Sample records for squalane

  1. Squalane and isosqualane compositions and methods for preparing the same

    DOEpatents

    Fisher, Karl; Schofer, Susan Jessica; Kanne, David B

    2013-11-19

    Provided herein are methods comprising catalytic dimerization of .beta.-farnesene to obtain squalane and/or isosqualane. Compositions comprising squalane and/or isosqualane are provided. In certain embodiments, squalane and isosqualane prepared by the methods provided herein can be useful for applications in cosmetic industry and/or in the lubricants industry.

  2. Effect of squalane on mebendazole-loaded Compritol® nanoparticles.

    PubMed

    Graves, Richard A; Ledet, Grace A; Nation, Cedric A; Pramar, Yashoda V; Bostanian, Levon A; Mandal, Tarun K

    2015-01-01

    The objective of this study is to develop nanostructured lipid formulations of Compritol for the delivery of mebendazole. The formulations were prepared with Compritol 888 ATO, squalane, and Pluronic F68. Nine batches with different amounts of modifier, squalane, and drug were prepared. The formulations were characterized by evaluating particle size, morphology, and zeta potential. The thermal properties of the formulations were analyzed by differential scanning calorimetry (DSC). The encapsulation efficiency of each formulation and the drug release rates from each formulation were quantified by UPLC. The particles were spherical and had median particle sizes between 300 and 600 nm (50th percentile). A linear relationship was observed between Compritol/squalane composition and the melting point of the mixture. The DSC scans of the formulations revealed some recrystallization of the drug from the formulations, and the amount of recrystallization correlated with the amount of squalane in the formulation. Approximately, 70% efficiency of encapsulation was observed in the formulations with 30% (w/w) squalane, and these formulations also had faster dissolution rates compared to the other formulations. Overall, the formulations with 30% squalane are the preferred formulation for future testing.

  3. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  4. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  5. 21 CFR 524.1484k - Neomycin sulfate, prednisolone, tetracaine, and squalane topical-otic suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate, prednisolone, tetracaine, and... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484k Neomycin sulfate, prednisolone, tetracaine, and squalane... sulfate (equivalent to 3.5 milligrams neomycin base), 2 milligrams prednisolone, 5 milligrams tetracaine...

  6. 21 CFR 524.1484k - Neomycin sulfate, prednisolone, tetracaine, and squalane topical-otic suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate, prednisolone, tetracaine, and... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484k Neomycin sulfate, prednisolone, tetracaine, and squalane... sulfate (equivalent to 3.5 milligrams neomycin base), 2 milligrams prednisolone, 5 milligrams tetracaine...

  7. Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.

    PubMed

    Tan, L; Pratt, L R; Chaudhari, M I

    2018-04-05

    Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10 -2 s (into the squalane) and 3 × 10 2 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.

  8. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    PubMed

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Viscosity Measurements and Correlation of the Squalane + CO2 Mixture

    NASA Astrophysics Data System (ADS)

    Tomida, D.; Kumagai, A.; Yokoyama, C.

    2007-02-01

    Experimental results for the viscosity of squalane + CO2 mixtures are reported. The viscosities were measured using a rolling ball viscometer. The experimental temperatures were 293.15, 313.15, 333.15, and 353.15 K, and pressures were 10.0, 15.0, and 20.0 MPa. The CO2 mole fraction of the mixtures varied from 0 to 0.417. The experimental uncertainties in viscosity were estimated to be within ±3.0%. The viscosity of the mixtures decreased with an increase in the CO2 mole fraction. The experimental data were compared with predictions from the Grunberg-Nissan and McAllister equations, which correlated the experimental data with maximum deviations of 10 and 8.7%, respectively.

  10. Low energy electron attenuation lengths in core–shell nanoparticles

    DOE PAGES

    Jacobs, Michael I.; Kostko, Oleg; Ahmed, Musahid; ...

    2017-05-05

    Here, a velocity map imaging spectrometer is used to measure photoemission from free core–shell nanoparticles, where a salt core is coated with a liquid hydrocarbon shell (i.e. squalane). By varying the radial thickness of the hydrocarbon shell, electron attenuation lengths (EALs) are determined by measuring the decay in photoemission intensity from the salt core. In squalane, electrons with kinetic energy (KE) above 2 eV are found to have EALs of 3–5 nm, whereas electrons with smaller KE (<2 eV) have significantly larger EALs of >15 nm. These results (in the context of other energy-resolved EAL measurements) suggest that the energymore » dependent behavior of low energy electrons is similar in dielectrics when KE > 2 eV. At this energy the EALs do not appear to exhibit strong energy dependence. However, at very low KE (<2 eV), the EALs diverge and appear to be extremely material dependent.« less

  11. Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion

    NASA Astrophysics Data System (ADS)

    Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier

    2014-12-01

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  12. Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion.

    PubMed

    Izri, Ziane; van der Linden, Marjolein N; Michelin, Sébastien; Dauchot, Olivier

    2014-12-12

    We report spontaneous motion in a fully biocompatible system consisting of pure water droplets in an oil-surfactant medium of squalane and monoolein. Water from the droplet is solubilized by the reverse micellar solution, creating a concentration gradient of swollen reverse micelles around each droplet. The strong advection and weak diffusion conditions allow for the first experimental realization of spontaneous motion in a system of isotropic particles at sufficiently large Péclet number according to a straightforward generalization of a recently proposed mechanism [S. Michelin, E. Lauga, and D. Bartolo, Phys. Fluids 25, 061701 (2013); S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)]. Experiments with a highly concentrated solution of salt instead of water, and tetradecane instead of squalane, confirm the above mechanism. The present swimming droplets are able to carry external bodies such as large colloids, salt crystals, and even cells.

  13. Inhibitory effect of BCG cell-wall skeletons (BCG-CWS) emulsified in squalane on tumor growth and metastasis in mice.

    PubMed

    Yoo, Yung Choon; Hata, Katsusuke; Lee, Kyung Bok; Azuma, Ichiro

    2002-08-01

    The antimetastatic effect of BCG-CWS, which was emulsified in an oil-in-water form with either Drakeol 6VR mineral oil (BCG-CWS/DK) or squalane (BCG-CWS/SQA), on lung metastasis produced by highly metastatic murine tumor cells, Colon26-M3.1 carcinoma cells and B16-BL6 melanoma cells, was investigated in syngeneic mice. An intravenous (i.v.) administration of BCG-CWS (100 mg/mouse) 1 day after tumor inoculation significantly inhibited tumor metastasis of both Colon26-M3.1 carcinoma and B16-BL6 melanoma cells in experimental lung metastasis models. No differences in the antitumor activity of the two oil-based formulations (BCG-CWS/DK and BCG-CWS/SQA) were obverved. However, BCG-CWS/SQA administered through subcutaneous (s.c.) route was shown to be effective only when it was consecutively injected (3 times) after tumor inoculation. An in vivo analysis for tumor-induced angiogenesis showed that a single i.v. administration of BCG-CWS/SQA inhibited the number of tumor-induced blood vessels and suppressed tumor growth. Furthermore, the multiple administration of BCG-CWS/SQA given at on week intervals led to a significant reduction in spontaneous lung metastasis of B16-BL6 melanoma cells in a spontaneous metastasis model. These results suggest that BCG-CWS emulsified with squalane is a potent inhibitory agent of lung metastasis, and that the antimetastatic effect of BCG-CWS is related to the suppression of tumor growth and the inhibition of tumor-induced angiogenesis.

  14. Determinations of gas-liquid partition coefficients using capillary chromatographic columns. Alkanols in squalane.

    PubMed

    Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia

    2013-06-14

    This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  16. MURI Center for Materials Chemistry in the Space Environment

    DTIC Science & Technology

    2006-11-30

    ionic species in relevant reaction environments, surface photochemistry expertise, synchrotron-based measurement and irradiation, synthesis of structural...and Ne+ ions with dodecanethiolate and semifluorinated dodecanethiolate self-assembled monolayers (SAM), polyhedral oligomeric silsesquioxane (POSS...POSS/Kapton models as gas phase species, and with alkane thiol self assembled monolayers on gold surfaces, and with liquid squalane. We have also

  17. Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n-Hexane, n-Decane, n-Hexadecane, Cyclohexane, and Squalane.

    PubMed

    Moultos, Othonas A; Tsimpanogiannis, Ioannis N; Panagiotopoulos, Athanassios Z; Trusler, J P Martin; Economou, Ioannis G

    2016-12-22

    Atomistic molecular dynamics simulations were carried out to obtain the diffusion coefficients of CO 2 in n-hexane, n-decane, n-hexadecane, cyclohexane, and squalane at temperatures up to 423.15 K and pressures up to 65 MPa. Three popular models were used for the representation of hydrocarbons: the united atom TraPPE (TraPPE-UA), the all-atom OPLS, and an optimized version of OPLS, namely, L-OPLS. All models qualitatively reproduce the pressure dependence of the diffusion coefficient of CO 2 in hydrocarbons measured recently, and L-OPLS was found to be the most accurate. Specifically for n-alkanes, L-OPLS also reproduced the measured viscosities and densities much more accurately than the original OPLS and TraPPE-UA models, indicating that the optimization of the torsional potential is crucial for the accurate description of transport properties of long chain molecules. The three force fields predict different microscopic properties such as the mean square radius of gyration for the n-alkane molecules and pair correlation functions for the CO 2 -n-alkane interactions. CO 2 diffusion coefficients in all hydrocarbons studied are shown to deviate significantly from the Stokes-Einstein behavior.

  18. Molecular motions of [Beta]-carotene and a carotenoporphyrin dyad in solution. A carbon-13 NMR spin-lattice relaxation time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Swindle, S.L.; Smith, S.K.

    1995-03-09

    Analysis of [sup 13]C NMR spin-lattice relaxation times (T[sub 1]) yields information concerning both overall tumbling of molecules in solution and internal rotations about single bonds. Relaxation time and nuclear Overhauser effect data have been obtained for [Beta]-carotene and two related molecules, squalane and squalene, for zinc meso-tetraphenylporphyrin, and for a dyad consisting of a porphyrin covalently linked to a carotenoid polyene through a trimethylene bridge. Squalane and squalene, which lack conjugated double bonds, behave essentially as limp string, with internal rotations at least as rapid as overall isotropic tumbling motions. In contrast, [Beta]-carotene reorients as a rigid rod, withmore » internal motions which are too slow to affect relaxation times. Modeling it as an anisotropic rotor yields a rotational diffusion coefficient for motion about the major axis which is 14 times larger than that for rotation about axes perpendicular to that axis. The porphyrin reorients more nearly isotropically and features internal librational motions about the single bonds to the phenyl groups. The relaxation time data for the carotenoporphyrin are consistent with internal motions similar to those of a medieval military flail. 31 refs., 3 figs., 5 tabs.« less

  19. Upgrade of Long-chain Hydrocarbons by Low Pressure Oxygen Plasmas

    NASA Astrophysics Data System (ADS)

    Patiño, Pedro; Méndez, Bernardo; Gambús, Gloria

    1998-10-01

    Huge known heavy oil deposits in many countries remain largely untapped. The API gravity of crude oils has been decreasing by about 0.17% per year, this meaning that there will be an urgent need for economically viable new technologies to upgrade the heavy oil for the refineries. The same applies to the residues of several refineries processes. This work will present the results of the application of a plasma process to upgrade long-chain hydrocarbons, namely, tridecane, tetradecane, and squalane (shark oil). They are high boiling point alkanes, the latter being a C_30H_62 with six methyl groups attached to various carbon positions on the chain. An oxygen plasma, created by a high voltage glow discharge, reached the low vapor pressure surface of each liquid hydrocarbon. This (2 mL) was cooled down to temperatures close to its freezing point in a glass reactor. Applied power was 24 W for times of reaction between 30 and 60 minutes and oxygen pressures from 0.1 to 0.4 mbar. Products were analyzed by IR and NMR spectroscopies. The ^1H and ^13C NMR spectra showed that the most important products were secondary alcohols and the corresponding ketones, for tridecane and tetradecane. For squalane, tertiary alcohols were first. Total conversions are tipically 90 to 100%

  20. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).

    PubMed

    Zolot, Alexander M; Dagdigian, Paul J; Nesbitt, David J

    2008-11-21

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E(com)=0.7(3) kcalmol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v

  1. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  2. Chemical stabilization of polymers: Implications for dermal exposure to additives.

    PubMed

    Bartsch, N; Girard, M; Schneider, L; Weijgert, V Van De; Wilde, A; Kappenstein, O; Vieth, B; Hutzler, C; Luch, A

    2018-04-16

    Technical benefits of additives in polymers stand in marked contrast to their associated health risks. Here, a multi-analyte method based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) was developed to quantify polymer additives in complex matrices such as low-density polyethylene (LDPE) and isolated human skin layers after dermal exposure ex vivo. That way both technical aspects and dermal exposure were investigated. The effects of polymer additivation on the material were studied using the example of LDPE. To this end, a tailor-made polymer was applied in aging studies that had been furnished with two different mixtures of phenol- and diarylamine-based antioxidants, plasticizers and processing aids. Upon accelerated thermo-oxidative aging of the material, the formation of LDPE degradation products was monitored with attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy. Compared to pure LDPE, a protective effect of added antioxidants could be observed on the integrity of the polymer. Further, thermo-oxidative degradation of the additives and its kinetics were investigated using LDPE or squalane as matrix. The half-lives of additives in both matrices revealed significant differences between the tested additives as well as between LDPE and squalane. For instance, 2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol (Antioxidant 2246) showed a half-life 12 times lower when incorporated in LDPE as compared to squalane. As a model for dermal exposure of consumers, human skin was brought into contact with the tailor-made LDPE containing additives ex vivo in static Franz diffusion cells. The skin was then analyzed for additives and decomposition products. This study proved 10 polymer additives of diverse pysicochemical properties and functionalities to migrate out of the polymer and eventually overcome the intact human skin barrier during contact. Moreover, their individual distribution within distinct skin layers was demonstrated. This is exemplified by the penetration of the procarcinogenic antioxidant N-phenylnaphthalen-2-amine (Neozon D) into the viable epidermis and the permeation through the skin of the neurotoxic plasticizer N-butylbenzenesulfonamide (NBBS). In addition, the analyses of additive degradation products in the isolated skin layers revealed the presence of 2-tert-butyl-4-methylphenol in all layers after contact to a polymer with substances of origin like Antioxidant 2246. Thus, attention needs to be paid to absorption of polymer additives together with their degradation products when it comes to dermal exposure assessment.

  3. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  4. Effect of water on foaming properties of diglycerol fatty acid ester-oil systems.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Solans, Conxita; Aramaki, Kenji

    2007-06-19

    We have studied the effect of added water on the nonaqueous foaming properties of diglycerol fatty acid ester nonionic surfactant systems. Diglycerol monomyristate (designated as DGM) could not foam in nonpolar oils squalane and hexadecane at normal room temperature. Nevertheless, addition of a small amount of water induces a dramatic change in foaming properties. Both the foamability and foam stability increases with the amount of added water within the studied concentration range. Phase behavior study showed that in the dilute regions there is dispersion of solid surfactant in the aforementioned oils in the DGM systems. The particle size of the dispersed solid phase was found to be several tens of microns in the water free system, and hence it tends to coagulate and precipitate. In the case of shorter alkyl chain length, diglycerol monolaurate (DGL) surfactant-oil systems, dispersion of lamellar liquid crystal (Lalpha) is observed at room temperature, and the poor foaming properties were attributed to the large particle size of the liquid crystal. In both the DGL and DGM-oil systems, we observed a tendency of the particle size to decrease with the increasing concentration of added water. At higher temperature, the solid surfactant transforms to lamellar liquid crystal phase, and foaming is improved in the DGM/squalane system. Foams are stable for several minutes. Judging from the foaming test and particle size distribution data it can be concluded that the poor foaming in the diglycerol fatty acid esters-oil systems may possibly be due to bigger particle size, which causes precipitation. Addition of water results in the dispersion of smaller particles and improves the foaming behavior.

  5. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation

    NASA Astrophysics Data System (ADS)

    Cappa, Christopher D.; Che, Daphne L.; Kessler, Sean H.; Kroll, Jesse H.; Wilson, Kevin R.

    2011-08-01

    Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high-relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C.

  6. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  7. Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications.

    PubMed

    Adlington, Kevin; El Harfi, Jaouad; Li, Jianing; Carmichael, Kim; Guderian, Jeffrey A; Fox, Christopher B; Irvine, Derek J

    2016-01-11

    The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∼60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic.

  8. Solution synthesis of metal silicide nanoparticles.

    PubMed

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-02

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  9. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  10. Molecular Theory and Simulation of Water-Oil Contacts

    NASA Astrophysics Data System (ADS)

    Tan, Liang

    The statistical mechanical theory of hydrophobic interactions was initiated decades ago for purely repulsive hydrophobic species, in fact, originally for hard-sphere solutes in liquid water. Systems which treat only repulsive solute-water interactions obviously differ from the real world situation. The issue of the changes to be expected from inclusion of realistic attractive solute-water interactions has been of specific interest also for decades. We consider the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions. The principal result of LMF theory is outlined, then tested by obtaining radial distribution functions (rdfs) for Ar atoms in water, with and without attractive interactions distinguished by the Weeks-Chandler-Andersen (WCA) separation. Change from purely repulsive atomic solute interactions to include realistic attractive interactions substantially diminishes the strength of hydrophobic bonds. Since attractions make a big contribution to hydrophobic interactions, Pratt-Chandler theory, which did not include attractions, should not be naively compared to computer simulation results with general physical interactions, including attractions. Lack of general appreciation of this point has lead to mistaken comparisons throughout the history of this subject. The rdfs permit evaluation of osmotic second virial coefficients B2. Those B 2 are consistent with the conclusion that incorporation of attractive interactions leads to more positive (repulsive) values. In all cases here, B2 becomes more attractive with increasing temperature below T = 360K, the so-call inverse temperature behavior. In 2010, the Gulf of Mexico Macondo well (Deepwater Horizon) oil spill focused the attention of the world on water-oil phase equilibrium. In response to the disaster, chemical dispersants were applied to break oil slicks into droplets and thus to avoid large-scale fouling of beaches and to speed up biodegradation. Eventually the dispersant COREXIT 9500 was used predominantly in responding to this accident. The formulation of COREXIT dispersants is somewhat complicated and the various constituents (and their interactions) deserve exhaustive study. Here we focus on sorbitan monooleate (SPAN80), one important component of COREXIT 9500, and we investigate its behavior in oil-water-surfactant systems. Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with SPAN80, at T = 300K, are analyzed for the surface tension equation of state, desorption free energy profiles as they depend on loading, and to evaluate escape times for absorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple from conditions of low loading (high tension) to high loading (lower tension) studied, and the desorption free energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 head-group ring is well-described by a diffusional model near the minimum of the desorption free energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 0.07 s (into the squalane) and 300 h (into the water). The latter value is consistent with irreversible absorption observed by related experimental work.

  11. Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data

    NASA Astrophysics Data System (ADS)

    Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C.

    2017-04-01

    This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω-1 /2, has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.

  12. Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data.

    PubMed

    Hecksher, Tina; Olsen, Niels Boye; Dyre, Jeppe C

    2017-04-21

    This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω -1/2 , has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.

  13. Carbohydrate fatty acid monosulphate esters are safe and effective adjuvants for humoral responses.

    PubMed

    Hilgers, Luuk A Th; Platenburg, Peter Paul L I; Bajramovic, Jeffrey; Veth, Jennifer; Sauerwein, Robert; Roeffen, Will; Pohl, Marie; van Amerongen, Geert; Stittelaar, Koert J; van den Bosch, Johannes F

    2017-05-31

    Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5μg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. An approach to the interpretation of Cole-Davidson and Cole-Cole dielectric functions

    NASA Astrophysics Data System (ADS)

    Iglesias, T. P.; Vilão, G.; Reis, João Carlos R.

    2017-08-01

    Assuming that a dielectric sample can be described by Debye's model at each frequency, a method based on Cole's treatment is proposed for the direct estimation at experimental frequencies of relaxation times and the corresponding static and infinite-frequency permittivities. These quantities and the link between dielectric strength and mean molecular dipole moment at each frequency could be useful to analyze dielectric relaxation processes. The method is applied to samples that follow a Cole-Cole or a Cole-Davidson dielectric function. A physical interpretation of these dielectric functions is proposed. The behavior of relaxation time with frequency can be distinguished between the two dielectric functions. The proposed method can also be applied to samples following a Navriliak-Negami or any other dielectric function. The dielectric relaxation of a nanofluid consisting of graphene nanoparticles dispersed in the oil squalane is reported and discussed within the novel framework.

  15. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    PubMed

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  16. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Lokendra P.; Richert, Ranko, E-mail: ranko@asu.edu; Raihane, Ahmed

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreasedmore » amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.« less

  17. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  18. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    PubMed

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  19. Freund's adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition

    PubMed Central

    Whitehouse, M. W.; Orr, K. J.; Beck, Frances W. J.; Pearson, C. M.

    1974-01-01

    Over a hundred compounds and natural materials were examined for their ability to induce arthritis in rats when mixed with heat-killed delipidated Mycobacteria tuberculosis. Many of these materials were also assessed for (CMI) adjuvant activity by their ability to induce allergic encephalomyelitis (EAE) in rats when mixed with guinea-pig spinal cord, both with and without added M. tuberculosis. Cyclization and/or the presence of oxygen atoms, or double bonds reduced (or abolished) the arthritogenic potential and adjuvanticity of alkanes>C10. Esters/triglycerides of fatty acids >C12, retinol acetate (not palmitate) and vitamins E and K showed co-arthritogenic and adjuvant activity. Other active lipids included squalene and cholesterol oleate, which are both present in human sebum. Sebaceous lipids may therefore perhaps function as natural adjuvants if resorbed during abrasion and infection. Squalane (perhydrosqualene), pristane and hexadecane were excellent substitutes for mineral oil in preparing arthritogenic adjuvants from various mycobacteria, C. rubrum and N. asteroides. These oily compounds were also very effective adjuvants per se, in the absence of bacterial material or emulsifier, for inducing EAE in Lewis rats. PMID:4214125

  20. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    USGS Publications Warehouse

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  2. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M. P.; King, J. C.; Gorman, B. P.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less

  3. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.

    2011-12-05

    The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in amore » flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.« less

  4. Preparation of a solid-in-oil nanosuspension containing L-ascorbic acid as a novel long-term stable topical formulation.

    PubMed

    Piao, Hongyu; Kamiya, Noriho; Cui, Fude; Goto, Masahiro

    2011-11-25

    L-Ascorbic acid (AA, vitamin C) easily decomposes into inactive compounds in aqueous solutions and this has limited its topical use. This work reports the preparation of a solid-in-oil nanosuspension (SONS) containing AA and validation of its basic storage stability. Although AA itself is water-soluble, it can readily be nanosuspended in squalane via complex formation involving a combination of sucrose erucate (i.e. lipophilic surfactant) and sucrose monolaureate (i.e. hydrophilic surfactant) to yield SONS with a very low moisture content (<500 ppm). To extract encapsulated AA, a lipase-based enzymatic degradation technique was used to degrade a formulation phase making it easier for AA to distribute into an extraction solution. Our results demonstrate that almost all the encapsulated AA (95.3%) was readily extracted from the SONS upon addition of medium-chain triglyceride, which offers the possibility of degrading the formulation phase using lipase. Finally, its storage stability study was investigated at 25°C over 90 days under protection from light. An aqueous solution containing AA was used as a control. Compared with the control, the SONS markedly increased the stability of AA due to its low moisture content and, thus, the potential usefulness SONSs as a novel long-term stable topical formulation of AA has been proved. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane

    2017-08-01

    The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.

  6. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  7. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    PubMed

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of vehicles on diclofenac permeation across excised rat skin.

    PubMed

    Takahashi, K; Suzuki, T; Sakano, H; Mizuno, N

    1995-04-01

    The in vitro percutaneous permeation of diclofenac from various vehicles was examined using rat abdominal skin as a model membrane. The oleaginous vehicles used in this study consisted of three components: i.e. fatty acid, fatty acid ester and nonpolar oil. The solubilities of sodium diclofenac in formulated vehicles were above 0.2 M. The effect of each oleaginous component in the vehicle on the permeation of diclofenac across the skin was in the following order: oleic acid > isostearic acid, diisopropyl adipate = diethyl sebacate > Panasate 875 and squalane > liquid paraffin. To clarify the reason for the differences in permeation among the fatty acid esters, the release of diclofenac through either porous or lipoidal membranes from these vehicles in vitro and the solubility of sodium diclofenac in the vehicles were studied. However, no relationship was observed between the release rate or solubility and skin permeability. The skin permeation of diclofenac increased following pretreatment with diisopropyl adipate or diethyl sebacate, but not with middle chain triglyceride (Panasate 875). These results suggested that the main reason may be the enhancement effect of fatty acid esters. Emulsions and creams containing 3% sodium diclofenac were prepared using the above oleaginous vehicles. A large flux and short lag time were observed in these preparations compared with an aqueous suspension of sodium diclofenac. The incorporation of urea significantly enhanced the permeation of diclofenac from these preparations. These results suggest that the emulsion and cream prepared in this study are useful for development for practical purposes.

  9. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts.

    PubMed

    Morocho, Vladimir; Valle, Andrea; García, Jessica; Gilardoni, Gianluca; Cartuche, Luis; Suárez, Alírica I

    2018-01-11

    The phytochemical investigation of both volatile and fixed metabolites of Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae) was performed for the first time. It allowed the isolation and characterization of the essential oil and six known compounds: carvacrol ( 1 ), squalane ( 2 ), uvaol ( 3 ), erythrodiol ( 4 ), ursolic acid ( 5 ), and salvigenin ( 6 ). Their structures were identified and characterized by Nuclear Magnetic Resonance (NMR) and Gas Chromatography coupled to Mass Spectroscopy (GC-MS), and corroborated by literature. The essential oil of the leaves was obtained by hydrodistillation in two different periods and analyzed by GC-MS and GC coupled to Flame Ionization Detector (GC-FID). A total of 54 compounds were detected, of which 42 were identified (including trace constituents). The major constituents were carvacrol methyl ether (18.9-23.2%), carvacrol (13.8-16.3%) and, carvacryl acetate (11.4-4.8%). The antibacterial activities were determined as Minimum Inhibition Concentration (MIC) against Staphylococcus aureus , Enterococcus faecalis , Escherichia coli , Klebsiella pneumoniae , Proteus vulgaris , Pseudomonas aeruginosa and Micrococcus luteus . The hexane and methanol extracts exhibited activity only against Klebsiella pneumoniae (250 and 500 μg/mL respectively), while the ethyl acetate extract was inactive. The hypoglycemic activity was evaluated by the in vitro inhibition of α-glucosidase. The ethyl acetate (EtOAc) extract showed strong inhibitory activity with IC 50 = 24.88 µg/mL, however methanolic and hexanic extracts showed weak activity. As a pure compound, only ursolic acid showed a strong inhibitory activity, with IC 50 = 72.71 μM.

  10. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  11. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  12. Linking Archaeal Molecular Diversity and Lipid Biomarker Composition in a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger

    2005-01-01

    Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.

  13. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng

    2012-07-01

    Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.

  14. OH- Initiated Heterogeneous Oxidation of Saturated Organic Aerosols in the Presence of SO2: Uptake Kinetics and Product Identification.

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.

    2014-12-01

    Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.

  15. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    PubMed

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  16. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.

    Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less

  18. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  19. Real-Time Measurements of Gas/Particle Partitioning of Semivolatile Organic Compounds into Different Probe Particles in a Teflon Chamber

    NASA Astrophysics Data System (ADS)

    Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.

    2017-12-01

    The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will be discussed.

  20. Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols

    DOE PAGES

    Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.; ...

    2017-02-07

    Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less

  1. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most depleted were the cyanobacterial methylalkanes at -27% with FA such as the SRB biomarker, 10- methyl C-I6, somewhat heavier at -16%, and WXE at -17%. The C-30:1 isoprenyl was most enriched with delta C-13 in the -7 to -11% range, much too heavy to represent the methanogen population responsible for mat methane values measured at -60%.

  2. Angle-resolved molecular beam scattering of NO at the gas-liquid interface.

    PubMed

    Zutz, Amelia; Nesbitt, David J

    2017-08-07

    This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ( 2 Π 1/2 , J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf 2 N], squalane, and PFPE) at θ inc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θ s = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [E inc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θ s ) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θ s ), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (T elec < T rot < T S ) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [E inc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θ s . Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θ s ⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.

  3. Angle-resolved molecular beam scattering of NO at the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia; Nesbitt, David J.

    2017-08-01

    This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.

  4. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel, whereby newly formed molecules leave the surface without equilibrating, and (ii) a partially accommodated fraction that shares vibrational, rotational, and translational energy with the liquid surface before returning to the gas phase. Finally, a velocity map ion imaging apparatus has been implemented to investigate reaction dynamics in crossed molecular beams. Resonantly enhanced multiphoton ionization (REMPI) results in rotational, vibrational, and electronic state selectivity. Velocity map imaging measurements provide differential cross sections and information about the internal energy distribution of the undetected collision partner.

  5. Final report of the key comparison CCQM-K106: Pb, As and Hg measurements in cosmetic (cream)

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Qian; Yamani, Randa Nasr Ahmed; Shehata, Adel B.; Jacimovic, Radojko; Pavlin, Majda; Horvat, Milena; Tsoi, Y. P.; Tsang, C. K.; Shin, Richard; Chailap, Benjamat; Yafa, Charun; Caciano de Sena, Rodrigo; de Almeida, Marcelo; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Heun Kim, Sook; Konopelko, Leonid; Ari, Betül; Tokman, Nilgün; Rienitz, Olaf; Jaehrling, Reinhard; Pape, Carola

    2015-01-01

    Cosmetics are used in practically all walks of life as a means of improving skin and beautifying complexion. In recent years, more and more attention has been paid to the cosmetic safety. In response to the cosmetic safety issue, the accurate measurement of the heavy metals in cosmetics is, therefore, particularly important. NMIs from different countries should establish their chemical metrology traceability system in this area, which includes both measurement methods research and certain CRMs development. It should be noted that because the matrix of many cosmetics is complex and the contents of the heavy metals are relatively low, it still is a challenging task to measure the analytes with high accuracy and precision. CCQM-K106 followed up CCQM pilot study 'CCQM-P128: Pb, As measurements in cosmetic (cream)' coordinated by the National Institute of Metrology, China (NIM) in 2009. The cream was selected as the testing material, which is widely used as a daily skin care worldwide. This is the first CCQM key comparison regarding the measurement of toxic metal elements with the cosmetic matrix, which includes pure water, liquid paraffin, silicone oil, synthetic squalane, hyaluronic acid, glycerin, propylene glycol, allantoin, preservative and so on. The aim of the CCQM-K106 is to demonstrate the capability of participating NMIs and designated institutes in measuring the contents of poisonous elements, including lead, arsenic and mercury in a cosmetic sample (cream), and support CMC claims relating to inorganic elements in cosmetic materials and similar chemical industry products. The cream matrix sample was prepared under the guidance of professional technicians. The formula of the cream was carefully chosen to match with a real cosmetic. The homogeneity and stability level of Pb, As and Hg in the cream sample were fit for the objective of the comparison. Each participant received two numbered bottles containing about 5g samples in each bottle. The instruction relating to CCQM-K106 was sent to each participant by e-mail, which consisted of technical protocol, results report form and inorganic core capabilities tables. The results were reported as mass faction (mg/kg). Calculation of the uncertainty expressed as a combined standard uncertainty and an expanded uncertainty at 95% confidence. In order to allow a sufficient evaluation of the comparison, the report was required to include a detailed description of the applied method of measurement, information about sample digestion and preparation, information about the reference material used for calibration. The methods of measurement were free to be selected by the participants. For the sample treatment, most of the participants used microwave digestion method. For instrumental determination, a variety of techniques such as ICP-MS, AAS, INAA were adopted by the participants. Most participants choose ID-ICP-MS method to measure Pb and Hg, which showed the better performance in terms of consistency and reliability of the measurement results. The reference mass fraction values and associated uncertainties were calculated by different statistic ways. As the result, the median and uncertainty of median were proposed as the key comparison reference value (KCRV) and its associated key comparison reference uncertainty after removal of suspected extreme values. In general, the performances of the majority of the CCQM-K106 participants are excellent, illustrating their measurement capability for Pb, As and Hg in a complex greasy matrix. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

Top