Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist
Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.; ...
2016-10-04
Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less
Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.
Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less
Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J
2017-02-01
Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.
Advances in sputtered and ion plated solid film lubrication
NASA Technical Reports Server (NTRS)
Spalvins, T.
1985-01-01
The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.
Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection
NASA Technical Reports Server (NTRS)
Spalvins, T.
1982-01-01
The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.
Plasma deposition and surface modification techniques for wear resistance
NASA Technical Reports Server (NTRS)
Spalvins, T.
1982-01-01
The ion-assisted or plasma coating technology is discussed as it applies to the deposition of hard, wear resistant refractory compound films. Of the many sputtering and ion plating modes and configurations the reactive magnetron sputtering and the reactive triode ion plating techniques are the preferred ones to deposit wear resistant coatings for tribological applications. Both of these techniques incorporate additional means to enhance the ionization efficiency and chemical reaction to precision tailor desirable tribological characteristics. Interrelationships between film formation, structure, and ribological properties are strictly controlled by the deposition parameters and the substrate condition. The enhanced ionization contributes to the excellent adherence and coherence, reduced internal stresses and improved structural growth to form dense, cohesive, equiaxed grain structure for improved wear resistance and control.
One-dimensional analysis of the rate of plasma-assisted sputter deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmero, A.; Rudolph, H.; Habraken, F. H. P. M.
2007-04-15
In this article a recently developed model [A. Palmero, H. Rudolph, and F. H. P. M. Habraken, Appl. Phys. Lett. 89, 211501 (2006)] is applied to analyze the transport of sputtered material from the cathode toward the growing film when using a plasma-assisted sputtering deposition technique. The argon pressure dependence of the deposition rate of aluminum, silicon, vanadium, chromium, germanium, tantalum, and tungsten under several different experimental conditions has been analyzed by fitting experimental results from the literature to the above-mentioned theory. Good fits are obtained. Three quantities are deduced from the fit: the temperature of the cathode and ofmore » the growing film, and the value of the effective cross section for thermalization due to elastic scattering of a sputtered particle on background gas atoms. The values derived from the fits for the growing film and cathode temperature are very similar to those experimentally determined and reported in the literature. The effective cross sections have been found to be approximately the corresponding geometrical cross section divided by the average number of collisions required for the thermalization, implying that the real and effective thermalization lengths have a similar value. Finally, the values of the throw distance appearing in the Keller-Simmons model, as well as its dependence on the deposition conditions have been understood invoking the values of the cathode and film temperature, as well as of the value of the effective cross section. The analysis shows the overall validity of this model for the transport of sputtered particles in sputter deposition.« less
Plasma-assisted physical vapor deposition surface treatments for tribological control
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1990-01-01
In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.
Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering
NASA Astrophysics Data System (ADS)
Anders, André; Yushkov, Georgy Yu.
2009-04-01
A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.
Sputtering. [as deposition technique in mechanical engineering
NASA Technical Reports Server (NTRS)
Spalvins, T.
1976-01-01
This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.
Barshilia, Harish C.; Chaudhary, Archana; Kumar, Praveen; Manikandanath, Natarajan T.
2012-01-01
The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). PMID:28348296
Au coated PS nanopillars as a highly ordered and reproducible SERS substrate
NASA Astrophysics Data System (ADS)
Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.
2017-07-01
Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.
Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach
NASA Astrophysics Data System (ADS)
Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel
2017-12-01
Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.
ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken
Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less
Generalized Keller-Simmons formula for nonisothermal plasma-assisted sputtering depositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmero, A.; Rudolph, H.; Habraken, F. H. P. M.
2006-11-20
A general description of the relation between the sputtering rate and the deposition rate in plasma-assisted sputtering deposition has been developed. The equation derived yields the so-called Keller-Simmons [IBM J. Res. Dev. 23, 24 (1979)] formula in the limit of zero thermal gradients in the deposition system. It is shown that the Keller-Simmons formula can still be applied to fit the experimental results if the characteristic pressure-distance product, p{sub 0}L{sub 0}, is related to the temperature of the sputter cathode and the growing film. Using this relation, it is found that the variations in the values for p{sub 0}L{sub 0}more » for different experimental conditions agree with the thus far not well understood experimental trends reported in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra
2012-11-01
This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
Plasma assisted surface coating/modification processes - An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1987-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Plasma assisted surface coating/modification processes: An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1986-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung
2008-05-01
Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.
Ion beam and dual ion beam sputter deposition of tantalum oxide films
NASA Astrophysics Data System (ADS)
Cevro, Mirza; Carter, George
1994-11-01
Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction method.
Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films
NASA Astrophysics Data System (ADS)
Cevro, Mirza; Carter, George
1995-02-01
Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.
Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrasonis, G.; Gago, R.; Jimenez, I.
2005-10-01
Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas.more » The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.« less
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi
2018-01-01
The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.
Development of ion beam sputtering techniques for actinide target preparation
NASA Astrophysics Data System (ADS)
Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.
1985-06-01
Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.
Low-Damage Sputter Deposition on Graphene
NASA Astrophysics Data System (ADS)
Chen, Ching-Tzu; Casu, Emanuele; Gajek, Marcin; Raoux, Simone
2013-03-01
Despite its versatility and prevalence in the microelectronics industry, sputter deposition has seen very limited applications for graphene-based electronics. We have systematically investigated the sputtering induced graphene defects and identified the reflected high-energy neutrals of the sputtering gas as the primary cause of damage. In this talk, we introduce a novel sputtering technique that is shown to dramatically reduce bombardment of the fast neutrals and improve the structural integrity of the underlying graphene layer. We also demonstrate that sputter deposition and in-situ oxidation of 1 nm Al film at elevated temperatures yields homogeneous, fully covered oxide films with r.m.s. roughness much less than 1 monolayer, which shows the potential of using such technique for gate oxides, tunnel barriers, and multilayer fabrication in a wide range of graphene devices.
Simultaneous ion sputter polishing and deposition
NASA Technical Reports Server (NTRS)
Rutledge, S.; Banks, B.; Brdar, M.
1981-01-01
Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murzin, I.H.; Tompa, G.S.; Wei, J.
The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able tomore » synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.« less
Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System
NASA Astrophysics Data System (ADS)
Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago
2018-02-01
The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.
One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita
In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.L.; Zheng, F.; Fei, W.D.
2006-01-15
Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1978-01-01
A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.
NASA Astrophysics Data System (ADS)
Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini
2011-12-01
Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.
The characteristics of a new negative metal ion beam source and its applications
NASA Astrophysics Data System (ADS)
Paik, Namwoong
2001-10-01
Numerous efforts at energetic thin film deposition processes using ion beams have been made to meet the demands of today's thin film industry. As one of these efforts, a new Magnetron Sputter Negative Ion Source (MSNIS) was developed. In this study, the development and the characterization of the MSNIS were investigated. Amorphous carbon films were used as a sample coating medium to evaluate the ion beam energy effect. A review of energetic Physical Vapor Deposition (PVD) techniques is presented in Chapter 1. The energetic PVD methods can be classified into two major categories: the indirect ion beam method Ion Beam Assisted Deposition (IBAD), and the direct ion beam method-Direct Ion Beam Deposition (DIBD). In this chapter, currently available DIBD processes such as Cathodic Arc, Laser Ablation, Ionized Physical Vapor Deposition (I-PVD) and Magnetron Sputter Negative Ion Source (MSNIS) are individually reviewed. The design and construction of the MSNIS is presented in chapter 2. The MSNIS is a hybrid of the conventional magnetron sputter configuration and the cesium surface ionizer. The negative sputtered ions are produced directly from the sputter target by surface ionization. In chapter 3, the ion beam and plasma characteristics of an 8″ diameter MSNIS are investigated using a retarding field analyzer and a cylindrical Langmuir Probe. The measured electron temperature is approximately 2-5 eV, while the plasma density and plasma potential were of the order of 10 11-1012 cm3 and 5-20 V, respectively, depending on the pressure and power. In chapter 4, in order to evaluate the effect of the ion beam on the resultant films, amorphous carbon films were deposited under various conditions. The structure of carbon films was investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The result suggests the fraction of spa bonding is more than 70% in some samples prepared by MSNIS while magnetron sputtered samples showed less than 30%. (Abstract shortened by UMI.)
Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi
2016-01-01
Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.
Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias
NASA Technical Reports Server (NTRS)
Przybyszewski, J. S.; Shaltens, R. K. (Inventor)
1973-01-01
The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony
2012-07-15
The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
Low-damage high-throughput grazing-angle sputter deposition on graphene
NASA Astrophysics Data System (ADS)
Chen, C.-T.; Casu, E. A.; Gajek, M.; Raoux, S.
2013-07-01
Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.
2015-04-01
Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.
Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu
2007-10-01
To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.
Metal-assisted chemical etching using sputtered gold: a simple route to black silicon
NASA Astrophysics Data System (ADS)
Kurek, Agnieszka; Barry, Seán T.
2011-08-01
We report an accessible and simple method of producing 'black silicon' with aspect ratios as high as 8 using common laboratory equipment. Gold was sputtered to a thickness of 8 nm using a low-vacuum sputter coater. The structures were etched into silicon substrates using an aqueous H2O2/HF solution, and the gold was then removed using aqua regia. Ultrasonication was necessary to produce columnar structures, and an etch time of 24 min gave a velvety, non-reflective surface. The surface features after 24 min etching were uniformly microstructured over an area of square centimetres.
Low Cost High Performance Phased Array Antennas with Beam Steering Capabilities
2009-12-01
characteristics of BSTO, the RF vacuum sputtering technique has been used and we investigated effects of sputtering parameters such as substrate...sputtering parameters , various sets of BSTO films have been deposited on different substrates and various size of CPW phase shifters have been fabricated...measurement of phase shifter 18 4. Optimization of the sputtering parameters for BSTO deposition 19 4.1 The first BSTO film sample 20 4.2 The second BSTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, T.
This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (requiredmore » annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.« less
Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2014-01-13
Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.
Forensic analysis of latent fingermarks by silver-assisted LDI imaging MS on nonconductive surfaces.
Lauzon, N; Dufresne, M; Beaudoin, A; Chaurand, P
2017-06-01
Silver-assisted laser desorption ionization (AgLDI) imaging mass spectrometry (IMS) has been demonstrated to be a useful technology for fingermark analysis allowing for the detection of several classes of endogenous as well as exogenous compounds. Ideally, in IMS analyses, the fingermarks are deposited under controlled conditions on metallized conductive target slides. However, in forensic investigations, fingermarks are often found on a variety of nonconductive surfaces. A sputtered silver layer renders the target surface conductive, which allows the analyses of insulating surfaces by time-of-flight IMS. Ultimately, the major consideration when developing analytical methods for the analysis of latent fingermarks is their capability to be incorporated within forensic standard operational procedures. To demonstrate the potential of AgLDI IMS for forensic applications, fingermarks deposited on nonconductive surfaces commonly found during an investigation, including paper, cardboard, plastic bags and lifting tape, were first revealed by the Sûreté du Québec by using forensic enhancement techniques prior to the IMS analyses. Numerous endogenous compounds including fatty acids, cholesterol, squalene, wax esters, triglycerides and several exogenous substances were detected and imaged. Here, we show that silver sputtering can provide visual enhancements of fingerprint patterns after FET procedures through different scenarios in which AgLDI IMS can contribute to forensic investigations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, André
High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less
Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
Anders, André
2017-03-21
High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.« less
Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
NASA Astrophysics Data System (ADS)
Anders, André
2017-05-01
High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.
Development of sputtered techniques for thrust chambers
NASA Technical Reports Server (NTRS)
Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.
1975-01-01
Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.
A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Garvin, H. L.
1982-01-01
The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.
NASA Astrophysics Data System (ADS)
Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan
2016-12-01
A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.
Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E
2001-01-01
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.
Ion beam sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1976-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.
Ion-beam-sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1977-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.
NASA Technical Reports Server (NTRS)
Gregg, R.; Tombrello, T. A.
1978-01-01
Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.
NASA Astrophysics Data System (ADS)
Wang, Zhaoyong; Hu, Xing; Yao, Ning
2015-03-01
At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.
NASA Astrophysics Data System (ADS)
Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.
2018-02-01
The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.
Physical Vapor Deposition of Thin Films
NASA Astrophysics Data System (ADS)
Mahan, John E.
2000-01-01
A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam
Xenon Sputter Yield Measurements for Ion Thruster Materials
NASA Technical Reports Server (NTRS)
Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.
2003-01-01
In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.
Low-Energy Sputtering Research
NASA Technical Reports Server (NTRS)
Ray, P. K.; Shutthanandan, V.
1999-01-01
An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.
Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect
NASA Astrophysics Data System (ADS)
He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.
1998-02-01
Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.
Mixed composition materials suitable for vacuum web sputter coating
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Dever, Joyce A.; Bruckner, Eric J.; Walters, Patricia; Hambourger, Paul D.
1996-01-01
Ion beam sputter deposition techniques were used to investigate simultaneous sputter etching of two component targets so as to produce mixed composition films. Although sputter deposition has been largely confined to metals and metal oxides, at least one polymeric material, poly-tetra-fluorethylene, has been demonstrated to produce sputtered fragments which repolymerize upon deposition to produce a highly cross-linked fluoropolymer resembling that of the parent target Fluoropolymer-filled silicon dioxide and fluoropolymer-filled aluminum oxide coatings have been deposited by means of ion beam sputter coat deposition resulting in films having material properties suitable for aerospace and commercial applications. The addition of fluoropolymer to silicon dioxide films was found to increase the hydrophobicity of the resulting mixed films; however, adding fluoropolymer to aluminum oxide films resulted in a reduction in hydrophobicity, thought to be caused by aluminum fluoride formation.
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun
2016-02-01
Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.
Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region
NASA Technical Reports Server (NTRS)
Handoo, A. K.; Ray, P. K.
1993-01-01
Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.
Energy spectrum of sputtered uranium - A new technique
NASA Technical Reports Server (NTRS)
Weller, R. A.; Tombrello, T. A.
1978-01-01
The fission track technique for detecting U-235 has been used in conjunction with a mechanical time-of-flight spectrometer in order to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E exp -1.77 for E not less than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the random collision cascade model of sputtering.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
Gago, R; Jaafar, M; Palomares, F J
2018-07-04
The surface morphology of molybdenum silicide (Mo x Si 1-x ) films has been studied after low-energy Ar + ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si 1-x films with compositions below, equal and above the MoSi 2 stoichiometry (x = 0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si 1-x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si 1-x . Contrary to silicon, Mo x Si 1-x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si 1-x films with 1 keV Ar + at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si 1-x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si 1-x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.
NASA Astrophysics Data System (ADS)
Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen
2012-10-01
Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.
NASA Astrophysics Data System (ADS)
Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.
2016-07-01
The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).
Influence of in-situ ion-beam sputter cleaning on the conditioning effect of vacuum gaps
NASA Astrophysics Data System (ADS)
Kobayashi, Shinichi; Kojima, Hiroyuki; Saito, Yoshio
1994-05-01
An ion beam sputtering technique was used to clean the electrode surfaces of vacuum gaps. Ions of the sputtering gas were irradiated by means of an ion gun in a vacuum chamber attached to a breakdown measurement chamber. By providing in situ ion-beam sputter cleaning, this system makes it possible to make measurements free from contamination due to exposure to the air. The sputtering gas was He or Ar, and the electrodes were made of oxygen-free copper (purity more than 99.96%). An impulse voltage with the wave form of 64/700 microsecond(s) was applied to the test gap, and the pressure in the breakdown measurement chamber at the beginning of breakdown tests was 1.3 X 10-8 Pa. These experiments showed that ion-beam sputter cleaning results in higher breakdown fields after a repetitive breakdown conditioning procedure, and that He is more effective in improving hold- off voltages after the conditioning (under the same ion current density, the breakdown field was 300 MV/m for He sputtering and 200 MV/m for Ar sputtering). The breakdown fields at the first voltage application after the sputtering cleaning, on the other hand, were not improved.
NASA Astrophysics Data System (ADS)
Sudheer, Mukherjee, C.; Rai, S. K.; Rai, V. N.; Srivastava, A. K.
2018-04-01
Instability in morphological and optical properties of sputtered grown percolated gold (Au) film has been experimentally investigated during ambient aging. Optical absorbance of the film recorded at various stage of aging shows huge variation in the spectra. A schematic is drawn to explain aging-assist evolution in the morphology (dewetting) and correlated with the variation in optical properties. The validity of model is confirmed by X-ray reflectivity (XRR) techniques, performed for both as-deposited and aged samples. Furthermore, change in the color of Au thin film with aging also seen in the photographic images of the samples that also support the absorbance and XRR results.
NASA Astrophysics Data System (ADS)
Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun
2011-12-01
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.
NASA Technical Reports Server (NTRS)
Hudson, W. R.
1976-01-01
A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
High density circuit technology
NASA Technical Reports Server (NTRS)
Wade, T. E.
1979-01-01
Polyimide dielectric materials were acquired for comparative and evaluative studies in double layer metal processes. Preliminary experiments were performed. Also, the literature indicates that sputtered aluminum films may be successfully patterned using the left-off technique provided the substrate temperature remains low and the argon pressure in the chamber is relatively high at the time of sputtering. Vendors associated with dry processing equipment are identified. A literature search relative to future trends in VLSI fabrication techniques is described.
Thin film characterization by laser interferometry combined with SIMS
NASA Astrophysics Data System (ADS)
Kempf, J.; Nonnenmacher, M.; Wagner, H. H.
1988-10-01
Thin film properties of technologically important materials (Si, GaAs, SiO2, WSix) have been measured by using a novel technique that combines secondary ion mass spectrometry (SIMS) and laser interferometry. The simultaneous measurement of optical phase and reflectance as well as SIMS species during ion sputtering yielded optical constants, sputtering rates and composition of thin films with high depth resolution. A model based on the principle of multiple reflection within a multilayer structure, which considered also transformation of the film composition in depth and time during sputtering, was fitted to the reflectance and phase data. This model was applied to reveal the transformation of silicon by sputtering with O{2/+} ions. Special attention was paid to the preequilibrium phase of the sputter process (amorphization, oxidation, and volume expansion). To demonstrate the analytical potential of our method the multilayer system WSix/poly-Si/SiO2/Si was investigated. The physical parameters and the stoichiometry of tungsten suicide were determined for annealed as well as deposited films. A highly sensitive technique that makes use of a Fabry-Perot etalon integrated with a Michelson type interferometer is proposed. This two-stage interferometer has the potential to profile a sample surface with subangstroem resolution.
NASA Technical Reports Server (NTRS)
Williams, John D.; Johnson, Mark L.; Williams, Desiree D.
2003-01-01
A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .
Surface acoustic wave/silicon monolithic sensor/processor
NASA Technical Reports Server (NTRS)
Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.
1983-01-01
A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
Development of RF sputtered chromium oxide coating for wear application
NASA Technical Reports Server (NTRS)
Bhushan, B.
1979-01-01
The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
Highly ionized physical vapor deposition plasma source working at very low pressure
NASA Astrophysics Data System (ADS)
Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.
2012-04-01
Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.
Atomic force microscopy study on topography of films produced by ion-based techniques
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.
1996-09-01
The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.
Xu, Libin; Kliman, Michal; Forsythe, Jay G.; Korade, Zeljka; Hmelo, Anthony B.; Porter, Ned A.; McLean, John A.
2015-01-01
Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10–25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol+Ag]+ and [7-DHC+Ag]+ signals while minimizing dehydrogenation products ([M+Ag-2H]+). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC+107Ag]+) and 495 (specific for [cholesterol+109Ag]+) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro. PMID:25822928
NASA Astrophysics Data System (ADS)
Xu, Libin; Kliman, Michal; Forsythe, Jay G.; Korade, Zeljka; Hmelo, Anthony B.; Porter, Ned A.; McLean, John A.
2015-06-01
Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10-25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol + Ag]+ and [7-DHC + Ag]+ signals while minimizing dehydrogenation products ([M + Ag-2H]+). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC + 107Ag]+) and 495 (specific for [cholesterol + 109Ag]+) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro.
Processing of sputter targets using current activated pressure assisted densification
NASA Astrophysics Data System (ADS)
Chaney, Neil Russell
Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.
Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films
NASA Astrophysics Data System (ADS)
Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo
2012-08-01
Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.
NASA Astrophysics Data System (ADS)
Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.
2018-06-01
All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.
Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Gago, R.; Jaafar, M.; Palomares, F. J.
2018-07-01
The surface morphology of molybdenum silicide (Mo x Si1‑x ) films has been studied after low-energy Ar+ ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si1‑x films with compositions below, equal and above the MoSi2 stoichiometry (x = 0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si1‑x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si1‑x . Contrary to silicon, Mo x Si1‑x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si1‑x films with 1 keV Ar+ at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si1‑x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si1‑x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.
Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinks, J. A.; Hibberd, F.; Hattar, K.
Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less
Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin
2014-12-10
Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.
Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods
Hinks, J. A.; Hibberd, F.; Hattar, K.; ...
2018-01-11
Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less
Masking technique for coating thickness control on large and strongly curved aspherical optics.
Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L
2009-07-01
We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Rahman, Z.; Keller, L. P.
2012-01-01
As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here we report on a novel design for simulating solar ion sputter deposition in the lunar regolith, with characterization of the resulting sputter deposits by an array of advanced analytical TEM techniques.
Experimental determination of positron-related surface characteristics of 6H-SiC
NASA Astrophysics Data System (ADS)
Nangia, A.; Kim, J. H.; Weiss, A. H.; Brauer, G.
2002-03-01
The positron work function of 6H-SiC was determined to be -2.1±0.1 eV from an analysis of the energy spectrum of positrons reemitted from the surface. The positron reemission yield, highest in the sample inserted into vacuum after atmospheric exposure and cleaning with ethanol, was significantly reduced after sputtering with 3 keV, 125 μA min Ne+ ions. The yield was not recovered even after annealing at 900 °C, presumably due to the stability of sputter induced defects. Sputtering at lower energies caused a smaller decrease in the reemission yield that was largely recovered after annealing at 850 °C. Analysis using electron induced Auger electron spectroscopy and positron-annihilation-induced Auger electron spectroscopy indicated that the surface was Si enriched after sputtering and C enriched after subsequent annealing. Values of positron diffusion length and mobility in the unsputtered material were extracted from the dependence of the reemission yield on the beam energy. The application of SiC as a field-assisted positron moderator is discussed.
Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.
Ishida, Yohei; Corpuz, Ryan D; Yonezawa, Tetsu
2017-12-19
Noble metal nanoclusters are believed to be the transition between single metal atoms, which show distinct optical properties, and metal nanoparticles, which show characteristic plasmon absorbance. The interesting properties of these materials emerge when the particle size is well below 2 nm, such as photoluminescence, which has potential application particularly in biomedical fields. These photoluminescent ultrasmall nanoclusters are typically produced by chemical reduction, which limits their practical application because of the inherent toxicity of the reagents used in this method. Thus, alternative strategies are sought, particularly in terms of physical approaches, which are known as "greener alternatives," to produce high-purity materials at high yields. Thus, a new approach using the sputtering technique was developed. This method was initially used to produce thin films using solid substrates; now it can be applied even with liquid substrates such as ionic liquids or polyethylene glycol as long as these liquids have a low vapor pressure. This revolutionary development has opened up new areas of research, particularly for the synthesis of colloidal nanoparticles with dimensions below 10 nm. We are among the first to apply the sputtering technique to the physical synthesis of photoluminescent noble metal nanoclusters. Although typical sputtering systems have relied on the effect of surface composition and viscosity of the liquid matrix on controlling particle diameters, which only resulted in diameters ca. 3-10 nm, that were all plasmonic, our new approach introduced thiol molecules as stabilizers inspired from chemical methods. In the chemical syntheses of metal nanoparticles, controlling the concentration ratio between metal ions and stabilizing reagents is a possible means of systematic size control. However, it was not clear whether this would be applicable in a sputtering system. Our latest results showed that we were able to generically produce a variety of photoluminescent monometallic nanoclusters of Au, Ag, and Cu, all of which showed stable emission in both solution and solid form via our matrix sputtering method with the induction of cationic-, neutral-, and anionic-charged thiol ligands. We also succeeded in synthesizing photoluminescent bimetallic Au-Ag nanoclusters that showed tunable emission within the UV-NIR region by controlling the composition of the atomic ratio by a double-target sputtering technique. Most importantly, we have revealed the formation mechanism of these unique photoluminescent nanoclusters by sputtering, which had relatively larger diameters (ca. 1-3 nm) as determined using TEM and stronger emission quantum yield (max. 16.1%) as compared to typical photoluminescent nanoclusters prepared by chemical means. We believe the high tunability of sputtering systems presented here has significant advantages for creating novel photoluminescent nanoclusters as a complementary strategy to common chemical methods. This Account highlights our journey toward understanding the photophysical properties and formation mechanism of photoluminescent noble metal nanoclusters via the sputtering method, a novel strategy that will contribute widely to the body of scientific knowledge of metal nanoparticles and nanoclusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruth, A.; Manno, M.; Narasimhan, D.
2012-09-01
Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, wemore » report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.« less
The structure of biocoats based on TiO2 doped with nitrogen study
NASA Astrophysics Data System (ADS)
Boytsova, E. L.; Leonova, L. A.; Pichugin, V. F.
2018-04-01
Nitrogen-doped titanium dioxide (N-TiO2) nanofilms were deposited by reactive magnetron sputtering under different bias voltage. The mode of sputtering influences to formation and properties of titanium films. X-ray diffraction (XRD) was used to study the phase transition and crystallinity of the nanofilms. A technique of layer-by-layer measurement of Raman scattering from nanostructured titanium dioxide films based on a preliminary sputtering of the films by argon beam under an angle of 45° and less has been developed. Experimentally confirmed low dissolution rate of the coating in NaCl saline (0.9%).
NASA Astrophysics Data System (ADS)
Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.
2010-10-01
Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1977-01-01
It was found that ion beam texturing of silicon surfaces can be used to increase the effective surface area of MOS capacitors. There is, however, a problem with low dielectric breakdown. Preliminary work was begun on the fabrication of ion implanted resistors on textured surfaces and the potential improvement of wire bond strength by bonding to a textured surface. In the area of ion beam sputtering, the techniques for sputtering PVC were developed. A PVC target containing valinomycin was used to sputter an ion selective membrane on a field effect transistor to form a potassium ion sensor.
NASA Technical Reports Server (NTRS)
Gessert, T. A.; Li, X.; Wanlass, M. W.; Nelson, A. J.; Coutts, T. J.
1990-01-01
While dc magnetron sputter deposition of indium tin oxide leads to the formation of a buried homojunction in single crystal p-type InP, the mechanism of type conversion of the InP surface is not apparent. In view of the recent achievement of nearly 17-percent global efficiencies for cells fabricated solely by sputter deposition of In2O3, it is presently surmised that tin may not be an essential element in type conversion. A variety of electrical and optical techniques are presently used to evaluate the changes at both indium tin oxide/InP and indium oxide/InP interfaces. Such mechanisms as the passivation of acceptors by hydrogen, and sputter damage, are found to occur simultaneously.
ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO
NASA Technical Reports Server (NTRS)
Coutts, T. J.
1987-01-01
This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.
NASA Astrophysics Data System (ADS)
Jean, Ming-Der; Jiang, Ji-Bin; Chien, Jia-Yi
2017-11-01
The purpose of this study was to construct the indicators of professional competencies of the nanotechnology-based sputtering system industry based on industry requirements and analyse the core competencies of the industry for promoting the human resource of physical vapour deposition technology. The document analysis, expert interview, and Delphi technique surveys were considered and the survey items with 32 items divided into 7 domains were selected according to consensus opinions of 10 experts by the Delphi survey technique. Through three questionnaire surveys' analysis, the professional competence scales for the K-S tests showed a good internal consistency. The findings of this study provide guidelines for professional competence for nanotechnology-based sputtering technology by applying surface heat-treatment industry. These guidelines can also reveal the practical competency requirements of nanotechnology-based sputtering technology to deal with any subsequent challenges, future developments, and invisible services for students in a technology institute programme.
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping
2014-04-01
Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering
NASA Astrophysics Data System (ADS)
John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard
2018-05-01
The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.
Laser-Induced Fluorescence Helps Diagnose Plasma Processes
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.
1994-01-01
Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.
2010-02-01
Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.
Srikanth, B; Goutham, R; Badri Narayan, R; Ramprasath, A; Gopinath, K P; Sankaranarayanan, A R
2017-09-15
The aim of this paper is to provide a review on the usage of different anchoring media (supports) for immobilising commonly employed photocatalysts for degradation of organic pollutants. The immobilisation of nano-sized photocatalysts can eliminate costly and impractical post-treatment recovery of spent photocatalysts in largescale operations. Some commonly employed immobilisation aids such as glass, carbonaceous substances, zeolites, clay and ceramics, polymers, cellulosic materials and metallic agents that have been previously discussed by various research groups have been reviewed. The study revealed that factors such as high durability, ease of availability, low density, chemical inertness and mechanical stability are primary factors responsible for the selection of suitable supports for catalysts. Common techniques for immobilisation namely, dip coating, cold plasma discharge, polymer assisted hydrothermal decomposition, RF magnetron sputtering, photoetching, solvent casting, electrophoretic deposition and spray pyrolysis have been discussed in detail. Finally, some common techniques adopted for the characterisation of the catalyst particles and their uses are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams
NASA Astrophysics Data System (ADS)
Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D.
2018-05-01
Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50-125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8-10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1-1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.
NASA Astrophysics Data System (ADS)
Wei, Chao‑Tsang; Shieh, Han‑Ping D.
2006-08-01
The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.
Monte Carlo simulations of secondary electron emission due to ion beam milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahady, Kyle; Tan, Shida; Greenzweig, Yuval
We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less
Effect of post-annealing on sputtered MoS2 films
NASA Astrophysics Data System (ADS)
Wong, W. C.; Ng, S. M.; Wong, H. F.; Cheng, W. F.; Mak, C. L.; Leung, C. W.
2017-12-01
Typical routes for fabricating MoS2-based electronic devices rely on the transfer of as-prepared flakes to target substrates, which is incompatible with conventional device fabrication methods. In this work we investigated the preparation of MoS2 films by magnetron sputtering. By subjecting room-temperature sputtered MoS2 films to post-annealing at mild conditions (450 °C in a nitrogen flow), crystalline MoS2 films were formed. To demonstrate the compatibility of the technique with typical device fabrication processes, MoS2 was prepared on epitaxial magnetic oxide films of La0.7Sr0.3MnO3, and the magnetic behavior of the films were unaffected by the post-annealing process. This work demonstrates the possibility of fabricating electronic and spintronic devices based on continuous MoS2 films prepared by sputtering deposition.
Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.
Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun
2013-06-01
Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.
NASA Astrophysics Data System (ADS)
Park, Seon-Yeong; Choe, Han-Cheol
2018-02-01
In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.
NASA Astrophysics Data System (ADS)
Osipowicz, A.; Härting, M.; Hempel, M.; Britton, D. T.; Bauer-Kugelmann, W.; Triftshäuser, W.
1999-08-01
Platinum films, used in thin film technology, produced by radio-frequency sputter deposition on aluminium oxide substrates under different conditions, have been studied by positron beam and other techniques, before and after production annealing. The defect structure in the layers has been characterised using both positron lifetime and Doppler-broadening spectroscopy, and compared with X-ray studies of crystallinity and texture.
Co-sputtered amorphous Ge-Sb-Se thin films: optical properties and structure
NASA Astrophysics Data System (ADS)
Halenkovič, Tomáš; Němec, Petr; Gutwirth, Jan; Baudet, Emeline; Specht, Marion; Gueguen, Yann; Sangleboeuf, J.-C.; Nazabal, Virginie
2017-05-01
The unique properties of amorphous chalcogenides such as wide transparency in the infrared region, low phonon energy, photosensitivity and high linear and nonlinear refractive index, make them prospective materials for photonics devices. The important question is whether the chalcogenides are stable enough or how the photosensitivity could be exacerbated for demanded applications. Of this view, the Ge-Sb-Se system is undoubtedly an interesting glassy system given the antinomic behavior of germanium and antimony with respect to photosensitivity. The amorphous Ge-Sb-Se thin films were fabricated by a rf-magnetron co-sputtering technique employing the following cathodes: GeSe2, Sb2Se3 and Ge28Sb12Se60. Radio-frequency sputtering is widely used for film fabrication due to its relative simplicity, easy control, and often stoichiometric material transfer from target to substrate. The advantage of this technique is the ability to explore a wide range of chalcogenide film composition by means of adjusting the contribution of each target. This makes the technique considerably effective for the exploration of properties mentioned above. In the present work, the influence of the composition determined by energy-dispersive X-ray spectroscopy on the optical properties was studied. Optical bandgap energy Egopt was determined using variable angle spectroscopic ellipsometry. The morphology and topography of the selenide sputtered films was studied by scanning electron microscopy and atomic force microscopy. The films structure was determined using Raman scattering spectroscopy.
High power impulse magnetron sputtering and its applications
NASA Astrophysics Data System (ADS)
Yan, YUAN; Lizhen, YANG; Zhongwei, LIU; Qiang, CHEN
2018-04-01
High power impulse magnetron sputtering (HiPIMS) has attracted a great deal of attention because the sputtered material is highly ionized during the coating process, which has been demonstrated to be advantageous for better quality coating. Therefore, the mechanism of the HiPIMS technique has recently been investigated. In this paper, the current knowledge of HiPIMS is described. We focus on the mechanical properties of the deposited thin film in the latest applications, including hard coatings, adhesion enhancement, tribological performance, and corrosion protection layers. A description of the electrical, optical, photocatalytic, and functional coating applications are presented. The prospects for HiPIMS are also discussed in this work.
NASA Astrophysics Data System (ADS)
Daryakenari, Ahmad Ahmadi; Daryakenari, Mohammad Ahmadi; Omidvar, Hamid
2018-01-01
To acquire highly efficient and cost-effective fuel cells, numerous research works have been carried out to the development low cost and excellent performance of electrocatalysts. In this paper, a solution-based electrophoretic deposition (EPD) technique for fabrication of Pt-based catalyst layers is studied. Nanographitic flake coatings used as catalyst support for sputtered platinium (Pt) were fabricated via the electrophoretic deposition (EPD) of dispersed nanographitic flakes in isopropyl alcohol. Magnesium nitrate hexahydrate (MNH) was used as an additive binder in the EPD process. Subsequently, the platinium particles were deposited by a direct sputtering on the fabricated nanographitic flake coatings.
NASA Technical Reports Server (NTRS)
Beattie, J. R.
1983-01-01
An investigation of short term measurement techniques for predicting the wearout of ion thrusters resulting from sputter erosion damage is described. The previously established laminar thin film techniques to provide high precision erosion rate data. However, the erosion rates obtained using this technique are generally substantially higher than those obtained during long term endurance tests (by virtue of the as deposited nature of the thin films), so that the results must be interpreted in a relative sense. Absolute measurements can be performed using a new masked substrate arrangement which was developed during this study. This new technique provides a means for estimating the lifetimes of critical discharge chamber components based on direct measurements of sputter erosion depths obtained during short duration (10 hour) tests. The method enables the effects on lifetime of thruster design and operating parameters to be inferred without the investment of the time and capital required to conduct long term (1000 hour) endurance tests. Results obtained using the direct measurement technique are shown to agree with sputter erosion depths calculated for the plasma conditions of the test and also with lifetest results. The direct measurement approach is shown to be applicable to both mercury and argon discharge plasma environments and should be useful in estimating the lifetimes of inert gas and extended performance mercury ion thrusters presently under development.
Swift heavy-ions induced sputtering in BaF2 thin films
NASA Astrophysics Data System (ADS)
Pandey, Ratnesh K.; Kumar, Manvendra; Singh, Udai B.; Khan, Saif A.; Avasthi, D. K.; Pandey, Avinash C.
2013-11-01
In our present experiment a series of barium fluoride thin films of different thicknesses have been deposited by electron beam evaporation technique at room temperature on silicon substrates. The effect of film thickness on the electronic sputter yield of polycrystalline BaF2 thin films has been reported in the present work. Power law for sputtered species collected on catcher grids has also been reported for film of lowest thickness. Sputtering has been performed by 100 MeV Au+28 ions. Atomic force microscopy (AFM) has been done to check the surface morphology of pristine samples. Glancing angle X-ray diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was done to determine the areal concentration of Ba and F atoms in the films. A reduction in the sputter yield of BaF2 films with the increase in film thickness has been observed from RBS results. The thickness dependence sputtering is explained on the basis of thermal spike and the energy confinement of the ions in the smaller grains. Also transmission electron microscopy (TEM) of the catchers shows a size distribution of sputtered species with values of power law exponent 1/2 and 3/2 for two fluences 5 × 1011 and 1 × 1012 ions/cm2, respectively.
Obsidian hydration profiles measured by sputter-induced optical emission.
Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W
1978-07-28
The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.
NASA Technical Reports Server (NTRS)
Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.
1995-01-01
Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.
Particle-in-Cell Modeling of Magnetron Sputtering Devices
NASA Astrophysics Data System (ADS)
Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.
2017-10-01
In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.
Trends and problems in CdS/Cu/x/S thin film solar cells - A review
NASA Astrophysics Data System (ADS)
Martinuzzi, S.
1982-03-01
The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.
Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.
Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R
2010-09-15
In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS
NASA Astrophysics Data System (ADS)
Thangaraj, Baskar; Mahadevan, Krishnan
2017-12-01
Aluminum oxide films on SS 304 deposited by DC reactive magnetron sputtering technique were studied with respect to the composition of the sputter gas (Ar:O2), gas pressure, substrate temperature, current etc. to achieve good insulating films with high corrosion resistance. The films were characterized by XRD and SEM techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were made under static conditions in order to evaluate the corrosion performance of the alumina-coated SS 304 for various immersion durations in 0.5 M and 1 M NaCl solution. Alumina-coated SS 304 has low corrosion value of 0.4550 and 1.1090MPY for 24 h immersion time in both solutions. The impedance plots for the alumina coated SS 304 in 1 M NaCl solution at different durations are slightly different to when compared to its immersion in 0.5 M NaCl solutions and are composed of two depressed semi circles. For the alumina coated film, the impedance spectrum decreased, when immersion time increased.
Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia
2015-03-15
Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width atmore » half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.« less
NASA Astrophysics Data System (ADS)
Freire, F. L., Jr.; Senna, L. F.; Achete, C. A.; Hirsch, T.
1998-03-01
Hard TiCN films were deposited by dc-magnetron sputter-ion plating technique onto high-speed carbon steel S-6-5-2 (M 2). For selected deposition conditions, TiCN films were also deposited onto Si substrates. A Ti target was sputtered in ArCH 4N 2 atmosphere. The argon flux (12 sccm) was fixed and corresponds to 90% of the total flux, whereas the N 2 flux ranged from 3% to 9% of the total flux. The total pressure in the chamber during film deposition was 8-9 × 10 -2Pa. The substrate bias, Vb, was between 0 and -140V and the substrate temperature, Ts, was 350°C. Film composition and depth profile of the elements were obtained by Rutherford backscattering spectrometry (RBS) and glow discharge optical spectroscopy (GDOS). Some limitations of both techniques in analysing TiCN films were presented. The effect of methane poisoing of the Ti target and how it influences the film composition was discussed.
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials
Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.
Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.
Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.
2016-05-06
Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.
A-Si Photoreceptors At The Threshold Of Industrial Application
NASA Astrophysics Data System (ADS)
Senske, W.; Marschall, N.
1986-03-01
A-Si has become an attractive alternative for conventional electrophotographic photoreceptors. A-Si photoreceptors have been prepared by other laboratories by plasma deposition with blocking and protection layers. These photoreceptors are highly photosensitive and show low fatigue. Using sputtering we have shown that this technique is capable of produc-ing films with high charge acceptance. The increase of the deposition rate is presently un-der intensive investigation. High rates can be achieved by a higher degree of silane decomposition or by magnetron sputtering together with a higher power level. Deposition rates of more than 20 pm/h have been obtained by both techniques.
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2016-11-17
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.
Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.
Slavcheva, E; Ganske, G; Schnakenberg, U
2014-01-01
The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.
Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques
NASA Astrophysics Data System (ADS)
Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza
2017-12-01
Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.
Rzeznik, Lukasz; Fleming, Yves; Wirtz, Tom
2016-01-01
Summary Secondary ion mass spectrometry (SIMS) on the helium ion microscope (HIM) promises higher lateral resolution than on classical SIMS instruments. However, full advantage of this new technique can only be obtained when the interaction of He+ or Ne+ primary ions with the sample is fully controlled. In this work we investigate how He+ and Ne+ bombardment influences roughness formation and preferential sputtering for polymer samples and how they compare to Ar+ primary ions used in classical SIMS by combining experimental techniques with Molecular Dynamics (MD) simulations and SD_TRIM_SP modelling. The results show that diffusion coefficients for He, Ne and Ar in polymers are sufficiently high to prevent any accumulation of rare gas atoms in the polymers which could lead to some swelling and bubble formation. Roughness formation was also not observed. Preferential sputtering is more of a problem, with enrichment of carbon up to surface concentrations above 80%. In general, the preferential sputtering is largely depending on the primary ion species and the impact energies. For He+ bombardment, it is more of an issue for low keV impact energies and for the heavier primary ion species the preferential sputtering is sample dependent. For He+ steady state conditions are reached for fluences much higher than 1018 ions/cm2. For Ne+ and Ar+, the transient regime extends up to fluences of 1017–1018 ions/cm2. Hence, preferential sputtering needs to be taken into account when interpreting images recorded under He+ or Ne+ bombardment on the HIM. PMID:27547629
Energy spectrum of sputtered uranium
NASA Technical Reports Server (NTRS)
Weller, R. A.; Tombrello, T. A.
1977-01-01
The fission track technique for detecting uranium 235 was used in conjunction with a mechanical time-of-flight spectrometer to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E to the -1.77 power for E is approximately greater than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the ramdom collision cascade model of sputtering.
Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id
Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less
Micro-structured femtosecond laser assisted FBG hydrogen sensor.
Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong
2015-11-30
We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.
Forming electrical interconnections through semiconductor wafers
NASA Technical Reports Server (NTRS)
Anthony, T. R.
1981-01-01
An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.
Advanced Inertial Technologies. Volume 3
1975-06-01
carried out under all of the technical tasks by means of publication of reports, presentation of papers , attendance at symposia, etc., this task is...sputter deposition by conventional RF sputter techniques. This choice was indicated by past experience on other programs show- ing that solid spherical...through R3 are source resistors for th« op cimp LPF and, as such, are inversely proportional to gain. Equation (4-4) n.ust be solved by iteration
Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih
2018-01-01
ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671
Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation
NASA Astrophysics Data System (ADS)
Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.
2016-10-01
Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.
NASA Astrophysics Data System (ADS)
He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.
2004-10-01
NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.
NASA Astrophysics Data System (ADS)
Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.
2017-09-01
Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim
2016-01-01
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions. PMID:28335345
NASA Astrophysics Data System (ADS)
Vilcot, J.-P.; Ayachi, B.; Aviles, T.; Miska, P.
2017-11-01
In the first part of this paper, we will show that a sputtering-based fabrication process exhibiting a low environmental footprint has been developed for the fabrication of copper indium gallium selenide (CIGS) absorbing material. Its originality lies in using room temperature sputtering in a pulsed—direct current mode of a single quaternary target followed by a post-anneal. At any stage of the process, selenium or sulfur atmosphere is used. Inert gas is used, respectively argon and a forming gas, for the deposition and annealing step, respectively. CIGS cells have been fabricated using such an absorbing layer. They exhibit an efficiency close to 12%. A tandem cell approach, using a thin film technology in conjunction with the well-established Si technology, is a promising technique, achieving cells with 30%, and higher, efficiency. Such cells are awaited, jointly with a stronger implementation of low environmental footprint technologies, as a vision for 2030. In the first section, sputtering technique has shown its ability to be developed in such a way achieving an environmentally friendly process that can be moreover compatible to be co-integrated with, for example, Si technology. In a second section, we will present a prospective discussion on the materials that can be applied to produce a sustainable approach for such a tandem cell configuration.
NASA Astrophysics Data System (ADS)
Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik
2018-06-01
In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.
Neutral beam dose and sputtering characteristics in an ion implantation system
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.
1973-01-01
A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.
Sputtered Pd as Hydrogen Storage for a Chip-Integrated Microenergy System
Slavcheva, E.; Ganske, G.; Schnakenberg, U.
2014-01-01
The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance. PMID:24516356
Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility
2013-01-01
Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782
Sputtering Erosion in the Ion Thruster
NASA Technical Reports Server (NTRS)
Ray, Pradosh K.; Mantenieks, Maris A. (Technical Monitor)
2000-01-01
During the first phase of this research, the sputtering yields of molybdenum by low energy (100 eV and higher) xenon ions were measured by using the methods of secondary neutral mass spectrometry (SNMS) and Rutherford backscattering spectrometry (RBS). However, the measured sputtering yields were found to be far too low to explain the sputtering erosions observed in the long-duration tests of ion thrusters. The only difference between the sputtering yield measurement experiments and the ion thruster tests was that the later are conducted at high ion fluences. Hence, a study was initiated to investigate if any linkage exists between high ion fluence and an enhanced sputtering yield. The objective of this research is to gain an understanding of the causes of the discrepancies between the sputtering rates of molybdenum grids in an ion thruster and those measured from our experiments. We are developing a molecular dynamics simulation technique for studying low-energy xenon ion interactions with molybdenum. It is difficult to determine collision sequences analytically for primary ions below the 200 eV energy range where the ion energy is too low to be able to employ a random cascade model with confidence and it is too high to have to consider only single collision at or near the surface. At these low energies, the range of primary ions is about 1 to 2 nm from the surface and it takes less than 4 collisions on the average to get an ion to degrade to such an energy that it can no longer migrate. The fine details of atomic motion during the sputtering process are revealed through computer simulation schemes. By using an appropriate interatomic potential, the positions and velocities of the incident ion together with a sufficient number of target atoms are determined in small time steps. Hence, it allows one to study the evolution of damages in the target and its effect on the sputtering yield. We are at the preliminary stages of setting up the simulation program.
NASA Astrophysics Data System (ADS)
Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong
2017-04-01
He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.
Luan, Hongyan; Zhang, Quan; Cheng, Guo-An; Huang, Haiou
2018-06-20
Current approaches for functionalizing carbon nanotubes (CNTs) often utilize harsh chemical conditions, and the resulting harmful wastes can cause various environmental and health concerns. In this study, magnetron sputtering technique is facilely employed to functionalize CNT membranes by depositing Cu onto premade CNT membranes without using any chemical treatment. A comparative evaluation of the substrate polymeric membrane (mixed cellulose ester (MCE)), MCE sputtered with copper (Cu/MCE), the pristine CNT membrane (CNT), and CNT membrane sputtered with Cu (Cu/CNT) shows that Cu/CNT possesses mechanically stable structures and similar membrane permeability as MCE. More importantly, Cu/CNT outperforms other membranes with high As(III) removal efficiency of above 90%, as compared to less than 10% by MCE and CNT, and 75% by Cu/MCE from water. The performance of Cu/CNT membranes for As(III) removal is also investigated as a function of ionic strength, sputtering time, co-existing ions, solution pH, and the reusability. Further characterizations of As speciation in the filtrate and on Cu/CNT reveal that arsenite removal by Cu/CNT possibly began with Cu-catalyzed oxidation of arsenite to arsenate, followed by adsorptive filtration of arsenate by the membrane. Overall, this study demonstrates that magnetron sputtering is a promising greener technology for the productions of metal-CNT composite membranes for environmental applications.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
NASA Astrophysics Data System (ADS)
Vrakatseli, V. E.; Amanatides, E.; Mataras, D.
2016-03-01
TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.
Nanopatterning of optical surfaces during low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yifan; Xie, Xuhui
2014-06-01
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
Magnetostrictive Micro Mirrors for an Optical Switch Matrix
Lee, Heung-Shik; Cho, Chongdu; Cho, Myeong-Woo
2007-01-01
We have developed a wireless-controlled compact optical switch by silicon micromachining techniques with DC magnetron sputtering. For the optical switching operation, micro mirror is designed as cantilever shape size of 5mm×800μm×50μm. TbDyFe film is sputter-deposited on the upper side of the mirror with the condition as: Ar gas pressure below 1.2×10-9 torr, DC input power of 180W and heating temperature of up to 250°C for the wireless control of each component. Mirrors are actuated by externally applied magnetic fields for the micro application. Applied beam path can be changed according to the direction and the magnitude of applied magnetic field. Reflectivity changes, M-H curves and X-ray diffractions of sputtered mirrors are measured to determine magneto-optical, magneto-elastic properties with variation in sputtered film thickness. The deflected angle-magnetic field characteristics of the fabricated mirror are measured. PMID:28903221
Self-focused ZnO transducers for ultrasonic biomicroscopy
NASA Astrophysics Data System (ADS)
Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.
2008-04-01
A simple fabrication technique was developed to produce high frequency (100MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18μm thick ZnO layer on 2mm diameter aluminum rods with ends shaped and polished to produce a 2mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101MHz with a -6dB bandwidth of 49%. The measured two way insertion loss was 44dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.
Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures
NASA Astrophysics Data System (ADS)
Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.
1992-03-01
A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.
Solid Lubrication Fundamentals and Applications. Chapter 6
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2000-01-01
This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.
Production and characterization of large-area sputtered selective solar absorber coatings
NASA Astrophysics Data System (ADS)
Graf, Wolfgang; Koehl, Michael; Wittwer, Volker
1992-11-01
Most of the commercially available selective solar absorber coatings are produced by electroplating. Often the reproducibility or the durability of their optical properties is not very satisfying. Good reproducibility can be achieved by sputtering, the technique for the production of low-(epsilon) coatings for windows. The suitability of this kind of deposition technique for flat-plate solar absorber coatings based on the principle of ceramic/metal composites was investigated for different material combinations, and prototype collectors were manufactured. The optical characterization of the coatings is based on spectral measurements of the near-normal/hemispherical and the angle-dependent reflectance in the wavelength-range 0.38 micrometers - 17 micrometers . The durability assessment was carried out by temperature tests in ovens and climatic chambers.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Brainard, W. A.
1979-01-01
Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.
Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.
Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E
2011-10-01
Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.
NASA Astrophysics Data System (ADS)
Dissanayake, A.; AlFaify, S.; Garratt, E.; Nandasiri, M. I.; Taibu, R.; Tecos, G.; Hamdan, N. M.; Kayani, A.
2011-06-01
Thin, hydrogenated aluminum hydride films were deposited on silicon substrates using unbalanced magnetron (UBM) sputtering of a high purity aluminum target under electrically grounded conditions. Argon was used as sputtering gas and hydrogenation was carried out by diluting the growth plasma with hydrogen. The effect of hydrogen partial pressure on the final concentration of trapped elements including hydrogen has been studied using ion beam analysis (IBA) techniques. Moreover, in-situ thermal stability of trapped hydrogen in the film was carried out using Rutherford Backscattering Spectrometry (RBS), Non-Rutherford Backscattering Spectrometry (NRBS) and Elastic Recoil Detection Analysis (ERDA). Microstructure of the film was investigated by SEM analysis. Hydrogen content in the thin films was found decreasing as the films were heated above 110 °C in vacuum.
NASA Astrophysics Data System (ADS)
Byun, Segi; Yu, Jin
2016-03-01
When a reduced graphite oxide (RGO) freestanding film is fabricated on a supercapacitor cell via compression onto a current collector, there are gaps between the film and the current collector, even if the cell is carefully assembled. These gaps can induce increases in the electrical series resistance (ESR) of the cell, resulting in degradation of the cell's electrochemical performance. Here, to effectively reduce the ESR of the supercapacitor, metal sputtering deposition is introduced. This enables the direct formation of the current collector layer on a partially reduced GO (pRGO) film, the model system. Using metal sputtering, a nickel (Ni) layer with a thickness <1 μm can be created easily on one side of the pRGO film. Good electrical interconnection between the pRGO film and the current collector can be obtained using a Ni layer formed on the pRGO film. The pRGO film sustains its film form with high packing density (∼1.31 g cm-3). Furthermore, the Ni-sputtered pRGO film with optimized Ni thickness exhibits remarkable enhancement of its electrochemical performance. This includes a superior rate capability and semi-permanent cycle life compared with the untreated pRGO film. This is due to the significant decrease in the ESR of the film.
An experiment on the dynamics of ion implantation and sputtering of surfaces
NASA Astrophysics Data System (ADS)
Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
An experiment on the dynamics of ion implantation and sputtering of surfaces.
Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, A.; Bhattacharyya, D.
A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterizedmore » by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.« less
Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass
Liontas, Rachel; Jafary-Zadeh, Mehdi; Zeng, Qiaoshi; ...
2016-08-04
We investigate the mechanical behavior and atomic-level structure of glassy Zr-Ni-Al nano-tensile specimens with widths between 75 and 215 nm. We focus our studies on two different energy states: (1) as-sputtered and (2) sputtered then annealed below the glass transition temperature (T g). In-situ tensile experiments conducted inside a scanning electron microscope (SEM) reveal substantial tensile ductility in some cases reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in specimens as wide as ~150 nm. We found the extent of ductility depends on both the specimen size and the annealingmore » conditions. Using molecular dynamics (MD) simulations, transmission electron microscopy (TEM), and synchrotron x-ray diffraction (XRD), we explain the observed mechanical behavior through changes in free volume as well as short- and medium-range atomic-level order that occur upon annealing. This work demonstrates the importance of carefully choosing the metallic glass fabrication method and post-processing conditions for achieving a certain atomic-level structure and free volume within the metallic glass, which then determine the overall mechanical response. Lastly, an important implication is that sputter deposition may be a particularly promising technique for producing thin coatings of metallic glasses with significant ductility, due to the high level of disorder and excess free volume resulting from the sputtering process and to the suitability of sputtering for producing thin coatings that may exhibit enhanced size-induced ductility.« less
Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization
NASA Astrophysics Data System (ADS)
Fellers, Deion
2016-09-01
The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.
NASA Astrophysics Data System (ADS)
Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas
2016-09-01
Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.
NASA Astrophysics Data System (ADS)
Marty, Adam J.
The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.
Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering
NASA Astrophysics Data System (ADS)
Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko
2018-03-01
Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.
NASA Astrophysics Data System (ADS)
Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu
2007-04-01
The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.
2015-08-01
Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.
Near band edge emission characteristics of sputtered nano-crystalline ZnO films
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay
2016-05-23
W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less
Optimization of process parameters for RF sputter deposition of tin-nitride thin-films
NASA Astrophysics Data System (ADS)
Jangid, Teena; Rao, G. Mohan
2018-05-01
Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.
Atomically flat platinum films grown on synthetic mica
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Taniguchi, Masateru
2018-04-01
Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials
2016-04-27
Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced
Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz; Hubicka, Zdenek; Cada, Martin
2014-04-21
The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionizedmore » flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.« less
(abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films
NASA Technical Reports Server (NTRS)
Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.
1994-01-01
Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus
2014-02-28
Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less
NASA Astrophysics Data System (ADS)
Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.
2005-06-01
The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.
The effect of changing the magnetic field strength on HiPIMS deposition rates
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Mishra, A.; Kelly, P. J.
2015-06-01
The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ~25-40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B. These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B. From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ~0.9 to ~0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan
2016-10-01
In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.
Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation
NASA Astrophysics Data System (ADS)
Bischoff, Martin; Stenzel, Olaf; Gäbler, Dieter; Kaiser, Norbert
2005-09-01
Nowadays, chirped dielectric mirrors for ultrafast optics and laser applications are usually manufactured by sputtering techniques. The suitability of Advanced Plasma Source (APS) assisted electron beam evaporation with respect to such coatings is still under investigation. The purpose of this presentation is to show our first results of the deposition of chirped layers produced by plasma ion assisted electron beam evaporation and of the investigation of their properties. The aim was to design and prepare a NIR-mirror for the spectral range of 700 nm to 900 nm. It has been attempted to find a design that is robust with respect to errors of thickness and refractive index. The mirror consists of more than 26 layers composed of alternating high- (Nb2O5) and low-refractive index (SiO2) material. The deposited coatings were tested in terms of their group delay dispersion (GDD) and their reflectivity. We show, that in the wavelength range between 720 nm and 890 nm the GDD exhibits a value of about -50 fs2, whereas the reflectivity is above 99%. However, the subsequent reverse engineering operations show a relatively large thickness error of more than 1% - 2% regarding the particular layers. Nevertheless the effect on the GDD and the reflectivity is tolerable. Furthermore, we present our first experiments concerning the design and fabrication of a chirped mirror, which allows controlling the third order dispersion (TOD), whereas the relative thickness error of the particular layers should not exceed 1%.
Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.
2016-01-01
Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.
In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1973-01-01
A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.
NASA Astrophysics Data System (ADS)
Hammadi, Oday A.; Naji, Noor E.
2018-03-01
In this work, a gas sensor is fabricated from polycrystalline nickel cobaltite nano films deposited on transparent substrates by closed-field unbalanced dual-magnetrons (CFUBDM) co-sputtering technique. Two targets of nickel and cobalt are mounted on the cathode of discharge system and co-sputtered by direct current (DC) argon discharge plasma in presence of oxygen as a reactive gas. The total gas pressure is 0.5 mbar and the mixing ratio of Ar:O2 gases is 5:1. The characterization measurements performed on the prepared films show that their transmittance increases with the incident wavelength, the polycrystalline structure includes 5 crystallographic planes, the average particle size is about 35 nm, the electrical conductivity is linearly increasing with increasing temperature, and the activation energy is about 0.41 eV. These films show high sensitivity to ethanol vapor.
Secondary Ion Mass Spectrometry SIMS XI
NASA Astrophysics Data System (ADS)
Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.
2003-05-01
This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.
1978-01-01
A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.
Characterization of diamond thin films and related materials
NASA Astrophysics Data System (ADS)
McKindra, Travis Kyle
Thin carbon films including sputtered deposited graphite and CO 2 laser-assisted combustion-flame deposited graphite and diamond thin films were characterized using optical and electron microscopy, X-ray diffraction and micro-Raman spectroscopy. Amorphous carbon thin films were deposited by DC magnetron sputtering using Ar/O2 gases. The film morphology changed with the oxygen content. The deposition rate decreased as the amount of oxygen increased due to oxygen reacting with the growing film. The use of oxygen in the working gas enhanced the crystalline nature of the films. Graphite was deposited on WC substrates by a CO2 laser-assisted O2/C2H2 combustion-flame method. Two distinct microstructural areas were observed; an inner core of dense material surrounded by an outer shell of lamellar-like material. The deposits were crystalline regardless of the laser power and deposition times of a few minutes. Diamond films were deposited by a CO2 laser-assisted O 2/C2H2/C2H4 combustion-flame method with the laser focused parallel to the substrate surface. The laser enhanced diamond growth was most pronounced when deposited with a 10.532 microm CO2 laser wavelength tuned to the CH2-wagging vibrational mode of the C2H4 molecule. Nucleation of diamond thin films deposited with and without using a CO 2 laser-assisted combustion-flame process was investigated. With no laser there was nucleation of a sub-layer of grains followed by irregular grain growth. An untuned laser wavelength yielded nucleation of a sub-layer then columnar grain growth. The 10.532 microm tuned laser wavelength caused growth of columnar grains.
Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir
2016-01-01
In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900
Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1984-01-01
The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, A. S., E-mail: aji.ravazes70@gmail.com; Darma, Y., E-mail: aji.ravazes70@gmail.com
Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si withoutmore » HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.« less
Localized Surface Plasmon Resonance in Au Nanoparticles Embedded dc Sputtered ZnO Thin Films.
Patra, Anuradha; Balasubrahmaniyam, M; Lahal, Ranjit; Malar, P; Osipowicz, T; Manivannan, A; Kasiviswanathan, S
2015-02-01
The plasmonic behavior of metallic nanoparticles is explicitly dependent on their shape, size and the surrounding dielectric space. This study encompasses the influence of ZnO matrix, morphology of Au nanoparticles (AuNPs) and their organization on the optical behavior of ZnO/AuNPs-ZnO/ZnO/GP structures (GP: glass plate). These structures have been grown by a multiple-step physical process, which includes dc sputtering, thermal evaporation and thermal annealing. Different analytical techniques such as scanning electron microscopy, glancing angle X-ray diffraction, Rutherford backscattering spectrometry and optical absorption have been used to study the structures. In-situ rapid thermal treatment during dc sputtering of ZnO film has been found to induce subtle changes in the morphology of AuNPs, thereby altering the profile of the plasmon band in the absorption spectra. The results have been contrasted with a recent study on the spectral response of dc magnetron sputtered ZnO films embedded with AuNPs. Initial simulation results indicate that AuNPs-ZnO/Au/GP structure reflects/absorbs UV and infrared radiations, and therefore can serve as window coatings.
Improvement of corrosion resistance of NiTi sputtered thin films by anodization
NASA Astrophysics Data System (ADS)
Bayat, N.; Sanjabi, S.; Barber, Z. H.
2011-08-01
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive film.
Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.
Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya
2014-02-07
We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.
Reduction of conductance mismatch in Fe/Al2O3/MoS2 system by tunneling-barrier thickness control
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Muneta, Iriya; Ohashi, Takumi; Matsuura, Kentaro; Shimizu, Jun’ichi; Kakushima, Kuniyuki; Tsutsui, Kazuo; Wakabayashi, Hitoshi
2018-04-01
Molybdenum disulfide (MoS2) among two-dimensional semiconductor films is promising for spintronic devices because it has a longer spin-relaxation time with contrasting spin splitting than silicon. However, it is difficult to fabricate integrated circuits by the widely used exfoliation method. Here, we investigate the contact characteristics in the Fe/Al2O3/sputtered-MoS2 system with various thicknesses of the Al2O3 film. Current density increases with increasing thickness up to 2.5 nm because of both thermally-assisted and direct tunneling currents. On the other hand, it decreases with increasing thickness over 2.5 nm limited by direct tunneling currents. These results suggest that the Schottky barrier width can be controlled by changing thicknesses of the Al2O3 film, as supported by calculations. The reduction of conductance mismatch with this technique can lead to highly efficient spin injection from iron into the MoS2 film.
Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan
2017-03-16
In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.
Magnetron sputtering for the production of EUV mask blanks
NASA Astrophysics Data System (ADS)
Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank
2015-03-01
Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.
NASA Astrophysics Data System (ADS)
de Lucas-Consuegra, Antonio; de la Osa, Ana R.; Calcerrada, Ana B.; Linares, José J.; Horwat, David
2016-07-01
This study reports the preparation, characterization and testing of a sputtered Pd mesh-like anode as an advanced electrocatalyst for H2 production from alkaline ethanol solutions in an Alkaline Membrane Electrolyzer (AEM). Pd anodic catalyst is prepared by magnetron sputtering technique onto a microfiber carbon paper support. Scanning Electron Microscopy images reveal that the used preparation technique enables to cover the surface of the carbon microfibers exposed to the Pd target, leading to a continuous network that also maintains part of the original carbon paper macroporosity. Such novel anodic architecture (organic binder free) presents an excellent electro-chemical performance, with a maximum current density of 700 mA cm-2 at 1.3 V, and, concomitantly, a large H2 production rate with low energy requirement compared to water electrolysis. Potassium hydroxide emerges as the best electrolyte, whereas temperature exerts the expected promotional effect up to 90 °C. On the other hand, a 1 mol L-1 ethanol solution is enough to guarantee an efficient fuel supply without any mass transfer limitation. The proposed system also demonstrates to remain stable over 150 h of operation along five consecutives cycles, producing highly pure H2 (99.999%) at the cathode and potassium acetate as the main anodic product.
NASA Astrophysics Data System (ADS)
Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun
2016-05-01
Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering
Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...
2016-03-17
The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less
Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors
Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew; ...
2017-01-01
We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less
Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew
We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less
Electrooptical properties and structural features of amorphous ITO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amosova, L. P., E-mail: l-amosova@mail.ru
2015-03-15
Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less
DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications.
Menegazzo, Nicola; Boyne, Devon; Bui, Holt; Beebe, Thomas P; Booksh, Karl S
2012-07-03
Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazak, A. V., E-mail: alexkazak86@gmail.com; Usol’tseva, N. V.; Smirnova, A. I.
2016-05-15
Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir−Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir−Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir−Schaefermore » films–sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C{sub 60} fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar C{sub 60}‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.« less
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.
1980-01-01
Quarterly report describes progress in three programs: dc sputtering machine for aluminum and aluminum alloys; two dimensional computer modeling of MOS transistors; and development of computer techniques for calculating redistribution diffusion of dopants in silicon on sapphire films.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.
1998-05-19
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.
Ion Beam Sputtered Coatings of Bioglass
NASA Technical Reports Server (NTRS)
Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne
1982-01-01
The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1999-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1998-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.
In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less
Liao, Bo-Huei; Hsiao, Chien-Nan
2014-02-01
Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.
NASA Astrophysics Data System (ADS)
Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas
2016-10-01
Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.
Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
NASA Technical Reports Server (NTRS)
Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)
2010-01-01
A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.
RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma
NASA Astrophysics Data System (ADS)
Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.
2016-04-01
The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.
Structural and electrical properties of sputter deposited ZnO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-05-01
The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Singh, Mandeep; Singh, V N; Mehta, B R
2008-08-01
Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B.; Sarkar, P.
2015-06-24
The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Analyse de l'interface cuivre/Teflon AF1600 par spectroscopie des photoelectrons rayons x
NASA Astrophysics Data System (ADS)
Popovici, Dan
The speed of electrical signals through the microelectronic multilevel interconnects depends of the delay time R x C. In order to improve the transmission speed of future microdevices, the microelectronics industry requires the use of metals having lower resistivities and insulators having lower permittivities. Copper and fluoropolymers are interesting candidates for the replacement of the presently used Al/polyimide technology. This thesis presents an X-ray photoelectron spectroscopy (XPS) analysis of the Cu/Teflon AF1600 interface, in order to have a better understanding of those interfacial interactions leading to improved adhesion. Several deposition methods, such as evaporation, sputtering and laser-induced chemical deposition were analyzed and compared. X-ray photoelectron spectroscopy (XPS) was used as the primary characterization technique of the different surfaces and interfaces. In the case of evaporation and sputtering, the loss of fluorine and oxygen atoms leads to graphitization and the crosslinking of carbon chains. The extent of damage caused by copper deposition is higher for sputter deposition because of the higher energies of the incidents atoms. This energy (two orders of magnitude higher than the energy involved in the evaporation) is also responsible for the total reaction of Cu with F and C. For the physical depositions (sputtering and evaporation), an angle-resolved XPS diffusion study showed the copper distribution as a function of depth. (i) For sputter deposition, this distribution is uniform. (ii) In the case of evaporation, we computed the concentration profile using the inverse Laplace transform. Several samples, annealed at different temperatures, were used to calculate the diffusion coefficients for the Cu/Teflon AF1600 interface. The study of interactions at the interface between Teflon AF1600 and copper deposited by different metallization techniques permitted us to elucidate some aspects related to the chemistry and structure of the interface. The presence of the strong Cu-C bond may lead to an enhanced adhesion but a pretreatment (plasma RF, X-ray or excimer laser) is necessary to increase the surface concentration of reactive groups. (Abstract shortened by UMI.)
Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity
NASA Astrophysics Data System (ADS)
Manohar, Greeshma
Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have higher sensitivity compared to in-house sputtered wafers. Furthermore after comparing SU8 and SiO2 coated sensors in the same instrumental and environmental condition, it was observed that SU8 coated di-directional and single phase unidirectional transducer (SPUDT) sensors showed best response.
Growth and surface analysis of SiO2 on 4H-SiC for MOS devices
NASA Astrophysics Data System (ADS)
Kodigala, Subba Ramaiah; Chattopadhyay, Somnath; Overton, Charles; Ardoin, Ira; Gordon, B. J.; Johnstone, D.; Roy, D.; Barone, D.
2015-03-01
The SiO2 layers have been grown onto C-face and Si-face 4H-SiC substrates by two different techniques such as wet thermal oxidize process and sputtering. The deposition recipes of these techniques are carefully optimized by trails and error method. The growth effects of SiO2 on the C-face and Si-face 4H-SiC substrates are thoroughly investigated by AFM analysis. The growth mechanism of different species involved in the growth process of SiO2 by wet thermal oxide is now proposed by adopting two body classical projectile scattering. This mechanism drives to determine growth of secondary phases such as α-CH nano-islands in the grown SiO2 layer. The effect of HF etchings on the SiO2 layers grown by both techniques and on both the C-face and Si-face substrates are legitimately studied. The thicknesses of the layers determined by AFM and ellipsometry techniques are widely promulgated. The MOS capacitors are made on the Si-face 4H-SiC wafers by wet oxidation and sputtering processes, which are studied by capacitance versus voltage (CV) technique. From CV measurements, the density of trap states with variation of trap level for MOS devices is estimated.
NASA Astrophysics Data System (ADS)
Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.
2017-09-01
This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.
Ion beam and plasma methods of producing diamondlike carbon films
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.
1988-01-01
A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.
Structural Characterization of Sputter-Deposited 304 Stainless Steel+10 wt pct Al Coatings
NASA Astrophysics Data System (ADS)
Seelam, Uma Maheswara Rao; Suryanarayana, C.; Heinrich, Helge; Ohkubo, Tadakatsu; Hono, Kazuhiro; Cheruvu, N. S.
2012-08-01
An SS304 + 10 wt pct Al (with a nominal composition of Fe-18Cr-8Ni-10Al by wt pct and corresponding to Fe-17Cr-6Ni-17Al by at. pct) coating was deposited on a 304-type austenitic stainless steel (Fe-18Cr-8Ni by wt pct) substrate by the magnetron sputter-deposition technique using two targets: 304-type stainless steel (SS304) and Al. The as-deposited coatings were characterized by X-ray diffraction, transmission electron microscopy, and three-dimensional (3-D) atom probe techniques. The coating consists of columnar grains with α ferrite with the body-centered cubic (bcc) (A2) structure and precipitates with a B2 structure. It also has a deposition-induced layered structure with two alternative layers (of 3.2 nm wavelength): one rich in Fe and Cr, and the other enriched with Al and Ni. The layer with high Ni and Al contents has a B2 structure. Direct confirmation of the presence of B2 phase in the coating was obtained by electron diffraction and 3-D atom probe techniques.
NASA Technical Reports Server (NTRS)
Gibbons, D. F.
1977-01-01
The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers
NASA Astrophysics Data System (ADS)
Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.
2018-03-01
Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.
NASA Astrophysics Data System (ADS)
Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu
2017-06-01
p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.
Growing LaAlO{sub 3}/SrTiO{sub 3} interfaces by sputter deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dildar, I. M.; Neklyudova, M.; Xu, Q.
Sputter deposition of oxide materials in a high-pressure oxygen atmosphere is a well-known technique to produce thin films of perovskite oxides in particular. Also interfaces can be fabricated, which we demonstrated recently by growing LaAlO{sub 3} on SrTiO{sub 3} substrates and showing that the interface showed the same high degree of epitaxy and atomic order as is made by pulsed laser deposition. However, the high pressure sputtering of oxides is not trivial and number of parameters are needed to be optimized for epitaxial growth. Here we elaborate on the earlier work to show that only a relatively small parameter windowmore » exists with respect to oxygen pressure, growth temperature, radiofrequency power supply and target to substrate distance. In particular the sensitivity to oxygen pressure makes it more difficult to vary the oxygen stoichiometry at the interface, yielding it insulating rather than conducting.« less
Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing
NASA Astrophysics Data System (ADS)
Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel
2017-10-01
Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.
NASA Astrophysics Data System (ADS)
Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.
2018-04-01
Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.
NASA Astrophysics Data System (ADS)
Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.
2009-03-01
The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.
On the SIMS Ionization Probability of Organic Molecules.
Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas
2017-06-01
The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .
Park, Ki-Deog; Jung, Young-Suk; Lee, Kyung-Ku; Park, Hong-Ju
2016-06-01
Tricalcium phosphate (TCP) is one of the most useful synthetic scaffolds for bone grafts and has several advantages. However, the rapid degradation of TCP makes it less osteoconductive than the other candidates, and represents a major shortcoming. To overcome this problem, the authors investigated magnesium (Mg) and/or hydroxyapatite (HA) coating on a β-TCP substrate using a sputtering technique. Biocompatibility tests were carried out on β-TCP discs that were either uncoated (TCP), coated with HA by radio frequency magnetron sputtering (HA-TCP), coated with Mg by DC sputtering (Mg-TCP), or multicoated with Mg and HA by DC and radio frequency magnetron sputtering (MgHA-TCP). Cells showed similar morphology in all 4 groups, and were widely spread, had flattened elongated shapes, and were connected to adjacent cells by pseudopods. An MTT assay revealed higher cell proliferation on HA-TCP, Mg-TCP, and MgHA-TCP compared with TCP at 3 and 5 days. MgHA-TCP also showed significantly higher alkaline phosphatase activity levels compared with TCP, HA-TCP, and Mg-TCP (P < 0.05). Results suggest that Mg-coated β-TCP could have great potential as a bone graft material for future applications in hard tissue regeneration.
Optimization of sputter deposition parameters for magnetostrictive Fe62Co19Ga19/Si(100) films
NASA Astrophysics Data System (ADS)
Jen, S. U.; Tsai, T. L.
2012-04-01
A good magnetostrictive material should have large saturation magnetostriction (λS) and low saturation (or anisotropy) field (HS), such that its magnetostriction susceptibility (SH) can be as large as possible. In this study, we have made Fe62Co19Ga19/Si(100) nano-crystalline films by using the dc magnetron sputtering technique under various deposition conditions: Ar working gas pressure (pAr) was varied from 1 to 15 mTorr; sputtering power (Pw) was from 10 to 120 W; deposition temperature (TS) was from room temperature (RT) to 300 °C, The film thickness (tf) was fixed at 175 nm. Each magnetic domain looked like a long leaf, with a long-axis of about 12-15 μm and a short-axis of about 1.5 μm. The optimal magnetic and electrical properties were found from the Fe62Co19Ga19 film made with the sputter deposition parameters of pAr = 5 mTorr, Pw = 80 W, and TS = RT. Those optimal properties include λS = 80 ppm, HS = 19.8 Oe, SH = 6.1 ppm/Oe, and electrical resistivity ρ = 57.0 μΩ cm. Note that SH for the conventional magnetostrictive Terfenol-D film is, in general, equal to 1.5 ppm/Oe only.
NASA Technical Reports Server (NTRS)
Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.
1974-01-01
Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.
Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength
NASA Astrophysics Data System (ADS)
Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.
2014-05-01
Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.
Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering
NASA Astrophysics Data System (ADS)
Kuo, Dong-Hau; Li, Cheng-Che; Tuan, Thi Tran Anh; Yen, Wei-Chun
2015-01-01
Mg-doped InGaN (Mg-InGaN) films have been deposited directly on Si (100) substrates by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. The cermet targets with a constant 5% indium content were made by hot pressing the mixture of metallic In, Ga, and Mg powders and ceramic GaN powder. The Mg-InGaN films had a wurtzite structure with a preferential () growth plane. The SEM images showed that Mg-InGaN films were smooth, continuous, free from cracks and holes, and composed of nanometer-sized grains. As the Mg dopant content in Mg-InGaN increased to 7.7 at.%, the film was directly transformed into p-type conduction without a post-annealing process. It had high hole concentration of 5.53 × 1018 cm-3 and electrical mobility of 15.7 ± 4.2 cm2 V-1 s-1. The over-doping of Mg in InGaN degraded the electrical properties. The bandgap of Mg-InGaN films decreased from 2.92 eV to 2.84 eV, as the Mg content increased from 7.7% to 18.2%. The constructed p-type Mg-InGaN/ n-type GaN diode was used to confirm the realization of the p-type InGaN by sputtering technique.
Activation product transport in fusion reactors. [RAPTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, A.C.
1983-01-01
Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the depositionmore » and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.« less
Effects on crystal structure of CZTS thin films owing to deionized water and sulfurization treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadi, Samia Ahmed; Chelvanathan, Puvaneswaran; Islam, M. A.
2015-05-15
To condense the cost and increase the production, using abundantly obtainable non-toxic elements, Cu{sub 2}ZnSnS{sub 4} (CZTS) seem to be a strong contender among the photovoltaic thin film technologies. Cu{sub 2}ZnSnS{sub 4} thin films were fabricated by RF magnetron sputtering system. CZTS were sputtered on Molybdenum (Mo) coated soda lime glass (SLG) using a single target sputtering technique. The sputtering parameters (base pressure, working pressure, Argon (Ar) flow rate, RF power and sputtering time) were kept same for all three types of films. For sulfurization, the temperature used was 500 °C. Finally, As-deposited film was immersed in DIW before undergoingmore » identical sulfurization profile. As-deposited film (Sample A), sulfurized films (Sample B) and sulfurized plus DIW treated (Sample C) were compared in terms of their structural properties by means of X-Ray Diffraction (XRD) measurement and Atomic Force Microscopy (AFM). Sample B and C showed peak of (1 1 2) planes of CZTS which are characteristics of stannite structure. Post deposition treatment on CZTS films proved to be beneficial as evident from the observed enhancement in the crystallinity and grain growth. Significant difference on grain size and area roughness could be observed from the AFM measurement. The roughness of Sample A, B and C increased from 5.007 nm to 20.509 nm and 14.183 nm accordingly. From XRD data secondary phases of Cu{sub x}MoS{sub x} could be observed.« less
NASA Astrophysics Data System (ADS)
Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.
2015-03-01
Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.
NASA Astrophysics Data System (ADS)
Ward, Logan
The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.
Dwivedi, Neeraj; Yeo, Reuben J.; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S.; Bhatia, C. S.
2015-01-01
A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media. PMID:25586898
Lithium diffusion in sputter-deposited Li4Ti5O12 thin films
NASA Astrophysics Data System (ADS)
Wunde, F.; Berkemeier, F.; Schmitz, G.
2012-10-01
Li4Ti5O12 (LTO) thin films are deposited by dc-ion beam sputtering at different oxygen partial pressures and different substrate temperatures. In order to investigate, how these two parameters influence the atomic structure, the specimens are characterized by X-ray diffraction and transmission electron microscopy. Electrochemical characterization of the films is done by cyclic voltammetry and chrono-potentiometry. To determine an averaged chemical diffusion coefficient of lithium, a method is developed, evaluating c-rate tests. The results obtained by this method are compared to results obtained by the well established galvanostatic intermittent titration technique (GITT), which is used to determine a concentration dependent diffusion coefficient of lithium in LTO.
Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates
Hasan, Md Rezaul; Xie, Ting; Barron, Sara C.; Liu, Guannan; Nguyen, Nhan V.; Motayed, Abhishek; Rao, Mulpuri V.; Debnath, Ratan
2016-01-01
A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either front or back side. Morphology, structural, chemical and optical properties of sputtered NiO and ZnO films were also investigated. PMID:26900532
Optical and interfacial electronic properties of diamond-like carbon films
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.
1984-01-01
Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.
Thin Film Catalyst Layers for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.
2000-01-01
One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.
Random anisotropy model approach on ion beam sputtered Co 20Cu 80 granular alloy
NASA Astrophysics Data System (ADS)
Errahmani, H.; Hassanaı̈n, N.; Berrada, A.; Abid, M.; Lassri, H.; Schmerber, G.; Dinia, A.
2002-03-01
The Co 20Cu 80 granular film has been elaborated using ion beam sputtering technique. The magnetic properties of the sample were studied in the temperature range 5-300 K at H⩽50 kOe. From the thermomagnetisation curve, which is found to obey to the Bloch law, we have extracted the spin wave stiffness constant D and the exchange constant A. The magnetic experimental results have been interpreted in the framework of random anisotropy model. We have determined the local anisotropy constant KL and the local correlation length of anisotropy axis Ra, which is compared to the experimental grains size obtained by transmission electronic microscopy.
Amorphous silicon carbide coatings for extreme ultraviolet optics
NASA Technical Reports Server (NTRS)
Kortright, J. B.; Windt, David L.
1988-01-01
Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.
Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications
NASA Astrophysics Data System (ADS)
Fortier, Jean-Philippe
"Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain objectives in mind. To start, we had to find a first recipe to obtain our first samples of the material. Using the literature as a starting point, several samples were deposited by magnetron sputtering while improving certain deposition conditions as well as varying influential deposition parameters. Once the oxide obtained, it was necessary to optimize the parameters not only to render thermochromic coatings with the highest possible quality, but also to determine each parameter's sensitivity. Characterization techniques such as microscopy, spectroscopy, ellipsometry, scanning electron microscopy, atomic force microscopy, Raman spectroscopy, x-ray diffraction and finally, time-of-flight secondary ion mass spectrometry were used to analyze different aspects of our multiple samples. Indeed, to mention only the ix most relevant observations, we were able to confirm that the microstructure, composition, most relevant observations, we were able to confirm that the microstructure, composition, crystallinity and film thickness have a significant impact on the coating's thermochromic behavior as well as on its optical properties. As a result, the oxygen concentration and the thickness had to be optimized and the deposition temperature, maximized. Reactive poisoning of the sputtering target is also a phenomenon that needs to be considered during deposition. Then, our sputtering target and substrate cleaning procedures were improved following certain observations. VO2 was equally found to be sensitive to small temperature gradients in addition of being highly dependent upon high deposition temperatures. Finally, the use of different substrates has subsequently shown that the film composition and microstructure can be altered. After mastering the deposition of thin VO2 films, we explored another path that we found to be quite innovative. A relatively new deposition technique called HiPIMS was put to the test based on its new characteristics, leading to believe that it had the potential of improving our coatings and allow a better application of the material. We first took some time to study and adapt to the technique's distinct characteristics, based on pulsed sputtering. After parameter optimization, the highly ionized sputtering flux allowed us to obtain more crystalline and denser coatings, with considerable homogeneity, less roughness and a higher purity than films obtained using conventional sputtering and than those described in the literature. With these features, it was possible to extract the material's optical constants and to obtain a change of transmission in the infrared (DeltaT2500 nm=61%) comparable to the best performing thermochromic samples documented in the literature, and this, at a substantially lower deposition temperature (300°C). This is a technical highlight, as conventional sputtering methods normally require temperatures above 400°C to form the oxide. In addition, our films had transition temperatures lower than that of the bulk material. The results seem to indicate that HiPIMS is promising and preferable for the deposition of VO2 films with respect to their practical use in the world of windows. (Abstract shortened by UMI.).
Surface acoustic waves/silicon monolithic sensor processor
NASA Technical Reports Server (NTRS)
Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.
1981-01-01
Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
NASA Technical Reports Server (NTRS)
Portnoy, W. M.; David, R. M.
1973-01-01
Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.
Characterization of second and third order optical nonlinearities of ZnO sputtered films
NASA Astrophysics Data System (ADS)
Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.
2006-03-01
We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.
NASA Astrophysics Data System (ADS)
Krishnan, R. Reshmi; Sanjeev, Ganesh; Prabhu, Radhakrishna; Pillai, V. P. Mahadevan
2018-02-01
Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet-visible (UV-vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui
2011-09-01
Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.
A new setup for experimental investigations of solar wind sputtering
NASA Astrophysics Data System (ADS)
Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich
2017-04-01
The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039
Thin-film X-ray filters on microstructured substrates and their thermophysical properties
NASA Astrophysics Data System (ADS)
Mitrofanov, A. V.
2018-02-01
It is shown that structured substrates having micron- or submicron-sized through holes and coated with an ultrathin organic film can be used for the fabrication of thin-film X-ray filters via direct growth of functional layers on a substrate by sputter deposition, without additional complex processing steps. An optimised process is considered for the fabrication of X-ray filters on support structures in the form of electroplated fine nickel grids and on track-etched polymer membranes with micron- and submicrondiameter through pores. 'Optimisation' is here taken to mean matching the sputter deposition conditions with the properties of substrates so as to avoid overheating. The filters in question are intended for both imaging and single-channel detectors operating in the soft X-ray and vacuum UV spectral regions, at wavelengths from 10 to 60 nm. Thermal calculations are presented for the heating of ultrathin layers of organic films and thin-film support substrates during the sputter deposition of aluminium or other functional materials. The paper discusses approaches for cooling thinfilm composites during the sputter deposition process and the service of the filters in experiments and gives a brief overview of the works that utilised filters produced by the described technique on microstructured substrates, including orbital solar X-ray research in the framework of the CORONAS programme and laboratory laser plasma experiments.
Characterization of graded TiC layers deposited by HiPIMS method
NASA Astrophysics Data System (ADS)
Bohovicova, Jana; Bonova, Lucia; Halanda, Juraj; Ivan, Jozef; Mesko, Marcel; Advanced Technologies Research Institute Team; Institute of Electronic; Photonic Team
2016-09-01
An advanced yet recent development of sputter technique is high power impulse magnetron sputtering (HiPIMS), in which short, energetic pulses are applied to the target, leading to a formation of an ultra-dense plasma in front of the cathode, that provide a high degree of ionization of sputtered material, and consequently enable to control the energy and the direction of the deposition flux. This gives a possibility to alter composition and microstructure in a controlled manner, enables the optimization of TiC for tribological applications. The aim of this work is to link physical phenomena in transient HiPIMS discharges to microstructural and compositional properties of graded TiC thin films. It was found that Ti bottom layer is contamination free. Compared to the direct current magnetron sputtering films, we observed an element specific reduction of impurities measured by ERDA by a factor 3 for N, 4 for H and by a factor of 20 for O. The high purity of Ti layer is partly explained by gas rarefaction and the cleaning effect of the bombarding ions. Graphitization degree of carbon top layer was elucidated by Raman spectroscopy. The compositional effects are correlated with differences in the film microstructure revealed by SEM, XRD and TEM analysis. This work was supported by VEGA, Project No. 1/0503/15 and APVV, Project No. 15-0168.
Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application
NASA Astrophysics Data System (ADS)
Kondaiah, P.; Mohan Rao, G.; Uthanna, S.
2012-11-01
Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.
Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz
2010-01-01
We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657
Atomistic simulations of focused ion beam machining of strained silicon
NASA Astrophysics Data System (ADS)
Guénolé, J.; Prakash, A.; Bitzek, E.
2017-09-01
The focused ion beam (FIB) technique has established itself as an indispensable tool in the material science community, both to analyze samples and to prepare specimens by FIB milling. In combination with digital image correlation (DIC), FIB milling can, furthermore, be used to evaluate intrinsic stresses by monitoring the strain release during milling. The irradiation damage introduced by such milling, however, results in a change in the stress/strain state and elastic properties of the material; changes in the strain state in turn affect the bonding strength, and are hence expected to implicitly influence irradiation damage formation and sputtering. To elucidate this complex interplay between strain, irradiation damage and sputtering, we perform TRIM calculations and molecular dynamics simulations on silicon irradiated by Ga+ ions, with slab and trench-like geometries, whilst simultaneously applying uniaxial tensile and compressive strains up to 4%. In addition we calculate the threshold displacement energy (TDE) and the surface binding energy (SBE) for various strain states. The sputter rate and amount of damage produced in the MD simulations show a clear influence of the strain state. The SBE shows no significant dependence on strain, but is strongly affected by surface reconstructions. The TDE shows a clear strain-dependence, which, however, cannot explain the influence of strain on the extent of the induced irradiation damage or the sputter rate.
Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan
2017-05-02
We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.
Nanoscale Cu{sub 2}O films: Radio-frequency magnetron sputtering and structural and optical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, D. A., E-mail: kudryashovda@apbau.ru; Gudovskikh, A. S.; Babichev, A. V.
2017-01-15
Nanoscale copper (I) oxide layers are formed by magnetron-assisted sputtering onto glassy and silicon substrates in an oxygen-free environment at room temperature, and the structural and optical properties of the layers are studied. It is shown that copper oxide formed on a silicon substrate exhibits a lower degree of disorder than that formed on a glassy substrate, which is supported by the observation of a higher intensity and a smaller half-width of reflections in the diffraction pattern. The highest intensity of reflections in the diffraction pattern is observed for Cu{sub 2}O films grown on silicon at a magnetron power ofmore » 150 W. The absorption and transmittance spectra of these Cu{sub 2}O films are in agreement with the well-known spectra of bulk crystals. In the Raman spectra of the films, phonons inherent in the crystal lattice of cubic Cu{sub 2}O crystals are identified.« less
NASA Astrophysics Data System (ADS)
Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.
2018-03-01
Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f = 100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.
He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao
2017-12-13
It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.
Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less
TaN resistor process development and integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Kathleen; Martinez, Marino John; Clevenger, Jascinda
This paper describes the development and implementation of an integrated resistor process based on reactively sputtered tantalum nitride. Image reversal lithography was shown to be a superior method for liftoff patterning of these films. The results of a response surface DOE for the sputter deposition of the films are discussed. Several approaches to stabilization baking were examined and the advantages of the hot plate method are shown. In support of a new capability to produce special-purpose HBT-based Small-Scale Integrated Circuits (SSICs), we developed our existing TaN resistor process, designed for research prototyping, into one with greater maturity and robustness. Includedmore » in this work was the migration of our TaN deposition process from a research-oriented tool to a tool more suitable for production. Also included was implementation and optimization of a liftoff process for the sputtered TaN to avoid the complicating effects of subtractive etching over potentially sensitive surfaces. Finally, the method and conditions for stabilization baking of the resistors was experimentally determined to complete the full implementation of the resistor module. Much of the work to be described involves the migration between sputter deposition tools - from a Kurt J. Lesker CMS-18 to a Denton Discovery 550. Though they use nominally the same deposition technique (reactive sputtering of Ta with N{sup +} in a RF-excited Ar plasma), they differ substantially in their design and produce clearly different results in terms of resistivity, conformity of the film and the difference between as-deposited and stabilized films. We will describe the design of and results from the design of experiments (DOE)-based method of process optimization on the new tool and compare this to what had been used on the old tool.« less
NASA Astrophysics Data System (ADS)
Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.
2018-01-01
Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.
NASA Astrophysics Data System (ADS)
Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.
2018-04-01
Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.
NASA Astrophysics Data System (ADS)
Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna
2017-08-01
The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.
NASA Astrophysics Data System (ADS)
Thompson, William; Stern, Lewis; Ferranti, Dave; Huynh, Chuong; Scipioni, Larry; Notte, John; Sanford, Colin
2010-06-01
Recent helium ion microscope (HIM) imaging studies have shown the strong sensitivity of HIM induced secondary electron (SE) yields [1] to the sample physical and chemical properties and to its surface topography. This SE yield sensitivity is due to the low recoil energy of the HIM initiated electrons and their resulting short mean free path. Additionally, a material's SE escape probability is modulated by changes in the material's work function and surface potential. Due to the escape electrons' roughly 2eV mean energy and their nanometer range mean free path, HIM SE mode image contrast has significant material and surface sensitivity. The latest generation of HIM has a 0.35 nanometer resolution specification and is equipped with a plasma cleaning process to mitigate the effects of hydrocarbon contamination. However, for surfaces that may have native oxide chemistries influencing the secondary electron yield, a new process of low energy, shallow angle argon sputtering, was evaluated. The intent of this work was to study the effect of removing pre-existing native oxides and any in-situ deposited surface contaminants. We will introduce the sputter yield predictions of two established computer models and the sputter yield and sample modification forecasts of the molecular dynamics program, Kalypso. We will review the experimental technique applied to copper samples and show the copper grain contrast improvement that resulted when argon cleaned samples were imaged in HIM SE mode.
Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka
2016-06-28
A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.
NASA Astrophysics Data System (ADS)
Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl
2012-02-01
The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.
NASA Astrophysics Data System (ADS)
Hattori, Katsuhiro; Ohta, Takayuki; Oda, Akinori; Kousaka, Hiroyuki
2018-01-01
Substrate temperature is one of the important parameters that affect the quality of deposited films. The monitoring of the substrate temperature is an important technique of controlling the deposition process precisely. In this study, the Si substrate temperature in high-power pulse magnetron sputtering (HPPMS) was measured by a noncontact method based on optical low-coherence interferometry (LCI). The measurement was simultaneously performed using an LCI system and a thermocouple (TC) as a contact measurement method. The difference in measured value between the LCI system and the TC was about 7.4 °C. The reproducibilities of measurement for the LCI system and TC were ±0.7 and ±2.0 °C, respectively. The heat influx from the plasma to the substrate was estimated using the temporal variation of substrate temperature and increased from 19.7 to 160.0 mW/cm2 with increasing target applied voltage. The major factor for the enhancement of the heat influx would be charged species such as ions and electrons owing to the high ionization degree of sputtered metal particles in HPPMS.
Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.
Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...
2014-08-18
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
NASA Astrophysics Data System (ADS)
Huang, Shyh-Jer; Chou, Cheng-Wei; Su, Yan-Kuin; Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long; Ruan, Jian-Long
2017-04-01
In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiOx capping layer. The p-NiOx layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O2 environment to achieve high hole concentration. The Vth shifts from -3 V in the conventional transistor to 0.33 V, and on/off current ratio became 107. The forward and reverse gate breakdown increase from 3.5 V and -78 V to 10 V and -198 V, respectively. The reverse gate leakage current is 10-9 A/mm, and the off-state drain-leakage current is 10-8 A/mm. The Vth hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiOx after annealing in oxygen environment resulted from the change of Ni2+ to Ni3+ and the surge of (111)-orientation.
Determination of local order in the amorphous precursor to Ba-hexaferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Snyder, J. E.; Harris, V. G.; Das, B. N.; Koon, N. C.; Sui, X.; Kryder, M. H.
1996-04-01
Ba-hexaferrite thin films for recording media applications are often fabricated by a two-step process: sputter deposition of an amorphous precursor, followed by annealing to crystallize the BaFe12O19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional structural characterization techniques have not been able to distinguish between different as-sputtered films. Using polarization-dependent extended x-ray absorption fine structure (PD-EXAFS), we have observed anisotropic local structure around both Ba and Fe atoms in the amorphous precursor films. Comparison of the results suggests that the amorphous films consist of networks of Fe atoms surrounded by their O nearest neighbors, with Ba atoms fitting into in-between spaces as network modifiers (there might also be some minor Fe network modifying contribution). The local structural anisotropy of the amorphous films appears to determine the orientation of the fast-growing basal plane directions during annealing, and thus the directions of the c axes and the magnetic anisotropy.
NASA Astrophysics Data System (ADS)
Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki
2016-05-01
Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.
Characterization on RF magnetron sputtered niobium pentoxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usha, N.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.
2014-10-15
Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching ofmore » Nb{sub 2}O{sub 5} films.« less
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Siebert, Mark
2002-01-01
Tribology experiments on different types of sputtered molybdenum disulfide (MoS2) coatings (obtained from different vendors) using accelerated testing techniques were conducted. The purpose was to determine which would be the best coating for use with auxiliary journal bearings for spacecraft energy storage flywheels. Experiments were conducted in moist air (50% relative humidity) and in dry air (<100 PPM water vapor content) on a Pin-on-Disk Tribometer to determine how well the coatings would perform in air. Experiments were also conducted on a Block-on-Ring Tribometer in dry nitrogen (<100 PPM water vapor) to simulate how well the coatings would perform in vacuum. Friction, counterface wear, coating wear, endurance life and surface morphology were investigated.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
The Integration of Nanoscale Techniques for an Improved Battery Technology
2012-06-08
anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO
High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Miranda, Felix A.
1999-01-01
Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.
Sputtered silicon nitride coatings for wear protection
NASA Technical Reports Server (NTRS)
Grill, A.; Aron, P. R.
1982-01-01
Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.
Analysis of surface sputtering on a quantum statistical basis
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1975-01-01
Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.
Plasma-assisted synthesis of MoS2
NASA Astrophysics Data System (ADS)
Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.
2018-03-01
There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.
Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.
1994-01-01
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koda, Tatsunori; Toyota, Hiroshi, E-mail: h.toyota.za@it-hiroshima.ac.jp
The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities ofmore » I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhusan Singh, Braj; Chaudhary, Sujeet
2012-09-15
The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less
NASA Astrophysics Data System (ADS)
Cubillos, G. I.; Bethencourt, M.; Olaya, J. J.
2015-02-01
ZrOxNy/ZrO2 thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO2 was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrOxNy rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr2ON2 crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride-containing media.
NASA Technical Reports Server (NTRS)
Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.
2014-01-01
New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
NASA Technical Reports Server (NTRS)
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.
1994-08-02
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.
Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility
NASA Astrophysics Data System (ADS)
Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao
2017-03-01
The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.
Thin Film Deposition Using Energetic Ions
Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan
2010-01-01
One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323
NASA Technical Reports Server (NTRS)
1972-01-01
The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying
2017-02-01
Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.
Anomalous effects in the aluminum oxide sputtering yield
NASA Astrophysics Data System (ADS)
Schelfhout, R.; Strijckmans, K.; Depla, D.
2018-04-01
The sputtering yield of aluminum oxide during reactive magnetron sputtering has been quantified by a new and fast method. The method is based on the meticulous determination of the reactive gas consumption during reactive DC magnetron sputtering and has been deployed to determine the sputtering yield of aluminum oxide. The accuracy of the proposed method is demonstrated by comparing its results to the common weight loss method excluding secondary effects such as redeposition. Both methods exhibit a decrease in sputtering yield with increasing discharge current. This feature of the aluminum oxide sputtering yield is described for the first time. It resembles the discrepancy between published high sputtering yield values determined by low current ion beams and the low deposition rate in the poisoned mode during reactive magnetron sputtering. Moreover, the usefulness of the new method arises from its time-resolved capabilities. The evolution of the alumina sputtering yield can now be measured up to a resolution of seconds. This reveals the complex dynamical behavior of the sputtering yield. A plausible explanation of the observed anomalies seems to originate from the balance between retention and out-diffusion of implanted gas atoms, while other possible causes are commented.
Raman scattering from rapid thermally annealed tungsten silicide
NASA Technical Reports Server (NTRS)
Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.
1987-01-01
Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Hridya, S.; Kavitha, V. S.; Chalana, S. R.; Reshmi Krishnan, R.; Sreeja Sreedharan, R.; Suresh, S.; Nampoori, V. P. N.; Sankararaman, S.; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.
2017-11-01
Barium tungstate films with different Dy3+ doping concentrations, namely 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, are deposited on cleaned quartz substrate by radio frequency magnetron sputtering technique and the prepared films are annealed at a temperature of 700°C. The structural, morphological and optical properties of the annealed films are studied using techniques such as x-ray diffraction (XRD), micro-Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and photoluminescence spectroscopy. XRD analysis shows that all the films are well-crystallized in nature with a monoclinic barium tungstate phase. The presence of characteristic modes of the tungstate group in the Raman spectra supports the formation of the barium tungstate phase in the films. Scanning electron microscopic images of the films present a uniform dense distribution of well-defined grains with different sizes. All the doped films present a broad emission in the 390-500 nm region and its intensity increases up to 3 wt.% and thereafter decreases due to usual concentration quenching.
Attempt to form hydride and amorphous particles, and introduction of a new evaporation method
NASA Astrophysics Data System (ADS)
Yatsuya, S.; Yamauchi, K.; Kamakura, T.; Yanagida, A.; Wakayama, H.; Mihama, K.
1985-06-01
Al and TiH 2 particles of fcc structure can be produced in an atmosphere of gaseous H 2 at reduced pressure. Al particles with definite habit are obtained, which has been never observed in the ordinary gas evaporation technique using a HV system. The habit of TiH 2 particles grown in the intermediate zone of the smoke is determined to be a dodecahedron. The growth is considered as the result of the martensite transformation from the bcc structure initially formed to the fcc structure accompanying a slight modification of the characteristic habit as observed for Ti particles. For the preparation of amorphous particles, first, the quenching rate of a particle, {dT}/{dt} was estimated to be more than {10 4°C }/{s}. Ultrafine particles of Pd 80Si 20 chosen as a test sample did not show the amorphous structure, but the crystalline. Application of the sputtering method as a new evaporation source in the gas evaporation technique is attempted. With the sputtering method, W particles with definite habits are produced.
NASA Astrophysics Data System (ADS)
Tučkutė, S.; Urbonavičius, M.; Lelis, M.; Maiorov, M.; Díaz Ordaz, J. R.; Milčius, D.
2018-01-01
Due to the accurate and relatively easy control magnetron sputtering is an attractive technique for the synthesis of metallic particles. This work describes a new method of nickel powder production by depositing nickel on the surface of sodium chloride particles which were used as the template and are soluble in water. Ni powder with flake-like structure was obtained after washing Ni coated salt particles in ultrasonic cleaner. Salt particles and nickel powder were characterized using scanning electron microscope (SEM), energy-dispersive x-ray spectrometer, XRD and X-ray photoelectron spectroscopy (XPS) techniques. SEM images showed that thickness of the received Ni particles varied in the nanoscale and depended on the magnetron deposition time but did not depend on the size of salt particles. On the other hand initial size of the salt particles was successfully employed a measure to control lateral dimensions of Ni powder. XRD and XPS analysis results revealed that Ni particles had metallic core and oxidized shell which was a cause of the slightly deteriorated magnetic properties.
NASA Astrophysics Data System (ADS)
Hansen, U.; Rodgers, S.; Jensen, K. F.
2000-07-01
A general method for modeling ionized physical vapor deposition is presented. As an example, the method is applied to growth of an aluminum film in the presence of an ionized argon flux. Molecular dynamics techniques are used to examine the surface adsorption, reflection, and sputter reactions taking place during ionized physical vapor deposition. We predict their relative probabilities and discuss their dependence on energy and incident angle. Subsequently, we combine the information obtained from molecular dynamics with a line of sight transport model in a two-dimensional feature, incorporating all effects of reemission and resputtering. This provides a complete growth rate model that allows inclusion of energy- and angular-dependent reaction rates. Finally, a level-set approach is used to describe the morphology of the growing film. We thus arrive at a computationally highly efficient and accurate scheme to model the growth of thin films. We demonstrate the capabilities of the model predicting the major differences on Al film topographies between conventional and ionized sputter deposition techniques studying thin film growth under ionized physical vapor deposition conditions with different Ar fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.
A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less
Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si
2011-01-01
Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934
NASA Astrophysics Data System (ADS)
Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping
2013-12-01
Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanunjaya, M.; Manikanthababu, N.; Pathak, A. P.
2016-05-23
Hafnium oxide (HfO{sub 2}) is the potentially useful dielectric material in both; electronics to replace the conventional SiO{sub 2} as gate dielectric and in Optics as anti-reflection coating material. In this present work we have synthesized polycrystalline HfO{sub 2} thin films by RF magnetron sputtering deposition technique with varying target to substrate distance. The deposited films were characterized by X-ray Diffraction, Rutherford Backscattering Spectrometry (RBS) and transmission and Reflection (T&R) measurements to study the growth behavior, microstructure and optical properties. XRD measurement shows that the samples having mixed phase of monoclinic, cubic and tetragonal crystal structure. RBS measurements suggest themore » formation of Inter Layer (IL) in between Substrate and film.« less
NASA Astrophysics Data System (ADS)
Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.
2007-02-01
Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.
Third-order nonlinear optical properties of thin sputtered gold films
NASA Astrophysics Data System (ADS)
Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.
2007-07-01
Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].
The effect of initial pressure on growth of FeNPs in amorphous carbon films
NASA Astrophysics Data System (ADS)
Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham
2018-04-01
Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.
Technique for forming ITO films with a controlled refractive index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.
2016-07-15
A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method.more » Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.« less
Active cleaning technique device
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1973-01-01
The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.
Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barghouty, N.; Meyer, Fred W; Harris, Peter R
2011-01-01
Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ionsmore » impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.« less
NASA Astrophysics Data System (ADS)
Herzog, T.; Walter, S.; Bartzsch, H.; Gittner, M.; Gloess, D.; Heuer, H.
2011-06-01
Many new materials and processes require non destructive evaluation in higher resolutions by phased array ultrasonic techniques in a frequency range up to 250 MHz. This paper presents aluminium nitride, a promising material for the use as a piezoelectric sensor material in the considered frequency range, which contains the potential for high frequency phased array application in the future. This work represents the fundamental development of piezoelectric aluminium nitride films with a thickness of up to 10 μm. We have investigated and optimized the deposition process of the aluminium nitride thin film layers regarding their piezoelectric behavior. Therefore a specific test setup and a measuring station were created to determine the piezoelectric charge constant (d33) and the electro acoustic behavior of the sensor. Single element transducers were deposited on silicon substrates with aluminium electrodes for top and bottom, using different parameters for the magnetron sputter process, like pressure and bias voltage. Afterwards acoustical measurements up to 500 MHz in pulse echo mode have been carried out and the electrical and electromechanical properties were qualified. In two different parameter sets for the sputtering process excellent piezoelectric charge constant of about 8.0 pC/N maximum were obtained.
Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, A. S.; Darma, Y.
In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by meanmore » XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.« less
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
A sputtering derived atomic oxygen source for studying fast atom reactions
NASA Technical Reports Server (NTRS)
Ferrieri, Richard A.; Yung, Y. Chu; Wolf, Alfred P.
1987-01-01
A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Smithe, David
2016-10-01
Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.
Kinetic and Potential Sputtering of Lunar Regolith: Contribution of Solar-Wind Heavy Ions
NASA Technical Reports Server (NTRS)
Meyer, F. W.; Harris, P. R.; Meyer, H. M., III; Hijiazi, H.; Barghouty, A. F.
2013-01-01
Sputtering of lunar regolith by protons as well as solar-wind heavy ions is considered. From preliminary measurements of H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A AGGL lunar regolith simulant at solar wind velocities, and TRIM simulations of kinetic sputtering yields, the relative contributions of kinetic and potential sputtering contributions are estimated. An 80-fold enhancement of oxygen sputtering by Ar+ over same-velocity H+, and an additional x2 increase for Ar+9 over same-velocity Ar+ was measured. This enhancement persisted to the maximum fluences investigated is approximately 1016/cm (exp2). Modeling studies including the enhanced oxygen ejection by potential sputtering due to the minority heavy ion multicharged ion solar wind component, and the kinetic sputtering contribution of all solar wind constituents, as determined from TRIM sputtering simulations, indicate an overall 35% reduction of near-surface oxygen abundance. XPS analyses of simulant samples exposed to singly and multicharged Ar ions show the characteristic signature of reduced (metallic) Fe, consistent with the preferential ejection of oxygen atoms that can occur in potential sputtering of some metal oxides.
The effect of plasma impurities on the sputtering of tungsten carbide
NASA Astrophysics Data System (ADS)
Vörtler, K.; Björkas, C.; Nordlund, K.
2011-03-01
Understanding of sputtering by ion bombardment is needed in a wide range of applications. In fusion reactors, ion impacts originating from a hydrogen-isotope-rich plasma will lead, among other effects, to sputtering of the wall material. To study the effect of plasma impurities on the sputtering of the wall mixed material tungsten carbide molecular dynamics simulations were carried out. Simulations of cumulative D cobombardment with C, W, He, Ne or Ar impurities on crystalline tungsten carbide were performed in the energy range 100-300 eV. The sputtering yields obtained at low fluences were compared to steady state SDTrimSP yields. During bombardment single C atom sputtering was preferentially observed. We also detected significant WxCy molecule sputtering. We found that this molecule sputtering mechanism is of physical origin.
Principles of ESCA and application to metal corrosion, coating and lubrication
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1978-01-01
The principles of ESCA (electron spectroscopy for chemical analysis) were described by comparison with other spectroscopic techniques. The advantages and disadvantages of ESCA as compared to other surface sensitive analytical techniques were evaluated. The use of ESCA was illustrated by actual applications to oxidation of steel and Rene 41, the chemistry of lubricant additives on steel, and the composition of sputter deposited hard coatings. A bibliography of material that was useful for further study of ESCA was presented and commented upon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zihua; Nachimuthu, Ponnusamy; Lea, Alan S.
2009-10-15
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling of sucrose thin films were investigated using 10 keV C60+, 20 keV C602+, 30 keV C603+, 250 eV, 500 eV and 1000 eV Cs+ and O2+ as sputtering ions. With C60n+ ions, the molecular ion signal initially decreases, and reaches a steady-state that is about 38-51% of its original intensity, depending on the energy of the C60n+ ions. On the contrary, with Cs+ and O2+ sputtering, molecular ion signals decrease quickly to the noise level, even using low energy (250 eV) sputtering ions. In addition, the sucrose/Si interface by C60+ sputtering ismore » much narrower than that of Cs+ and O2+ sputtering. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C60+ sputter crater, while considerable amorphous carbon was found in the O2+ and Cs+ sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C60+ sputter crater, while the Cs+ and O2+ sputter crater bottoms are significantly rougher than that of the C60+ sputter crater. Based on above data, we developed a simple model to explain different damage mechanisms during sputtering process.« less
C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
NASA Astrophysics Data System (ADS)
Lin, Jianliang; Chistyakov, Roman
2017-02-01
Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.
Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.
Dobrowolski, J A; Browning, Stephen; Jacobson, Michael; Nadal, Maria
2002-06-01
Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.
Characterization of high power impulse magnetron sputtering discharges
NASA Astrophysics Data System (ADS)
Hala, Matej
Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and ionized oxygen, since the monitored discharge is operated above a fully poisoned (oxidized) target from which only a minimum of Cr is sputtered. No signs of self-sputtering have been detected, in contrast to the discharges in Ar, N2 and N2/Ar mixtures previously investigated. Paper IV: In the fourth paper, we study different power management approaches in HiPIMS and MPPMS and their effects on the pulsed discharge evolution, plasma composition, and metal ionization estimated by OES. It is shown that HiPIMS is the only technique that enables the discharge operation in self-sputtering mode within the investigated range of applied powers, resulting in a significantly higher ionization of the sputtered metal than that reached with MPPMS. In contrast to HiPIMS, MPPMS provides a higher versatility in adjusting the pulse shape and pulse length. This feature can be particularly beneficial, for instance, in the discharge ignition. Nb coatings prepared by HiPIMS and MPPMS have very similar deposition rates that are lower than in DCMS. All films prepared at p = 1Pa possess a dense columnar structure. Coatings deposited by the two high power pulsed discharges exhibit higher compressive stress and larger out-of-plane lattice spacing than those prepared by DC sputtering under comparable conditions. At higher pressure, p = 2Pa, DCMS-grown films show a tensile stress due to a porous microstructure, while films prepared by HiPIMS and MPPMS are dense and in compression, most probably due to the substantial ion bombardment. Paper V: In the last paper, we analyze the behavior of the HiPIMS, MPPMS and DCMS discharges in reactive O2/Ar gas mixtures and evaluate the characteristics of the fabricated NbOx films. We demonstrate that the surface metal oxides can be effectively sputter-eroded from the target during both HiPIMS and MPPMS pulses, and that sputtering from a partially oxide-free target is possible even at high oxygen concentrations. This results in a hysteresisfree deposition process which allows one to prepare optically transparent b2O5 coatings at a high growth rate without the need of feedback control commonly used in reactive DCMS. Nb2O 5 coatings prepared by both reactive high power pulsed discharges exhibited a high index of refraction, a low extinction coefficient, a near-zero internal stress, and high hardness and Young's modulus. The HiPIMS-deposited coatings showed the highest deposition rate and the highest index of refraction. The latter observation was related to the higher film density. In comparison, MPPMS exhibited the highest power-normalized deposition rate among the three investigated deposition techniques, possibly due to the longer period that is available for the gradual target cleaning. (Abstract shortened by UMI.).
Supported plasma sputtering apparatus for high deposition rate over large area
Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils
1977-01-01
A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.
Preventing kinetic roughening in physical vapor-phase-deposited films.
Vasco, E; Polop, C; Sacedón, J L
2008-01-11
The growth kinetics of the mostly used physical vapor-phase deposition techniques -molecular beam epitaxy, sputtering, flash evaporation, and pulsed laser deposition-is investigated by rate equations with the aim of testing their suitability for the preparation of ultraflat ultrathin films. The techniques are studied in regard to the roughness and morphology during early stages of growth. We demonstrate that pulsed laser deposition is the best technique for preparing the flattest films due to two key features [use of (i) a supersaturated pulsed flux of (ii) hyperthermal species] that promote a kinetically limited Ostwald ripening mechanism.
NASA Astrophysics Data System (ADS)
Bordalo, Vinicius; Mejia, Christian; da Silveira, Enio F.; Seperuelo Duarte, Eduardo; Pilling, Sergio
Saturn's largest moon, Titan, has a dense atmosphere primarily composed of molecular nitro-gen (N2 , 96%) and methane (CH4 , 4%). Its atmospheric structure has been intensively studied recently due to the large amount of data obtained in situ by the Huygens probe during its de-cent to the surface on 14 January 2005. The probe could diagnose the composition of the haze particles made up organic chains containing H, C and N. Hydrocarbons and nitriles produced by photolysis of CH4 at high altitudes (˜ 2,000 km) act as embryos of aerosols of Titan as they fall to the surface. It is expected that CH4 condenses on these particles forming a layer of ice by adsorption or nucleation. Due to the high abundance of these aerosols throughout the atmo-sphere of Titan, their presence are relevant for the ionic balance of the atmosphere, especially the lower ionosphere promoted mainly by the flux of galactic cosmic rays (GCR). We have investigated the production of ions by electronic sputtering process due to the bombardment of the surfaces of aerosols by heavy ions. Time-of-flight (TOF) technique was used to obtain ion sputtering yields. An ice layer of CH4 was grown by condensation over a pre-condensed N2 ice in high vacuum chamber (1 × 10-7 mbar) at cryogenic temperature (10 K). Relative sputtering yields due to fast projectiles (252 Cf fission fragment ˜ 65 MeV) on the ice surfaces were measured. The bombardment was continued during the successive growth of both con-densed layers; the negative and positive sputtered ions were identified by TOF. Hybrid species including NH+ (17 u), HCN+ (27 u) and CN- (26 u) were formed, as well as the acetonitrile 3 ion (CH3 CN+ , 41 u). We argue that a similar process of continued ion replenishment into the gas phase by sputtering in aerosols ubiquitous in the lower ionosphere of Titan may occur and should be further investigated.
Terlier, T; Lee, J; Lee, K; Lee, Y
2018-02-06
Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.
NASA Astrophysics Data System (ADS)
Vuchic, Boris Vukan
1995-01-01
Most high angle grain boundaries in high-T _{c} superconductors exhibit weak link behavior. The Josephson-like properties of these grain boundaries can be used for many device applications such as superconducting quantum interference devices (SQUIDs). The structure-property relationship of different types of 45 ^circ (001) YBa_2 Cu_3O_{7-x} thin film grain boundary junctions are examined to study their weak link nature. A technique, termed sputter-induced epitaxy, is developed to form 45^circ (001) tilt grain boundaries in YBa_2Cu _3O_{7-x} thin films on (100) MgO substrates. A low voltage ion bombardment pre-growth substrate treatment is used to modify the epitaxial orientation relationship between the thin film and the substrate in selected regions. By modifying the orientation of the thin film, grain boundary junctions can be placed in any configuration on the substrate. A variety of pre-growth sputtering conditions in conjunction with atomic force microscopy and Rutherford backscatter spectrometry are used to determine the role of the ions in modifying the substrate surface. Sputter-induced epitaxy is extended to a multilayer MgO/LaAlO_3 substrate, allowing integration of the sputter -induced epitaxy junctions into multilayer structures. The low temperature transport properties of the sputter-induced epitaxy junctions and a set of bi-epitaxial grain boundaries are studied. Individual grain boundaries are isolated and characterized for resistance vs. temperature, current vs. voltage as a function of temperature and magnetic field behavior. Resistive and superconducting grain boundaries are compared. Microstructural analysis is performed using scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy (HREM). Marked differences are observed in the microstructure of resistive and superconducting grain boundaries. HREM studies suggest the importance of the local atomic scale structure of the grain boundary in transport properties. A phenomenological grain boundary model is proposed to describe the structure -property relationship of the boundaries.
Patterned Growth of Carbon Nanotubes or Nanofibers
NASA Technical Reports Server (NTRS)
Delzeit, Lance D.
2004-01-01
A method and apparatus for the growth of carbon nanotubes or nanofibers in a desired pattern has been invented. The essence of the method is to grow the nanotubes or nanofibers by chemical vapor deposition (CVD) onto a patterned catalyst supported by a substrate. The figure schematically depicts salient aspects of the method and apparatus in a typical application. A substrate is placed in a chamber that contains both ion-beam sputtering and CVD equipment. The substrate can be made of any of a variety of materials that include several forms of silicon or carbon, and selected polymers, metals, ceramics, and even some natural minerals and similar materials. Optionally, the substrate is first coated with a noncatalytic metal layer (which could be a single layer or could comprise multiple different sublayers) by ion-beam sputtering. The choice of metal(s) and thickness(es) of the first layer (if any) and its sublayers (if any) depends on the chemical and electrical properties required for subsequent deposition of the catalyst and the subsequent CVD of the carbon nanotubes. A typical first-sublayer metal is Pt, Pd, Cr, Mo, Ti, W, or an alloy of two or more of these elements. A typical metal for the second sublayer or for an undivided first layer is Al at a thickness .1 nm or Ir at a thickness .5 nm. Proper choice of the metal for a second sublayer of a first layer makes it possible to use a catalyst that is chemically incompatible with the substrate. In the next step, a mask having holes in the desired pattern is placed over the coated substrate. The catalyst is then deposited on the coated substrate by ion-beam sputtering through the mask. Optionally, the catalyst could be deposited by a technique other than sputtering and/or patterned by use of photolithography, electron- beam lithography, or another suitable technique. The catalytic metal can be Fe, Co, Ni, or an alloy of two or more of these elements, deposited to a typical thickness in the range from 0.1 to 20 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaoying; Liu, Bingwen; Zhao, Evan
For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputtermore » rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.« less
NASA Astrophysics Data System (ADS)
Wirth, R.; Morales, L. G.
2011-12-01
Focused ion beam (FIB) techniques have been successfully applied to the preparation of site-specific electron transparent membranes for transmission electron microscopy (TEM) investigations in Geosciences since several years. For example, systematic TEM studies of nano-inclusions in diamond foils prepared with FIB have improved our knowledge on diamond formation. However, FIB is not exclusively used for sample preparation for TEM application because it has been proved that one and the same TEM foil can also be used for Synchrotron IR, Synchrotron X-Ray fluorescence (XRF), scanning transmission X-Ray microscopy (STXM) and NanoSIMS analysis. In addition, FIB milling turned out to be very useful for sample preparation of Brillouin scattering experiments and has a strong potential for preparation of highly-polished, micrometer-scale samples. However, a real break through in FIB application was achieved combining a Ga-ion source of the FIB with an electron source of a scanning electron microscope (SEM) in one single instrument. The combination of FIB/SEM renders access to the third dimension of the sample possible. A cavity normal to the sample surface is sputtered with Ga-ions and this newly created inner surface is imaged with the electron beam. Alternating slicing and viewing along these cavities allow the acquisition of a sequence of images that allows the observation in 3 dimensions. Recently, this technique has been successfully applied to image the structure of grain or phase boundaries in metamorphic rocks as well as micro- and nanoporosity in shales, but its applicability goes far beyond these few examples. Combining slicing and viewing with X-Ray and electron backscatter diffraction (EBSD) analysis can provide 3D elemental mapping and 3D crystallographic orientation mapping of crystalline materials. Combined FIB/SEM devices also facilitate the preparation of substantially thinner and cleaner TEM foils (approximately 30 nm) because electron beam imaging controls the progress of the sputtering process without sputtering the sample during imaging. Electron induce sputtering is substantially smaller than ion induced sputtering. Finally, the amorphous layers created by Ga-ion sputtering and Ga-ion implantation can be removed from the foil surfaces by subsequent argon ion bombardment under a low angle of incidence and low acceleration voltage thus permitting TEM high-resolution imaging and electron energy-loss spectroscopy (EELS). Additionally, ultra-thin foils have the advantage that they are electron transparent even at 30 keV, the common operational voltage of a SEM. Therefore the electron column of the FIB/SEM system can be used as a TEM at low voltage and images can be made either in bright-field, dark field and through a high-angle annular dark field (HAADF) detector. The HAADF detector provides information about the chemical composition of the specimen with high spatial resolution because it is Z-contrast sensitive.
Angular and velocity distributions of tungsten sputtered by low energy argon ions
NASA Astrophysics Data System (ADS)
Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.
2017-12-01
Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.
NASA Technical Reports Server (NTRS)
Meyer, F. W.; Barghouty, A. F.
2012-01-01
Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest
Thin films of the Bi2Sr2Ca2Cu3O(x) superconductor
NASA Technical Reports Server (NTRS)
Mei, YU; Luo, H. L.; Hu, Roger
1990-01-01
Using RF sputtering technique, thin films of near single phase Bi2Sr2Ca2Cu3O(x) were successfully prepared on SrTiO3(100), MgO(100), and LaAlO3(012) substrates. Zero resistance of these films occurred in the range of 90-105 K.
The negative ions of strontium and barium
NASA Astrophysics Data System (ADS)
Garwan, M. A.; Kilius, L. R.; Litherland, A. E.; Nadeau, M.-J.; Zhao, X.-L.
1990-12-01
Recent theoretical calculations have predicted a tendency toward higher electron affinities for heavier alkaline elements. Experimental evidence has been obtained for the existence of strontium and barium negative ions created from pure elements in a caesium sputter ion source. Accelerator mass spectrometric techniques were employed to resolve the above elemental negative ions from the interfering molecular species.
NASA Astrophysics Data System (ADS)
Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato
2018-01-01
50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.
NASA Astrophysics Data System (ADS)
Khalaf, Mohammed K.; Mutlak, Rajaa H.; Khudiar, Ausama I.; Hial, Qahtan G.
2017-06-01
Nickel oxide thin films were deposited on glass substrates as the main gas sensor for H2 by the DC sputtering technique at various discharge voltages within the range of 1.8-2.5 kV. Their structural, optical and gas sensing properties were investigated by XRD, AFM, SEM, ultraviolet visible spectroscopy and home-made gas sensing measurement units. A diffraction peak in the direction of NiO (200) was observed for the sputtered films, thereby indicating that these films were polycrystalline in nature. The optical band gap of the films decreased from 3.8 to 3.5 eV when the thickness of the films was increased from 83.5 to 164.4 nm in relation to an increase in the sputtering discharge voltage from 1.8 to 2.5 kV, respectively. The gas sensitivity performance of the NiO films that were formed was studied and the electrical responses of the NiO-based sensors toward different H2 concentrations were also considered. The sensitivity of the gas sensor increased with the working temperature and H2 gas concentration. The thickness of the NiO thin films was also an important parameter in determining the properties of the NiO films as H2 sensors. It was shown in this study that NiO films have the capability to detect H2 concentrations below 3% in wet air, a feature that allows this material to be used directly for the monitoring of the environment.
Surface ripple evolution by argon ion irradiation in polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Meetika; Aggarwal, Sanjeev, E-mail: write2sa@gmail.com; Sharma, Annu
In this report, an attempt has been made to investigate the morphological evolution of nanoscale surface ripples on aliphatic (polypropylene, PP) and aromatic (polyethylene terephthalate, PET) polymeric substrates irradiated with 50 keV Ar{sup +} ions. The specimens were sputtered at off normal incidence of 30° with 5 × 10{sup 16} Ar{sup +} cm{sup −2}. The topographical features and structural behavior of the specimens were studied using Atomic Force Microscopy (AFM) and UV-Visible spectroscopy techniques, respectively. The Stopping and Range of Ions in Matter simulations were performed to calculate sputtering yield of irradiated PP and PET polymers. Sputtering yield of carbon atoms has beenmore » found to be smaller for PP (0.40) as compared to PET (0.73), which is attributed to the different structures of two polymers. AFM analysis demonstrates the evolution of ripple like features with amplitude (2.50 nm) and wavelength (690 nm) on PET while that of lower amplitude (1.50 nm) and higher wavelength (980 nm) on PP specimen. The disorder parameter (Urbach energy) has been found to increase significantly from 0.30 eV to 1.67 eV in case of PP as compared to a lesser increase from 0.35 eV to 0.72 eV in case of PET as revealed by UV-Visible characterization. A mutual correlation between ion beam sputtering induced topographical variations with that of enhancement in the disorder parameter of the specimens has been discussed.« less
The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.
Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui
2010-10-01
Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus
The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the totalmore » pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant increase in film hardness and reduced elastic modulus with increasing V{sub s} for all techniques. The harder films were produced by MFMS with hardness as high as 25 GPa. Low friction coefficients, between 0.05 and 0.06, were recorded for all films. Furthermore, CN{sub x} films produced by MFMS and DCMS at V{sub s} = 100 and 120 V presented a high wear resistance with wear coefficients of k ≤ 2.3 × 10{sup −5} mm{sup 3}/Nm. While all CN{sub x} films exhibit low friction, wear depends strongly on the structural and mechanical characteristics of the films. The MFMS mode is best suited for the production of hard CN{sub x} films, although high compressive stresses challenge the application on steel substrates. Films grown in HiPIMS mode provide adequate adhesion due to low residual stress values, at the expense of lower film hardness. Thus, a relatively wide mechanical property envelope is presented for CN{sub x} films, which is relevant for the optimization of CN{sub x} film properties intended to be applied as low friction and wear resistant coatings.« less
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.
Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.
Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June
2017-10-03
This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.
Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay
2015-08-14
Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.
1985-01-01
Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.
1985-01-01
Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; ...
2015-08-28
In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO 3 epitaxial thin films by 90° off-axis RF-magnetron sputtering. We compared films deposited from a single LaGaO 3 source with those prepared by alternating deposition from separate La 2O 3 and Ga 2O 3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. Our results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques canmore » be utilized to achieve stoichiometric control in ultrathin films.« less
Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.
Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y
2015-03-13
The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.
The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering
NASA Astrophysics Data System (ADS)
McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.
2000-03-01
β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.
NASA Astrophysics Data System (ADS)
More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.
2018-01-01
Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.
Sputtering phenomena of discharge chamber components in a 30-cm diameter Hg ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.; Rawlin, V. K.
1976-01-01
Sputtering and deposition rates were measured for discharge chamber components of a 30-cm diameter mercury ion thruster. It was found that sputtering rates of the screen grid and cathode baffle were strongly affected by geometry of the baffle holder. Sputtering rates of the baffle and screen grid were reduced to 80 and 125 A/hr, respectively, by combination of appropriate geometry and materials selections. Sputtering rates such as these are commensurate with thruster lifetimes of 15,000 hours or more. A semiempirical sputtering model showed good agreement with the measured values.
Magnetron-Sputtered Amorphous Metallic Coatings
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Mehra, M.; Khanna, S. K.
1985-01-01
Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.
NASA Astrophysics Data System (ADS)
Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej
2018-07-01
The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.
Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Asmat Uceda, Martin Antonio
This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.
2012-01-01
Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.
Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing.
Johnson, Grant E; Moser, Trevor; Engelhard, Mark; Browning, Nigel D; Laskin, Julia
2016-11-07
About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electrocatalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar for all of the NPs. The difference in reactivity between the NPs is attributed to their Ta/C ratios. Collectively, the findings presented herein indicate that reactive magnetron sputtering and gas aggregation combined with ion soft landing offer a promising physical approach for the synthesis of organic-inorganic hybrid NPs that have potential as low-cost durable substitutes for precious metals in catalysis.
NASA Astrophysics Data System (ADS)
Kaufman, David Y.
Two vapor deposition techniques, dual magnetron oblique sputtering (DMOS) and metalorganic chemical vapor deposition (MOCVD), have been developed to produce yttria-stabilized zirconia (YSZ) films with unique microstructures. In particular, biaxially textured thin films on amorphous substrates and dense thin films on porous substrates have been fabricated by DMOS and MOCVD, respectively. DMOS YSZ thin films were deposited by reactive sputtering onto Si (native oxide surface) substrates positioned equidistant between two magnetron sources such that the fluxes arrived at oblique angles with respect to the substrate normal. Incident fluxes from two complimentary oblique directions were necessary for the development of biaxial texture. The films displayed a strong [001] out-of-plane orientation with the <110> direction in the film aligned with the incident flux. Biaxial texture improved with increasing oblique angle and film thickness, and was stronger for films deposited with Ne than with Ar. The films displayed a columnar microstructure with grain bundling perpendicular to the projected flux direction, the degree of which increased with oblique angle and thickness. The texture decreased by sputtering at pressures at which the flux of sputtered atoms was thermalized. These results suggested that grain alignment is due to directed impingement of both sputtered atoms and reflected energetic neutrals. The best texture, a {111} phi FWHM of 23°, was obtained in a 4.8 mum thick film deposited at an oblique angle of 56°. MOCVD YSZ thin films were deposited in a vertical cold-wall reactor using Zr(tmhd)4 and Y(tmhd)3 precursors. Fully stabilized YSZ films with 9 mol% could be deposited by controlling the bubbler temperatures. YSZ films on Si substrates displayed a transition at 525°C from surface kinetic limited growth, with an activation energy of 5.5 kJ/mole, to mass transport limited growth. Modifying the reactor by lowering the inlet height and introducing an Ar baffle ring increased the growth rates to 2.5 mum/hr. Dense, gas impermeable 4-6 mum YSZ thin films were deposited on porous (La,Sr)Mno3 cathode substrates. Solid oxide fuel cells, fabricated by sputtering on a Ni-YSZ anode, achieved open circuit voltages ≥94% theoretical, and maximum power densities at 750°C comparable with commercial conventional SOFC's operated at higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte
2015-11-15
Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleddermann, C.B.
The sputter deposition of high-temperature superconducting thin films was studied using optical emission spectroscopy. Argon or oxygen ions generated by a Kaufman ion gun were used to sputter material from a composite target containing yttrium, barium, and copper which had been oxygen annealed. The impact of ions onto the target generates a plume of sputtered material which includes various excited-state atoms and molecules. In these studies, optical emission is detected for all the metallic components of the film as well as for metallic oxides ejected from the target. No emission due to atomic or molecular oxygen was detected, however. Variationsmore » in sputter conditions such as changes in sputter ion energy, oxygen content of the beam, and target temperature are shown to greatly affect the emission intensity, which may correlate to the characteristics of the sputtering and the quality of the films deposited. The results suggest that optical emission from the sputtered material may be useful for real-time monitoring and control of the sputter deposition process.« less
Electric tunable behavior of sputtered lead barium zirconate thin films
NASA Astrophysics Data System (ADS)
Wu, Lin-Jung; Wu, Jenn-Ming; Huang, Hsin-Erh; Bor, Hui-Yun
2007-02-01
Lead barium zirconate (PBZ) films were grown on Pt /Ti/SiO2/Si substrates by rf-magnetron sputtering. The sputtered PBZ films possess pure perovskite phase, uniform microstructure, and excellent tunable behaviors. The tunability and loss tangent of sputtered PBZ films depend greatly on the oxygen mixing ratio (OMR). The optimal dielectric tunable behavior occurs in the PBZ films sputtered at 10% OMR. The sputtered PBZ film (10% OMR) possesses a value of figure of merit of 60, promising for frequency-agile applications. Bulk acoustic waves induced by electromechanical coupling occur at 2.72GHz, which is useful in fabricating filters and related devices in the microwave range.
NASA Astrophysics Data System (ADS)
Oyarzabal, Eider
Exit-angle resolved Mo atom sputtering yield under Xe ion bombardment and carbon atom and cluster (C2 and C3) sputtering yields under Xe, Kr, Ar, Ne and He ion bombardment from a plasma are measured for low incident energies (75--225 eV). An energy-resolved quadrupole mass spectrometer (QMS) is used to detect the fraction of un-scattered sputtered neutrals that become ionized in the plasma; the angular distribution is obtained by changing the angle between the target and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles between the sample and the QMS. The elastic scattering cross-sections of C, C2 and C3 with the different bombarding gas neutrals is obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. Because the results obtained with the QMS are relative, the Mo atom sputtering results are normalized to the existing data in the literature and the total sputtering yield for carbon (C+C 2+C3) for each bombarding gas is obtained from weight loss measurements. The absolute sputtering yield for C, C2 and C 3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. The angular sputtering distribution for Mo has a maximum at theta=60°, and this maximum becomes less pronounced as the incident ion energy increases. The results of the Monte Carlo TRIDYN code simulation for the angular distribution of Mo atoms sputtered by Xe bombardment are in agreement with the experiments. For carbon sputtering under-cosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases are also observed. The C, C2 and C3 sputtering yield data shows a clear decrease of the atom to cluster (C/C2 and C/C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).
Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef
2016-03-15
Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less
Plasma cleaning and analysis of archeological artefacts from Sipán
NASA Astrophysics Data System (ADS)
Saettone, E. A. O.; da Matta, J. A. S.; Alva, W.; Chubaci, J. F. O.; Fantini, M. C. A.; Galvão, R. M. O.; Kiyohara, P.; Tabacniks, M. H.
2003-04-01
A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipán. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.
Sputtering from a Porous Material by Penetrating Ions
NASA Technical Reports Server (NTRS)
Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.
2012-01-01
Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.
Magnetic Nanostructures Patterned by Self-Organized Materials
2016-01-05
solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis Microfluid...techniques such as chemical synthesis , self-organized methods, sputtering, lithography and atomic layer deposition (ALD). We also performed micromagnetic...range of temperatures (1.8 to 300 K) and at high fields (up to 5 T). The low temperature measurements of magnetic nanoparticles allowed us to
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-08-23
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C-800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction.
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-01-01
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C–800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction. PMID:27563893
Plasma Radiofrequency Discharges as Cleaning Technique for the Removal of C-W Coatings
NASA Astrophysics Data System (ADS)
Cremona, A.; Vassallo, E.; Caniello, R.; Ghezzi, F.; Grosso, G.; Laguardia, L.
2013-06-01
Erosion of materials by chemical and physical sputtering is one of the most concern of plasma wall interaction in tokamaks. In divertor ITER-like tokamaks, where carbon and tungsten are planned to be used, hydrogenated C-W mixed compounds are expected to form by erosion, transport and re-deposition processes. The selection of these materials as divertor components involves lifetime and safety issues due to tritium retention in carbon co-deposits. In this paper a cleaning technique based on RF (13.56 MHz) capacitively coupled H2/Ar plasmas has been used to remove C-W mixed materials from test specimens. The dependence of the removal rate on the H2/Ar ratio and on the plasma pressure has been investigated by X-ray photoelectron spectroscopy, atomic force microscopy, profilometry as regards the solid phase and by Langmuir probe and optical emission spectroscopy as regards the plasma phase. The best result has been obtained with a H2/Ar ratio of 10/90 at a pressure of 1 Pa. An explanation based on a synergistic effect between physical sputtering due to energetic ions and chemical etching due to radicals, together with the pressure dependence of the ion energy distribution function, is given.
NASA Astrophysics Data System (ADS)
Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen
2017-09-01
This paper reports the synthesis of a new type of Au@TiO2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO2 nanotubes, Au@TiO2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.
Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen
2017-09-18
This paper reports the synthesis of a new type of Au@TiO 2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO 2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO 2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO 2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO 2 nanotubes, Au@TiO 2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO 2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1978-01-01
The principles of ESCA (electron spectroscopy for chemical analysis) are described by comparison with other spectroscopic techniques. The advantages and disadvantages of ESCA as compared to other surface sensitive analytical techniques are evaluated. The use of ESCA is illustrated by actual applications to oxidation of steel and Rene 41, the chemistry of lubricant additives on steel, and the composition of sputter deposited hard coatings. Finally, a bibliography of material that is useful for further study of ESCA is presented and commented upon.
NASA Astrophysics Data System (ADS)
Wang, Feifei; Zhou, Fan; Wang, Jinshu; Liu, Wei; Zhang, Quan; Yin, Qiao
2018-07-01
Magnesium oxide (MgO) and MgO/Al2O3 composite thin films were prepared on silver substrates by DC magnetron sputtering technique and their secondary electron yields ( δ) and working durability under constant electron bombardment were investigated. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses reveal that uniform MgO/Al2O3 composite films were developed and residual Al exists in the films after sputtering of the Mg-Al alloy in an Ar-O2 mixed atmosphere on silver substrates heated at 400°C. The MgO/Al2O3 composite films show superior δ as high as 11.6 and much better resistance to electron bombardment than that of pure MgO films. Good secondary electron emission (SEE) properties of the MgO/Al2O3 film are probably due to the presence of alumina in the film, which has higher bond dissociation energy than MgO, as well as the presence of residual Al in the film, which contributes to effective electron transport in the film and diminished surface charging during SEE. With superior SEE performance, MgO/Al2O3 films have potential for practical electron multipliers in various vacuum electron devices.
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
TiOx deposited by magnetron sputtering: a joint modelling and experimental study
NASA Astrophysics Data System (ADS)
Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.
2018-05-01
This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2017-10-01
Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.
Advanced capabilities and applications of a sputter-RBS system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brijs, B.; Deleu, J.; Beyer, G.
1999-06-10
In previous experiments, sputter-RBS{sup 1} has proven to be an ideal tool to study the interaction of low energy ions. This contribution employs the same methodology to identify surface contamination induced during sputtering and to the determine absolute sputter yields. In the first experiment ERDA analysis was used to study the evolution of Hydrogen contamination during sputter-RBS experiments. Since the determination of Hydrogen concentration in very thin near surface layers is frequently limited by the presence of a strong surface peak of Hydrogen originating from adsorbed contamination of the residual vacuum, removal of this contamination would increase the sensitivity formore » Hydrogen detection in the near sub surface drastically. Therefore low energy (12 keV) Argon sputtering was used to remove the Hydrogen surface peak. However enhanced Hydrogen adsorption was observed related to the Ar dose. This experiment shows that severe vacuum conditions and the use of high current densities/sputter yields are a prerequisite for an efficient detection of Hydrogen in the near surface layers. In the second experiment, an attempt was made to determine the sputter yield of Cu during low energy (12 keV) Oxygen bombardment. In order to determine the accumulated dose of the low energy ion beam, a separate Faraday cup in combination with a remote controlled current have been added to the existing sputter-RBS set-up. Alternating sputtering and RBS analysis seem to be an adequate tool for the determination of the absolute sputter yield of Cu and this as well in the as under steady state conditions.« less
NASA Astrophysics Data System (ADS)
Guo, Zexuan; Jiang, Dayong; Hu, Nan; Yang, Xiaojiang; Zhang, Wei; Duan, Yuhan; Gao, Shang; Liang, Qingcheng; Zheng, Tao; Lv, Jingwen
2018-06-01
We proposed and demonstrated MgZnO metal-semiconductor-metal (MSM) ultraviolet photodetectors (UV) assisted with surface plasmons (SPs) prepared by the radio frequency magnetron sputtering deposition method. After the decoration of their surface with Pt nanoparticles (NPs), the responsivity of all the electrode spacing (3, 5, and 8 μm) photodetectors were enhanced dramatically; to our surprise, comparing with them the responsivity of larger spacing sample, more SPs were gathered which are smaller than others in turn. A physical mechanism focused on SPs and depletion width is given to explain the above results.
Note on the artefacts in SRIM simulation of sputtering
NASA Astrophysics Data System (ADS)
Shulga, V. I.
2018-05-01
The computer simulation program SRIM, unlike other well-known programs (MARLOWE, TRIM.SP, etc.), predicts non-zero values of the sputter yield at glancing ion bombardment of smooth amorphous targets and, for heavy ions, greatly underestimates the sputter yield at normal incidence. To understand the reasons for this, the sputtering of amorphous silicon bombarded with different ions was modeled here using the author's program OKSANA. Most simulations refer to 1 keV Xe ions, and angles of incidence cover range from 0 (normal incidence) to almost 90°. It has been shown that SRIM improperly simulates the initial stage of the sputtering process. Some other artefacts in SRIM calculations of sputtering are also revealed and discussed.
Collision-spike sputtering of Au nanoparticles
Sandoval, Luis; Urbassek, Herbert M.
2015-08-06
Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less
Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Fred W; Harris, Peter R; Taylor, C. N.
2011-01-01
We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have highermore » physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Kingon, A.I.
1989-01-01
Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Kalaiselvam, S.; Sandhya, J.; Krishnan, K. V. Hari; Kedharnath, A.; Arulkumar, G.; Roseline, A. Ameelia
Surgical instruments and other bioimplant devices, owing to their importance in the biomedical industry require high biocompatibility to be used in the human body. Nevertheless, issues of compatibility, bacterial infections are quite common in such devices. Hence development of surface coatings on various substrates for implant applications is a promising technique to combat the issues arising in these implant materials. The present investigation aims at coating copper on stainless steel substrate using DC Magnetron sputtering which is used to achieve film of required thickness (0.5-8μm). The deposition pressure, substrate temperature, power supply, distance between the specimen and target are optimized and maintained constant, while the sputtering time (30-110min) is varied. The sputtered copper thin film’s morphology, composition are characterized by SEM and EDAX. X-ray diffraction analysis shows copper oriented on (111) and (002) and copper oxide on (111) planes. The contact angle of copper thin film is 92∘ while AISI 316L shows 73∘. The antimicrobial studies carried in Staphylococcus aureus, Escherichia Coli, Klebsiella pneumonia and Candida albicans show that the maximum reduction was seen upto 35, 26, 54, 39CFU/mL, respectively after 24h. The cell viability is studied by MTT assay test on Vero cell line for 24h, 48h and 72h and average cell viability is 43.85%. The copper release from the thin film to the culture medium is 6691μg/L (maximum) is estimated from AAS studies. The copper coated substrate does not show much reaction with living Vero cells whereas the bacteria and fungi are found to be destroyed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.
2015-01-21
Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less
NASA Astrophysics Data System (ADS)
Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.
2015-01-01
Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.
Method of making segmented pyrolytic graphite sputtering targets
McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen
1994-01-01
Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.
Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Weibing; Lan, Si; Gao, Libo
High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less
NASA Astrophysics Data System (ADS)
Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.
2018-03-01
In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.
Visualization and mechanisms of splashing erosion of electrodes in a DC air arc
NASA Astrophysics Data System (ADS)
Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi
2017-11-01
The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkerk, B. E.; Soussou, A.; Carette, M.
This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1}more » K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.« less
Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.; Ichikawa, F.
2018-03-01
This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.
NASA Astrophysics Data System (ADS)
Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.
2015-10-01
Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.
Evolution of nanodot morphology on polycarbonate (PC) surfaces by 40 keV Ar{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Meetika, E-mail: meetika89@gmail.com; Chawla, Mahak; Gupta, Divya
In the present paper we have discussed the effect of 40 keV Ar{sup +} ions irradiation on nanoscale surface morphology of Polycarbonate (PC) substrate. Specimens were sputtered at off normal incidences of 30°, 40° and 50° with the fluence of 1 × 10{sup 16} Ar{sup +}cm{sup −2}. The topographical behaviour of specimens was studied by using Atomic Force Microscopy (AFM) technique. AFM study demonstrates the evolution of nano dot morphology on PC specimens on irradiating with 1 × 10{sup 16} Ar{sup +}cm{sup −2}. Average size of dots varied from 37-95 nm in this specified range of incidence while density of dotsmore » varied from 0.17-3.0 × 107 dotscm{sup −2}. Such variations in morphological features have been supported by estimation of ion range and sputtering yield through SRIM simulations.« less
Depth resolution and preferential sputtering in depth profiling of sharp interfaces
NASA Astrophysics Data System (ADS)
Hofmann, S.; Han, Y. S.; Wang, J. Y.
2017-07-01
The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.
Laser patterning of transparent polymers assisted by plasmon excitation.
Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O
2018-06-13
Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brandon D., E-mail: bradenis@umich.edu; Boyd, Iain D.
The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen atmore » as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.« less
NASA Astrophysics Data System (ADS)
Brown, Hayley Louise
The development of flexible lightweight OLED devices requires oxygen/moisture barrier layer thin films with water vapour transmission rates (WVTR) of < 10-6 g/m2/day. This thesis reports on single and multilayer architecture barrier layers (mostly based on SiO2, Al2O3 and TiO2) deposited onto glass, Si and polymeric substrates using remote plasma sputtering. The reactive sputtering depositions were performed on Plasma Quest S500 based sputter systems and the morphology, nanostructure and composition of the coatings have been examined using SEM, EDX, STEM, XPS, XRD and AFM. The WVTR has been determined using industry standard techniques (e.g. MOCON) but, for rapid screening of the deposited layers, an in-house permeation test was also developed. SEM, XRD and STEM results showed that the coatings exhibited a dense, amorphous structure with no evidence of columnar growth. However, all of the single and multilayer coatings exhibited relatively poor WVTRs of > 1 x 10-1 g/m2/day at 38 °C and 85 % RH. Further characterisation indicated that the barrier films were failing due to the presence of substrate asperities and airborne particulates. Different mechanisms were investigated in an attempt to reduce the density of film defects including incorporation of a getter layer, modification of growth kinetics, plasma treatment and polymer planarising, but none were successful in lowering the WVTR. Review of this issue indicated that the achievement of good barrier layers was likely to be problematic in commercial practice due to the cost implications of adequately reducing particulate density and the need to cover deliberately non-planar surfaces and fabricated 3D structures. Conformal coverage would therefore be required to bury surface structures and to mitigate particulate issues. Studies of the remote plasma system showed that it both inherently delivered an ionised physical vapour deposition (IPVD) process and was compatible with bias re-sputtering of substrates. Accordingly, a process using RF substrate bias to conformally coat surfaces was developed to encapsulate surface particulates and seal associated permeation paths. An order of magnitude improvement in WVTR (6.7 x 10-2 g/m2/day) was measured for initial Al2O3 coatings deposited with substrate bias. The development of substrate bias to enhance conformal coverage provides significant new commercial benefit. Furthermore, conformal coverage of 5:1 aspect ratio structures have been demonstrated by alternating the substrate bias between -222 V and -267 V, with a 50 % dwell time at each voltage. Further development and optimisation of the substrate bias technique is required to fully explore the potential for further improving barrier properties and conformal coverage of high aspect ratio and other 3D structures.
Liang, Yuan-Chang; Chung, Cheng-Chia; Lo, Ya-Ju; Wang, Chein-Chung
2016-01-01
The ZnO-CdS core-shell composite nanorods with CdS shell layer thicknesses of 5 and 20 nm were synthesized by combining the hydrothermal growth of ZnO nanorods with the sputtering thin-film deposition of CdS crystallites. The microstructures and optical properties of the ZnO-CdS nanorods were associated with the CdS shell layer thickness. A thicker CdS shell layer resulted in a rougher surface morphology, more crystal defects, and a broader optical absorbance edge in the ZnO-CdS rods. The ZnO-CdS (20 nm) nanorods thus engaged in more photoactivity in this study. When they were further subjected to a postannealing procedure in ambient Ar/H2, this resulted in the layer-like CdS shell layers being converted into the serrated CdS shell layers. By contrast, the ZnO-CdS nanorods conducted with the postannealing procedure exhibited superior photoactivity and photoelectrochemical performance; the substantial changes in the microstructures and optical properties of the composite nanorods following postannealing in this study might account for the observed results. PMID:28774134
NASA Astrophysics Data System (ADS)
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, Jiexu
2017-03-01
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg-1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu
2017-03-30
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg -1 Pt . This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
Wang, Weizhi; Li, Menglin; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Lai, Wenjia; Yang, Shu; Gong, He; Zheng, Hui; Wang, Yuqiao; Liu, Ying; Li, Qin; Fang, Qiaojun; Hu, Zhiyuan
2014-04-15
Peptide probes and drugs have widespread applications in disease diagnostics and therapy. The demand for peptides ligands with high affinity and high specificity toward various targets has surged in the biomedical field in recent years. The traditional peptide screening procedure involves selection, sequencing, and characterization steps, and each step is manual and tedious. Herein, we developed a bimodal imprint microarray system to embrace the whole peptide screening process. Silver-sputtered silicon chip fabricated with microwell array can trap and pattern the candidate peptide beads in a one-well-one-bead manner. Peptides on beads were photocleaved in situ. A portion of the peptide in each well was transferred to a gold-coated chip to print the peptide array for high-throughput affinity analyses by surface plasmon resonance imaging (SPRi), and the peptide left in the silver-sputtered chip was ready for in situ single bead sequencing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the bimodal imprint chip system, affinity peptides toward AHA were efficiently screened out from the 7 × 10(4) peptide library. The method provides a solution for high efficiency peptide screening.
Method of making segmented pyrolytic graphite sputtering targets
McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.
1994-02-08
Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.
Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles
NASA Astrophysics Data System (ADS)
Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd
2013-12-01
Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).
Low energy sputtering of cobalt by cesium ions
NASA Technical Reports Server (NTRS)
Handoo, A.; Ray, Pradosh K.
1989-01-01
An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.
A Closer Look at Solar Wind Sputtering of Lunar Surface Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Mansur, L.; Reinhold, C.
2008-01-01
Solar-wind induced potential sputtering of the lunar surface may be a more efficient erosive mechanism than the "standard" kinetic (or physical) sputtering. This is partly based on new but limited laboratory measurements which show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. The enhancements seen in the laboratory can be orders of magnitude for some surfaces and highly charged incident ions, but seem to depend very sensitively on the properties of the impacted surface in addition to the fluence, energy and charge of the impacting ion. For oxides, potential sputtering yields are markedly enhanced and sputtered species, especially hydrogen and light ions, show marked dependence on both charge and dose.
XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings
NASA Astrophysics Data System (ADS)
Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat
2015-02-01
TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReNx (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa (± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al2O3 balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti2O3 for RT tests and TiO2 for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO2, Tisbnd Osbnd N, ReO2 and Re2O7 for both test temperatures. Re2O7 provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.
Plasma Accelerator and Energy Conversion Research
1982-10-29
performance tests have been accomplished. A self-contained recirculating AMTEC device with a thermal to electric conversion efficiency of 19% has been...combined efficiency . These two match up particularly well, because thermionic conversion is a high temperature technique, whereas AMTEC is limited to...EXPERIENTAL: Samples: The samples were prepared with a high rate DC magnetron sputtering apparatus ( SFI model 1 ). The sample set consisted of four
Ti/Al multilayer zone plate and Bragg-Fresnel lens.
Koike, M; Suzuki, I H; Komiya, S; Amemiya, Y
1998-05-01
By using a helicon plasma sputtering technique, a one-dimensional Ti/Al multilayer zone plate with an outermost layer width of 76 nm has been successfully fabricated. A Bragg-Fresnel lens has been made by combining this zone plate with a Ge(422) crystal. Comparison of the Ti/Al multilayer zone plate with the Ag/Al zone plate is discussed in terms of focusing efficiency.
Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition
NASA Astrophysics Data System (ADS)
Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred
2016-12-01
Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ˜150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the (20\\bar{4}) and (204) planes of α″ martensite, indicating that the films’ growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.
Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel
NASA Astrophysics Data System (ADS)
T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama
2005-04-01
Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was exposed to the environment of JFT-2M tokamak in JAERI and after that the deuterium retention was examined. The result was roughly the same as the case of deuterium ion irradiation experiment.
NASA Astrophysics Data System (ADS)
Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi
2005-05-01
The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.
NASA Astrophysics Data System (ADS)
Santos, Tiffany; Jain, Shikha; Hirotsune, Akemi; Hellwig, Olav
2015-03-01
MgO is the underlayer material of choice for granular FePt thin film media for heat assisted magnetic recording, because MgO (001) seeds L10-ordered FePt with c-axis perpendicular to the film plane and high perpendicular magnetic anisotropy. MgO is also an effective diffusion barrier between the FePt grains and the metallic underlayers beneath the MgO. However, there are possible concerns associated with using MgO in the media structure. MgO is highly sensitive to moisture, and hydration of MgO could potentially degrade film properties. In addition, many particulates are incorporated into the film during the RF-sputter process, which can be sources of delamination, pinholes and damage to the low-flying recording heads. TiN is an attractive alternative to MgO because it is chemically and mechanically robust, and TiN can be DC-sputtered, which produces fewer particles and has a faster deposition rate. Even though TiN has the same rocksalt crystal structure and lattice constant as MgO, the higher surface energy of TiN causes more wetting of the FePt grains on the TiN surface. As a result, deposition of granular FePt on TiN most often produces inter-connected, worm-like grains with low coercivity. We will show that by optimizing the deposition of FePt and segregant material on the TiN underlayer, we are able to fabricate FePt media with well-isolated grains and high coercivity reaching nearly 4 Tesla. In addition, the FePt has excellent structural properties with a high degree of L10 atomic ordering and minimal c-axis in-plane oriented grains.
X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy
NASA Astrophysics Data System (ADS)
McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette
2012-08-01
Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.
NASA Astrophysics Data System (ADS)
Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka
2013-11-01
Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.
Sputter-deposited fuel cell membranes and electrodes
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)
2001-01-01
A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.
Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Liu, Cui; Li, Guo-Qing; Gou, Wei; Mu, Zong-Xin; Zhang, Cheng-Wu
2004-11-01
Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5 μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.
NASA Technical Reports Server (NTRS)
Spalvins, T.
1973-01-01
Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.
Sputtering of rough surfaces: a 3D simulation study
NASA Astrophysics Data System (ADS)
von Toussaint, U.; Mutzke, A.; Manhard, A.
2017-12-01
The lifetime of plasma-facing components is critical for future magnetic confinement fusion power plants. A key process limiting the lifetime of the first-wall is sputtering by energetic ions. To provide a consistent modeling of the sputtering process of realistic geometries, the SDTrimSP-code has been extended to enable the processing of analytic as well as measured arbitrary 3D surface morphologies. The code has been applied to study the effect of varying the impact angle of ions on rough surfaces on the sputter yield as well as the influence of the aspect ratio of surface structures on the 2D distribution of the local sputtering yields. Depending on the surface morphologies reductions of the effective sputter yields to less than 25% have been observed in the simulation results.
Dedicated Co-deposition System for Metallic Paramagnetic Films
Jaeckel, F.; Kotsubo, V.; Hall, J. A.; ...
2012-01-27
Here, we describe a dedicated co-sputtering/ion-mill system developed to study metallic paramagnetic films for use in magnetic microcalorimetry. Small-diameter sputtering guns allow study of several precious-metal-based paramagnetic alloy systems within a reasonable budget. We demonstrated safe operation of a 1" sputtering gun at >5x the rated maximum power, achieving deposition rates up to ~900 Å/min/gun (Cu) in our co-sputtering geometry. Demonstrated co-sputtering deposition ratios up to 100:1 allow accurate tuning of magnetic dopant concentration and eliminate the difficulty of preparing homogeneous alloy targets of extreme dilution.
NASA Astrophysics Data System (ADS)
Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu
2018-04-01
Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.S., E-mail: 160184@mail.csc.com.tw; Chiu, C.H.; Hong, I.T.
2013-09-15
Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes,more » which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.« less
del Rayo Rivas-Ortiz, Yazmín; Hernández-Herrera, Ricardo Jorge
2010-06-01
Recently assisted reproduction techniques are more common, which increases multiple pregnancies and adverse perinatal outcomes. Some authors report increased mortality in multiple pregnancies products obtained by techniques of assisted reproduction vs. conceived spontaneously, although other authors found no significant difference. To evaluate mortality rate of multiple pregnancies comparing those obtained by assisted reproduction vs. spontaneous conception. Retrospective, observational and comparative study. We included pregnant women with 3 or more products that went to the Unidad Médica de Alta Especialidad No. 23, IMSS, in Monterrey, NL (Mexico), between 2002-2008. We compared the number of complicated pregnancies and dead products obtained by a technique of assisted reproduction vs. spontaneous. 68 multiple pregnancies were included. On average, spontaneously conceived fetuses had more weeks of gestation and more birth weight than those achieved by assisted reproduction techniques (p = ns). 20.5% (14/68) of multiple pregnancies had one or more fatal events: 10/40 (25%) by assisted reproduction techniques vs. 4/28 (14%) of spontaneous multiple pregnancies (p = 0.22). 21/134 (16%) of the products conceived by assisted reproduction techniques and 6/88 (7%) of spontaneous (p < 0.03) died. 60% of all multiple pregnancies were obtained by a technique of assisted reproduction and 21% of the cases had one or more fatal events (11% more in pregnancies achieved by assisted reproduction techniques). 12% of the products of multiple pregnancies died (9% more in those obtained by a technique of assisted reproduction).
NASA Astrophysics Data System (ADS)
Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.
2017-12-01
Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.
Auger spectroscopy of fracture surfaces of ceramics
NASA Technical Reports Server (NTRS)
Marcus, H. L.; Harris, J. M.; Szalkowski, F. J.
1974-01-01
Results of Auger electron spectroscopy (AES) studies of fracture surfaces in a series of ceramic materials, including Al2O3, MgO, and Si3N4, which were formed using different processing techniques. AES on the fractured surface of a lunar sample is also discussed. Scanning electron micrograph fractography is used to relate the surface chemistry to the failure mode. Combined argon ion sputtering and AES studies demonstrate the local variations in chemistry near the fracture surface. The problems associated with doing AES in insulators are also discussed, and the experimental techniques directed toward solving them are described.
NASA Astrophysics Data System (ADS)
Huang, Shi-Hua; Liu, Jian
2014-05-01
Si-rich Si1—xCx /SiC multilayer thin films are prepared using magnetron sputtering, subsequently followed by thermal annealing in the range of 800-1200 °C. The influences of annealing temperature (Ta) on the formation of Si and/or SiC nanocrystals (NCs) and on the electrical characteristics of the multilayer film are investigated by using a variety of analytical techniques, including X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectrometry (FT-IR), current—voltage (I—V) technique, and capacitance-voltage (C—V) technique. XRD and Raman analyses indicate that Si NCs begin to form in samples for Ta >= 800 °C. At annealing temperatures of 1000 °C or higher, the formation of Si NCs is accompanied by the formation of SiC NCs. With the increase in the annealing temperature, the shift of FT-IR Si—C bond absorption spectra toward a higher wave number along with the change of band shape can be explained by a Si—C transitional phase between the loss of substitutional carbon and the formation of SiC precipitates and a precursor for the growth of SiC crystalline. The C—V and I—V results indicate that the interface quality of Si1—xCx/SiC multilayer film is improved significantly and the leakage current is reduced rapidly for Ta >= 1000 °C, which can be ascribed to the formation of Si and SiC NCs.
The Characterization of Thin Film Nickel Titanium Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Harris Odum, Nicole Latrice
Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.
2010-01-01
Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.
Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering
NASA Astrophysics Data System (ADS)
Stark, C. R.; Diver, D. A.
2018-04-01
Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.
Altering properties of cerium oxide thin films by Rh doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz; NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz
2015-07-15
Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffractionmore » techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.« less
Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth
2015-07-21
Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.
Magnetron Sputtered Molybdenum Oxide for Application in Polymers Solar Cells
NASA Astrophysics Data System (ADS)
Sendova-Vassileva, M.; Dikov, Hr; Vitanov, P.; Popkirov, G.; Gergova, R.; Grancharov, G.; Gancheva, V.
2016-10-01
Thin films of molybdenum oxide were deposited by radio frequency (RF) magnetron sputtering in Ar from a MoO3 target at different deposition power on glass and silicon substrates. The thickness of the films was determined by profilometer measurements and by ellipsometry. The films were annealed in air at temperatures between 200 and 400°C in air. The optical transmission and reflection spectra were measured. The conductivity of the as deposited and annealed films was determined. The crystal structure was probed by Raman spectroscopy. The oxidation state of the surface was studied by X-ray photoelectron spectroscopy (XPS) spectroscopy. The deposition technique described above was used to experiment with MoOx as a hole transport layer (HTL) in polymer solar cells with bulk hetrojunction active layer, deposited by spin coating. The performance of these layers was compared with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which is the standard material used in this role. The measured current-voltage characteristics of solar cells with the structure glass/ITO/HTL/Poly(3-hexyl)thiophene (P3HT):[6,6]-phenyl-C61- butyric acid methyl ester (PCBM)/Al demonstrate that the studied MoOx layer is a good HTL and leads to comparable characteristics to those with PEDOT:PSS. On the other hand the deposition by magnetron sputtering guarantees reliable and repeatable HTLs.
Applications of remanent supermirror polarizers
NASA Astrophysics Data System (ADS)
Böni, P.; Clemens, D.; Kumar, M. Senthil; Pappas, C.
1999-06-01
Recent developments in sputtering techniques allow the fabrication of multilayers with a high degree of perfection over large areas. We show, that using reactive sputtering, it is possible to adjust the index of refraction for neutrons, ni, of the individual layers. This property is particularly important for polarizing mirrors, where nnm for the non-magnetic layers can be matched to nm of the magnetic layers such that neutrons for one spin-eigenstate are not reflected by the coating, whereas the reflectivity is high for the other spin-eigenstate. In addition, by using anisotropic sputtering conditions it is possible to orient the easy axis of magnetization within the plane of the mirrors in any particular direction resulting in a simultaneous appearance of a pronounced remanence and coercivity. Remanent polarizers can be used as broad band spin selectors at continuous and in particular at pulsed neutron sources thus eliminating the need of spin flippers, whose performance depends on the wavelength of the neutrons and is often strongly influenced by stray magnetic fields from the sample environment. The possibility to operate remanent supermirrors in arbitrary small fields leads to attractive applications of polarizing devices in low field environments such as they occur in neutron-spin-echo or in spin selective neutron guides. We present applications, where several tasks like polarizing, focusing and spin selection are performed in one single device thus reducing the problem of phase space matching between different neutron optical components.
NASA Astrophysics Data System (ADS)
El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.
2016-05-01
High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.
Sputtering erosion in ion and plasma thrusters
NASA Technical Reports Server (NTRS)
Ray, Pradosh K.
1995-01-01
An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.
Silicon Oxycarbide Waveguides for Photonic Applications
NASA Astrophysics Data System (ADS)
Memon, Faisal Ahmed; Morichetti, Francesco; Melloni, Andrea
2018-01-01
Silicon oxycarbide thin films deposited with rf reactive magnetron sputtering a SiC target are exploited to demonstrate photonic waveguides with a high refractive index of 1.82 yielding an index contrast of 18% with silica glass. The propagation losses of the photonic waveguides are measured at the telecom wavelength of 1.55 μm by cut-back technique. The results demonstrate the potential of silicon oxycarbide for photonic applications.
Research in the Optical Sciences.
1984-10-01
cannot tolerate the high temperatures used for 9 conventional hard MgF, depositions. The ion beam processing led to durable films (in some cases more...sputter epitaxy techniques for the production of high-reflectivity mirrors for near-normal incidence in the x-ray-ultraviolet (X- UV ) wavelength range...codes for X- UV multilayer mirror design, (2) acquisition of a data base of optical constants in this wavelength range, (3) theoretical designs of
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2018-05-01
This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.
Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering
NASA Astrophysics Data System (ADS)
Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi
2017-12-01
We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.
Sputtering by the Solar Wind: Effects of Variable Composition
NASA Technical Reports Server (NTRS)
Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.
2011-01-01
It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori
2013-04-19
In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less
Sputtering of ices in the outer solar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.E.
1996-01-01
Exploration of the outer solar system has led to studies in a new area of physics: electronically induced sputtering of low-temperature, condensed-gas solids (ices). Many of the icy bodies in the outer solar system were found to be bombarded by relatively intense fluxes of ions and electrons, causing both changes in their optical reflectance and ejection (sputtering) of molecules from their surfaces. The small cohesive energies of the condensed-gas solids afford relatively large sputtering rates from the electronic excitations produced in the solid by fast ions and electrons. Such sputtering produces an ambient gas about an icy body, often themore » source of the local plasma. This colloquium outlines the physics of the sputtering of ices and its relevance to several outer-solar-system phenomena: the sputter-produced plasma trapped in Saturn{close_quote}s magnetosphere; the O{sub 2} atmosphere on Europa; and optical absorption features such as SO{sub 2} in the surface of Europa and O{sub 2} and, possibly, O{sub 3} in the surface of Ganymede. {copyright} {ital 1996 The American Physical Society.}« less
Lubrication with sputtered MoS2 films: Principles, operation, limitations
NASA Technical Reports Server (NTRS)
Spalvins, T.
1991-01-01
The present practices, limitations, and understanding of thin sputtered MoS2 films are reviewed. Sputtered MoS2 films can exhibit remarkable tribological properties such as ultralow friction coefficients (0.01) and enhanced wear lives (millions of cycles) when used in vacuum or dry air. To achieve these favorable tribological characteristics, the sputtering conditions during deposition must be optimized for adequate film adherence and appropriate structure (morphology) and composition.
Sputtering yields of carbon based materials under high particle flux with low energy
NASA Astrophysics Data System (ADS)
Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.
1995-04-01
A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.
Transmission sputtering under diatomic molecule bombardment. Model calculations
NASA Astrophysics Data System (ADS)
Bitensky, I. S.
1996-04-01
Transmission sputtering means that emission of secondary particles is studied from the downstream side of a bombarded foil. Nonlinear effects in sputtering manifest themselves as a deviation of sputtering yield under molecular ion bombardment from the sum of the yields induced by the constituents at the same velocity. In the reflection geometry the overlap of the spike regions reaches maximum, while in transmission the degree of overlap depends on the projectile and on the foil thickness. It has been shown that the transmission sputtering yield can be described by a function of a scaling parameter determined by beam-foil characteristics and a mechanism of nonlinear sputtering. Calculations of the transmission yield have been made in the thermal spike and shock wave models. The results of calculations are compared with experimental data on phenylalanine molecular ion desorption from organic targets induced by Au + and Au 2+ impact. Suggestions for further experimental study are made.
Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
Timilsina, Rajendra; Rack, Philip D
2013-12-13
A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.
Ion beam sputter deposited diamond like films
NASA Technical Reports Server (NTRS)
Banks, B. A.; Rutledge, S. K.
1982-01-01
A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.
Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters
NASA Technical Reports Server (NTRS)
Power, J. L.; Hiznay, D. J.
1975-01-01
Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.
Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhanwar, Prachi, E-mail: prachijhanwar87@gmail.com; Department of Electronics, Banasthali University-304022, Rajasthan; Kumar, Arvind
2016-04-13
Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO{sub 2} surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm{sup 2}/V.s) asmore » compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).« less
NASA Astrophysics Data System (ADS)
Lu, Linlin; Luo, Fa; Huang, Zhibin; Zhou, Wancheng; Zhu, Dongmei
2018-06-01
TiNx thin films were deposited on glass substrates using direct current reactive magnetron sputtering, and effects of sputtering pressure on optical reflectance and infrared emissivity of TiNx films were studied. The results indicated that sputtering pressure was a key factor to affect the optical reflectance and infrared emissivity of TiNx films in this study. When sputtering pressure varied from 0.3 Pa to 1.2 Pa, an average reflectance of less than 25% in the visible range was obtained for the prepared films. With the working pressure rise, the resistivity of TiNx films went up. Meanwhile, the infrared emissivity of the films increased. As sputtering pressure was 0.3 Pa, the infrared emissivity in the wavelength of 3-5 and 8-14 μm of TiNx film with dark color and low optical reflectance was less than 0.2.
Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.
Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R
2016-02-02
We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested, and the between-fiber reproducibility (n = 3) was 0-15%, generally 5-10%, for all analytes tested. The repeatabilities of our sputtered fibers and the commercial 7 μm PDMS fiber are essentially the same. Fibers could be used for at least 300 extractions without loss of performance. More than 50 compounds were identified in a gas chromatography-mass spectrometry headspace analysis of a real world botanical sample with the 2.0 μm fiber.
Gradient titanium and silver based carbon coatings deposited on AISI316L
NASA Astrophysics Data System (ADS)
Batory, Damian; Reczulska, Malgorzata Czerniak-; Kolodziejczyk, Lukasz; Szymanski, Witold
2013-06-01
The constantly growing market for medical implants and devices caused mainly due to a lack of proper attention attached to the physical condition as well as extreme sports and increased elderly population creates the need of new biocompatible biomaterials with controlled bioactivity and certain useful properties. According to many literature reports, regarding the modifications of variety of different biomaterials using the surface engineering techniques and their biological and physicochemical examination results, the most promising material for great spectra of medical applications seem to be carbon layers. Another issue is the interaction between the implant material and surrounding tissue. In particular cases this interface area is directly exposed to air. Abovementioned concern occurs mainly in case of the external fixations, thus they are more vulnerable to infection. Therefore a crucial role has the inhibition of bacterial adhesion that may prevent implant-associated infections, occurrence of other numerous complications and in particular cases rejection of the implant. For this reason additional features of carbon coatings like antibacterial properties seem to be desired and justified. Silver doped diamond-like carbon coatings with different Ag concentrations were prepared by hybrid RF PACVD/MS (Radio Frequency Plasma Assisted Chemical Vapor Deposition/Magnetron Sputtering) deposition technique. Physicochemical parameters like chemical composition, morphology and surface topography, hardness and adhesion were determined. Examined layers showed a uniform distribution of silver in the amorphous DLC matrix, high value of H/E ratio, good adhesion and beneficial topography which make them a perfect material for medical applications e.g. modification of implants for the external fixations.
Pulsed-DC selfsputtering of copper
NASA Astrophysics Data System (ADS)
Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.
2008-03-01
At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.
Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapa, Dinesh; Huso, Jesse; Morrison, John L.
ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less
Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films
Thapa, Dinesh; Huso, Jesse; Morrison, John L.; ...
2016-06-14
ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less
NASA Astrophysics Data System (ADS)
Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan
2006-12-01
A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low resistivity (0.59Ωcm) and highly p-type (1.2×1018cm-3 holes) Mg-doped GaN.
2011-01-01
The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range. The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06. Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the Au surface diffusion coefficient was evaluated in D(T) = [(7.42 × 10−13) ± (5.94 × 10−14) m2/s]exp(−(0.33±0.04) eVkT). These quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological characteristics of the Au film simply controlling the annealing temperature and time. PMID:24576328
A blue optical filter for narrow-band imaging in endoscopic capsules
NASA Astrophysics Data System (ADS)
Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.
2014-05-01
This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.
Ehiasarian, A; Pulgarin, Cesar; Kiwi, John
2012-11-01
The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray-brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu(2)O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R (q) and R (a) were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.
NASA Astrophysics Data System (ADS)
Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu
2016-06-01
We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol. Electronic supplementary information (ESI) available: The concept of UBM co-sputtering for fabricating nanoalloy embedded carbon films. HRTEM images of the NiNP and Ni32Cu68 nanoalloy embedded carbon films. The experimental conditions for sputter deposition, HRTEM, HAADF-STEM, STEM-EDS measurements and continuous flow injection analysis. XPS analysis of the nanoalloy embedded carbon film. Repeated CVs of both the nanoalloy embedded carbon film and the alloy film. Amperometric detection of d-mannitol in the presence of chloride ions. See DOI: 10.1039/c6nr02287a
REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS
The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...
NASA Technical Reports Server (NTRS)
Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.
1978-01-01
Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.
NASA Astrophysics Data System (ADS)
Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki
2018-04-01
The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, J.A.
1979-06-15
Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less
Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak
NASA Astrophysics Data System (ADS)
Ou, Jing; Xiang, Nong; Men, Zongzheng
2018-01-01
The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.
NASA Astrophysics Data System (ADS)
Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian
2018-03-01
An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.
Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon
NASA Astrophysics Data System (ADS)
Yan, Yingchao; Faber, Anne J.; de Waal, Henk
1996-01-01
RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna
2017-05-01
Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-04-01
Tin-doped indium oxide (ITO) nanowires are successfully fabricated using a radio frequency (RF) sputtering technique with a high RF power of 250 W. The fabrication of the ITO nanowires is optimized through the study of oxygen flow rates, temperatures and RF power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target is observed and the mechanism for the difference is discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method demonstrated good conductivity (15 Ω sq-1) and a transmittance of more than 64% at a wavelength longer than 550 nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices.
Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng
2018-02-15
ITO nanowires have been successfully fabricated using a radio-frequency sputtering technique with a high RF-power of 250W. The fabrication of the ITO nanowires has been optimized through the study of oxygen flow rates, temperatures and RF-power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target has been first observed and the mechanism for the difference has been discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method has demonstrated good conductivity (15Ω/sq) and a transmittance of more than 64% at a wavelength longer than 550nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices. © 2018 IOP Publishing Ltd.
Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T
2013-07-16
Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffino, F.; Canino, A.; Grimaldi, M. G.
Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less
NASA Astrophysics Data System (ADS)
Barate, P.; Liang, S. H.; Zhang, T. T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; Cadiz, F.; Garandel, T.; George, J. M.; Amand, T.; Devaux, X.; Hehn, M.; Mangin, S.; Tao, B.; Han, X. F.; Wang, Z. G.; Marie, X.; Lu, Y.; Renucci, P.
2017-11-01
We investigate the influence of the MgO growth process on the bias dependence of the electrical spin injection from a Co -Fe -B /MgO spin injector into a GaAs-based light-emitting diode (spin LED). With this aim, textured MgO tunnel barriers are fabricated either by sputtering or molecular-beam-epitaxy (MBE) methods. For the given growth parameters used for the two techniques, we observe that the circular polarization of the electroluminescence emitted by spin LEDs is rather stable as a function of the injected current or applied bias for the samples with sputtered tunnel barriers, whereas the corresponding circular polarization decreases abruptly for tunnel barriers grown by MBE. We attribute these different behaviors to the different kinetic energies of the injected carriers linked to differing amplitudes of the parasitic hole current flowing from GaAs to Co-Fe-B in both cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.
2011-08-15
The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less
NASA Astrophysics Data System (ADS)
Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.
2018-02-01
Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
NASA Astrophysics Data System (ADS)
Moore, A.; Tecos, G.; Nandasiri, M. I.; Garratt, E.; Wickey, K. J.; Gao, X.; Kayani, A.
2009-11-01
Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in samples deposited on silicon substrates with a 3.3 MeV of He++ beam used to perform Rutherford Backscattering Spectroscopy (RBS), Non-Rutherford backscattering Spectroscopy (NRBS) and Elastic Recoil Detection Analysis (ERDA). Thermal stability with respect to trapped hydrogen in the film has been studied. As the films were heated in-situ in the vacuum using a o non-gassy button heater, hydrogen was found to be decreasing around 400° C.