for the manufacture of rugate filters by the ion-beam-sputtering process are presented. The first approach gives an example of a digitized version of a continuous-layer notch filter. This method allows the comparison of the basic theory of interference coatings containing thin layers with practical results. For the other methods, a movable zone target is employed to fabricate graded and gradual rugate filters. The examples demonstrate the potential of broadband optical monitoring in conjunction with the ion-beam-sputtering process. First-characterization results indicate that these types of filter may exhibit higher laser-induced damage-threshold values than those of classical filters.

  9. SERS spectra of pyridine adsorbed on nickel film prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Daoyong; Ouyang, Yu; Chen, Li; Cao, Weiran; Shi, Shaohua

    2011-02-01

    As a repeating well and cheaper enhancement substrate, the nickel film was fabricated with magnetron sputtering coating instrument. Surface enhanced Raman spectra (SERS) of pyridine adsorbed on this nickel film are compared with the experimental values of gaseous pyridine, the theoretical value of pyridine solution listed in other literatures and our method is better than electro-chemical etching electrode method for large scale preparation. The enhancement factor of the nickel film is calculated and the result indicates that magnetron sputtering coating technology is feasible for obtaining good SERS active surface.

  10. Consistent kinetic simulation of plasma and sputtering in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Frederik; Trieschmann, Jan; Mussenbrock, Thomas

    2016-09-01

    Plasmas are commonly used in sputtering applications for the deposition of thin films. Although magnetron sources are a prominent choice, capacitively coupled plasmas have certain advantages (e.g., sputtering of non-conducting and/or ferromagnetic materials, aside of excellent control of the ion energy distribution). In order to understand the collective plasma and sputtering dynamics, a kinetic simulation model is helpful. Particle-in-Cell has been proven to be successful in simulating the plasma dynamics, while the Test-Multi-Particle-Method can be used to describe the sputtered neutral species. In this talk a consistent combination of these methods is presented by consistently coupling the simulated ion flux as input to a neutral particle transport model. The combined model is used to simulate and discuss the spatially dependent densities, fluxes and velocity distributions of all particles. This work is supported by the German Research Foundation (DFG) in the frame of Transregional Collaborative Research Center (SFB) TR-87.

  11. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  12. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  13. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  14. Metal-Insulator-Metal Diode Process Development for Energy Harvesting Applications

    DTIC Science & Technology

    2010-04-01

    Sputter Tool Dep Method: Sputtering (DC Magnetron ) Recipe: MC_Pt 1640A_TiO2 1000A_Ti 2000A_500C_1a MC_Pt 1640A_TiO2 1000A_Ti 2000A_300C_1a MC_Pt...thin films were sputtered onto silicon substrates with silicon dioxide overlayers. I-V measurements were taken using an electrical characterization...deposition of the entire MIM material stack to be done without breaking the vacuum within a multi-material system DC sputtering tool. A CAD layout of a MIM

  15. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  16. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  17. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  18. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  19. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  20. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  1. Tuning of the magnetization dynamics in as-sputtered FeCoSiN thin films by various sputtering gas pressures

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Phuoc, N. N.; Zhang, Xiaoyu; Ma, Yungui; Chen, Xin; Ong, C. K.

    2008-11-01

    In this work, we investigate the influence of various sputtering gas pressures on the high-frequency magnetization dynamics in as-sputtered FeCoSiN granular thin films. The permeability spectra are measured with the shorted microstrip transmission-line perturbation method and analyzed with the Landau-Lifshitz-Gilbert equation. The dependence of the effective damping coefficient on the external fields is fitted with a power law. The measurement and fitting results show that both the effective and the intrinsic damping coefficients in the magnetization dynamics can be conveniently and effectively tuned by changing the sputtering gas pressure. The physical origin of the influences is suggested to be related to the stress in the films.

  2. Sputtering yields of carbon based materials under high particle flux with low energy

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  3. Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment

    NASA Technical Reports Server (NTRS)

    Duchemin Olivier B.; Polk, James E.

    1999-01-01

    The sputtering yield of molybdenum under xenon ion bombardment was measured using a Quartz Crystal Microbalance. The measurements were made for ion kinetic energies in the range 100-1keV on molybdenum films deposited by magnetron sputtering in conditions optimized to reproduce or approach bulk-like properties. SEM micrographs for different anode bias voltages during the deposition are compared, and four different methods were implemented to estimate the density of the molybdenum films. A careful discussion of the Quartz Crystal Microbalance is proposed and it is shown that this method can be used to measure mass changes that are distributed unevenly on the crystal electrode surface, if an analytical expression is known for the differential mass-sensitivity of the crystal and the erosion profile. Finally, results are presented that are in good agreement with previously published data, and it is concluded that this method holds the promise of enabling sputtering yield measurements at energies closer to the threshold energy in the very short term.

  4. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  5. Cluster generator

    DOEpatents

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  6. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  7. AZO nanorods thin films by sputtering method

    NASA Astrophysics Data System (ADS)

    Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.

    2018-05-01

    Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.

  8. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  9. Large Area Sputter Coating on Glass

    NASA Astrophysics Data System (ADS)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  10. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  11. Low temperature fabrication of VO x thin films for uncooled IR detectors by direct current reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Wang, Xingzhi; He, Shaowei; Huang, Ying; Yi, Xinjian

    2008-03-01

    Vanadium oxide films have been fabricated on Si3N4-film-coated silicon substrates by direct current reactive magnetron sputtering method. Conditions of deposition are optimized making use of parameters such as sputtering time, dc power, oxygen partial pressure and substrate temperature. X-ray diffraction indicates that the film is a mixture of VO2, V2O3, and V3O5. Four-probe measurement shows that the VOx thin film owns high temperature coefficient of resistance (TCR ∼-2.05%/°C) and suitable square resistance 18.40 kΩ/□ (measured at 25 °C), indicating it is a well candidate material for uncooled IR detectors. In addition, IR absorption in the wavelength of 2-16 μm has been characterized. It is worth noting that the films are sputtered at a relatively low temperature of 210 °C in a controlled Ar/O2 atmosphere. Compared to traditional craft, this method needs no post-anneal at high temperature (400-500 °C).

  12. Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Diver, D. A.

    2018-04-01

    Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.

  13. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  14. A Survey of Xenon Ion Sputter Yield Data and Fits Relevant to Electric Propulsion Spacecraft Integration

    NASA Technical Reports Server (NTRS)

    Yim, John T.

    2017-01-01

    A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.

  15. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  16. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  17. Effect of different methods of preliminary surface treatment and magnetron sputtering on the adhesion of Si coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Slabodchikov, V. A.; Kuznetsov, V. M.

    2017-05-01

    The paper presents research results on the adhesion of Si coatings deposited by magnetron sputtering on NiTi substrates after preliminary surface treatment (cleaning and activation) with low-energy ion beams and gas discharge plasma. The adhesion properties of the coatings obtained by two methods are analyzed and compared using data of scratch and spherical abrasion tests.

  18. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  19. Templated Growth of Pd Nanoparticles Using Sputtering Deposition Process and Its Catalytic Activities.

    PubMed

    Eberhardt, Dario; Migowski, Pedro; Teixeira, Sérgio R; Feil, Adriano F

    2018-03-01

    A simple method based on sputtering deposition of Pd onto mesoporous SiO2 (SBA-15) was employed to produce supported Pd nanoparticles (NPs) that can be used as hydrogenation catalysts. The use of sputtering deposition eliminates contaminants and avoids additional drawbacks of traditional chemical methods applied to prepare heterogeneous supported metal catalysts. A mechanical resonant stirrer was used to revolve the SBA-15 powder and ensure homogeneous distribution of the Pd NPs over the support. The SBA-15 pores act as templates for Pd NPs and drive nanostructure growth. Consequently, the NPs obtained have the same diameter as that of the SBA-15 channels (~5 nm) and elongated particles are formed as sputtering deposition increases. The SBA-15 supported Pd NPs (Pd NPs/SBA-15) were tested in a probe hydrogenation of cyclohexene reaction to evaluate the catalytic activity of the Pd NPs. Turnover frequency (TOF) of 2000 min-1 were achieved with the lower Pd NPs concentration (0.15 wt%) catalyst.

  20. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  1. Metal copper films deposited on cenosphere particles by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang

    2007-05-01

    Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.

  2. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment

    NASA Astrophysics Data System (ADS)

    M. Borghei, S.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.

    2013-01-01

    In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.

  3. Magnetic properties of LCMO deposited films

    NASA Astrophysics Data System (ADS)

    Park, Seung-Iel; Jeong, Kwang Ho; Cho, Young Suk; Kim, Chul Sung

    2002-04-01

    La-Ca-Mn-O films were deposited with various thickness (500, 1000 and 1500°C) by RF-magnetron sputtering at 700°C and by the spin coating of sol-gel method at 400°C on LaAlO 3(1 0 0) and Si(1 0 0) single-crystal substrates. The crystal structure and chemical composition of the film grown by RF sputtering method were orthorhombic and La 0.89Ca 0.11MnO 3, respectively, while the film prepared by sol-gel spin coating was cubic with La 0.7Ca 0.3MnO 3. The temperature dependence of the resistance for the film grown by RF sputtering method with the thickness of 1000°C shows that a semiconductor-metal transition occurs at 242 K. The relative maximum magnetoresistance is about 273% at 226 K.

  4. Ion beam sputter target and method of manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a mainmore » tile also formed in a green state and the assembly can then be compacted and then sintered.« less

  5. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw; Chiu, C.H.; Hong, I.T.

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes,more » which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.« less

  6. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  7. Image quality method as a possible way of in situ monitoring of in-vessel mirrors in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Konovalov, V. G.; Voitsenya, V. S.; Makhov, M. N.; Ryzhkov, I. V.; Shapoval, A. N.; Solodovchenko, S. I.; Stan, A. F.; Bondarenko, V. N.; Donné, A. J. H.; Litnovsky, A.

    2016-09-01

    The plasma-facing (first) mirrors in ITER will be subject to sputtering and/or contamination with rates that will depend on the precise mirror locations. The resulting influence of both these factors can reduce the mirror reflectance (R) and worsen the transmitted image quality (IQ). This implies that monitoring the mirror quality in situ is an actual desire, and the present work is an attempt towards a solution. The method we propose is able to elucidate the reason for degradation of the mirror reflectance: sputtering by charge exchange atoms or deposition of contaminated layers. In case of deposition of contaminants, the mirror can be cleaned in situ, but a rough mirror (due to sputtering) cannot be used anymore and has to be replaced. To demonstrate the feasibility of the IQ method, it was applied to mirror specimens coated with carbon film in laboratory conditions and to mirrors coated with contaminants during exposure in fusion devices (TRIAM-1M and Tore Supra), as well as to mirrors of different materials exposed to sputtering by plasma ions in the DSM-2 plasma stand (in IPP NSC KIPT).

  8. DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications.

    PubMed

    Menegazzo, Nicola; Boyne, Devon; Bui, Holt; Beebe, Thomas P; Booksh, Karl S

    2012-07-03

    Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.

  9. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  10. Laboratory simulation of processes of evaporation, condensation, and sputtering taking place on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Nusinov, M. D.; Kochnev, V. A.; Chernyak, Y. B.; Kuznetsov, A. V.; Kosolapov, A. I.; Yakovlev, O. I.

    1974-01-01

    Study of evaporation, condensation and sputtering on the moon can provide information on the same processes on other planets, and reveal details of the formation of the lunar regolith. Simulation methods include vacuum evaporation, laser evaporation, and bubbling gas through melts.

  11. TaN resistor process development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Kathleen; Martinez, Marino John; Clevenger, Jascinda

    This paper describes the development and implementation of an integrated resistor process based on reactively sputtered tantalum nitride. Image reversal lithography was shown to be a superior method for liftoff patterning of these films. The results of a response surface DOE for the sputter deposition of the films are discussed. Several approaches to stabilization baking were examined and the advantages of the hot plate method are shown. In support of a new capability to produce special-purpose HBT-based Small-Scale Integrated Circuits (SSICs), we developed our existing TaN resistor process, designed for research prototyping, into one with greater maturity and robustness. Includedmore » in this work was the migration of our TaN deposition process from a research-oriented tool to a tool more suitable for production. Also included was implementation and optimization of a liftoff process for the sputtered TaN to avoid the complicating effects of subtractive etching over potentially sensitive surfaces. Finally, the method and conditions for stabilization baking of the resistors was experimentally determined to complete the full implementation of the resistor module. Much of the work to be described involves the migration between sputter deposition tools - from a Kurt J. Lesker CMS-18 to a Denton Discovery 550. Though they use nominally the same deposition technique (reactive sputtering of Ta with N{sup +} in a RF-excited Ar plasma), they differ substantially in their design and produce clearly different results in terms of resistivity, conformity of the film and the difference between as-deposited and stabilized films. We will describe the design of and results from the design of experiments (DOE)-based method of process optimization on the new tool and compare this to what had been used on the old tool.« less

  12. Development of ion beam sputtering techniques for actinide target preparation

    NASA Astrophysics Data System (ADS)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  13. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  14. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  15. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  16. Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza

    2017-08-01

    In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.

  17. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  18. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  19. The characteristics of a new negative metal ion beam source and its applications

    NASA Astrophysics Data System (ADS)

    Paik, Namwoong

    2001-10-01

    Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract shortened by UMI.)

  20. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  1. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, C; Gilmer, G; Zepeda-Ruiz, L

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less

  2. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  3. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  4. Advanced experimental study on giant magnetoresistance of Fe/Cr superlattices by rf-sputtering

    NASA Astrophysics Data System (ADS)

    Obi, Y.; Takanashi, K.; Mitani, Y.; Tsuda, N.; Fujimori, H.

    1992-02-01

    The study on MagnetoResistance (MR) has been performed for the Fe/Cr SuperLattice (SL) produced by the rf-sputtering method. Especially the effect of the preparation condition on MR has been investigated in detail. The MR oscillates with respect to the Cr layer thickness ( tCr) as was reported by Parkin et al. [1]. The characteristic experimental results is that the MR depends strongly on the Ar pressure. This indicates that the size of the MR is greatly affected by the interface roughness of the SL induced by the different Ar pressure during sputtering.

  5. Metal-assisted chemical etching using sputtered gold: a simple route to black silicon

    NASA Astrophysics Data System (ADS)

    Kurek, Agnieszka; Barry, Seán T.

    2011-08-01

    We report an accessible and simple method of producing 'black silicon' with aspect ratios as high as 8 using common laboratory equipment. Gold was sputtered to a thickness of 8 nm using a low-vacuum sputter coater. The structures were etched into silicon substrates using an aqueous H2O2/HF solution, and the gold was then removed using aqua regia. Ultrasonication was necessary to produce columnar structures, and an etch time of 24 min gave a velvety, non-reflective surface. The surface features after 24 min etching were uniformly microstructured over an area of square centimetres.

  6. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  7. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films.

    PubMed

    Ehiasarian, A; Pulgarin, Cesar; Kiwi, John

    2012-11-01

    The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray-brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu(2)O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R (q) and R (a) were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.

  8. Effect of post-annealing on sputtered MoS2 films

    NASA Astrophysics Data System (ADS)

    Wong, W. C.; Ng, S. M.; Wong, H. F.; Cheng, W. F.; Mak, C. L.; Leung, C. W.

    2017-12-01

    Typical routes for fabricating MoS2-based electronic devices rely on the transfer of as-prepared flakes to target substrates, which is incompatible with conventional device fabrication methods. In this work we investigated the preparation of MoS2 films by magnetron sputtering. By subjecting room-temperature sputtered MoS2 films to post-annealing at mild conditions (450 °C in a nitrogen flow), crystalline MoS2 films were formed. To demonstrate the compatibility of the technique with typical device fabrication processes, MoS2 was prepared on epitaxial magnetic oxide films of La0.7Sr0.3MnO3, and the magnetic behavior of the films were unaffected by the post-annealing process. This work demonstrates the possibility of fabricating electronic and spintronic devices based on continuous MoS2 films prepared by sputtering deposition.

  9. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, D.B.; Wiley, J.D.

    1989-09-12

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.

  10. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, David B.; Wiley, John D.

    1989-01-01

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.

  11. Method of making coherent multilayer crystals

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  12. Soft X-ray multilayers produced by sputtering and molecular beam epitaxy (MBE) - Substrate and interfacial roughness

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.

    1988-01-01

    Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.

  13. Noble metal nanostructures for double plasmon resonance with tunable properties

    NASA Astrophysics Data System (ADS)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  14. Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id

    Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less

  15. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    PubMed

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  16. Physical Vapor Deposition of Thin Films

    NASA Astrophysics Data System (ADS)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  17. Texturing effects in molybdenum and aluminum nitride films correlated to energetic bombardment during sputter deposition

    NASA Astrophysics Data System (ADS)

    Drüsedau, T. P.; Koppenhagen, K.; Bläsing, J.; John, T.-M.

    Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input.

  18. Iodine Beam Dump Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  19. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, Eric; Shenoy, Vivek

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  20. Sputtering Erosion in the Ion Thruster

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.; Mantenieks, Maris A. (Technical Monitor)

    2000-01-01

    During the first phase of this research, the sputtering yields of molybdenum by low energy (100 eV and higher) xenon ions were measured by using the methods of secondary neutral mass spectrometry (SNMS) and Rutherford backscattering spectrometry (RBS). However, the measured sputtering yields were found to be far too low to explain the sputtering erosions observed in the long-duration tests of ion thrusters. The only difference between the sputtering yield measurement experiments and the ion thruster tests was that the later are conducted at high ion fluences. Hence, a study was initiated to investigate if any linkage exists between high ion fluence and an enhanced sputtering yield. The objective of this research is to gain an understanding of the causes of the discrepancies between the sputtering rates of molybdenum grids in an ion thruster and those measured from our experiments. We are developing a molecular dynamics simulation technique for studying low-energy xenon ion interactions with molybdenum. It is difficult to determine collision sequences analytically for primary ions below the 200 eV energy range where the ion energy is too low to be able to employ a random cascade model with confidence and it is too high to have to consider only single collision at or near the surface. At these low energies, the range of primary ions is about 1 to 2 nm from the surface and it takes less than 4 collisions on the average to get an ion to degrade to such an energy that it can no longer migrate. The fine details of atomic motion during the sputtering process are revealed through computer simulation schemes. By using an appropriate interatomic potential, the positions and velocities of the incident ion together with a sufficient number of target atoms are determined in small time steps. Hence, it allows one to study the evolution of damages in the target and its effect on the sputtering yield. We are at the preliminary stages of setting up the simulation program.

  1. MgAl{sub 2}O{sub 4}(001) based magnetic tunnel junctions made by direct sputtering of a sintered spinel target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belmoubarik, Mohamed; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Ohkubo, Tadakatsu

    We developed a fabrication process of an epitaxial MgAl{sub 2}O{sub 4} barrier for magnetic tunnel junctions (MTJs) using a direct sputtering method from an MgAl{sub 2}O{sub 4} spinel sintered target. Annealing the sputter-deposited MgAl{sub 2}O{sub 4} layer sandwiched between Fe electrodes led to the formation of a (001)-oriented cation-disorder spinel with atomically sharp interfaces and lattice-matching with the Fe electrodes. A large tunnel magnetoresistance ratio up to 245% at 297 K (436% at 3 K) was achieved in the Fe/MgAl{sub 2}O{sub 4}/Fe(001) MTJ as well as an excellent bias voltage dependence. These results indicate that the direct sputtering is an alternative methodmore » for the realization of high performance MTJs with a spinel-based tunnel barrier.« less

  2. Hydrophobization of track membrane surface by ion-plasma sputtering method

    NASA Astrophysics Data System (ADS)

    Kuklin, I. E.; Khlebnikov, N. A.; Barashev, N. R.; Serkov, K. V.; Polyakov, E. V.; Zdorovets, M. V.; Borgekov, D. B.; Zhidkov, I. S.; Cholakh, S. O.; Kozlovskiy, A. L.

    2017-09-01

    This article reviews the possibility of applying inorganic coatings of metal compounds on PTM by ion-plasma sputtering. The main aim of this research is to increase the contact angle of PTM surfaces and to impart the properties of a hydrophobic material to it. After the modification, the initial contact angle increased from 70° to 120°.

  3. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    1980-10-30

    A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  4. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy.

    PubMed

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-05

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp 3 /sp 2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp 3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp 3 /sp 2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp 3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  6. Sputter coating of microspherical substrates by levitation

    DOEpatents

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  7. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  8. Processing of sputter targets using current activated pressure assisted densification

    NASA Astrophysics Data System (ADS)

    Chaney, Neil Russell

    Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.

  9. Method and apparatus for coating thin foil with a boron coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Jeffrey L.

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shioumin; Kruijs, Robbert van de; Zoethout, Erwin

    Ion sputtering yields for Ru, Mo, and Si under Ar{sup +} ion bombardment in the near-threshold energy range have been studied using an in situ weight-loss method with a Kaufman ion source, Faraday cup, and quartz crystal microbalance. The results are compared to theoretical models. The accuracy of the in situ weight-loss method was verified by thickness-decrease measurements using grazing incidence x-ray reflectometry, and results from both methods are in good agreement. These results provide accurate data sets for theoretical modeling in the near-threshold sputter regime and are of relevance for (optical) surfaces exposed to plasmas, as, for instance, inmore » extreme ultraviolet photolithography.« less

  11. Growth dynamics controllable deposition of homoepitaxial MgO films on the IBAD-MgO substrates

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Lin-Fei; Yao, Yan-Jie; Lu, Sai-Dan; Wu, Xiang; Zheng, Tong; Liu, Shun-Fan; Li, Yi-Jie

    2018-03-01

    Homoepitaxial MgO (Homo-MgO) films, deposited by RF magnetic sputtering method in various experimental conditions, were systematically studied using growth dynamics in older to fully understand their growth mechanism. The results showed that high quality Homo-MgO films could be obtained at high oxygen partial pressure and the thickness of Homo-MgO films were seriously affected by the ratio of O2/Ar. Moreover, an interesting phenomenon we addressed was the growth mode changed with varying the sputtering power, leading to different surface morphology. Most importantly, apart from Homo-MgO films, our theory can also be appropriate for other oxide films grown by RF magnetic sputtering technology.

  12. Sputtered Pd as Hydrogen Storage for a Chip-Integrated Microenergy System

    PubMed Central

    Slavcheva, E.; Ganske, G.; Schnakenberg, U.

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance. PMID:24516356

  13. Modeling of hydrocarbon sputtering in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Gauthier, E.; Cambe, A.; Layet, J.-M.

    2002-11-01

    The use of carbon in fusion devices introduces problems of erosion and tritium retention which are related to chemical sputtering. The in-situ chemical sputtering yield of carbon has recently been measured in a well-diagnosed SOL plasma near the neutralizer plate in the Tore-Supra Outboard Pump Limiter. Methane and heavier hydrocarbon (C2DX and C3DY) emission has been measured in ohmic and lower hybrid heated discharges, using mass and optical molecular spectroscopy [1]. The Monte Carlo code BBQ has been used both to validate the method used to obtain the sputtering yields, and for direct comparison with available values reported for accelerator-based sputtering yields. A comparison with predicted surface temperature and particle flux dependence is also presented, for both CD4 and the heavier hydrocarbon yields. The particle flux dependence comparison is found to be complex, since changes in mean free path also accompany variation in particle flux. For the temperature dependence of methane erosion, the Roth annealing model is found to provide a better fit than the hydrogenation-moderated model. [1] A. Cambe, thesis, 2002; ORNL: Supported by U.S.DOE Contract DE-AC05-00OR22725

  14. Thin film characterization by laser interferometry combined with SIMS

    NASA Astrophysics Data System (ADS)

    Kempf, J.; Nonnenmacher, M.; Wagner, H. H.

    1988-10-01

    Thin film properties of technologically important materials (Si, GaAs, SiO2, WSix) have been measured by using a novel technique that combines secondary ion mass spectrometry (SIMS) and laser interferometry. The simultaneous measurement of optical phase and reflectance as well as SIMS species during ion sputtering yielded optical constants, sputtering rates and composition of thin films with high depth resolution. A model based on the principle of multiple reflection within a multilayer structure, which considered also transformation of the film composition in depth and time during sputtering, was fitted to the reflectance and phase data. This model was applied to reveal the transformation of silicon by sputtering with O{2/+} ions. Special attention was paid to the preequilibrium phase of the sputter process (amorphization, oxidation, and volume expansion). To demonstrate the analytical potential of our method the multilayer system WSix/poly-Si/SiO2/Si was investigated. The physical parameters and the stoichiometry of tungsten suicide were determined for annealed as well as deposited films. A highly sensitive technique that makes use of a Fabry-Perot etalon integrated with a Michelson type interferometer is proposed. This two-stage interferometer has the potential to profile a sample surface with subangstroem resolution.

  15. Sputtering. [as deposition technique in mechanical engineering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  16. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  17. Sputter coating of microspherical substrates by levitation

    DOEpatents

    Lowe, Arthur T.; Hosford, Charles D.

    1981-01-01

    Microspheres are substantially uniformly coated with metals or nonmetals by simultaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure 12 comprising a parallel array of upwardly projecting individual gas outlets 16 is machined out to form a dimple 11. Glass microballoons, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  18. Thickness and surface roughness study of co-sputtered nanostructured alumina/tungsten (Al2O3/W) thin films

    NASA Astrophysics Data System (ADS)

    Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.

    2018-04-01

    Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.

  19. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  20. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  1. CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.

    PubMed

    Cui, Jin; Meng, Fanping; Zhang, Hua; Cao, Kun; Yuan, Huailiang; Cheng, Yibing; Huang, Feng; Wang, Mingkui

    2014-12-24

    Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.

  2. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  3. Nanopatterning of optical surfaces during low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-06-01

    Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.

  4. Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass

    DOE PAGES

    Liontas, Rachel; Jafary-Zadeh, Mehdi; Zeng, Qiaoshi; ...

    2016-08-04

    We investigate the mechanical behavior and atomic-level structure of glassy Zr-Ni-Al nano-tensile specimens with widths between 75 and 215 nm. We focus our studies on two different energy states: (1) as-sputtered and (2) sputtered then annealed below the glass transition temperature (T g). In-situ tensile experiments conducted inside a scanning electron microscope (SEM) reveal substantial tensile ductility in some cases reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in specimens as wide as ~150 nm. We found the extent of ductility depends on both the specimen size and the annealingmore » conditions. Using molecular dynamics (MD) simulations, transmission electron microscopy (TEM), and synchrotron x-ray diffraction (XRD), we explain the observed mechanical behavior through changes in free volume as well as short- and medium-range atomic-level order that occur upon annealing. This work demonstrates the importance of carefully choosing the metallic glass fabrication method and post-processing conditions for achieving a certain atomic-level structure and free volume within the metallic glass, which then determine the overall mechanical response. Lastly, an important implication is that sputter deposition may be a particularly promising technique for producing thin coatings of metallic glasses with significant ductility, due to the high level of disorder and excess free volume resulting from the sputtering process and to the suitability of sputtering for producing thin coatings that may exhibit enhanced size-induced ductility.« less

  5. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  6. Effect of sputtering power on MgF2 thin films deposited by sputtering technique under fluorine trapping

    NASA Astrophysics Data System (ADS)

    De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.

    2016-05-01

    A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.

  7. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOEpatents

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  8. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann

    2017-11-01

    Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.

  9. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    NASA Astrophysics Data System (ADS)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

  10. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  11. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  12. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissig, B., E-mail: Benjamin.bissig@empa.ch; Jäger, T.; Tiwari, A. N.

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1}more » which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.« less

  13. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  14. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    NASA Astrophysics Data System (ADS)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  15. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  16. Sputtered silicon nitride coatings for wear protection

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1982-01-01

    Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.

  17. Technique for forming ITO films with a controlled refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2016-07-15

    A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method.more » Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.« less

  18. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  19. Analysis of surface sputtering on a quantum statistical basis

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.

  20. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  1. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  2. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  3. Substantial difference in target surface chemistry between reactive dc and high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2018-02-01

    The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.

  4. Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof

    NASA Technical Reports Server (NTRS)

    Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)

    2010-01-01

    A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.

  5. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  6. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  7. Hybrid-PIC simulation of sputtering product distribution in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Cao, Xifeng; Hang, Guanrong; Liu, Hui; Meng, Yingchao; Luo, Xiaoming; Yu, Daren

    2017-10-01

    Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse, long life, and high reliability. During the operating life of a Hall thruster, high-energy ions will bombard the discharge channel and cause serious erosion. As time passes, this sputtering process will change the macroscopic surface morphology of the discharge channel, especially near the exit, thus affecting the performance of the thruster. Therefore, it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall. To better understand the moving characteristics of sputtering products, based on the hybrid particle-in-cell (PIC) numerical method, this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles, such as B atoms and B+ ions. In this paper, the main conclusion is that B atoms are mainly produced on both sides of the channel exit, and B+ ions are mainly produced in the middle of the channel exit. The ionization rate of B atoms is approximately 1%.

  8. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  9. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  10. Sputtering of Lunar Regolith by Solar Wind Protons and Heavy Ions, and General Aspects of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.

    2014-01-01

    New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.

  11. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik) Indonesia To Reducing Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Kartono, R.; Basuki, Y. T.

    2014-03-01

    The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM) regulation in order to achieve "Cara Pembuatan Obat yang Baik" (CPOB) of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO) membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI) as final polisher for controlling conductivity, and finally Ultra Violet (UV) disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  12. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  13. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvakumar, N.; Barshilia, Harish C.; Rajam, K. S.

    2010-07-15

    We have studied the effect of substrate roughness on the wettability and the apparent surface free energy (SFE) of sputter deposited polytetrafluoroethylene (PTFE) coatings deposited on untreated glass (average roughness, R{sub a}=2.0 nm), plasma etched glass (R{sub a}=7.4 nm), and sandblasted glass (R{sub a}=4500 nm) substrates. The wettability of the PTFE coatings deposited on substrates with varying roughnesses was evaluated by measuring the apparent contact angle (CA) using a series of probe liquids from nonpolar aprotic to polar protic. The wettability measurements indicate that an apparent water CA of 152 deg. with a sliding angle of 8 deg. was achievedmore » for PTFE coatings deposited on a substrate with R{sub a}=4500 nm. The superhydrophobicity observed in these coatings is attributed to the presence of dual scale roughness, densely packed microstructure and the presence of CF{sub 3} groups. Unlike the bulk PTFE which is mainly dispersive, the sputter deposited PTFE coatings are expected to have some degree of polar component due to the plasma treatment. In order to calculate the dispersive SFE of PTFE coatings, we have used the Girifalco-Good-Fowkes (GGF) method and validated it with the Zisman model. Furthermore, the Owens-Wendt model has been used to calculate the dispersive and the polar components of the apparent SFE of the PTFE coatings. These results are further corroborated using the Fowkes method. Finally, an ''equation of state'' theory proposed by Neumann has been used to calculate the apparent SFE values of the PTFE coatings. The results indicate that the apparent SFE values of the PTFE coatings obtained from the Owens-Wendt and the Fowkes methods are comparable to those obtained from the Neumann's method. The analyses further demonstrate that the GGF and the Zisman methods underestimate the apparent SFE values of the sputter deposited PTFE coatings.« less

  14. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  15. Etude de L'interface Or/silicium Par Analyse de Surface et Microscopie Electronique

    NASA Astrophysics Data System (ADS)

    Lamontagne, Boris

    In order to start with the cleanest c-Si surface achievable, two cleaning procedures have been used and compared: aqueous chemical cleaning with HF, and sputter cleaning followed by high temperature annealing; the former is found to be the most efficient of the two. We have observed the formation of Si-C bonds induced by energetic particles associated to sputtering and sputter deposition. One of the main objectives of this work was to compare the Au/Si interfaces obtained by e-beam evaporation and by sputter deposition; Ag/Si, Cu/Si and Al/Si interfaces have also been examined. X-ray photoelectron diffraction has allowed us to judge the quality of the substrate crystallinity under the metallic overlayer, a method which readily showed the amorphisation of the c-Si substrate induced by sputter deposition. Moreover, XPD has indicated the Au overlayer to be amorphous, while the Ag and Cu appear to grow heteroepitaxially on c-Si(100). A new XPS parameter has been developed to characterize the metal/Si interface state, in particular, broadening of the interface induced by the sputter deposition. For the case of evaporated layers, it indicates that Au/Si and Cu/Si interfaces are diffuse, while Ag/Si and Al/Si interfaces are abrupt. Atomic force microscopy has revealed that sputter deposition reduces the tendency to form metal islands, characteristic of some overlayer/substrate systems such as Ag/Si. Our experiments have illustrated the role of two "new" parameters which lead to better knowledge and control of the sputter deposition process, namely the ion masses and the sample position relative to that of the target position. In the scientific literature, the value of the critical thickness, d_{rm c} , for reaction between Au and Si is still a controversial issue, probably on account of calibration problems. By using newly observed XPS discontinuities, corresponding to the completion of the first and second Au monolayers, we have been able to resolve this problem, and thereby precisely evaluate the critical thickness, d_ {rm c} = 2 ML. We obtained various new information about the Au/Si interface using complementary methods (XPD, XPS, TEM, AFM, etc.) information from which we developed a new model of the Au/Si interface; this so called "cluster model" correlates the observed overlayer structural transition with the beginning of the reaction between Au and Si. It suggests that reconstruction of the overlayer at 2 ML thickness activates the reaction between Si and Au (Si-Si bonds disruption, followed by Si outdiffusion). This model seems to be the only one capable of explaining the difference in reactivity between Au/Si and Ag/Si interfaces. (Abstract shortened by UMI.).

  16. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  17. Generation and Characterization of Nanoaerosols Using a Portable Scanning Mobility Particle Sizer and Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Marty, Adam J.

    The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.

  18. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  19. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  20. Noncontact measurement of substrate temperature by optical low-coherence interferometry in high-power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hattori, Katsuhiro; Ohta, Takayuki; Oda, Akinori; Kousaka, Hiroyuki

    2018-01-01

    Substrate temperature is one of the important parameters that affect the quality of deposited films. The monitoring of the substrate temperature is an important technique of controlling the deposition process precisely. In this study, the Si substrate temperature in high-power pulse magnetron sputtering (HPPMS) was measured by a noncontact method based on optical low-coherence interferometry (LCI). The measurement was simultaneously performed using an LCI system and a thermocouple (TC) as a contact measurement method. The difference in measured value between the LCI system and the TC was about 7.4 °C. The reproducibilities of measurement for the LCI system and TC were ±0.7 and ±2.0 °C, respectively. The heat influx from the plasma to the substrate was estimated using the temporal variation of substrate temperature and increased from 19.7 to 160.0 mW/cm2 with increasing target applied voltage. The major factor for the enhancement of the heat influx would be charged species such as ions and electrons owing to the high ionization degree of sputtered metal particles in HPPMS.

  1. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Buzinskij, O. I.; Gubsky, K. L.

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxidemore » films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.« less

  2. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    NASA Astrophysics Data System (ADS)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  3. Growth of high-Sn content (28%) GeSn alloy films by sputtering epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Liu, Zhi; Zhang, Yongwang; Zuo, Yuhua; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen; Wang, Qiming

    2018-06-01

    Crystalline GeSn thin films with Sn content up to 0.28 were deposited on Sn graded GeSn buffer on a Ge substrate at low temperatures by sputtering epitaxy. The structural properties of the high-Sn content GeSn alloy films were characterized by high resolution transmission electron microscopy and X-ray diffraction. The effect of annealing on the segregation of Sn in the high-Sn content GeSn film was investigated, and both the Ge0.72Sn0.28 and the Ge0.8Sn0.2 films were found to be stable after annealing at temperatures below 400 °C, which meets the needs of thermal budget for future photonic devices fabrication. The present results indicate that sputtering epitaxy is cost-effective method for growing high-Sn GeSn films.

  4. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  5. Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barghouty, N.; Meyer, Fred W; Harris, Peter R

    2011-01-01

    Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ionsmore » impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.« less

  6. Kinetic and Potential Sputtering of Lunar Regolith: Contribution of Solar-Wind Heavy Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Harris, P. R.; Meyer, H. M., III; Hijiazi, H.; Barghouty, A. F.

    2013-01-01

    Sputtering of lunar regolith by protons as well as solar-wind heavy ions is considered. From preliminary measurements of H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A AGGL lunar regolith simulant at solar wind velocities, and TRIM simulations of kinetic sputtering yields, the relative contributions of kinetic and potential sputtering contributions are estimated. An 80-fold enhancement of oxygen sputtering by Ar+ over same-velocity H+, and an additional x2 increase for Ar+9 over same-velocity Ar+ was measured. This enhancement persisted to the maximum fluences investigated is approximately 1016/cm (exp2). Modeling studies including the enhanced oxygen ejection by potential sputtering due to the minority heavy ion multicharged ion solar wind component, and the kinetic sputtering contribution of all solar wind constituents, as determined from TRIM sputtering simulations, indicate an overall 35% reduction of near-surface oxygen abundance. XPS analyses of simulant samples exposed to singly and multicharged Ar ions show the characteristic signature of reduced (metallic) Fe, consistent with the preferential ejection of oxygen atoms that can occur in potential sputtering of some metal oxides.

  7. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  8. The effect of plasma impurities on the sputtering of tungsten carbide

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Björkas, C.; Nordlund, K.

    2011-03-01

    Understanding of sputtering by ion bombardment is needed in a wide range of applications. In fusion reactors, ion impacts originating from a hydrogen-isotope-rich plasma will lead, among other effects, to sputtering of the wall material. To study the effect of plasma impurities on the sputtering of the wall mixed material tungsten carbide molecular dynamics simulations were carried out. Simulations of cumulative D cobombardment with C, W, He, Ne or Ar impurities on crystalline tungsten carbide were performed in the energy range 100-300 eV. The sputtering yields obtained at low fluences were compared to steady state SDTrimSP yields. During bombardment single C atom sputtering was preferentially observed. We also detected significant WxCy molecule sputtering. We found that this molecule sputtering mechanism is of physical origin.

  9. Lithium diffusion in sputter-deposited Li4Ti5O12 thin films

    NASA Astrophysics Data System (ADS)

    Wunde, F.; Berkemeier, F.; Schmitz, G.

    2012-10-01

    Li4Ti5O12 (LTO) thin films are deposited by dc-ion beam sputtering at different oxygen partial pressures and different substrate temperatures. In order to investigate, how these two parameters influence the atomic structure, the specimens are characterized by X-ray diffraction and transmission electron microscopy. Electrochemical characterization of the films is done by cyclic voltammetry and chrono-potentiometry. To determine an averaged chemical diffusion coefficient of lithium, a method is developed, evaluating c-rate tests. The results obtained by this method are compared to results obtained by the well established galvanostatic intermittent titration technique (GITT), which is used to determine a concentration dependent diffusion coefficient of lithium in LTO.

  10. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  11. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, André

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less

  12. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less

  13. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  14. Molecular Depth Profiling of Sucrose Films: A Comparative Study of C₆₀n⁺ Ions and Traditional Cs⁺ and O₂⁺ Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zihua; Nachimuthu, Ponnusamy; Lea, Alan S.

    2009-10-15

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling of sucrose thin films were investigated using 10 keV C60+, 20 keV C602+, 30 keV C603+, 250 eV, 500 eV and 1000 eV Cs+ and O2+ as sputtering ions. With C60n+ ions, the molecular ion signal initially decreases, and reaches a steady-state that is about 38-51% of its original intensity, depending on the energy of the C60n+ ions. On the contrary, with Cs+ and O2+ sputtering, molecular ion signals decrease quickly to the noise level, even using low energy (250 eV) sputtering ions. In addition, the sucrose/Si interface by C60+ sputtering ismore » much narrower than that of Cs+ and O2+ sputtering. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C60+ sputter crater, while considerable amorphous carbon was found in the O2+ and Cs+ sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C60+ sputter crater, while the Cs+ and O2+ sputter crater bottoms are significantly rougher than that of the C60+ sputter crater. Based on above data, we developed a simple model to explain different damage mechanisms during sputtering process.« less

  15. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputtermore » rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.« less

  17. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  18. Structural and electrical properties of sputtering power and gas pressure on Ti-dope In2O3 transparent conductive films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chaoumead, Accarat; Joo, Bong-Hyun; Kwak, Dong-Joo; Sung, Youl-Moon

    2013-06-01

    Transparent conductive titanium-doped indium oxide (ITiO) films were deposited on Corning glass substrates by RF magnetron sputtering method. The effects of RF sputtering power and Ar gas pressure on the structural and electrical properties of the films were investigated experimentally, using a 2.5 wt% TiO2-doped In2O3 target. The deposition rate was in the range of around 20-60 nm/min under the experimental conditions of 5-20 mTorr of gas pressure and 220-350 W of RF power. The lowest resistivity of 1.2 × 10-4 Ω cm, the average optical transmittance of 75%, the high hall mobility of 47.03 cm2/V s and the relatively low carrier concentration of 1.15E+21 cm-3 were obtained for the ITiO film, prepared at RF power of 300 W and Ar gas pressure of 15 mTorr. This resistivity of 1.2 × 10-4 Ω cm is low enough as a transparent conducting layer in various electro-optical devices and it is comparable with that of ITO or ZnO:Al conducting layer.

  19. Growth of KOH etched AZO nanorods and investigation of its back scattering effect in thin film a-Si solar cell

    NASA Astrophysics Data System (ADS)

    Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.

    2018-02-01

    In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.

  20. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  1. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  2. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    PubMed

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.

  3. System analysis of plasma centrifuges and sputtering

    NASA Technical Reports Server (NTRS)

    Hong, S. H.

    1978-01-01

    System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.

  4. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  5. Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.

    2017-09-01

    Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.

  6. Formation of the YBa2Cu2NbOy Phase in Thin Films (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    protective layer was deposited on the top of YBCNO film by dc sputtering . A 200 nm 200 nm area film was selected and cut with a Ga ion beam (30 kV...200 TEM at 200 kV. Samples for TEM were prepared using a focused ion beam (FIB (Eindhoven, The Netherlands)) microscope. For TEM examination, a thin Pt...by dc magnetron sputtering deposition of Ag with 93 mm thickness. Transport current measurements were made in liquid nitrogen with the 4-probe method

  7. Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazak, A. V., E-mail: alexkazak86@gmail.com; Usol’tseva, N. V.; Smirnova, A. I.

    2016-05-15

    Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir−Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir−Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir−Schaefermore » films–sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C{sub 60} fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar C{sub 60}‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.« less

  8. Adhesion strength of sputtered TiAlN-coated WC insert tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150more » kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.« less

  9. Enthalpy of Formation for Cu–Zn–Sn–S (CZTS) Calculated from Surface Binding Energies Experimentally Measured by Ion Sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Thimsen, Elijah

    2015-04-14

    Herein, we report an analytical procedure to calculate the enthalpy of formation for thin film multinary compounds from sputtering rates measured during ion bombardment. The method is based on Sigmunds sputtering theory and the BornHaber cycle. Using this procedure, an enthalpy of formation for a CZTS film of the composition Cu1.9Zn1.5Sn0.8S4 was measured as -930 +/- 98 kJ mol1. This value is much more negative than the sum of the enthalpies of formation for the constituent binary compounds, meaning the multinary formation reaction is predicted to be exothermic. The measured enthalpy of formation was used to estimate the temperature dependencemore » of the Gibbs free energy of reaction, which appears consistent with many experimental reports in the CZTS processing literature.« less

  10. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  11. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    PubMed

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  12. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.

  13. Sputtering phenomena of discharge chamber components in a 30-cm diameter Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Rawlin, V. K.

    1976-01-01

    Sputtering and deposition rates were measured for discharge chamber components of a 30-cm diameter mercury ion thruster. It was found that sputtering rates of the screen grid and cathode baffle were strongly affected by geometry of the baffle holder. Sputtering rates of the baffle and screen grid were reduced to 80 and 125 A/hr, respectively, by combination of appropriate geometry and materials selections. Sputtering rates such as these are commensurate with thruster lifetimes of 15,000 hours or more. A semiempirical sputtering model showed good agreement with the measured values.

  14. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  15. Low-damage high-throughput grazing-angle sputter deposition on graphene

    NASA Astrophysics Data System (ADS)

    Chen, C.-T.; Casu, E. A.; Gajek, M.; Raoux, S.

    2013-07-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  16. Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films

    NASA Astrophysics Data System (ADS)

    Gudkov, S. I.; Baklanova, K. D.; Kamenshchikov, M. V.; Solnyshkin, A. V.; Belov, A. N.

    2018-04-01

    The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si-LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole-Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.

  17. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  18. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  19. The Use of OXYGEN-18 in the Development of Methods for Controlled Sputter Deposition of High Critical Transition Temperature Material Thin Films of Predicted Composition and Good Uniformity

    NASA Astrophysics Data System (ADS)

    Tidrow, Steven Clay

    Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films for systematic investigations into the nature of these materials.

  20. A new setup for experimental investigations of solar wind sputtering

    NASA Astrophysics Data System (ADS)

    Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich

    2017-04-01

    The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039

  1. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  2. Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering

    NASA Astrophysics Data System (ADS)

    Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.

    2018-05-01

    Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.

  3. Sputtering of uranium

    NASA Technical Reports Server (NTRS)

    Gregg, R.; Tombrello, T. A.

    1978-01-01

    Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.

  4. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleddermann, C.B.

    The sputter deposition of high-temperature superconducting thin films was studied using optical emission spectroscopy. Argon or oxygen ions generated by a Kaufman ion gun were used to sputter material from a composite target containing yttrium, barium, and copper which had been oxygen annealed. The impact of ions onto the target generates a plume of sputtered material which includes various excited-state atoms and molecules. In these studies, optical emission is detected for all the metallic components of the film as well as for metallic oxides ejected from the target. No emission due to atomic or molecular oxygen was detected, however. Variationsmore » in sputter conditions such as changes in sputter ion energy, oxygen content of the beam, and target temperature are shown to greatly affect the emission intensity, which may correlate to the characteristics of the sputtering and the quality of the films deposited. The results suggest that optical emission from the sputtered material may be useful for real-time monitoring and control of the sputter deposition process.« less

  6. Electric tunable behavior of sputtered lead barium zirconate thin films

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Jung; Wu, Jenn-Ming; Huang, Hsin-Erh; Bor, Hui-Yun

    2007-02-01

    Lead barium zirconate (PBZ) films were grown on Pt /Ti/SiO2/Si substrates by rf-magnetron sputtering. The sputtered PBZ films possess pure perovskite phase, uniform microstructure, and excellent tunable behaviors. The tunability and loss tangent of sputtered PBZ films depend greatly on the oxygen mixing ratio (OMR). The optimal dielectric tunable behavior occurs in the PBZ films sputtered at 10% OMR. The sputtered PBZ film (10% OMR) possesses a value of figure of merit of 60, promising for frequency-agile applications. Bulk acoustic waves induced by electromechanical coupling occur at 2.72GHz, which is useful in fabricating filters and related devices in the microwave range.

  7. Influence of in-situ ion-beam sputter cleaning on the conditioning effect of vacuum gaps

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinichi; Kojima, Hiroyuki; Saito, Yoshio

    1994-05-01

    An ion beam sputtering technique was used to clean the electrode surfaces of vacuum gaps. Ions of the sputtering gas were irradiated by means of an ion gun in a vacuum chamber attached to a breakdown measurement chamber. By providing in situ ion-beam sputter cleaning, this system makes it possible to make measurements free from contamination due to exposure to the air. The sputtering gas was He or Ar, and the electrodes were made of oxygen-free copper (purity more than 99.96%). An impulse voltage with the wave form of 64/700 microsecond(s) was applied to the test gap, and the pressure in the breakdown measurement chamber at the beginning of breakdown tests was 1.3 X 10-8 Pa. These experiments showed that ion-beam sputter cleaning results in higher breakdown fields after a repetitive breakdown conditioning procedure, and that He is more effective in improving hold- off voltages after the conditioning (under the same ion current density, the breakdown field was 300 MV/m for He sputtering and 200 MV/m for Ar sputtering). The breakdown fields at the first voltage application after the sputtering cleaning, on the other hand, were not improved.

  8. Molybdenum and carbon atom and carbon cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, Eider

    Exit-angle resolved Mo atom sputtering yield under Xe ion bombardment and carbon atom and cluster (C2 and C3) sputtering yields under Xe, Kr, Ar, Ne and He ion bombardment from a plasma are measured for low incident energies (75--225 eV). An energy-resolved quadrupole mass spectrometer (QMS) is used to detect the fraction of un-scattered sputtered neutrals that become ionized in the plasma; the angular distribution is obtained by changing the angle between the target and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles between the sample and the QMS. The elastic scattering cross-sections of C, C2 and C3 with the different bombarding gas neutrals is obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. Because the results obtained with the QMS are relative, the Mo atom sputtering results are normalized to the existing data in the literature and the total sputtering yield for carbon (C+C 2+C3) for each bombarding gas is obtained from weight loss measurements. The absolute sputtering yield for C, C2 and C 3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. The angular sputtering distribution for Mo has a maximum at theta=60°, and this maximum becomes less pronounced as the incident ion energy increases. The results of the Monte Carlo TRIDYN code simulation for the angular distribution of Mo atoms sputtered by Xe bombardment are in agreement with the experiments. For carbon sputtering under-cosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases are also observed. The C, C2 and C3 sputtering yield data shows a clear decrease of the atom to cluster (C/C2 and C/C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).

  9. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  10. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  11. Advanced capabilities and applications of a sputter-RBS system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brijs, B.; Deleu, J.; Beyer, G.

    1999-06-10

    In previous experiments, sputter-RBS{sup 1} has proven to be an ideal tool to study the interaction of low energy ions. This contribution employs the same methodology to identify surface contamination induced during sputtering and to the determine absolute sputter yields. In the first experiment ERDA analysis was used to study the evolution of Hydrogen contamination during sputter-RBS experiments. Since the determination of Hydrogen concentration in very thin near surface layers is frequently limited by the presence of a strong surface peak of Hydrogen originating from adsorbed contamination of the residual vacuum, removal of this contamination would increase the sensitivity formore » Hydrogen detection in the near sub surface drastically. Therefore low energy (12 keV) Argon sputtering was used to remove the Hydrogen surface peak. However enhanced Hydrogen adsorption was observed related to the Ar dose. This experiment shows that severe vacuum conditions and the use of high current densities/sputter yields are a prerequisite for an efficient detection of Hydrogen in the near surface layers. In the second experiment, an attempt was made to determine the sputter yield of Cu during low energy (12 keV) Oxygen bombardment. In order to determine the accumulated dose of the low energy ion beam, a separate Faraday cup in combination with a remote controlled current have been added to the existing sputter-RBS set-up. Alternating sputtering and RBS analysis seem to be an adequate tool for the determination of the absolute sputter yield of Cu and this as well in the as under steady state conditions.« less

  12. Sputter Deposition of Yttrium-Barium Superconductor and Strontium Titanium Oxide Barrier Layer Thin Films

    NASA Astrophysics Data System (ADS)

    Truman, James Kelly

    1992-01-01

    The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.

  13. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum under increasing loads revealed high critical load values for failure (>15 N) for the bcc coatings versus the low load values (<9 N) for the beta coatings. The coating deposited on TaN interlayers on sputter-etched steel had better adhesion than those on steel surface without sputter etching. The results for this work have demonstrated that by controlling the various process parameters of do magnetron sputtering, high quality bcc Ta coatings of multi-micron thickness with excellent adhesion to steel can be made. An important contribution of this dissertation is in the enhancing an understanding of this process. The impact of this research will be in a number of fields where superior protective castings are needed. These include military applications, electronic components, chemical processing, and others.

  14. Activation product transport in fusion reactors. [RAPTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the depositionmore » and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.« less

  15. Gold sputtered Blu-Ray disks as novel and cost effective sensors for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.

    2015-03-01

    Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.

  16. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  17. 10.3%-efficient submicron-thick Cu(In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan

    2018-06-01

    We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.

  18. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.

  19. Note on the artefacts in SRIM simulation of sputtering

    NASA Astrophysics Data System (ADS)

    Shulga, V. I.

    2018-05-01

    The computer simulation program SRIM, unlike other well-known programs (MARLOWE, TRIM.SP, etc.), predicts non-zero values of the sputter yield at glancing ion bombardment of smooth amorphous targets and, for heavy ions, greatly underestimates the sputter yield at normal incidence. To understand the reasons for this, the sputtering of amorphous silicon bombarded with different ions was modeled here using the author's program OKSANA. Most simulations refer to 1 keV Xe ions, and angles of incidence cover range from 0 (normal incidence) to almost 90°. It has been shown that SRIM improperly simulates the initial stage of the sputtering process. Some other artefacts in SRIM calculations of sputtering are also revealed and discussed.

  20. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  1. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE PAGES

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann; ...

    2018-05-11

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  2. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  3. Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann

    Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationshipmore » between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Furthermore, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less

  4. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Donguk; Park, Young; Kim, Minha

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity,more » surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.« less

  5. Effects of High-Temperature Treatment on the Reaction Between Sn-3%Ag-0.5%Cu Solder and Sputtered Ni-V Film on Ferrite Substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohu; Jin, Hao; Dong, Shurong; Wong, Hei; Zhou, Jian; Guo, Zhaodi; Wang, Demiao

    2012-11-01

    We have demonstrated a novel sputtering method for lead-free thin metal films on ferrite substrates for surface-mount inductor applications. In a surface-mounting process, the cladding of enameled wire needs to be burnt off at high temperature, which requires the devices to withstand a high-temperature reliability test at 420°C for 10 s. There are no reports that a sputtered film of thickness less than 6 μm can withstand this test. In this work, we used Ag/Ni-7 wt.%V double metal layers for the metallization. The dissolution of Ni-7 wt.%V in Sn-3%Ag-0.5%Cu lead-free solder at various temperatures was studied in detail. Scanning electron microscopy with energy-dispersive x-ray spectroscopy was used to investigate the interfacial reaction between the sputtered films and the solder. The intermetallic compounds are mainly (Cu,Ni)6Sn5 at 250°C; however, (Ni,Cu)3Sn4 becomes the predominant composition at 420°C. In addition, although outdiffusion of V atoms from the Ni-V layer was observed, its effect on the intermetallic compound (IMC) was insignificant. We further confirmed that the proposed metallization is able to pass the aforementioned high-temperature reliability test.

  6. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

    PubMed Central

    Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih

    2018-01-01

    ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671

  7. Study of thickness dependent sputtering in gold thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Sahoo, P. K.; Solanki, V.; Singh, U. B.; Avasthi, D. K.; Mishra, N. C.

    2015-12-01

    Gold thin films of varying thickness (10-100 nm) grown on silica substrates by e-beam evaporation method were irradiated by 120 MeV Au ions at 3 × 1012 and 1 × 1013 ions cm-2 fluences. Irradiation induced modifications of these films were probed by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) and surface enhanced Raman scattering (SERS). Irradiation didn't affect the structure, the lattice parameter or the crystallite size, but modified the texturing of grains from [1 1 1] to [2 2 0]. RBS indicated thickness dependent sputtering on irradiation. The sputtering yield was found to decrease with increasing thickness. AFM indicated increase of roughness with increasing irradiation fluence for films of all thickness. In agreement with the AFM observation, the gold nanostructures on the surface of 20 nm thick film were found to increase the SERS signal of acridine orange dye attached to these structures. The SERS peaks were amplified by many fold with increasing ion fluence. The effect of 120 MeV Au ion irradiation on the grain texture, surface morphology and SERS activity in addition to the thickness dependent sputtering in gold thin films are explained by the thermal spike model of ion-matter interaction.

  8. Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer

    NASA Astrophysics Data System (ADS)

    Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi

    2018-06-01

    We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.

  9. Analysis of possible designs of processing units with radial plasma flows

    NASA Astrophysics Data System (ADS)

    Kolesnik, V. V.; Zaitsev, S. V.; Vashilin, V. S.; Limarenko, M. V.; Prochorenkov, D. S.

    2018-03-01

    Analysis of plasma-ion methods of obtaining thin-film coatings shows that their development goes along the path of the increasing use of sputter deposition processes, which allow one to obtain multicomponent coatings with varying percentage of particular components. One of the methods that allow one to form multicomponent coatings with virtually any composition of elementary components is the method of coating deposition using quasi-magnetron sputtering systems [1]. This requires the creation of an axial magnetic field of a defined configuration with the flux density within the range of 0.01-0.1 T [2]. In order to compare and analyze various configurations of processing unit magnetic systems, it is necessary to obtain the following dependencies: the dependency of magnetic core section on the input power to inductors, the distribution of magnetic induction within the equatorial plane in the corresponding sections, the distribution of the magnetic induction value in the area of cathode target location.

  10. Collision-spike sputtering of Au nanoparticles

    DOE PAGES

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less

  11. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Fred W; Harris, Peter R; Taylor, C. N.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have highermore » physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.« less

  12. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less

  13. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  14. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  15. Molecular dynamics investigation of hexagonal boron nitride sputtering and sputtered particle characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brandon D., E-mail: bradenis@umich.edu; Boyd, Iain D.

    The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen atmore » as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.« less

  16. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  17. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  18. A Closer Look at Solar Wind Sputtering of Lunar Surface Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Mansur, L.; Reinhold, C.

    2008-01-01

    Solar-wind induced potential sputtering of the lunar surface may be a more efficient erosive mechanism than the "standard" kinetic (or physical) sputtering. This is partly based on new but limited laboratory measurements which show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. The enhancements seen in the laboratory can be orders of magnitude for some surfaces and highly charged incident ions, but seem to depend very sensitively on the properties of the impacted surface in addition to the fluence, energy and charge of the impacting ion. For oxides, potential sputtering yields are markedly enhanced and sputtered species, especially hydrogen and light ions, show marked dependence on both charge and dose.

  19. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  20. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  1. Trends and problems in CdS/Cu/x/S thin film solar cells - A review

    NASA Astrophysics Data System (ADS)

    Martinuzzi, S.

    1982-03-01

    The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.

  2. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials

    PubMed Central

    Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810

  3. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.

    PubMed

    Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  4. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  5. Properties of Nanocomposite Nickel-Carbon Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Grenadyorov, A. S.; Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.; Zakharov, A. N.; Semenov, V. A.; Oskirko, V. O.; Yelgin, Yu. I.; Korneva, O. S.

    2017-12-01

    The method of magnetron sputtering was used to produce a-C and a-C:Ni films on substrates of monocrystalline silicon and thermoelectric material of n-type ((Bi2Te3)0.94(Bi2Se3)0.06) and p-type ((Bi2Te3)0.20(Sb2Te3)0.80) conductivity. The authors studied the effect of Ni concentration on specific electric resistance, hardness and adhesion of the produced films. It was demonstrated that specific resistance of a-C films deposited by graphite target sputtering when supplying high bias voltage onto the substrate can be reduced by increasing the share of graphitized carbon. Adding Ni to such films allows additionally reducing their specific resistance. The increase in Ni content is accompanied with the decrease in hardness and adhesion of a-C:Ni films. The acquired values of specific electric resistance and adhesion of a-C:Ni films to thermoelectric materials allow using them as barrier anti-diffusion coatings of thermoelectric modules.

  6. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  7. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Cui; Li, Guo-Qing; Gou, Wei; Mu, Zong-Xin; Zhang, Cheng-Wu

    2004-11-01

    Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5 μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  8. Influence of various surface pretreatments on adherence of sputtered molybdenum disulfide to silver, gold, copper, and bronze

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1973-01-01

    Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.

  9. Low-Damage Sputter Deposition on Graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Casu, Emanuele; Gajek, Marcin; Raoux, Simone

    2013-03-01

    Despite its versatility and prevalence in the microelectronics industry, sputter deposition has seen very limited applications for graphene-based electronics. We have systematically investigated the sputtering induced graphene defects and identified the reflected high-energy neutrals of the sputtering gas as the primary cause of damage. In this talk, we introduce a novel sputtering technique that is shown to dramatically reduce bombardment of the fast neutrals and improve the structural integrity of the underlying graphene layer. We also demonstrate that sputter deposition and in-situ oxidation of 1 nm Al film at elevated temperatures yields homogeneous, fully covered oxide films with r.m.s. roughness much less than 1 monolayer, which shows the potential of using such technique for gate oxides, tunnel barriers, and multilayer fabrication in a wide range of graphene devices.

  10. Sputtering of rough surfaces: a 3D simulation study

    NASA Astrophysics Data System (ADS)

    von Toussaint, U.; Mutzke, A.; Manhard, A.

    2017-12-01

    The lifetime of plasma-facing components is critical for future magnetic confinement fusion power plants. A key process limiting the lifetime of the first-wall is sputtering by energetic ions. To provide a consistent modeling of the sputtering process of realistic geometries, the SDTrimSP-code has been extended to enable the processing of analytic as well as measured arbitrary 3D surface morphologies. The code has been applied to study the effect of varying the impact angle of ions on rough surfaces on the sputter yield as well as the influence of the aspect ratio of surface structures on the 2D distribution of the local sputtering yields. Depending on the surface morphologies reductions of the effective sputter yields to less than 25% have been observed in the simulation results.

  11. Dedicated Co-deposition System for Metallic Paramagnetic Films

    DOE PAGES

    Jaeckel, F.; Kotsubo, V.; Hall, J. A.; ...

    2012-01-27

    Here, we describe a dedicated co-sputtering/ion-mill system developed to study metallic paramagnetic films for use in magnetic microcalorimetry. Small-diameter sputtering guns allow study of several precious-metal-based paramagnetic alloy systems within a reasonable budget. We demonstrated safe operation of a 1" sputtering gun at >5x the rated maximum power, achieving deposition rates up to ~900 Å/min/gun (Cu) in our co-sputtering geometry. Demonstrated co-sputtering deposition ratios up to 100:1 allow accurate tuning of magnetic dopant concentration and eliminate the difficulty of preparing homogeneous alloy targets of extreme dilution.

  12. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less

  13. Defects, stoichiometry, and electronic transport in SrTiO{sub 3-δ} epilayers: A high pressure oxygen sputter deposition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambwani, P.; Xu, P.; Jeong, J. S.

    SrTiO{sub 3} is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO{sub 3}, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry,more » defects, and structure in SrTiO{sub 3} synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO{sub 3}, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO{sub 3} films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO{sub 3} crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.« less

  14. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  15. Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da

    2018-04-01

    Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.

  16. Masking technique for coating thickness control on large and strongly curved aspherical optics.

    PubMed

    Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L

    2009-07-01

    We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.

  17. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    NASA Astrophysics Data System (ADS)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  18. A two-step process for growth of highly oriented Sb{sub 2}Te{sub 3} using sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuta, E-mail: yuta-saito@aist.go.jp; Fons, Paul; Bolotov, Leonid

    2016-04-15

    A two-step growth method is proposed for the fabrication of highly-oriented Sb{sub 2}Te{sub 3} and related superlattice films using sputtering. We report that the quality and grain size of Sb{sub 2}Te{sub 3} as well as GeTe/Sb{sub 2}Te{sub 3} superlattice films strongly depend on the thickness of the room-temperature deposited and subsequently by annealing at 523 K Sb{sub 2}Te{sub 3} seed layer. This result may open up new possibilities for the fabrication of two-dimensional electronic devices using layered chalcogenides.

  19. RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.

    2016-04-01

    The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.

  20. Self-catalyzed carbon plasma-assisted growth of tin-doped indium oxide nanostructures by the sputtering method

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan

    2016-10-01

    In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.

  1. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  2. Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.

    2016-07-01

    A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.

  3. Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect

    NASA Astrophysics Data System (ADS)

    He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.

    1998-02-01

    Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.

  4. Mixed composition materials suitable for vacuum web sputter coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Dever, Joyce A.; Bruckner, Eric J.; Walters, Patricia; Hambourger, Paul D.

    1996-01-01

    Ion beam sputter deposition techniques were used to investigate simultaneous sputter etching of two component targets so as to produce mixed composition films. Although sputter deposition has been largely confined to metals and metal oxides, at least one polymeric material, poly-tetra-fluorethylene, has been demonstrated to produce sputtered fragments which repolymerize upon deposition to produce a highly cross-linked fluoropolymer resembling that of the parent target Fluoropolymer-filled silicon dioxide and fluoropolymer-filled aluminum oxide coatings have been deposited by means of ion beam sputter coat deposition resulting in films having material properties suitable for aerospace and commercial applications. The addition of fluoropolymer to silicon dioxide films was found to increase the hydrophobicity of the resulting mixed films; however, adding fluoropolymer to aluminum oxide films resulted in a reduction in hydrophobicity, thought to be caused by aluminum fluoride formation.

  5. Sputtered deposited nanocrystalline ZnO films: A correlation between electrical, optical and microstructural properties

    NASA Astrophysics Data System (ADS)

    Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.

    2005-05-01

    Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.

  6. Solar Wind Sputtering of Lunar Surface Materials: Role and Some Possible Implications of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.

    2010-01-01

    Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.

  7. Characterization of graded TiC layers deposited by HiPIMS method

    NASA Astrophysics Data System (ADS)

    Bohovicova, Jana; Bonova, Lucia; Halanda, Juraj; Ivan, Jozef; Mesko, Marcel; Advanced Technologies Research Institute Team; Institute of Electronic; Photonic Team

    2016-09-01

    An advanced yet recent development of sputter technique is high power impulse magnetron sputtering (HiPIMS), in which short, energetic pulses are applied to the target, leading to a formation of an ultra-dense plasma in front of the cathode, that provide a high degree of ionization of sputtered material, and consequently enable to control the energy and the direction of the deposition flux. This gives a possibility to alter composition and microstructure in a controlled manner, enables the optimization of TiC for tribological applications. The aim of this work is to link physical phenomena in transient HiPIMS discharges to microstructural and compositional properties of graded TiC thin films. It was found that Ti bottom layer is contamination free. Compared to the direct current magnetron sputtering films, we observed an element specific reduction of impurities measured by ERDA by a factor 3 for N, 4 for H and by a factor of 20 for O. The high purity of Ti layer is partly explained by gas rarefaction and the cleaning effect of the bombarding ions. Graphitization degree of carbon top layer was elucidated by Raman spectroscopy. The compositional effects are correlated with differences in the film microstructure revealed by SEM, XRD and TEM analysis. This work was supported by VEGA, Project No. 1/0503/15 and APVV, Project No. 15-0168.

  8. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossoy, Anna, E-mail: annaeden@hi.is, E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute itmore » to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.« less

  9. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  10. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  11. Sputtering of ices in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.E.

    1996-01-01

    Exploration of the outer solar system has led to studies in a new area of physics: electronically induced sputtering of low-temperature, condensed-gas solids (ices). Many of the icy bodies in the outer solar system were found to be bombarded by relatively intense fluxes of ions and electrons, causing both changes in their optical reflectance and ejection (sputtering) of molecules from their surfaces. The small cohesive energies of the condensed-gas solids afford relatively large sputtering rates from the electronic excitations produced in the solid by fast ions and electrons. Such sputtering produces an ambient gas about an icy body, often themore » source of the local plasma. This colloquium outlines the physics of the sputtering of ices and its relevance to several outer-solar-system phenomena: the sputter-produced plasma trapped in Saturn{close_quote}s magnetosphere; the O{sub 2} atmosphere on Europa; and optical absorption features such as SO{sub 2} in the surface of Europa and O{sub 2} and, possibly, O{sub 3} in the surface of Ganymede. {copyright} {ital 1996 The American Physical Society.}« less

  12. Lubrication with sputtered MoS2 films: Principles, operation, limitations

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1991-01-01

    The present practices, limitations, and understanding of thin sputtered MoS2 films are reviewed. Sputtered MoS2 films can exhibit remarkable tribological properties such as ultralow friction coefficients (0.01) and enhanced wear lives (millions of cycles) when used in vacuum or dry air. To achieve these favorable tribological characteristics, the sputtering conditions during deposition must be optimized for adequate film adherence and appropriate structure (morphology) and composition.

  13. Low Cost High Performance Phased Array Antennas with Beam Steering Capabilities

    DTIC Science & Technology

    2009-12-01

    characteristics of BSTO, the RF vacuum sputtering technique has been used and we investigated effects of sputtering parameters such as substrate...sputtering parameters , various sets of BSTO films have been deposited on different substrates and various size of CPW phase shifters have been fabricated...measurement of phase shifter 18 4. Optimization of the sputtering parameters for BSTO deposition 19 4.1 The first BSTO film sample 20 4.2 The second BSTO

  14. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  15. Transmission sputtering under diatomic molecule bombardment. Model calculations

    NASA Astrophysics Data System (ADS)

    Bitensky, I. S.

    1996-04-01

    Transmission sputtering means that emission of secondary particles is studied from the downstream side of a bombarded foil. Nonlinear effects in sputtering manifest themselves as a deviation of sputtering yield under molecular ion bombardment from the sum of the yields induced by the constituents at the same velocity. In the reflection geometry the overlap of the spike regions reaches maximum, while in transmission the degree of overlap depends on the projectile and on the foil thickness. It has been shown that the transmission sputtering yield can be described by a function of a scaling parameter determined by beam-foil characteristics and a mechanism of nonlinear sputtering. Calculations of the transmission yield have been made in the thermal spike and shock wave models. The results of calculations are compared with experimental data on phenylalanine molecular ion desorption from organic targets induced by Au + and Au 2+ impact. Suggestions for further experimental study are made.

  16. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  17. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  18. Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Power, J. L.; Hiznay, D. J.

    1975-01-01

    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.

  19. Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhanwar, Prachi, E-mail: prachijhanwar87@gmail.com; Department of Electronics, Banasthali University-304022, Rajasthan; Kumar, Arvind

    2016-04-13

    Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO{sub 2} surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm{sup 2}/V.s) asmore » compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).« less

  20. Research on optical reflectance and infrared emissivity of TiNx films depending on sputtering pressure

    NASA Astrophysics Data System (ADS)

    Lu, Linlin; Luo, Fa; Huang, Zhibin; Zhou, Wancheng; Zhu, Dongmei

    2018-06-01

    TiNx thin films were deposited on glass substrates using direct current reactive magnetron sputtering, and effects of sputtering pressure on optical reflectance and infrared emissivity of TiNx films were studied. The results indicated that sputtering pressure was a key factor to affect the optical reflectance and infrared emissivity of TiNx films in this study. When sputtering pressure varied from 0.3 Pa to 1.2 Pa, an average reflectance of less than 25% in the visible range was obtained for the prepared films. With the working pressure rise, the resistivity of TiNx films went up. Meanwhile, the infrared emissivity of the films increased. As sputtering pressure was 0.3 Pa, the infrared emissivity in the wavelength of 3-5 and 8-14 μm of TiNx film with dark color and low optical reflectance was less than 0.2.

  1. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    PubMed

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R

    2016-02-02

    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested, and the between-fiber reproducibility (n = 3) was 0-15%, generally 5-10%, for all analytes tested. The repeatabilities of our sputtered fibers and the commercial 7 μm PDMS fiber are essentially the same. Fibers could be used for at least 300 extractions without loss of performance. More than 50 compounds were identified in a gas chromatography-mass spectrometry headspace analysis of a real world botanical sample with the 2.0 μm fiber.

  2. Pulsed-DC selfsputtering of copper

    NASA Astrophysics Data System (ADS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  3. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.

    1978-01-01

    A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.

  4. A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites.

    PubMed

    Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G

    2013-01-01

    The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.

  5. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  6. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  7. Structural and electrical characterization of epitaxial Ge thin films on Si(001) formed by sputtering

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Mori, Takahiro; Morita, Yukinori; Uchida, Noriyuki; Liu, Yongxun; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku; Matsukawa, Takashi

    2017-04-01

    We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance-voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.

  8. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  9. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  10. Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications.

    PubMed

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Li, Chih-Wei; Li, Jyun-Yi; Lin, Chih-Chien

    2018-05-01

    In this study, zinc indium tin oxide thin-film transistors (ZITO TFTs) were fabricated by the radio frequency (RF) sputtering deposition method. Adding indium cations to ZnO by co-sputtering allows the development of ZITO TFTs with improved performance. Material characterization revealed that ZITO TFTs have a threshold voltage of 0.9 V, a subthreshold swing of 0.294 V/decade, a field-effect mobility of 5.32 cm2/Vs, and an on-off ratio of 4.7 × 105. Furthermore, an investigation of the photosensitivity of the fabricated devices was conducted by an illumination test. The responsivity of ZITO TFTs was 26 mA/W, with 330-nm illumination and a gate bias of -1 V. The UV-to-visible rejection ratio for ZITO TFTs was 2706. ZITO TFTs were observed to have greater UV light sensitivity than that of ZnO TFTs. We believe that these results suggest a significant step toward achieving high photosensitivity. In addition, the ZITO semiconductor system could be a promising candidate for use in high performance transparent TFTs, as well as further sensing applications.

  11. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  12. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  13. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  14. Accounting for the Complex Surface Structure in Ellipsometric Studies of the Effects of Magnetron Sputtering Modes on the Growth and Optical Properties of In2O3 Films

    NASA Astrophysics Data System (ADS)

    Tikhii, A. A.; Nikolaenko, Yu. M.; Gritskih, V. A.; Svyrydova, K. A.; Murga, V. V.; Zhikhareva, Yu. I.; Zhikharev, I. V.

    2018-03-01

    The efficiency of invoking additional information on optical transmission in solving the inverse problem of ellipsometry by a minimization method is demonstrated in practice for In2O3 fi doped and nondoped with Sn on Al2O3 (012) substrates. This approach allows the thickness and refractive index of thin films with rough surfaces to be uniquely determined. Solutions of the inverse problem in the framework of one-, two-, and multilayer models are compared. The last provides the best description of the experimental data and the correct parameters of the samples. The dependences of the investigated properties of films produced with different magnetron sputtering modes are found using the above methods and models and do not contradict general concepts about the film formation by this material.

  15. Quantitative evaluation of high-energy O- ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target

    NASA Astrophysics Data System (ADS)

    Suyama, Taku; Bae, Hansin; Setaka, Kenta; Ogawa, Hayato; Fukuoka, Yushi; Suzuki, Haruka; Toyoda, Hirotaka

    2017-11-01

    O- ion flux from the indium tin oxide (ITO) sputter target under Ar ion bombardment is quantitatively evaluated using a calorimetry method. Using a mass spectrometer with an energy analyzer, O- energy distribution is measured with spatial dependence. Directional high-energy O- ion ejected from the target surface is observed. Using a calorimetry method, localized heat flux originated from high-energy O- ion is measured. From absolute evaluation of the heat flux from O- ion, O- particle flux in order of 1018 m-2 s-1 is evaluated at a distance of 10 cm from the target. Production yield of O- ion on the ITO target by one Ar+ ion impingement at a kinetic energy of 244 eV is estimated to be 3.3  ×  10-3 as the minimum value.

  16. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  17. Measuring Metal Thickness With an Electric Probe

    NASA Technical Reports Server (NTRS)

    Shumka, A.

    1986-01-01

    Thickness of metal parts measured from one side with aid of Kelvin probe. Method developed for measuring thickness of end plate on sealed metal bellows from outside. Suitable for thicknesses of few thousandth's of inch (few hundred micrometers). Method also used to determine thickness of metal coatings applied by sputtering, electroplating, and flame spraying.

  18. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  19. An experimental investigation of fractionation by sputter deposition. [application to solar wind irradiation of lunar soil

    NASA Technical Reports Server (NTRS)

    Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.

    1978-01-01

    Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.

  20. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki

    2018-04-01

    The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.

  1. Development of selective surfaces. Semiannual technical progress report, September 11, 1978-April 30, 1979. [Multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.A.

    1979-06-15

    Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less

  2. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  3. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    NASA Astrophysics Data System (ADS)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  4. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  5. Characterization of Magnetron Sputtered Copper-Nickel Thin Film and Alloys

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7783 ● SEP 2016 US Army Research Laboratory Characterization of Magnetron Sputtered Copper-Nickel Thin Films and Alloys...TR-7783 ● SEP 2016 US Army Research Laboratory Characterization of Magnetron Sputtered Copper-Nickel Thin Films and Alloys by Eugene...

  6. Nanoscale growth twins in sputtered metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit; Anderoglu, Osman; Hoagland, Richard G

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  7. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  8. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  9. Ohmic contact mechanism for RF superimposed DC sputtered-ITO transparent p-electrodes with a variety of Sn2O3 content for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop

    2018-02-01

    The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.

  10. Secondary ion formation during electronic and nuclear sputtering of germanium

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  11. Kinetic and potential sputtering of an anorthite-like glassy thin film

    DOE PAGES

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.; ...

    2017-07-28

    In this paper, we present measurements of He + and He +2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of ~0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He +2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He + ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. These measurements indicate an almost 70% increase of the sputtering yield formore » doubly charged incident He ions compared to that for same velocity He + impact (14.6 amu/ion for He +2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar +q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. Additionally, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.« less

  12. Kinetic and potential sputtering of an anorthite-like glassy thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.

    In this paper, we present measurements of He + and He +2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of ~0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He +2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He + ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. These measurements indicate an almost 70% increase of the sputtering yield formore » doubly charged incident He ions compared to that for same velocity He + impact (14.6 amu/ion for He +2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar +q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. Additionally, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.« less

  13. On the sputter alteration of regoliths of outer solar system bodies

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1987-01-01

    Several processes that are expected to occur when the porous regoliths of outer solar system bodies (without atmospheres) are subjected to energetic ion bombardment are discussed. The conclusions reached in much of the literature addressing sputtering are quantitatively or qualitatively incorrect because effects of soil porosity have been neglected. It is shown theoretically and experimentally that porosity reduces the effective sputtering yield of a soil by more than an order of magnitude. Between 90 and 97% of the sputtered atoms are trapped within the regolith, where they are factionated by differential desorption. Experiments indicate that more volatile species have higher desorption probabilities. This process is the most important way in which alteration of chemical and optical properties occurs when a regolith is sputtered. When a basic silicate soil is irradiated these effects lead to sputter-deposited films enriched in metallic iron, while O, Na and K are preferentially lost. The Na and K are present in the atmosphere above the sputtered silicate in quantities much greater than their abundances in the regolith. Icy regoliths of SO2 should be enriched in elemental S and/or S2O. This prediction is supported by the probable identification of S2O and polysulfur oxide bands in the IR spectra of H-sputtered SO2 reported by Moore. When porous mixtures of water, ammonia and methane frosts are sputtered, the loss of H and surface reactions of C, N and O in the deposits should produce complex hydrocarbons and carbohydrates, some of which may be quite dark. Such reactions may have played a role in the formation of the matrix material of carbonaceous chondrites prior to agglomeration.

  14. Kinetic and potential sputtering of an anorthite-like glassy thin film

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Bannister, M. E.; Meyer, H. M.; Rouleau, C. M.; Meyer, F. W.

    2017-07-01

    In this paper, we present measurements of He+ and He+2 ion-induced sputtering of an anorthite-like thin film at a fixed solar wind-relevant impact energy of 0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He+2 ions are the most abundant multicharged ions in the solar wind, and increased sputtering by these ions in comparison to equivelocity He+ ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the Moon. Our measurements indicate an almost 70% increase of the sputtering yield for doubly charged incident He ions compared to that for same velocity He+ impact (14.6 amu/ion for He+2 vs. 8.7 amu/ion for He+). Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar+q ions and SRIM results for the relevant kinetic-sputtering yields, the effect due to multicharged-solar-wind-ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged-solar-wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface-compositional modifications might occur in astrophysical settings. In addition, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach cannot be used, relative quadrupole mass spectrometry (QMS)-based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge state-enhanced yield measurements are discussed.

  15. Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, E.; Doerner, R. P.; Shimada, M.; Tynan, G. R.

    2008-08-01

    Exit-angle resolved carbon atom and cluster (C2 and C3) sputtering yields are measured during different noble gas (Xe, Kr, Ar, Ne, and He) ion bombardments from a plasma, for low incident energies (75-225 eV). A quadrupole mass spectrometer (QMS) is used to detect the fraction of sputtered neutrals that is ionized in the plasma and to obtain the angular distribution by changing the angle between the target normal and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles in the region between the sample and the QMS. The effective elastic scattering cross sections of C, C2, and C3 with the different bombarding gas neutrals are obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. The total sputtering yield (C+C2+C3) for each bombarding gas is obtained from weight-loss measurements and the sputtering yield for C, C2, and C3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. We observe undercosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases and a clear decrease of the atom to cluster (C2 and C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne, and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).

  16. Patterned Growth of Carbon Nanotubes or Nanofibers

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D.

    2004-01-01

    A method and apparatus for the growth of carbon nanotubes or nanofibers in a desired pattern has been invented. The essence of the method is to grow the nanotubes or nanofibers by chemical vapor deposition (CVD) onto a patterned catalyst supported by a substrate. The figure schematically depicts salient aspects of the method and apparatus in a typical application. A substrate is placed in a chamber that contains both ion-beam sputtering and CVD equipment. The substrate can be made of any of a variety of materials that include several forms of silicon or carbon, and selected polymers, metals, ceramics, and even some natural minerals and similar materials. Optionally, the substrate is first coated with a noncatalytic metal layer (which could be a single layer or could comprise multiple different sublayers) by ion-beam sputtering. The choice of metal(s) and thickness(es) of the first layer (if any) and its sublayers (if any) depends on the chemical and electrical properties required for subsequent deposition of the catalyst and the subsequent CVD of the carbon nanotubes. A typical first-sublayer metal is Pt, Pd, Cr, Mo, Ti, W, or an alloy of two or more of these elements. A typical metal for the second sublayer or for an undivided first layer is Al at a thickness .1 nm or Ir at a thickness .5 nm. Proper choice of the metal for a second sublayer of a first layer makes it possible to use a catalyst that is chemically incompatible with the substrate. In the next step, a mask having holes in the desired pattern is placed over the coated substrate. The catalyst is then deposited on the coated substrate by ion-beam sputtering through the mask. Optionally, the catalyst could be deposited by a technique other than sputtering and/or patterned by use of photolithography, electron- beam lithography, or another suitable technique. The catalytic metal can be Fe, Co, Ni, or an alloy of two or more of these elements, deposited to a typical thickness in the range from 0.1 to 20 nm.

  17. Optical plasma monitoring of Y-Ba-Cu-O rf sputter target transients

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1989-12-01

    The plasma emission spectra resulting from rf sputtering Y-Ba-Cu-O targets were observed as a function of sputter time. Although most lines of the observed spectra are not attributable to target species, peaks associated with each of the cation elements were resolved. The Ba and Cu peaks can be used as tracking indicators of process conditions. For example, switching from an O2/Ar sputter atmosphere to pure Ar enhanced the Ba peak much more than that associated with Cu. The emission spectra from a newly fabricated target exhibited a slow first-order transient response in seeking equilibrium with the rf plasma. The transient response of a previously sputtered target is also first order but has a much shorter time constant.

  18. Tribological properties of sputtered MoS sub 2 films in relation to film morphology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1980-01-01

    Thin sputter deposited MoS2 films in the 2000 to 6000 A thickness range have shown excellent lubricating properties, when sputtering parameters and substrate conditions are properly selected and precisely controlled. The lubricating properties of sputtered MoS2 films are strongly influenced by their crystalline-amorphous structure, morphology and composition. The coefficient of friction can range from 0.04 which is effective lubrication to 0.4 which reflects an absence of lubricating properties. Visual screening and slight wiping of the as-sputtered MoS2 film can identify the integrity of the film. An acceptable film displays a black-sooty surface appearance whereas an unacceptable film has a highly reflective, gray surface and the film is hard and brittle.

  19. A thermalized ion explosion model for high energy sputtering and track registration

    NASA Technical Reports Server (NTRS)

    Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.

    1980-01-01

    A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.

  20. The corrosivity and passivity of sputtered Mg-Ti alloys

    DOE PAGES

    Song, Guang -Ling; Unocic, Kinga A.; Meyer, III, Harry M.; ...

    2015-11-30

    Our study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. Moreover, the surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide filmmore » was formed on a sputtered Ti–Mg based alloy.« less

  1. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  2. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  3. What generates Callisto's atmosphere? - Indications from calculations of ionospheric electron densities and airglow

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Saur, J.; Strobel, D. F.

    2016-12-01

    Callisto's atmosphere has been probed by the Galileo spacecraft and the Hubble Space Telescope (HST) and is expected to be composed of O2 and minor components CO2 and H2O. We use an ionosphere model coupled with a parametrized atmosphere model to calculate ionospheric electron densities and airglow. By varying a prescribed neutral atmosphere and comparing the model results to Galileo radio occultation and HST-Cosmic Origin Spectrograph observations we find that Callisto's atmosphere likely possesses a day/night asymmetry driven by solar illumination. We see two possible explanation for this asymmetry: 1) If sublimation dominates the atmosphere formation, a day/night asymmetry will be generated since the sublimation production rate is naturally much stronger at the day side than at the night side. 2) If surface sputtering dominates the atmosphere formation, a day/night asymmetry is likely generated as well since the sputtering yield increases with increasing surface temperature and, therefore, with decreasing solar zenith angle. The main difference between both processes is given by the fact that surface sputtering, in contrast to sublimation, is also a function of Callisto's orbital position since sputtering projectiles predominately co-rotate with the Jovian magnetosphere. On this basis, we develop a method that can discriminate between both explanations by comparing airglow observations at different orbital positions with airglow predictions. Our predictions are based on our ionosphere model and an orbital position dependent atmosphere model originally developed for the O2 atmosphere of Europa by Plainaki et al. (2013).

  4. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    NASA Astrophysics Data System (ADS)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-05-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  5. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  6. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  7. Investigation of transparent conductive electrodes for application in heterojunction silicon wafer solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Mei

    This thesis focuses on the fabrication, characterisation and analysis of high-quality transparent conductive electrodes for application in heterojunction silicon wafer solar cells. Indium tin oxide (ITO) is the material of interest, which is investigated by both the pulsed direct current (PDC) and the unbalanced radio frequency (URF) magnetron sputtering methods. The influences of deposition parameters and annealing conditions on the performance of the ITO films are studied and the optimal deposition conditions are established for both systems. The results show that ITO films with low crystallinity have degraded electrical properties after annealing at 200°C. The degradation of ITO film properties is associated with the excess scattering centres formed along with the newly crystallised regions, which significantly deteriorate the electron mobility. The relationships between the deposition conditions and the material properties are investigated by X-ray photoelectron spectroscopy (XPS). It is shown that the major electron donors in amorphous ITO films are oxygen vacancies. With the increase of the film crystallinity, the doping efficiency of Sn atoms improves. The substitutional Sn atoms contribute additional free electrons in ITO films, which improve the film's conductivity. It is also shown that the darkening of ITO films observed in PDC sputtering is due to the existence of second phase Sn3O4, which severely darken the ITO sample when it is excessively present in the surface layer and in the bulk of the film. The hydrogen gas used in the URF sputtering method is shown to effectively lower the concentration of free electrons. Benefiting from the reduced electron scattering by ionized dopant atoms, the ITO films deposited with hydrogen gas maintain a high electron mobility. Besides the ITO material properties, the sputter induced damages are also studied. It is shown that in PDC sputtering the ion bombardment damage is the primary damage contributor, while plasma luminescence damage is the main cause of damage in URF sputtering. A few HET solar cells are fabricated by varying only the ITO deposition conditions in the URF sputtering system. It is shown that the deposition temperature and the chamber ambient are crucial for achieving good ITO properties and for maintaining good interface properties. The champion solar cell shows a respectable efficiency of 19.7%. By means of detailed loss analyses of the cells' fill factor (FF) and external quantum efficiency (EQE), the major loss mechanisms are quantified for different ITO deposition conditions. It is demonstrated that, by slightly adjusting the currently used process recipes, HET solar cells with more than 20% efficiency can be achieved. A novel mesh material formed by silver nanoparticles is investigated in order to break the electrical and optical limitations of ITO films. The hybrid structure is formed by superimposing a silver mesh with a thin TCO layer, where the silver mesh and the TCO layer are functioning as the electrical layer and the optical layer, respectively. The developed TCO/SANTE hybrid structure shows a sheet resistance as low as 4.4 O/□ and over 80% visible transmission, which demonstrates its potential to enhance the efficiency of HET solar cells by boosting the conductivity of the front electrode.

  8. Magnetospheric ion sputtering and water ice grain size at Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using NIMS data from an area on the trailing hemisphere apex. We find a high abundance of sulfuric acid hydrate and radiation-resistant hydrated salts along with large water ice regolith grains, all of which are consistent with the high levels of magnetospheric bombardment at the trailing apex.

  9. Microstructural and wear properties of sputtered carbides and silicides

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling-element bearing tests were also performed with these sputtered films.

  10. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  11. Microstructural and wear properties of sputtered carbides and silicides

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1977-01-01

    Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling element bearing tests were performed with these sputtered films. Bearings sputtered with a duplex coating (0.1-micron-thick undercoating of Cr3Si2 and subsequently 0.6-micron coating of MoS2) produced marked improvement over straight MoS2 films.

  12. Effect of magnetron sputtering parameters and stress state of W film precursors on WSe2 layer texture by rapid selenization.

    PubMed

    Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng

    2016-11-04

    Tungsten diselenide (WSe 2 ) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe 2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe 2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe 2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe 2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe 2 film texture. Based on the stress state of the W film, a model for growth of the WSe 2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe 2 film.

  13. Effect of magnetron sputtering parameters and stress state of W film precursors on WSe2 layer texture by rapid selenization

    PubMed Central

    Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng

    2016-01-01

    Tungsten diselenide (WSe2) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe2 film texture. Based on the stress state of the W film, a model for growth of the WSe2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe2 film. PMID:27812031

  14. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less

  15. Electronic sputtering of vitreous SiO2: Experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Assmann, W.; Trautmann, C.

    2016-07-01

    The irradiation of solids with swift heavy ions leads to pronounced surface and bulk effects controlled by the electronic energy loss of the projectiles. In contrast to the formation of ion tracks in bulk materials, the concomitant emission of atoms from the surface is much less investigated. Sputtering experiments with different ions (58Ni, 127I and 197Au) at energies around 1.2 MeV/u were performed on vitreous SiO2 (a-SiO2) in order to quantify the emission rates and compare them with data for crystalline SiO2 quartz. Stoichiometry of the sputtering process was verified by monitoring the thickness decreases of a thin SiO2 film deposited on a Si substrate. Angular distributions of the emitted atoms were measured by collecting sputtered atoms on arc-shaped Cu catcher foils. Subsequent analysis of the number of Si atoms deposited on the catcher foils was quantified by elastic recoil detection analysis providing differential as well as total sputtering yields. Compared to existing data for crystalline SiO2, the total sputtering yields for vitreous SiO2 are by a factor of about five larger. Differences in the sputtering rate and track formation characteristics between amorphous and crystalline SiO2 are discussed within the frame of the inelastic thermal spike model.

  16. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  17. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.

  18. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  19. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Y.; Sato, M.; Uchimura, H.

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{submore » 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)« less

  20. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  1. Modeling of beryllium sputtering and re-deposition in fusion reactor plasma facing components

    NASA Astrophysics Data System (ADS)

    Zimin, A. M.; Danelyan, L. S.; Elistratov, N. G.; Gureev, V. M.; Guseva, M. I.; Kolbasov, B. N.; Kulikauskas, V. S.; Stolyarova, V. G.; Vasiliev, N. N.; Zatekin, V. V.

    2004-08-01

    Quantitative characteristics of Be-sputtering by hydrogen isotope ions in a magnetron sputtering system, the microstructure and composition of the sputtered and re-deposited layers were studied. The energies of H + and D + ions varied from 200 to 300 eV. The ion flux density was ˜3 × 10 21 m -2 s -1. The irradiation doses were up to 4 × 10 25 m -2. For modeling of the sputtered Be-atom re-deposition at increased deuterium pressures (up to 0.07 torr), a mode of operation with their effective return to the Be-target surface was implemented. An atomic ratio O/Be ≅ 0.8 was measured in the re-deposited layers. A ratio D/Be decreases from 0.15 at 375 K to 0.05 at 575 K and slightly grows in the presence of carbon and tungsten. The oxygen concentration in the sputtered layers does not exceed 3 at.%. The atomic ratio D/Be decreases there from 0.07 to 0.03 at target temperatures increase from 350 to 420 K.

  2. Molecular dynamics study of Al and Ni 3Al sputtering by Al clusters bombardment

    NASA Astrophysics Data System (ADS)

    Zhurkin, Eugeni E.; Kolesnikov, Anton S.

    2002-06-01

    The sputtering of Al and Ni 3Al (1 0 0) surfaces induced by impact of Al ions and Al N clusters ( N=2,4,6,9,13,55) with energies of 100 and 500 eV/atom is studied at atomic scale by means of classical molecular dynamics (MD). The MD code we used implements many-body tight binding potential splined to ZBL at short distances. Special attention has been paid to model dense cascades: we used quite big computation cells with lateral periodic and damped boundary conditions. In addition, long simulation times (10-25 ps) and representative statistics (up to 1000 runs per each case) were considered. The total sputtering yields, energy and time spectrums of sputtered particles, as well as preferential sputtering of compound target were analyzed, both in the linear and non-linear regimes. The significant "cluster enhancement" of sputtering yield was found for cluster sizes N⩾13. In parallel, we estimated collision cascade features depending on cluster size in order to interpret the nature of observed non-linear effects.

  3. Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-01-01

    We demonstrated the good performance of inorganic inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with glass/ITO/NiOx/CH3NH3PbI3 perovskite/C60/ room temperature (RT)-sputtered ZnO/Al structure. We adopted spin coating and RT sputtering for the deposition of NiOx and ZnO, respectively. The inorganic hole and electron transport layer of NiOx and RT-sputtered ZnO, respectively, could improve the open-circuit voltage (VOC), short-circuit current density (JSC), and power conversion efficiency (η%) of the SCs. We obtained inorganic inverted CH3NH3PbI3 perovskite-based SCs with a JSC of 21.96 A/cm2, a VOC of 1.02 V, a fill factor (FF%) of 68.2%, and an η% of 15.3% despite the sputtering damage of the RT-sputtered ZnO deposition. Moreover, the RT-sputtered ZnO could function as a diffusion barrier for Al, moisture, and O2. The inorganic inverted CH3NH3PbI3 perovskite-based SCs demonstrated improved storage reliability.

  4. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  5. Anorthite sputtering by H + and Ar q+ (q = 1-9) at solar wind velocities

    DOE PAGES

    Hijazi, Hussein Dib; Bannister, Mark E.; Meyer, III, Harry M.; ...

    2014-10-16

    Here, we report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310 km/s (0.25 keV/amu and 0.5 keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contributionmore » of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H + fraction. The QCM results show a yield increase of a factor of about 80 for Ar + versus H + sputtering and an enhancement by a factor of 1.67 between Ar 9+ and Ar +, which is a clear indication of a potential sputtering effect.« less

  6. Rarefaction windows in a high-power impulse magnetron sputtering plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmucci, Maria; Britun, Nikolay; Konstantinidis, Stephanos

    2013-09-21

    The velocity distribution function of the sputtered particles in the direction parallel to the planar magnetron cathode is studied by spatially- and time-resolved laser-induced fluorescence spectroscopy in a short-duration (20 μs) high-power impulse magnetron sputtering discharge. The experimental evidence for the neutral and ionized sputtered particles to have a constant (saturated) velocity at the end of the plasma on-time is demonstrated. The velocity component parallel to the target surface reaches the values of about 5 km/s for Ti atoms and ions, which is higher that the values typically measured in the direct current sputtering discharges before. The results point outmore » on the presence of a strong gas rarefaction significantly reducing the sputtered particles energy dissipation during a certain time interval at the end of the plasma pulse, referred to as “rarefaction window” in this work. The obtained results agree with and essentially clarify the dynamics of HiPIMS discharge studied during the plasma off-time previously in the work: N. Britun, Appl. Phys. Lett. 99, 131504 (2011)« less

  7. High-mass heterogeneous cluster formation by ion bombardment of the ternary alloy Au 7Cu 5Al 4

    DOE PAGES

    Zinovev, Alexander V.; King, Bruce V.; Veryovkin, Igor V.; ...

    2016-02-04

    The ternary alloy Au 7Cu 5Al 4 was irradiated with 0.1–10 keV Ar + and the surface composition analyzed using laser sputter neutral mass spectrometry. Ejected clusters containing up to seven atoms, with masses up to 2000 amu, were observed. By monitoring the signals from sputtered clusters, the surface composition of the alloy was seen to change with 100 eV Ar + dose, reaching equilibrium after 10 nm of the surface was eroded, in agreement with TRIDYN simulation and indicating that the changes were due to preferential sputtering of Al and Cu. Ejected gold containing clusters were found to increasemore » markedly in intensity while aluminum containing clusters decreased in intensity as a result of Ar sputtering. Such an effect was most pronounced for low energy (<1 keV) Ar + sputtering and was consistent with TRIDYN simulations of the depth profiling. As a result, the component sputter yields from the ternary alloy were consistent with previous binary alloy measurements but showed greater Cu surface concentrations than expected from TRIDYN simulations.« less

  8. Effect of Sputtering Current on the Comprehensive Properties of (Ti,Al)N Coating and High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Su, Yongyao; Tian, Liangliang; Hu, Rong; Liu, Hongdong; Feng, Tong; Wang, Jinbiao

    2018-05-01

    To improve the practical property of (Ti,Al)N coating on a high-speed steel (HSS) substrate, a series of sputtering currents were used to obtain several (Ti,Al)N coatings using a magnetron sputtering equipment. The phase structure, morphology, and components of (Ti,Al)N coatings were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy, respectively. The performance of (Ti,Al)N coatings, adhesion, hardness, and wear resistance was tested using a scratch tester, micro/nanohardness tester, and tribometer, respectively. Based on the structure-property relationships of (Ti,Al)N coatings, the results show that both the Al content and deposition temperature of (Ti,Al)N coatings increased with sputtering current. A high Al content helped to improve the performance of (Ti,Al)N coatings. However, the HSS substrate was softened during the high sputtering current treatment. Therefore, the optimum sputtering current was determined as 2.5 A that effectively increased the hardness and wear resistance of (Ti,Al)N coating.

  9. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  10. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  11. Semiconductor with protective surface coating and method of manufacture thereof. [Patent application

    DOEpatents

    Hansen, W.L.; Haller, E.E.

    1980-09-19

    Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.

  12. Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Reichart, P.

    2006-07-01

    Thin films of Ba0.5Sr0.5TiO3 (BST) were deposited on c-plane (0001) sapphire by rf magnetron sputtering and investigated by complementary materials analysis methods. Microwave properties of the films, including tunability and Q factor were measured from 1to20GHz by patterning interdigital capacitors (IDCs) on the film surface. The tunability is correlated with texture, strain, and grain size in the deposited films. An enhanced capacitance tunability of 56% at a bias field of 200kV/cm and total device Q of more than 15 (up to 20GHz) were achieved following postdeposition annealing at 900°C.

  13. Magnetron sputtering based direct fabrication of three dimensional CdTe hierarchical nanotrees exhibiting stable superhydrophobic property

    NASA Astrophysics Data System (ADS)

    Luo, Bingwei; Deng, Yuan; Wang, Yao; Shi, Yongming; Cao, Lili; Zhu, Wei

    2013-09-01

    Three dimensional CdTe hierarchical nanotrees are initially prepared by a simple one-step magnetron sputtering method without any templates or additives. The CdTe hierarchical nanotrees are constructed by the spear-like vertical trunks and horizontal branches with the diameters of about 100 nm at bottom and became cuspidal on the top. The particular nanostructure imparts these materials superhydrophobic property, and this property can be preserved after placing in air for 90 days, and is stable even after the ultraviolet light and X-ray irradiation, respectively. This study provides a simple strategy to achieve superhydrophobic properties for CdTe materials at lower temperature, which opens a new potential for CdTe solar cell with self-cleaning property.

  14. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jijun; Wang, Minqiang, E-mail: mqwang@mail.xjtu.edu.cn; Zhang, Xiangyu

    2014-12-08

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situmore » sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites.« less

  15. X-Ray photoelectron spectroscopy study of radiofrequency-sputtered titanium, carbide, molybdenum carbide, and titanium boride coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1977-01-01

    Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.

  16. On the sputter alteration of regoliths of outer solar system bodies

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1986-01-01

    The present theoretical and experimental consideration of processes that are expected to occur when the porous regoliths on outer solar system bodies lacking atmospheres are subjected to energetic ion bombardment indicates that porosity reduces the effective sputtering yield of a soil by more than an order of magnitude. Between 90 and 97 percent of the sputtered atoms are trapped within the regolith and subjected to differential desorption fractionation, which emerges as the most important path for the alteration of chemical and optical properties in sputtered regoliths. Sputtered porous mixtures of water, ammonia and methane frosts suffer a loss of H, and surface reactions of C, N, and O that should yield complex hydrocarbons and carbohydrates; such reactions may have played a role in the formation of carbonaceous chondrites' matrix material prior to agglomeration.

  17. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  18. Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region

    NASA Technical Reports Server (NTRS)

    Handoo, A. K.; Ray, P. K.

    1993-01-01

    Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.

  19. Adaptation of ion beam technology to microfabrication of solid state devices and transducers

    NASA Technical Reports Server (NTRS)

    Topich, J. A.

    1978-01-01

    A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.

  20. Theoretical investigations on plasma processes in the Kaufman thruster. [electron and ion velocity distribution

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.

  1. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  2. Dynamic mask for producing uniform or graded-thickness thin films

    DOEpatents

    Folta, James A [Livermore, CA

    2006-06-13

    A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.

  3. Attempt to form hydride and amorphous particles, and introduction of a new evaporation method

    NASA Astrophysics Data System (ADS)

    Yatsuya, S.; Yamauchi, K.; Kamakura, T.; Yanagida, A.; Wakayama, H.; Mihama, K.

    1985-06-01

    Al and TiH 2 particles of fcc structure can be produced in an atmosphere of gaseous H 2 at reduced pressure. Al particles with definite habit are obtained, which has been never observed in the ordinary gas evaporation technique using a HV system. The habit of TiH 2 particles grown in the intermediate zone of the smoke is determined to be a dodecahedron. The growth is considered as the result of the martensite transformation from the bcc structure initially formed to the fcc structure accompanying a slight modification of the characteristic habit as observed for Ti particles. For the preparation of amorphous particles, first, the quenching rate of a particle, {dT}/{dt} was estimated to be more than {10 4°C }/{s}. Ultrafine particles of Pd 80Si 20 chosen as a test sample did not show the amorphous structure, but the crystalline. Application of the sputtering method as a new evaporation source in the gas evaporation technique is attempted. With the sputtering method, W particles with definite habits are produced.

  4. Swift heavy-ions induced sputtering in BaF2 thin films

    NASA Astrophysics Data System (ADS)

    Pandey, Ratnesh K.; Kumar, Manvendra; Singh, Udai B.; Khan, Saif A.; Avasthi, D. K.; Pandey, Avinash C.

    2013-11-01

    In our present experiment a series of barium fluoride thin films of different thicknesses have been deposited by electron beam evaporation technique at room temperature on silicon substrates. The effect of film thickness on the electronic sputter yield of polycrystalline BaF2 thin films has been reported in the present work. Power law for sputtered species collected on catcher grids has also been reported for film of lowest thickness. Sputtering has been performed by 100 MeV Au+28 ions. Atomic force microscopy (AFM) has been done to check the surface morphology of pristine samples. Glancing angle X-ray diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was done to determine the areal concentration of Ba and F atoms in the films. A reduction in the sputter yield of BaF2 films with the increase in film thickness has been observed from RBS results. The thickness dependence sputtering is explained on the basis of thermal spike and the energy confinement of the ions in the smaller grains. Also transmission electron microscopy (TEM) of the catchers shows a size distribution of sputtered species with values of power law exponent 1/2 and 3/2 for two fluences 5 × 1011 and 1 × 1012 ions/cm2, respectively.

  5. Time-resolved temperature study in a high-power impulse magnetron sputtering discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay; Palmucci, Maria; Konstantinidis, Stephanos

    2013-07-07

    The gas heating dynamics is studied in a high-power impulse magnetron sputtering discharge operating in Ar-N{sub 2} gas mixtures. The time-resolved rotational temperature analysis based on the spectral transition between the B{sup 2}{Sigma}{sub u}{sup +}-X{sup 2}{Sigma}{sub g}{sup +} energy levels in molecular nitrogen ion (N{sub 2}{sup +} First Negative Band) is undertaken for this purpose. The rotational temperature in the discharge is found to increase linearly during the plasma pulse being roughly independent on the nitrogen content in the examined range. Such a temperature increase is attributed to the bulk gas heating which is the result of collisions with themore » sputtered species. Two sputtered materials, Ti and W, are examined during the study. In the case of W sputtering, the gas heating is found to be more pronounced than in the Ti case, which is explained by more efficient energy exchange between the sputtered W atoms and the bulk gas atoms during the plasma on-time. The obtained temperature data are compared to the laser-induced fluorescence study of Ar metastable atoms performed recently in the same discharge in our group. The particularities related to gas thermalization as well as to validity of the utilized approach for characterization of the pulsed sputtering discharges are discussed.« less

  6. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    PubMed Central

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-01-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1–5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10–50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (∼1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields. PMID:28000743

  7. The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yang, W. J.; Hsu, C. Y.; Liu, Y. W.; Hsu, R. Q.; Lu, T. W.; Hu, C. C.

    2012-12-01

    This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ˜ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.

  8. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    NASA Astrophysics Data System (ADS)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (˜1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  9. Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications

    NASA Astrophysics Data System (ADS)

    Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.

    1999-01-01

    We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

  10. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  11. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    PubMed

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  12. Enhanced spin-dependent charge transport of Co-(Al-fluoride) granular nanocomposite by co-separate sputtering

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Kobayashi, Nobukiyo; Zhang, Yi-Wen; Ohnuma, Shigehiro; Masumoto, Hiroshi

    2017-10-01

    Spin-dependent charge transport behavior involving the recently discovered tunnel-type magneto-dielectric (TMD) and magnetoresistance (TMR) effects was studied in Co-(Al-fluoride) granular nanocomposites. By setting a changeable partition height (t = 1-4 cm) on a substrate holder in a conventional co-sputtering (CS) deposition system, we developed a co-separate sputtering (CSS) method to fabricate Co-(Al-F) granular nanocomposites. XPS analysis shows that the Al content remains balanced between the Al metal and Al-F compounds by controlling t. This phenomenon can be attributed to the magnetron plasma interference from the two target sources. Fittings between TMR and normalized magnetization suggest that the CSS films with clear granular structures may have high spin polarization. Compared with the CS samples (t = 0 cm), the CSS films with t = 4 cm show enhanced charge transport properties with a maximum TMD ratio (0.5%) and TMR ratio (7.2%) under a magnetic field of H = 10 kOe. This study demonstrates that the Al-F tunnel barrier between Co granules plays an essential role in controlling the charge transport behavior and will be of significance for applications in field sensors and impedance-tunable devices with large magnetic-field response.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murzin, I.H.; Tompa, G.S.; Wei, J.

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able tomore » synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.« less

  14. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  15. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  17. Sputtered magnesium diboride thin films: Growth conditions and surface morphology

    NASA Astrophysics Data System (ADS)

    O'Brien, April; Villegas, Brendon; Gu, J. Y.

    2009-01-01

    Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.

  18. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    PubMed

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins is a highly effective means for the production of 89 Zr. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of an inductively coupled impulse sputtering source for coating deposition

    NASA Astrophysics Data System (ADS)

    Loch, Daniel Alexander Llewellyn

    In recent years, highly ionised pulsed plasma processes have had a great impact on improving the coating performance of various applications, such as for cutting tools and ITO coatings, allowing for a longer service life and improved defect densities. These improvements stem from the higher ionisation degree of the sputtered material in these processes and with this the possibility of controlling the flux of sputtered material, allowing the regulation of the hardness and density of coatings and the ability to sputter onto complex contoured substrates. The development of Inductively Coupled Impulse Sputtering (ICIS) is aimed at the potential of utilising the advantages of highly ionised plasma for the sputtering of ferromagnetic material. In traditional magnetron based sputter processes ferromagnetic materials would shunt the magnetic field of the magnetron, thus reducing the sputter yield and ionisation efficiency. By generating the plasma within a high power pulsed radio frequency (RF) driven coil in front of the cathode, it is possible to remove the need for a magnetron by applying a high voltage pulsed direct current to the cathode attracting argon ions from the plasma to initiate sputtering. This is the first time that ICIS technology has been deployed in a sputter coating system. To study the characteristics of ICIS, current and voltage waveforms have been measured to examine the effect of increasing RF-power. Plasma analysis has been conducted by optical emission spectroscopy to investigate the excitation mechanisms and the emission intensity. These are correlated to the set RF-power by modelling assumptions based on electron collisions. Mass spectroscopy is used to measure the plasma potential and ion energy distribution function. Pure copper, titanium and nickel coatings have been deposited on silicon with high aspect ratio via to measure the deposition rate and characterise the microstructure. For titanium and nickel the emission modelling results are in good agreement with the model expectations showing that electron collisions are the main excitation mechanism. The plasma potential was measured as 20 eV, this is an ideal level for good adatom mobility with reduced lattice defects. All surfaces in the via were coated, perpendicular column growth on the sidewalls indicates a predominantly ionised metal flux to the substrate and the deposition rates agree with the literature value of the sputter yield of the materials. The results of the studies show that ICIS is a viable process for the deposition of magnetic coatings with high ionisation in the plasma.

  20. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  1. Electronic sputtering of LiF, CaF2, LaF3 and UF4 with 197 MeV Au ions. Is the stoichiometry of atom emission preserved?

    NASA Astrophysics Data System (ADS)

    Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.

    2017-09-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.

  2. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films

    NASA Astrophysics Data System (ADS)

    Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo

    2018-02-01

    Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.

  3. Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinks, J. A.; Hibberd, F.; Hattar, K.

    Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less

  4. The first laboratory measurements of sulfur ions sputtering water ice

    NASA Astrophysics Data System (ADS)

    Galli, André; Pommerol, Antoine; Vorburger, Audrey; Wurz, Peter; Tulej, Marek; Scheer, Jürgen; Thomas, Nicolas; Wieser, Martin; Barabash, Stas

    2015-04-01

    The upcoming JUpiter ICy moons Explorer mission to Europa, Ganymede, and Callisto has renewed the interest in the interaction of plasma with an icy surface. In particular, the surface release processes on which exosphere models of icy moons rely should be tested with realistic laboratory experiments. We therefore use an existing laboratory facility for space hardware calibration in vacuum to measure the sputtering of water ice due to hydrogen, oxygen, and sulfur ions at energies from 1 keV to 100 keV. Pressure and temperature are comparable to surface conditions encountered on Jupiter's icy moons. The sputter target is a 1cm deep layer of porous, salty water ice. Our results confirm theoretical predictions that the sputter yield from oxygen and sulfur ions should be similar. Thanks to the modular set-up of our experiment we can add further surface processes relevant for icy moons, such as electron sputtering, sublimation, and photodesorption due to UV light.

  5. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  6. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    PubMed

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  7. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  8. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  9. Carbon Radiation Studies in the DIII-D Divertor with the Monte Carlo Impurity (MCI) Code

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Leonard, A. W.; West, W. P.; Finkenthal, D. F.; Fenstermacher, M. E.; Porter, G. D.; Chu, Y.

    1998-11-01

    Carbon sputtering and transport are modeled in the DIII--D divertor with the MCI code. Calculated 2-D radiation patterns are compared with measured radiation distributions. The results are particularly sensitive to Ti near the divertor target plates. For example, increasing the ion temperature from 8 eV to 20 eV in MCI raises P_rad^div from 1626 to 2862 kW. Although this presents difficulties in assessing which sputtering model best describes the plasma-surface interaction physics (because of experimental uncertainties in T_i), processes which either produce too much or too little radiated power compared to the measured value of 1718 kW can be eliminated. Based on this, the number of viable sputtering options has been reduced from 12 to 4. For the conditions studied, three of these options involve both physical and chemical sputtering, and one requires only physical sputtering.

  10. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  11. Ejection of sodium from sodium sulfide by the sputtering of the surface of Io

    NASA Technical Reports Server (NTRS)

    Chrisey, D. B.; Johnson, R. E.; Boring, J. W.; Phipps, J. A.

    1988-01-01

    The mechanism by which Na is removed from the surface of Io prior to its injection into the plasma torus is investigated experimentally. Na2S films of thickness 3-8 microns were produced by spray coating an Ni substrate in a dry N2 atmosphere and subjected to sputtering by 34-keV Ar(+), Ne(+), Kr(+), or Xe(+) ions up to total doses of about 5 x 10 to the 18th ions/sq cm. The sputtering yields and mass spectra are found to be consistent with ejection of only small amounts of atomic Na and somewhat larger amounts of Na-containing molecules. It is concluded that the amount of Na ejected by magnetospheric-ion sputtering of Na2S would be insufficient to account for the amounts observed in the Io neutral cloud. A scenario involving sputtering of larger polysulfide molecules is considered.

  12. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  13. Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

    DOE PAGES

    Hinks, J. A.; Hibberd, F.; Hattar, K.; ...

    2018-01-11

    Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less

  14. Nanopatterning of swinging substrates by ion-beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Sun Mi; Kim, J.-S., E-mail: jskim@sm.ac.kr

    Graphite substrates are azimuthally swung during ion-beam sputtering (IBS) at a polar angle θ = 78° from the surface normal. The swinging of the substrate not only causes quasi-two-dimensional mass transport but also makes various sputter effects from the different incident angles to work together. Through variation of the swing angle, both the transport and sputtering effects synergistically produce a series of salient patterns, such as asymmetric wall-like structures, which can grow to several tens of nanometers and exhibit a re-entrant orientational change with the increased swing angle. Thus, the present work demonstrates that dynamic variables such as the swing angle, whichmore » have been little utilized, offer an additional parameter space that can be exploited to diversify the sputtered patterns, thereby expanding the applicability of an IBS as well as the comprehension of the IBS nano patterning mechanism.« less

  15. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  16. Residual stress analysis for oxide thin film deposition on flexible substrate using finite element method

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui

    2011-09-01

    Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.

  17. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  18. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  19. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  20. X-ray photoelectron spectroscopy study of radiofrequency sputtered chromium bromide, molybdenum disilicide, and molybdenum disulfide coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1977-01-01

    Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties.

  1. A 9700-hour durability test of a five centimeter diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.; Finke, R. C.

    1973-01-01

    A modified Hughes SIT-5 thrustor has been life-tested at the Lewis Research Center. The final 2700 hours of the test are described with a charted history of thrustor operating parameters and off-normal events. Performance and operating characteristics were nearly constant throughout the test except for neutralizer heater power requirements and accelerator drain current. A post-shutdown inspection revealed sputter erosion of ion chamber components and component flaking of sputtered metal. Several flakes caused beamlet divergence and anomalous grid erosion, causing the test to be terminated. All sputter erosion sources have been identified and promising sputter resistant components are currently being evaluated.

  2. Radiation damage in WC studied with MD simulations

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Björkas, C.; Juslin, N.; Vörtler, K.; Nordlund, K.

    2007-04-01

    Studying radiation damage in tungsten carbide (WC) is of importance due to its applications in fusion reactors. We have used molecular dynamics to study both deuterium induced sputtering and modification of WC surfaces and collision cascades in bulk WC. For collision cascades in bulk WC we note a massive recombination and major elemental asymmetry for the damage. Studying the erosion of WC surfaces, we find that C can erode through swift chemical sputtering, while W does not sputter more easily than from pure W. The amorphization of the surface and the D-content due to the D bombardment is important for the damage production and sputtering process.

  3. Room-temperature fabrication of a Ga-Sn-O thin-film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Takagi, Ryo; Umeda, Kenta; Kimura, Mutsumi

    2017-08-01

    We have succeeded in forming a Ga-Sn-O (GTO) film for a thin-film transistor (TFT) using radio-frequency (RF) magnetron sputtering at room temperature without annealing process. It is achieved that the field-effect mobility is 0.83 cm2 V-1 s-1 and the on/off ratio is roughly 106. A critical process parameter is the deposition pressure during the RF magnetron sputtering, which determines a balance between competing mechanisms of sputtering damages and chemical reactions, because the film quality has to be enhanced solely during the sputtering deposition. This result suggests a possibility of rare-metal free amorphous metal-oxide semiconductors.

  4. Process parameter-growth environment-film property relationships for reactive sputter deposited metal (V, Nb, Zr, Y, Au) oxide, nitride, and oxynitride films. Final report, 1 January 1989-30 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aita, C.R.

    1993-09-30

    The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.

  5. High rate DC-reactive sputter deposition of Y 2O 3 film on the textured metal substrate for the superconducting coated conductor

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sup; Park, Chan; Ko, Rock-Kil; Shi, Dongqui; Chung, Jun-Ki; Ha, Hong-Soo; Park, Yu-Mi; Song, Kyu-Jeong; Youm, Do-Jun

    2005-10-01

    Y2O3 film was directly deposited on Ni-3at%W substrate by DC reactive sputtering. DC reactive sputtering was carried out using metallic Y target and water vapor for oxidizing the elements of metallic target on the substrate. The detailed conditions of DC reactive sputtering for depositions of Y2O3 films were investigated. The window of water vapor for proper growth of Y2O3 films was determined by sufficient oxidations of the Y2O3 films and the non-oxidation of the target surface, which was required for high rate sputtering. The window turned out to be fairly wide in the chamber used. As the sputtering power was raised, the deposition rate increased without narrowing the window. The fabricated Y2O3 films showed good texture qualities and surface morphologies. The YBCO film deposited directly on the Y2O3 buffered Ni-3at%W substrate showed Tc, Ic (77 K, self field), and Jc (77 K, self field) of 89 K, 64 A/cm and 1.1 MA/cm2, respectively.

  6. Threshold voltage tuning in AlGaN/GaN HFETs with p-type Cu2O gate synthesized by magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Liuan; Xie, Tian; Wang, Xinzhi; Liu, Xinke; Ao, Jin-Ping

    2018-04-01

    In present study, copper oxide films were prepared at different sputtering powers (10-100 W) using magnetron reactive sputtering. The crystalline structure, surface morphologies, composition, and optical band gap of the as-grown films are dependent on sputtering power. As the sputtering power decreasing from 100 to 10 W, the composition of films changed from CuO to quasi Cu2O domination. Moreover, when the sputtering power is 10 W, a relative high hole carrier density and high-surface-quality quasi Cu2O thin film can be achieved. AlGaN/GaN HFETs were fabricated with the optimized p-type quasi Cu2O film as gate electrode, the threshold voltage of the device shows a 0.55 V positive shift, meanwhile, a lower gate leakage current, a higher ON/OFF drain current ratio of ∼108, a higher electron mobility (1465 cm2/Vs), and a lower subthreshold slope of 74 mV/dec are also achieved, compared with the typical Ni/Au-gated HFETs. Therefore, Cu2O have a great potential to develop high performance p-type gate AlGaN/GaN HFETs.

  7. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  8. Thin film application device and method for coating small aperture vacuum vessels

    DOEpatents

    Walters, Dean R; Este, Grantley O

    2015-01-27

    A device and method for coating an inside surface of a vessel is provided. In one embodiment, a coating device comprises a power supply and a diode in electrical communication with the power supply, wherein electrodes comprising the diode reside completely within the vessel. The method comprises reversibly sealing electrodes in a vessel, sputtering elemental metal or metal compound on the surface while maintaining the surface in a controlled atmosphere.

  9. Luminal surface fabrication for cardiovascular prostheses

    NASA Technical Reports Server (NTRS)

    Deininger, William D. (Inventor); Gabriel, Stephen B. (Inventor)

    1988-01-01

    A method is provided for forming a mold surface with microscopic upstanding pillars for molding the inside surface of a vascular prostheses (synthetic blood vessel). The mold article is formed from a quantity of Teflon (polytetrafluoroethylene) which has a polished, flat surface on which a gold film has been sputter deposited. A photoresist layer, which cannot adhere directly to Teflon, adheres to the gold. The photoresist is exposed and developed leaving a sputter resistant mask defining the desired pillar locations, and the resulting workpiece is ion etched to form the pillars in the Teflon. A synthetic blood vessel material is cast against the Teflon mold to form blind recesses on the inside of the synthetic blood vessel, with the recesses being of predetermined uniform cross section and present in a predetermined uniform pattern.

  10. Forming electrical interconnections through semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1981-01-01

    An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.

  11. Bias current dependence of resistivity in Co0.4Fe0.4B0.2 ultrathin film prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mandal, Snehal; Mazumdar, Dipak; Das, I.

    2018-04-01

    Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.

  12. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less

  13. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  14. Dependence of annealing temperature on microstructure and photoelectrical properties of vanadium oxide thin films prepared by DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping

    2013-12-01

    Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.

  15. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  16. Effect of Homo-buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Bing; Ma, Yuncheng; Tang, Ke; Huang, Haofei; Hu, Yan; Zou, Tianyu; Wang, Linjun

    2018-05-01

    β- Ga2O3 films were grown by radio-frequency magnetron sputtering method. The influence of Ga2O3 buffer layers and annealing treatment on the structural, optical, morphological and electrical properties of Ga2O3 films was studied. The results revealed an improvement of crystalline quality and transmittance of annealed β- Ga2O3 films prepared with homo-buffer layers. Ga2O3 film UV photodetectors were fabricated with a new B and Ga co-doped ZnO films (BGZO)/Au interdigitated electrode. A good ohmic contact was formed between the film and the electrode. For the detector based on Ga2O3 films with buffer layers, a higher value of photo response and faster response times was obtained.

  17. Optimization of process parameters for RF sputter deposition of tin-nitride thin-films

    NASA Astrophysics Data System (ADS)

    Jangid, Teena; Rao, G. Mohan

    2018-05-01

    Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.

  18. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  19. The effect of initial pressure on growth of FeNPs in amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham

    2018-04-01

    Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.

  20. Electrochemical properties of magnetron sputtered WO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavi, V.; Kondaiah, P.; Hussain, O. M.

    2013-02-05

    Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly inmore » the first few cycles and stabilized at a lesser stage.« less

  1. Research Progresses and Suggestions of Manufacturing Technologies of Engine Bearing Bushes

    NASA Astrophysics Data System (ADS)

    Cao, J.; Yin, Z. W.; Li, H. L.; Y Gao, G.

    2017-12-01

    Bearing bush is a key part of diesel engine, and its performance directly influences the life of whole machine. Several manufacturing technologies of bearing bush such as centrifugal casting, sintering, electroplating and magnetron sputtering have been overviewed. Their bond strength, porosity, production efficient, layer thickness, frictional coefficient and corresponding materials analyzed and compared. Results show that the porosity and oxidation of sintering and centrifugal casting are higher than that of other two methods. However, the production efficiency and coating thickness are better than that of electroplating and magnetron sputtering. Based on above comparisons and discussions, the improvements of all manufacturing technologies are suggested and supersonic cold spraying is suggested. It is proved that cold spraying technology is the best choice in the future with the developing of low frictional materials.

  2. Influence of sputtering power on the optical properties of ITO thin films

    NASA Astrophysics Data System (ADS)

    K, Aijo John; Kumar, Vineetha V.; M, Deepak; T, Manju

    2014-10-01

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  3. Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films

    NASA Astrophysics Data System (ADS)

    Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo

    2012-08-01

    Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.

  4. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmundsson, J. T., E-mail: tumi@hi.is; Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik; Lundin, D.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization ismore » always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.« less

  5. A Study on the Formation of 2-Dimensional Tungsten Disulfide Thin Films on Sapphire Substrate by Sputtering and High Temperature Rapid Thermal Processing.

    PubMed

    Nam, Hanyeob; Kim, Hong-Seok; Han, Jae-Hee; Kwon, Sang Jik; Cho, Eou Sik

    2018-09-01

    As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.

  6. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  7. Radiofrequency-sputtered coatings for lubrication system components and other complex surfaces

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1972-01-01

    Irregularly shaped surfaces, such as lubrication system components (ball bearings, seals, gears, etc.), can be coated on all surfaces, including irregular shapes, when radiofrequency sputtering is used. When the specimen is properly located with respect to the sputtering target, the sputtered material covers the entire surface of the object irrespective of its geometrical configuration. An adherent, dense film is formed. The film thickness varies from 20 to 50 percent on, for example, a hearing cage or race depending on its geometry. When sputtered solid film lubricants such as molybdenum disulfide are used, a film thickness only of the order of 10 to the minus 7th power m (thousands of angstroms) is required at the contacting areas. It is only essential to determine the required film thickness at the critical areas in need of lubrication. The sections outside the areas to be lubricated fall within the thickness deviation range of 20 to 50 percent, which still constitutes a negligible change respect to tolerance requirements.

  8. Sputtering of sodium and potassium from nepheline: Secondary ion yields and velocity spectra

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Langlinay, Th.; Ponciano, C. R.; da Silveira, E. F.; Palumbo, M. E.; Strazzulla, G.; Brucato, J. R.; Hijazi, H.; Agnihotri, A. N.; Boduch, P.; Cassimi, A.; Domaracka, A.; Ropars, F.; Rothard, H.

    2017-09-01

    Silicates are the dominant surface material of many Solar System objects, which are exposed to ion bombardment by solar wind ions and cosmic rays. Induced physico-chemical processes include sputtering which can contribute to the formation of an exosphere. We have measured sputtering yields and velocity spectra of secondary ions ejected from nepheline, an aluminosilicate thought to be a good analogue for Mercury's surface, as a laboratory approach to understand the evolution of silicate surfaces and the presence of Na and K vapor in the exosphere. Experiments were performed with highly charged ion beams (keV/u-MeV/u) delivered by GANIL using an imaging XY-TOF-SIMS device under UHV conditions. The fluence dependence of sputtering yields gives information about the evolution of surface stoichiometry during irradiation. From the energy distributions N(E) of sputtered particles, the fraction of particles which could escape from the gravitational field of Mercury, and of those falling back and possibly contributing to populate the exosphere can be roughly estimated.

  9. Copper deposition on fabrics by rf plasma sputtering for medical applications

    NASA Astrophysics Data System (ADS)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  10. Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn

    2018-05-01

    The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.

  11. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  12. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Rachana, E-mail: dr.rachana.gupta@gmail.com; Pandey, Nidhi; Behera, Layanta

    2016-05-23

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films.more » In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.« less

  13. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  14. Microstructure Evolution and Composition Control during the Processing of Thin-gage Metallic Foil (Preprint)

    DTIC Science & Technology

    2012-02-01

    the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered

  15. Sputtering in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.; Rawlin, V. K.

    1979-01-01

    A model, which assumes that chemisorption is the dominant mechanism, is applied to the sputtering rate measurements of the screen grid of a 30 cm thruster in the presence of nitrogen. The model utilizes inputs from a variety of experimental and analytical sources. The model of environmental effects on sputtering was applied to thruster conditions of low discharge voltage and a discussion of the comparison of theory and experiment is presented.

  16. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  17. Sputtering phenomena in ion thrusters

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1983-01-01

    Sputtering effects in discharge chambers of ion thrusters are lifetime limiting in basically two ways: (1) ion bombardment of critical thruster components at energies sufficient to cause sputtering removes significant quantities of material; enough to degrade operation through adverse dimensional changes or possibly lead to complete component failure, and (2) metals sputtered from these intensely bombarded components are deposited in other locations as thin films and subsequently flake or peel off; the flakes then lodge elsewhere in the discharge chamber with the possibility of providing conductive paths for short circuiting of thruster components such as the ion optics. This experimental work has concentrated in two areas. The first has been to operate thrusters for multi-hour periods and to observe and measure the films found inside the thruster. The second was to simulate the environment inside the discharge chamber of the thruster by means of a dual ion beam system. Here, films were sputter deposited in the presence of a second low energy bombarding beam to simulate film deposition on thruster interior surfaces that undergo simultaneous sputtering and deposition. Mo presents serious problems for use in a thruster as far as film deposition is concerned. Mo films were found to be in high stress, making them more likely to peel and flake.

  18. Nitinol: Tubing versus sputtered film - microcleanliness and corrosion behavior.

    PubMed

    Wohlschlögel, Markus; Lima de Miranda, Rodrigo; Schüßler, Andreas; Quandt, Eckhard

    2016-08-01

    Corrosion behavior and microcleanliness of medical-device grade Nitinol tubing (Nix Ti1- x , x = 0.51; outer diameter 7 mm, wall thickness 0.5 mm), drawn from various ingot qualities, are compared to the characteristics of sputtered Nitinol film material (Nix Ti1- x , x = 0.51; thickness 50 µm). Electropolished tubing half-shell samples are tested versus as-received sputtered film samples. Inclusion size distributions are assessed using quantitative metallography and corrosion behavior is investigated by potentiodynamic polarization testing in phosphate-buffered saline at body temperature. For the sputtered film samples, the surface chemistry is additionally analyzed employing Auger Electron Spectroscopy (AES) composition-depth profiling. Results show that the fraction of breakdowns in the potentiodynamic polarization test correlates with number and size of the inclusions in the material. For the sputtered Nitinol film material no inclusions were detectable by light microscopy on the one hand and no breakdowns were found in the potentiodynamic polarization test on the other hand. As for electropolished Nitinol, the sputtered Nitinol film material reveals Nickel depletion and an Oxygen-to-Titanium intensity ratio of ∼2:1 in the surface oxide layer, as measured by AES. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1176-1181, 2016. © 2015 Wiley Periodicals, Inc.

  19. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +}more » or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.« less

  20. Effect of post annealing on structural, optical and dielectric properties of MgTiO3 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, T.; Bhuyan, R. K.; Pamu, D.

    2013-01-01

    MgTiO3 (MTO) thin films have been deposited on to quartz and platinized silicon (Pt/TiO2/SiO2/Si) substrates by RF magnetron sputtering. The metal-MTO-metal (Ag-MTO-Pt/TiO2/SiO2/Si) thin film capacitors have been fabricated at different oxygen mixing percentage (OMP). The effects of OMP and post annealing on the structural, microstructural, optical and dielectric properties of MTO films were studied. The MTO target has been synthesized by mechanochemical synthesis method. The phase purity of the sputtering target was confirmed from X-ray diffraction pattern and refined to R3bar space group with lattice parameters a = b = 5.0557(12) Å, c = 13.9003(9) Å. The chemical composition of the deposited films was confirmed from EDS spectra and all the films exhibited the composition of the sputtering target. The XRD patterns of the as-deposited films are amorphous and annealing at 700 °C for 1 h induced nanocrystallinity with the improved optical and dielectric properties. The annealed films exhibit refractive index in the range of 2.12-2.19 at 600 nm with an optical bandgap value in between 4.11 and 4.19 eV. The increase in the refractive index and bandgap upon annealing can be attributed to the improvement in packing density, crystallinity, and decrease in porosity ratio. Both the dielectric constant and tan δ decrease with the increase in frequency and were in the range of 13.7-31.11 and 0.006-0.124, respectively. The improvement in dielectric properties with the increase in OMP has been correlated to the reduction in oxygen vacancies, increase in crystallinity and grain size of the films.

  1. Thin film processing of photorefractive BaTiO3

    NASA Technical Reports Server (NTRS)

    Schuster, Paul R.; Potember, Richard S.

    1991-01-01

    The principle objectives of this ongoing research involve the preparation and characterization of polycrystalline single-domain thin films of BaTiO3 for photorefractive applications. These films must be continuous, free of cracks, and of high optical quality. The two methods proposed are sputtering and sol-gel related processing.

  2. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction method.

  3. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.

  4. Analyse de l'interface cuivre/Teflon AF1600 par spectroscopie des photoelectrons rayons x

    NASA Astrophysics Data System (ADS)

    Popovici, Dan

    The speed of electrical signals through the microelectronic multilevel interconnects depends of the delay time R x C. In order to improve the transmission speed of future microdevices, the microelectronics industry requires the use of metals having lower resistivities and insulators having lower permittivities. Copper and fluoropolymers are interesting candidates for the replacement of the presently used Al/polyimide technology. This thesis presents an X-ray photoelectron spectroscopy (XPS) analysis of the Cu/Teflon AF1600 interface, in order to have a better understanding of those interfacial interactions leading to improved adhesion. Several deposition methods, such as evaporation, sputtering and laser-induced chemical deposition were analyzed and compared. X-ray photoelectron spectroscopy (XPS) was used as the primary characterization technique of the different surfaces and interfaces. In the case of evaporation and sputtering, the loss of fluorine and oxygen atoms leads to graphitization and the crosslinking of carbon chains. The extent of damage caused by copper deposition is higher for sputter deposition because of the higher energies of the incidents atoms. This energy (two orders of magnitude higher than the energy involved in the evaporation) is also responsible for the total reaction of Cu with F and C. For the physical depositions (sputtering and evaporation), an angle-resolved XPS diffusion study showed the copper distribution as a function of depth. (i) For sputter deposition, this distribution is uniform. (ii) In the case of evaporation, we computed the concentration profile using the inverse Laplace transform. Several samples, annealed at different temperatures, were used to calculate the diffusion coefficients for the Cu/Teflon AF1600 interface. The study of interactions at the interface between Teflon AF1600 and copper deposited by different metallization techniques permitted us to elucidate some aspects related to the chemistry and structure of the interface. The presence of the strong Cu-C bond may lead to an enhanced adhesion but a pretreatment (plasma RF, X-ray or excimer laser) is necessary to increase the surface concentration of reactive groups. (Abstract shortened by UMI.)

  5. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred

    2016-12-01

    Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ˜150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the (20\\bar{4}) and (204) planes of α″ martensite, indicating that the films’ growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.

  6. Oxygen interaction with disordered and nanostructured Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.

    2001-08-01

    We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.

  7. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  8. Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells

    NASA Astrophysics Data System (ADS)

    Johnson, Forrest

    Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.

  9. Graphene as a Coating for Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Navarro, Marcos; Zamiri, Marziyeh; Kulcinski, Gerald; Lagally, Max; Santarius, John

    2017-10-01

    This research explores the protection by graphene of plasma facing materials bombarded with energetic ions of helium. Few studies have shown that graphene can act as a protective layer against sputtering due to energetic ions. In the presence of such irradiation, plasma facing components (PFC's) tend to develop surface morphologies that lead to the sputtering of wall material, potentially diminishing the lifetime of the PFC's and plasma performance. Since plasmas have broad applications and the quality of transferred and grown graphene is different, we have used a chemical vapor deposition method to grow on other substrates. We have also shown that graphene can reduce changes on surface morphology due to energetic helium. After irradiation, in the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have determined that the mass losses in W have been reduced significantly, which may lead to an improved plasma performance and longer PFC lifetimes. Supported by DHS Project 2015-DN-077-ARI095 and the Grainger Foundation.

  10. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  11. TiOx deposited by magnetron sputtering: a joint modelling and experimental study

    NASA Astrophysics Data System (ADS)

    Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.

    2018-05-01

    This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.

  12. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Continuous Sputter Deposition Coating of Long Monofilaments

    DTIC Science & Technology

    2014-04-01

    sectional view of sample 1. Using SEM, the copper coated monofilament was observed to be smooth with little to no indications of flaking or cracked...monofilament. The magnetron sputter deposition (MSD) process was used to apply copper coatings on the order of 10–100 nanometers thick onto both nylon...of monofilaments. Though only copper coatings are discussed in this report, the system could also be used to apply a variety of sputtered metal or

  14. Industrial potential, uses, and performance of sputtered and ion plated films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    The sputtering and ion plating technology is reviewed in terms of their potential, uses and performance. It offers the greatest flexibility in coating preparation, since coatings can be tailored in any preferred chemical combination, and graded type interfaces (ceramic to metal seals) can be formed. Sputtered and ion plated film characteristics such as the degree of adherence, coherence and morphological growth which contribute to film performance and reliability are described and illustrated as used in practice. It is concluded that the potential future of sputtered and ion plated films for industrial applications will depend primarily upon greater comprehension of materials selection, possible elimination of restrictions for coating/substrate combinations and the awareness of utilizing the proper deposition parameters.

  15. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  16. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  17. Effect of Ion Sputtering on Interface Chemistry and Electrical Properties of an Gaas (100) Schottky Contacts

    NASA Technical Reports Server (NTRS)

    Wang, Y. X.; Holloway, P. H.

    1984-01-01

    Auger and electron photoelectron spectroscopy were used to measure the extent of As depletion during 1 keV to 5 keV argon sputtering of GaAs surfaces. This depletion was correlated with a general decrease in the barrier height of the rectifying Au contact deposited in situ. However, nondestructive angle resolved XPS measurements showed As was depleted at the outer surface more by 1 keV than 3 keV argon. These effects are explained based on a combined work effective work function model and creation of a donor like surface damage layer. The donor layer was correlated with As depletion by sputtering. Deep level trap formation and annealing of sputtering effects were studied.

  18. Unified analytic representation of physical sputtering yield

    NASA Astrophysics Data System (ADS)

    Janev, R. K.; Ralchenko, Yu. V.; Kenmotsu, T.; Hosaka, K.

    2001-03-01

    Generalized energy parameter η= η( ɛ, δ) and normalized sputtering yield Ỹ(η) , where ɛ= E/ ETF and δ= Eth/ ETF, are introduced to achieve a unified representation of all available experimental and sputtering data at normal ion incidence. The sputtering data in the new Ỹ(η) representation retain their original uncertainties. The Ỹ(η) data can be fitted to a simple three-parameter analytic expression with an rms deviation of 32%, well within the uncertainties of original data. Both η and Ỹ(η) have correct physical behavior in the threshold and high-energy regions. The available theoretical data produced by the TRIM.SP code can also be represented by the same single analytic function Ỹ(η) with a similar accuracy.

  19. Effect of sputtering power on structure, adhesion strength and corrosion resistance of nitrogen doped diamond-like carbon thin films.

    PubMed

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on highly conductive p-Si substrates using a DC magnetron sputtering deposition system. The DLC:N films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement and micro-scratch test. The XPS and Raman results indicated that the sputtering power significantly influenced the properties of the films in terms of bonding configuration in the films. The corrosion performance of the DLC:N films was investigated in a 0.6 M NaCl solution by means of potentiodynamic polarization testing. It was found that the corrosion performance of the films could be enhanced by higher sputtering powers.

  20. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  1. Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.

    2018-05-01

    Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.

  2. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.

    PubMed

    Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian

    2009-12-21

    By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

  3. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development.

    PubMed

    Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R

    2018-06-07

    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  4. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.

    PubMed

    Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing

    2017-12-26

    ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.

  5. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    PubMed Central

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730

  6. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.

    2009-10-01

    As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.

  7. Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions

    NASA Astrophysics Data System (ADS)

    Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano

    2018-03-01

    In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.

  8. Spectral artefacts post sputter-etching and how to cope with them - A case study of XPS on nitride-based coatings using monoatomic and cluster ion beams

    NASA Astrophysics Data System (ADS)

    Lewin, Erik; Counsell, Jonathan; Patscheider, Jörg

    2018-06-01

    The issue of artefacts due to sputter-etching has been investigated for a group of AlN-based thin film materials with varying thermodynamical stability. Stability of the materials was controlled by alloying AlN with the group 14 elements Si, Ge or Sn in two different concentrations. The coatings were sputter-etched with monoatomic Ar+ with energies between 0.2 and 4.0 keV to study the sensitivity of the materials for sputter damage. The use of Arn+ clusters to remove an oxidised surface layer was also evaluated for a selected sample. The spectra were compared to pristine spectra obtained after in-vacuo sample transfer from the synthesis chamber to the analysis instrument. It was found that the all samples were affected by high energy (4 keV) Ar+ ions to varying degrees. The determining factors for the amount of observed damage were found to be the materials' enthalpy of formation, where a threshold value seems to exist at approximately -1.25 eV/atom (∼-120 kJ/mol atoms). For each sample, the observed amount of damage was found to have a linear dependence to the energy deposited by the ion beam per volume removed material. Despite the occurrence of sputter-damage in all samples, etching settings that result in almost artefact-free spectral data were found; using either very low energy (i.e. 200 eV) monoatomic ions, or an appropriate combination of ion cluster size and energy. The present study underlines that analysis post sputter-etching must be carried out with an awareness of possible sputter-induced artefacts.

  9. The effects of changing deposition conditions on the similarity of sputter-deposited fluorocarbon thin films to bulk PTFE

    NASA Astrophysics Data System (ADS)

    Zandona, Philip

    Solid lubrication of space-borne mechanical components is essential to their survival and the continued human exploration of space. Recent discoveries have shown that PTFE when blended with alumina nanofillers exhibits greatly improved physical performance properties, with wear rates being reduced by several orders of magnitude. The bulk processes used to produce the PTFE-alumina blends are limiting. Co-sputter deposition of PTFE and a filler material overcomes several of these limitations by enabling the reduction of particle size to the atomic level and also by allowing for the even coating of the solid lubricant on relatively large areas and components. The goal of this study was to establish a baseline performance of the sputtered PTFE films as compared to the bulk material, and to establish deposition conditions that would result in the most bulk-like film possible. In order to coax change in the structure of the sputtered films, sputtering power and deposition temperature were increased independently. Further, post-deposition annealing was applied to half of the deposited film in an attempt to affect change in the film structure. Complications in the characterization process due to increasing film thickness were also examined. Bulk-like metrics for characterization processes the included Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), nanoindentation via atomic force microscopy, and contact angle of water on surface measurements were established. The results of the study revealed that increasing sputtering power and deposition temperature resulted in an increase in the similarity between the fluorocarbon films and the bulk PTFE, at a cost of affecting the potential of the film thicknesses, either by affecting the deposition process directly, or by decreasing the longevity of the sputtering targets.

  10. Total and Differential Sputter Yields of Boron Nitride Measured by Quartz Crystal Microbalance (Preprint)

    DTIC Science & Technology

    2009-08-20

    Nomenclature As = QCM sensor area E = ion energy E* = characteristic energy describing the differential sputter yield profile shape Eth...We report differential and total sputter yields for several grades of BN at ion energies down to 60 eV, obtained with a QCM deposition sensor 3-7,9...personal computer with LabView is used for data logging. Detailed discussion of the QCM sensor is provided in subsection IIF. B. Definition of Angles

  11. Sputtering of sodium on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  12. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture

    NASA Astrophysics Data System (ADS)

    Polonskyi, Oleksandr; Peter, Tilo; Mohammad Ahadi, Amir; Hinz, Alexander; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2013-07-01

    Using reactive DC sputtering in a gas aggregation cluster source, we show that pulsed discharge gives rise to a huge increase in deposition rate of nanoparticles by more than one order of magnitude compared to continuous operation. We suggest that this effect is caused by an equilibrium between slight target oxidation (during "time-off") and subsequent sputtering of Ti oxides (sub-oxides) at "time-on" with high power impulse.

  13. As(III) Removal from Drinking Water by Carbon Nanotube Membranes with Magnetron-Sputtered Copper: Performance and Mechanisms.

    PubMed

    Luan, Hongyan; Zhang, Quan; Cheng, Guo-An; Huang, Haiou

    2018-06-20

    Current approaches for functionalizing carbon nanotubes (CNTs) often utilize harsh chemical conditions, and the resulting harmful wastes can cause various environmental and health concerns. In this study, magnetron sputtering technique is facilely employed to functionalize CNT membranes by depositing Cu onto premade CNT membranes without using any chemical treatment. A comparative evaluation of the substrate polymeric membrane (mixed cellulose ester (MCE)), MCE sputtered with copper (Cu/MCE), the pristine CNT membrane (CNT), and CNT membrane sputtered with Cu (Cu/CNT) shows that Cu/CNT possesses mechanically stable structures and similar membrane permeability as MCE. More importantly, Cu/CNT outperforms other membranes with high As(III) removal efficiency of above 90%, as compared to less than 10% by MCE and CNT, and 75% by Cu/MCE from water. The performance of Cu/CNT membranes for As(III) removal is also investigated as a function of ionic strength, sputtering time, co-existing ions, solution pH, and the reusability. Further characterizations of As speciation in the filtrate and on Cu/CNT reveal that arsenite removal by Cu/CNT possibly began with Cu-catalyzed oxidation of arsenite to arsenate, followed by adsorptive filtration of arsenate by the membrane. Overall, this study demonstrates that magnetron sputtering is a promising greener technology for the productions of metal-CNT composite membranes for environmental applications.

  14. Modeling of life limiting phenomena in the discharge chamber of an electron bombardment ion thruster

    NASA Technical Reports Server (NTRS)

    Handoo, Arvind K.; Ray, Pradosh K.

    1991-01-01

    An experimental facility to study the low energy sputtering of metal surfaces with ions produced by an ion gun is described. The energy of the ions ranged from 10 to 500 eV. Cesium ions with energies from 100 to 500 eV were used initially to characterize the operation of the ion gun. Next, argon and xenon ions were used to measure the sputtering yields of cobalt (Co), Cadmium (Cd), and Chromium (Cr) at an operating temperature of 2x10(exp -5) Torr. The ion current ranged from 0.0135 micro-A at 500 eV. The targets were electroplated on a copper substrate. The surface density of the electroplated material was approx. 50 micro-g/sq cm. The sputtered atoms were collected on an aluminum foil surrounding the target. Radioactive tracers were used to measure the sputtering yields. The sputtering yields of Cr were found to be much higher than those of Co and Cd. The yields of Co and Cd were comparable, with Co providing the higher yields. Co and Cd targets were observed to sputter at energies as low as 10 eV for both argon and xenon ions. The Cr yields could not be measured below 20 eV for argon ions and 15 eV for xenon ions. On a linear scale the yield energy curves near the threshold energies exhibit a concave nature.

  15. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  16. MD simulations of low energy deuterium irradiation on W, WC and W2C surfaces

    NASA Astrophysics Data System (ADS)

    Lasa, A.; Björkas, C.; Vörtler, K.; Nordlund, K.

    2012-10-01

    According to the present design beryllium (Be), tungsten (W) and carbon (C) will be the plasma facing materials in the ITER fusion reactor. Due to sputtering and subsequent re-deposition, mixing of these materials will occur. In this context, molecular dynamics simulations of cumulative, low energy and high flux D bombardment of pure W and tungsten carbides (WC, W2C) were carried out. The retention and sputtering properties as well as the structural deformation were analysed and comparisons to SDTrimSP simulations were made. Almost no tungsten is sputtered in the energy range considered and the D backscattering is lower in pure tungsten than in any of the tungsten carbides. In WC and W2C, the deuterium is mainly trapped forming small molecules, whereas mostly atomic D is present in pure W. The C sputtering increases with C content in the material, and shows a peak at the bombardment energy ˜50 eV, most likely due to the swift chemical sputtering mechanism. Pure W is seen to lose its crystallinity in the areas where D is present. After the D irradiation, the composition of both WC and W2C is mostly W in the topmost layers, due to preferential sputtering of C, an amorphous D-C mixture underneath and an undisturbed lattice in the rest of the cell.

  17. An experimental approach of decoupling Seebeck coefficient and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.

    2018-04-01

    The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.

  18. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  19. Development of Titanium-Sputtered Anodized Aluminum Substrates for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Côté, Marie-Pier; Parsi Benehkohal, Nima; Alpay, Neslihan; Demopoulos, George P.; Brochu, Mathieu

    2014-12-01

    In this study, anodized aluminum coupons are sputtered with titanium and successfully demonstrated as dye-sensitized solar cell (DSC) electrode substrates in both anode [back-illumination (BI)] and cathode [front-illumination (FI)] configurations. The FI DSCs were found to be significantly more efficient than the BI devices registering an average efficiency of 5.7 vs 2.6 pct. By comparison, the efficiency of benchmark cells built with fluorine-tin oxide-glass was 6.7 and 4.6 pct, respectively. The thickness of the titanium-sputtered film was varied from 0.85 to 1.1 μm with the latter providing a better average efficiency when used as a counter electrode. According to preliminary stability testing, the Ti-sputtered anodized aluminum-based DSC devices exhibited a significant reduction of their efficiency over a period of 10 days that was partly attributed to triiodide redox electrolyte reaction with the aluminum substrate. This points to the need for optimization of the sputtered-titanium coating microstructure in order to completely isolate the aluminum substrate from the liquid electrolyte.

  20. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less

  1. Study of electronic sputtering of CaF2 thin films

    NASA Astrophysics Data System (ADS)

    Pandey, Ratnesh K.; Kumar, Manvendra; Khan, Saif A.; Kumar, Tanuj; Tripathi, Ambuj; Avasthi, D. K.; Pandey, Avinash C.

    2014-01-01

    In the present work thin films of CaF2 deposited on Si substrate by electron beam evaporation have been investigated for swift heavy ions induced sputtering and surface modifications. Glancing angle X-ray Diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was performed to determine the sputter yield of CaF2 and a decrease in sputter yield has been observed with increase in film thickness. Thermal spike model has been applied to explain this. The confinement of energy in the grains having size smaller than the electron mean free path (λ) results in a higher sputtering yield. Atomic force microscopy (AFM) studies of irradiated CaF2 thin films show formation of cracks on film surface at a fluence of 5 × 1012 ions/cm2. Also RBS results confirm the removal of film from the surface and more exposure of substrate with increasing dose of ions.

  2. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  3. Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Clauson, S. L.

    1990-05-01

    Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.

  4. Investigation of buried homojunctions in p-InP formed during sputter deposition of both indium tin oxide and indium oxide

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Nelson, A. J.; Coutts, T. J.

    1990-01-01

    While dc magnetron sputter deposition of indium tin oxide leads to the formation of a buried homojunction in single crystal p-type InP, the mechanism of type conversion of the InP surface is not apparent. In view of the recent achievement of nearly 17-percent global efficiencies for cells fabricated solely by sputter deposition of In2O3, it is presently surmised that tin may not be an essential element in type conversion. A variety of electrical and optical techniques are presently used to evaluate the changes at both indium tin oxide/InP and indium oxide/InP interfaces. Such mechanisms as the passivation of acceptors by hydrogen, and sputter damage, are found to occur simultaneously.

  5. The structure and properties of pulsed dc magnetron sputtered nanocrystalline TiN films for electrodes of alkali metal thermal-to-electric conversion systems.

    PubMed

    Chun, Sung-Yong

    2013-03-01

    Titanium nitride films used as an important electrode material for the design of alkali metal thermal-to-electric conversion (AMTEC) system have been prepared using dc (direct current) and asymmetric-bipolar pulsed dc magnetron sputtering. The pulse frequency and the duty cycle were varied from 5 to 50 kHz and 50 to 95%, respectively. The deposition rate, grain size and resistivity of pulsed dc sputtered films were decreased when the pulse frequency increased, while the nano hardness of titanium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, resistivity and hardness). Our studies show that titanium nitride coatings with superior properties can be prepared using asymmetric-bipolar pulsed dc sputtering.

  6. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  7. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai

    2016-12-01

    Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  8. Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material

    NASA Technical Reports Server (NTRS)

    Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce

    2002-01-01

    The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.

  9. Aging behavior of near atmospheric N2 ambient sputtered/patterned Au IR absorber thin films

    NASA Astrophysics Data System (ADS)

    Gaur, Surender P.; Kothari, Prateek; Rangra, Kamaljit; Kumar, Dinesh

    2018-03-01

    Near atmospheric N2 ambient sputtered Au thin films exhibit significant spectral absorptivity over medium to long wave infrared radiations. Thin films were found adequately robust for micropatterning using conventional photolithography and metal lift off processes. Since long term spectral absorptivity is major practical concern for Au blacks, this paper reports on aging behavior of near atmospheric Ar and Ar + N2 (1:1) ambient sputtered infrared absorber Au thin films. Comparative analysis on electrical, morphological and spectral absorption behavior of twenty-five weeks room temperature/vacuum aged Au infrared absorber thin films is performed. The Ar and Ar + N2 ambient sputtered Au thing films have shown anticipated consistency in their physical, electrical and spectral properties regardless the long term aging in this work.

  10. NREL-Led Research Effort Creates New Alloys, Phase Diagram | News | NREL

    Science.gov Websites

    example of what happens when you bring different institutions with different capabilities together," oxide (ZnO), even though their atomic structures are very different. The new alloy will absorb a deposition and magnetron sputtering. Neither method required such high temperatures. "We show that

  11. Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.

    2018-03-01

    In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.

  12. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    NASA Astrophysics Data System (ADS)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  13. Annealing dependence on flexible p-CuGaO2/n-ZnO heterojunction diode deposited by RF sputtering method

    NASA Astrophysics Data System (ADS)

    Li Lam, Mui; Hafiz Abu Bakar, Muhammad; Lam, Wai Yip; Alias, Afishah; Rahman, Abu Bakar Abd; Anuar Mohamad, Khairul; Uesugi, Katsuhiro

    2017-11-01

    In this work, p-CuGaO2/n-ZnO heterojunction diodes were deposited by RF powered sputtering method on polyethylene terephthalate (PETP, PET) substrates. Structural, morphology, optical and electrical properties of CuGaO2/ZnO heterojunction was investigated as a function of annealing duration. The structural properties show the ZnO films (002) peak were stronger at the range of 34° while CuGaO2 (015) peak is not visible at 44°. The surface morphology revealed that RMS roughness become smoother as the annealing duration increase to 30 minutes and become rougher as the annealing duration is increased to 60 minutes. The optical properties of CuGaO2/ZnO heterojunction diode at 30 minutes exhibit approximately 75% optical transmittance in the invisible region. The diodes exhibited a rectifying characteristic and the maximum forward current was observed for the diode annealed for 30 minutes. The diodes show an ideality factor range from 43.69 to 71.29 and turn on voltage between 0.75 V and 1.05 V.

  14. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  15. Studies of the Cr-CrN coating characteristics formed by means of the magnetron sputtering method from bulk target

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-07-01

    The paper presents the study’s results of ion-plasma chromium based coating characteristics produced on blade steel samples 12Kh13 and EI961 by means of the magnetron sputtering method from the bulk “hot” target. A set of metallographic studies and erosion tests of coatings were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. Cr-CrN based coatings have a layered structure; thickness of intermediate Cr layers ranges from 0.7 to 1.7 μm, thickness of nitride layers CrN ranges from 1.5 to 4 μm, while the overall coating thickness is 17.0-21.5 μm coating microhardness is 1830-1880 HV0.05. The resulting coatings are found to increase 1.5 times the incubation period duration of erosion wear for steels 12Kh13 and EI961; they reduce the maximum erosion rate 1.3 times, and the steady erosion rate - 1.5 times.

  16. A new method of nanocrystalline nickel powder formation by magnetron sputtering on the water-soluble substrates

    NASA Astrophysics Data System (ADS)

    Tučkutė, S.; Urbonavičius, M.; Lelis, M.; Maiorov, M.; Díaz Ordaz, J. R.; Milčius, D.

    2018-01-01

    Due to the accurate and relatively easy control magnetron sputtering is an attractive technique for the synthesis of metallic particles. This work describes a new method of nickel powder production by depositing nickel on the surface of sodium chloride particles which were used as the template and are soluble in water. Ni powder with flake-like structure was obtained after washing Ni coated salt particles in ultrasonic cleaner. Salt particles and nickel powder were characterized using scanning electron microscope (SEM), energy-dispersive x-ray spectrometer, XRD and X-ray photoelectron spectroscopy (XPS) techniques. SEM images showed that thickness of the received Ni particles varied in the nanoscale and depended on the magnetron deposition time but did not depend on the size of salt particles. On the other hand initial size of the salt particles was successfully employed a measure to control lateral dimensions of Ni powder. XRD and XPS analysis results revealed that Ni particles had metallic core and oxidized shell which was a cause of the slightly deteriorated magnetic properties.

  17. Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Rodgers, S.; Jensen, K. F.

    2000-07-01

    A general method for modeling ionized physical vapor deposition is presented. As an example, the method is applied to growth of an aluminum film in the presence of an ionized argon flux. Molecular dynamics techniques are used to examine the surface adsorption, reflection, and sputter reactions taking place during ionized physical vapor deposition. We predict their relative probabilities and discuss their dependence on energy and incident angle. Subsequently, we combine the information obtained from molecular dynamics with a line of sight transport model in a two-dimensional feature, incorporating all effects of reemission and resputtering. This provides a complete growth rate model that allows inclusion of energy- and angular-dependent reaction rates. Finally, a level-set approach is used to describe the morphology of the growing film. We thus arrive at a computationally highly efficient and accurate scheme to model the growth of thin films. We demonstrate the capabilities of the model predicting the major differences on Al film topographies between conventional and ionized sputter deposition techniques studying thin film growth under ionized physical vapor deposition conditions with different Ar fluxes.

  18. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    PubMed

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  19. Composition of RF-sputtered refractory compounds determined by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    RF-sputtered coatings of CrB2, MoSi2, Mo2C, TiC, and MoS2 were examined by X-ray photoelectron spectroscopy (XPS). Data on stoichiometry, impurity content, and chemical bonding were obtained. The influences of sputtering target history, deposition time, RF power level, and substrate bias were studied. Significant deviations from stoichiometry and high oxide levels were related to target outgassing. The effect of substrate bias depended on the particular coating material studied.

  20. Solid Lubricated Rolling Element Bearings

    DTIC Science & Technology

    1980-02-15

    ball paths (as received), at various SEM magnifications and EDX scrutiny 17 i. ■.- ■■ ••.■■ ■? • r 8. TMI TiC/MoS^ sputtered...MoS? removed with Oakite 126 HD), at various SEM magmtications and EDX scrutiny 19 10. TMI TiC/MoS^ sputtered 52100 gyro bearing inner race...ball path (MoS^ removed with Oakite 126 HD), at various SEM magnifications and EDX scrutiny 20 11. TMI TiC/MoS^ sputtered 52100 gyro bearing

Top