Sample records for squalene

  1. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.

    PubMed

    Garaiová, Martina; Zambojová, Veronika; Simová, Zuzana; Griač, Peter; Hapala, Ivan

    2014-03-01

    Squalene is a valuable natural substance with several biotechnological applications. In the yeast Saccharomyces cerevisiae, it is produced in the isoprenoid pathway as the first precursor dedicated to ergosterol biosynthesis. The aim of this study was to explore the potential of squalene epoxidase encoded by the ERG1 gene as the target for manipulating squalene levels in yeast. Highest squalene levels (over 1000 μg squalene per 10(9)  cells) were induced by specific point mutations in ERG1 gene that reduced activity of squalene epoxidase and caused hypersensitivity to terbinafine. This accumulation of squalene in erg1 mutants did not significantly disturb their growth. Treatment with squalene epoxidase inhibitor terbinafine revealed a limit in squalene accumulation at 700 μg squalene per 10(9)  cells which was associated with pronounced growth defects. Inhibition of squalene epoxidase activity by anaerobiosis or heme deficiency resulted in relatively low squalene levels. These levels were significantly increased by ergosterol depletion in anaerobic cells which indicated feedback inhibition of squalene production by ergosterol. Accumulation of squalene in erg1 mutants and terbinafine-treated cells were associated with increased cellular content and aggregation of lipid droplets. Our results prove that targeted genetic manipulation of the ERG1 gene is a promising tool for increasing squalene production in yeast. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.

  2. Vaccination, squalene and anti-squalene antibodies: facts or fiction?

    PubMed

    Lippi, Giuseppe; Targher, Giovanni; Franchini, Massimo

    2010-04-01

    Squalene, a hydrocarbon obtained for commercial purposes primarily from shark liver oil and other botanic sources, is increasingly used as an immunologic adjuvant in several vaccines, including seasonal and the novel influenza A (H1N1) 2009 pandemic flu vaccines. Nearly a decade ago, squalene was supposed to be the experimental anthrax vaccine ingredient that caused the onset of Persian Gulf War syndrome in many veterans, since antibodies to squalene were detected in the blood of most patients affected by this syndrome. This evidence has raised a widespread concern about the safety of squalene containing adjuvants (especially MF59) of influenza vaccines. Nevertheless, further clinical evidence clearly suggested that squalene is poorly immunogenic, that low titres of antibodies to squalene can be also detected in sera from healthy individuals, and that neither the presence of anti-squalene antibodies nor their titre is significantly increased by immunization with vaccines containing squalene (or MF59) as an adjuvant. This review summarizes the current scientific evidence about the relationship between squalene, anti-squalene antibodies and vaccination. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Novel squalene-producing thraustochytrids found in mangrove water.

    PubMed

    Otagiri, Masato; Khalid, Ammara; Moriya, Shigeharu; Osada, Hiroyuki; Takahashi, Shunji

    2017-10-01

    On extended screening of squalene-producing strains in Okinawa mangrove water, we identified 14 novel squalene-producing thraustochytrids from 172 unialgal clonal isolates. The novel thraustochytrids produced 13.9-7.54 mg squalene/g dry cell weight. Eight isolates were found to belong to potentially novel squalene-producing genera, forming a monophyletic cluster independent from any known thraustochytrids.

  4. Optimization of squalene extraction from Palm Fatty Acid Distillate (PFAD) in multistage process

    NASA Astrophysics Data System (ADS)

    Sibuyo, Leah; Widiputri, Diah; Legowo, Evita

    2017-01-01

    Squalene is a compound widely known as one of the natural antioxidants used in the cosmetic and pharmaceutical industries. As the main source of squalene, which is shark liver oil, is becoming more limited in its availability, attempts have been made to extract squalene from other sources, e.g. from vegetable oils. Research has found that one of the wastes produced by palm oil industry, namely the palm fatty acid distillate (PFAD), contains squalene among other useful compounds. Since Indonesia is one of the largest producers of palm oil, the abundant amount of PFAD becomes very interesting to be a solution in coping with today demand of natural squalene. In this research, the extraction of squalene from PFAD is optimized through a multiple-stage extraction process, where results show a significant increase of squalene yield. Furthermore, the liquid-liquid phase equilibrium data for an extraction using dichloromethane (DCM) were plotted to develop a ternary-phase-diagram between squalene, DCM and free-fatty acids.

  5. Hepatic subcellular distribution of squalene changes according to the experimental setting.

    PubMed

    Martínez-Beamonte, Roberto; Alda, Olga; Sanclemente, Teresa; Felices, María J; Escusol, Sara; Arnal, Carmen; Herrera-Marcos, Luis V; Gascón, Sonia; Surra, Joaquín C; Osada, Jesús; Rodríguez-Yoldi, Mª Jesús

    2018-02-22

    Squalene is the main unsaponifiable component of virgin olive oil, the main source of dietary fat in Mediterranean diet, traditionally associated with a less frequency of cardiovascular diseases. In this study, two experimental approaches were used. In the first, New Zealand rabbits fed for 4 weeks with a chow diet enriched in 1% sunflower oil for the control group, and in 1% of sunflower oil and 0.5% squalene for the squalene group. In the second, APOE KO mice received either Western diet or Western diet enriched in 0.5% squalene for 11 weeks. In both studies, liver samples were obtained and analyzed for their squalene content by gas chromatography-mass spectrometry. Hepatic distribution of squalene was also characterized in isolated subcellular organelles. Our results show that dietary squalene accumulates in the liver and a differential distribution according to studied model. In this regard, rabbits accumulated in cytoplasm within small size vesicles, whose size was not big enough to be considered lipid droplets, rough endoplasmic reticulum, and nuclear and plasma membranes. On the contrary, mice accumulated in large lipid droplets, and smooth reticulum fractions in addition to nuclear and plasma membranes. These results show that the squalene cellular localization may change according to experimental setting and be a starting point to characterize the mechanisms involved in the protective action of dietary squalene in several pathologies.

  6. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  7. Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.

    PubMed

    Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P

    2016-01-01

    Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.

  8. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  9. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process.

    PubMed

    Hoang, Minh Hien; Ha, Nguyen Cam; Thom, Le Thi; Tam, Luu Thi; Anh, Hoang Thi Lan; Thu, Ngo Thi Hoai; Hong, Dang Diem

    2014-12-01

    Today microalgae represent a viable alternative source of squalene for commercial application. The species Schizochytrium mangrovei, a heterotrophic microalga, has been widely studied and provides a high amount of squalene, polyunsaturated fatty acids and has good profiles for biodiesel production. Our work was aimed at examining the squalene contents in Vietnam's heterotrophic marine microalga S. mangrovei PQ6 biomass and residues of the biodiesel process from this strain. Thin-layer chromatography and high-performance liquid chromatography (HPLC) methods were successfully applied to the determination of squalene in S. mangrovei PQ6. The squalene content and production of S. mangrovei PQ6 reached 33.00 ± 0.02 and 33.04 ± 0.03 mg g(-1) of dry cell weight; and 0.992 g L(-1) and 1.019 g L(-1) in 30 and 150 L bioreactors, respectively after 96 h of fermentation. In addition, squalene was also detected in spent biomass (approximately 80.10 ± 0.03 mg g(-1) of spent biomass) from the S. mangrovei PQ6 biodiesel production process. The structure of squalene in residues of the biodiesel process was confirmed from its nuclear magnetic resonance spectra. The results obtained from our work suggest that there is tremendous potential in the exploitation of squalene as a value-added by-product besides biodiesel from S. mangrovei PQ6 to reduce biodiesel price. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

  11. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery

    NASA Astrophysics Data System (ADS)

    Sobot, Dunja; Mura, Simona; Yesylevskyy, Semen O.; Dalbin, Laura; Cayre, Fanny; Bort, Guillaume; Mougin, Julie; Desmaële, Didier; Lepetre-Mouelhi, Sinda; Pieters, Grégory; Andreiuk, Bohdan; Klymchenko, Andrey S.; Paul, Jean-Louis; Ramseyer, Christophe; Couvreur, Patrick

    2017-05-01

    Once introduced in the organism, the interaction of nanoparticles with various biomolecules strongly impacts their fate. Here we show that nanoparticles made of the squalene derivative of gemcitabine (SQGem) interact with lipoproteins (LPs), indirectly enabling the targeting of cancer cells with high LP receptors expression. In vitro and in vivo experiments reveal preeminent affinity of the squalene-gemcitabine bioconjugates towards LP particles with the highest cholesterol content and in silico simulations further display their incorporation into the hydrophobic core of LPs. To the best of our knowledge, the use of squalene to induce drug insertion into LPs for indirect cancer cell targeting is a novel concept in drug delivery. Interestingly, not only SQGem but also other squalene derivatives interact similarly with lipoproteins while such interaction is not observed with liposomes. The conjugation to squalene represents a versatile platform that would enable efficient drug delivery by simply exploiting endogenous lipoproteins.

  12. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positivemore » ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.« less

  13. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  14. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    PubMed

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  15. Fast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterization.

    PubMed

    Salvo, Andrea; La Torre, Giovanna Loredana; Di Stefano, Vita; Capocchiano, Valentina; Mangano, Valentina; Saija, Emanuele; Pellizzeri, Vito; Casale, Katia Erminia; Dugo, Giacomo

    2017-04-15

    A fast reversed-phase UPLC method was developed for squalene determination in Sicilian pistachio samples that entry in the European register of the products with P.D.O. In the present study the SPE procedure was optimized for the squalene extraction prior to the UPLC/PDA analysis. The precision of the full analytical procedure was satisfactory and the mean recoveries were 92.8±0.3% and 96.6±0.1% for 25 and 50mgL -1 level of addition, respectively. Selected chromatographic conditions allowed a very fast squalene determination; in fact it was well separated in ∼0.54min with good resolution. Squalene was detected in all the pistachio samples analyzed and the levels ranged from 55.45-226.34mgkg -1 . Comparing our results with those of other studies it emerges that squalene contents in P.D.O. Sicilian pistachio samples, generally, were higher than those measured for other samples of different geographic origins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bisabosquals, novel squalene synthase inhibitors. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Minagawa, K; Kouzuki, S; Nomura, K; Yamaguchi, T; Kawamura, Y; Matsushima, K; Tani, H; Ishii, K; Tanimoto, T; Kamigauchi, T

    2001-11-01

    In the course of screening for yeast squalene synthase inhibitors, bisabosqual A was isolated from the culture broth of Stachybotrys sp. RF-7260. The related compounds bisabosquals B, C and D were also isolated from Stachybotrys ruwenzoriensis RF-6853. Bisabosquals inhibited squalene synthases. IC50 values of bisabosqual A against the microsomal squalene synthases from Saccharomyces cerevisiae, Candida albicans, HepG2 cell and rat liver were 0.43, 0.25, 0.95 and 2.5 microg/ml, respectively. Bisabosqual C exhibited inhibitory activities similar to bisabosqual A. Bisabosqual A showed broad spectrum antifungal activity in vitro.

  17. Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression.

    PubMed

    Zare, Bijan; Sepehrizadeh, Zargham; Faramarzi, Mohammad Ali; Soltany-Rezaee-Rad, Mohammad; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2014-01-01

    In this study, we evaluated the antifungal activity of biogenic tellurium nanoparticles (Te NPs) against Candida albicans (ATCC14053). In addition, the effect of these biogenic NPs on squalene monooxygenase activity and the squalene monooxygenase gene (ERG1) expression level was evaluated. Squalene monooxygenase is an important enzyme involved in the synthesis of ergosterol, cholesterol, and phytosterols. Because of the importance of the noted compound, the squalene monooxygenase gene could be considered a good antifungal target. Results showed that biogenic Te NPs had antifungal effect against C. albicans. The minimal fungicidal concentration-minimal inhibitory concentration ratios of the biogenic Te NPs revealed that these NPs exhibited fungicidal effects against the test strain. The results of an enzyme assay using quantitative high-performance liquid chromatography showed squalene accumulation in C. albicans cells because of enzyme inhibition. Real-time PCR analysis showed an increase in the expression of the ERG1 gene in C. albicans cells, which were treated with Te NPs (0.2 mg/mL). It is conclution that Te NPs can inhibit the squalene monooxygenase enzyme, and, as a result, this inhibition phenomenon can cause an increase in the expression level of the ERG1 gene. This is the first report of the anti-Candida effect of biogenic Te NPs and its possible mechanisms. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  19. Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail.

    PubMed

    Daly, Paul; Slaghek, Gillian G; Casado López, Sara; Wiebenga, Ad; Hilden, Kristiina S; de Vries, Ronald P; Mäkelä, Miia R

    2017-12-01

    D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding β-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per μg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Occurrence of squalene in methanol-grown bacteria.

    PubMed Central

    Goldberg, I; Shechter, I

    1978-01-01

    The nonpolar lipids of methanol-grown bacteria which utilize one-carbon (C1) compounds via the RMP pathway (Pseudomonas C, Pseudomonas methylotropha, and Methylomonas methanolica) were found to contain squalene in concentrations between 0.1 to 1.16 mg/g of cell (dry weight). Squalene could not be detected in lipid extracts of methanol-grown bacteria which utilize C1 compounds via the serine pathway. PMID:98521

  1. Methods for obtaining and determination of squalene from natural sources.

    PubMed

    Popa, Ovidiu; Băbeanu, Narcisa Elena; Popa, Ioana; Niță, Sultana; Dinu-Pârvu, Cristina Elena

    2015-01-01

    Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned.

  2. Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2008-09-01

    Squalene synthase inhibitors significantly accelerate the production of farnesol by various microorganisms. However, farnesol production by Saccharomyces cerevisiae ATCC 64031, in which the squalene synthase gene is deleted, was not affected by the inhibitors, indicating that farnesol accumulation is enhanced in the absence of squalene synthase activity. The combination of diphenylamine as an inhibitor of carotenoid biosynthesis and a squalene synthase inhibitor increases geranylgeraniol production by a yeast, Rhodotorula rubra NBRC 0870. An ent-kauren synthase inhibitor also enhances the production of farnesol and geranylgeraniol by a filamentous fungus, Gibberella fujikuroi NBRC 30336. These results indicate that the inhibition of downstream enzymes from prenyl diphosphate synthase leads to the production of farnesol and geranylgeraniol.

  3. Methods for Obtaining and Determination of Squalene from Natural Sources

    PubMed Central

    Popa, Ovidiu; Băbeanu, Narcisa Elena; Niță, Sultana; Dinu-Pârvu, Cristina Elena

    2015-01-01

    Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned. PMID:25695064

  4. Elicitation of macrophages from the peritoneal cavity of channel catfish

    USGS Publications Warehouse

    Jenkins, J.A.; Klesius, P.H.

    1998-01-01

    Four chemicals were evaluated for elicitation of macrophages in peritoneal cavities of 250-300g healthy channel catfish Ictalurus punctatus. Cellular exudates were collected at 3, 5, 7, 10, 14, and 20 d following intraperitoneal injections with squalene, Freund's incomplete adjuvant (FIA), goat serum, thioglycollate, or as a control, phosphate-buffered saline. Injection with either squalene or FIA induced significantly greater (P ??? 0.0001) macrophage recruitment than the other chemicals. The effectiveness of squalene and FIA was compared further by macrophage collection daily for 7 d. Squalene and FIA elicited similarly high macrophage responses (P ??? 0.0450), the highest being 3.43 x 106 macrophages/mL (SE, 2.4 x l06) at 99% purity at day 2 and 2.1 X 106 macrophages/mL (SE, 0.7 x 106) at day 14 at 80% purity, respectively. In both experiments, the time after injection was not statistically significant, nor was there an interaction between time and chemicals. The occurrence of cells other than macrophages decreased with time to yield macrophage recoveries of 47-99% for squalene and 30-80% for FIA. Two subsets of macrophages were observed by means of flow cytometry. As demonstrated by chemiluminescence, the squalene-elicited cells produced high-energy oxygen compounds important to the phagocytic process.

  5. Current Insights Into the Biological Action of Squalene.

    PubMed

    Lou-Bonafonte, José M; Martínez-Beamonte, Roberto; Sanclemente, Teresa; Surra, Joaquín C; Herrera-Marcos, Luis V; Sanchez-Marco, Javier; Arnal, Carmen; Osada, Jesús

    2018-06-08

    Squalene is a triterpenic compound found in a large number of plants and other sources with a long tradition of research since it was first reported in 1926. Herein we present a systematic review of studies concerning squalene published in the last eight years. These studies have provided further support for its antioxidant, anti-inflammatory and anti-atherosclerotic properties in vivo and in vitro. Moreover, an anti-neoplastic effect in nutrigenetic-type treatments, which depend on the failing metabolic pathway of tumors, has also been reported. The bioavailability of squalene in cell cultures, animal models and in humans has been well established, and further progress has been made as regards the intracellular transport of this lipophilic molecule. Squalene accumulates in the liver and decreases hepatic cholesterol and triglycerides, with these actions being exerted via a complex network of changes in gene expression at both transcriptional and post-transcriptional levels. Its presence in different biological fluids has also been studied. The combination of squalene with other bioactive compounds has been shown to enhance its pleiotropic properties and might lead to the formulation of functional foods and nutraceuticals to control oxidative stress and, therefore, numerous age-related diseases in human and veterinary medicine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Mechanism of lubrication by tricresylphosphate (TCP)

    NASA Technical Reports Server (NTRS)

    Faut, O. D.; Buckley, D. H.

    1984-01-01

    The coefficient of friction was measured as a function of temperature on a pin-on-disk tribometer. Pins and disks of 440C and 52100 steels were lubricated with tricresylphosphate (TCP), 3.45 percent TCP in squalene, and pure squalene. The M-50 pins and disks were lubricated with 3.45 percent TCP in squalene and pure squalene. Experiments were conducted under limited lubrication conditions in dry ( 100 ppm H2O) air and dry ( pp H2O) nitrogen at 50 rpm (equivalent to a sliding velocity of 13 cm sec) and a constant load of 9.8 N (1 kg). Characteristic temperatures T sub r were identified for TCP on 52100 steel and for squalene on M-50 and 52100 steels, where the friction decreased because of a chemical reaction between the lubricant and the metal surface. The behavior of squalene obscured the influence of 3.45 percent TCP solute on the friction of the system. Wear volume measurements demonstrated that wear was lowest at temperatures just above T sub r. Comparing the behavior of TCP on M-50, 440C, and 52100 steels revealed that the TCP either reacted to give T sub r behavior or produced initial failure in the temperature range 223 + or - 5 C.

  7. Oxalate-Metabolising Genes of the White-Rot Fungus Dichomitus squalens Are Differentially Induced on Wood and at High Proton Concentration

    PubMed Central

    de Vries, Ronald P.; Timonen, Sari; Hildén, Kristiina

    2014-01-01

    Oxalic acid is a prevalent fungal metabolite with versatile roles in growth and nutrition, including degradation of plant biomass. However, the toxicity of oxalic acid makes regulation of its intra- and extracellular concentration crucial. To increase the knowledge of fungal oxalate metabolism, a transcriptional level study on oxalate-catabolising genes was performed with an effective lignin-degrading white-rot fungus Dichomitus squalens, which has demonstrated particular abilities in production and degradation of oxalic acid. The expression of oxalic-acid decomposing oxalate decarboxylase (ODC) and formic-acid decomposing formate dehydrogenase (FDH) encoding genes was followed during the growth of D. squalens on its natural spruce wood substrate. The effect of high proton concentration on the regulation of the oxalate-catabolising genes was determined after addition of organic acid (oxalic acid) and inorganic acid (hydrochloric acid) to the liquid cultures of D. squalens. In order to evaluate the co-expression of oxalate-catabolising and manganese peroxidase (MnP) encoding genes, the expression of one MnP encoding gene, mnp1, of D. squalens was also surveyed in the solid state and liquid cultures. Sequential action of ODC and FDH encoding genes was detected in the studied cultivations. The odc1, fdh2 and fdh3 genes of D. squalens showed constitutive expression, whereas ODC2 and FHD1 most likely are the main responsible enzymes for detoxification of high concentrations of oxalic and formic acids. The results also confirmed the central role of ODC1 when D. squalens grows on coniferous wood. Phylogenetic analysis revealed that fungal ODCs have evolved from at least two gene copies whereas FDHs have a single ancestral gene. As a conclusion, the multiplicity of oxalate-catabolising genes and their differential regulation on wood and in acid-amended cultures of D. squalens point to divergent physiological roles for the corresponding enzymes. PMID:24505339

  8. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catchpole, O.J.; Kamp, J.C. von; Grey, J.B.

    1997-10-01

    Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determinedmore » the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the flow rate of squalene required to just saturate carbon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units (NTU) from experimental data and literature correlations. NTU`s from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.« less

  9. A comprehensive analysis of Italian web pages mentioning squalene-based influenza vaccine adjuvants reveals a high prevalence of misinformation.

    PubMed

    Panatto, Donatella; Amicizia, Daniela; Arata, Lucia; Lai, Piero Luigi; Gasparini, Roberto

    2018-04-03

    Squalene-based adjuvants have been included in influenza vaccines since 1997. Despite several advantages of adjuvanted seasonal and pandemic influenza vaccines, laypeople's perception of such formulations may be hesitant or even negative under certain circumstances. Moreover, in Italian, the term "squalene" has the same root as such common words as "shark" (squalo), "squalid" and "squalidness" that tend to have negative connotations. This study aimed to quantitatively and qualitatively analyze a representative sample of Italian web pages mentioning squalene-based adjuvants used in influenza vaccines. Every effort was made to limit the subjectivity of judgments. Eighty-four unique web pages were assessed. A high prevalence (47.6%) of pages with negative or ambiguous attitudes toward squalene-based adjuvants was established. Compared with web pages reporting balanced information on squalene-based adjuvants, those categorized as negative/ambiguous had significantly lower odds of belonging to a professional institution [adjusted odds ratio (aOR) = 0.12, p = .004], and significantly higher odds of containing pictures (aOR = 1.91, p = .034) and being more readable (aOR = 1.34, p = .006). Some differences in wording between positive/neutral and negative/ambiguous web pages were also observed. The most common scientifically unsound claims concerned safety issues and, in particular, claims linking squalene-based adjuvants to the Gulf War Syndrome and autoimmune disorders. Italian users searching the web for information on vaccine adjuvants have a high likelihood of finding unbalanced and misleading material. Information provided by institutional websites should be not only evidence-based but also carefully targeted towards laypeople. Conversely, authors writing for non-institutional websites should avoid sensationalism and provide their readers with more balanced information.

  10. Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications.

    PubMed

    Adlington, Kevin; El Harfi, Jaouad; Li, Jianing; Carmichael, Kim; Guderian, Jeffrey A; Fox, Christopher B; Irvine, Derek J

    2016-01-11

    The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∼60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic.

  11. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia.

    PubMed

    Seiki, Stephanie; Frishman, William H

    2009-01-01

    Hypercholesterolemia is a major risk factor for the development of atherosclerotic vascular diseases. The most popular agents for cholesterol reduction are the statin drugs, which are competitive inhibitors of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the primary rate-limiting enzyme in the hepatic biosynthesis of cholesterol. Although relatively safe and effective, the available statins can cause elevations in liver enzymes and myopathy. Squalene synthase is another enzyme that is downstream to HMG-CoA reductase in the cholesterol synthesis pathway and modulates the first committed step of hepatic cholesterol biosynthesis at the final branch point of the cholesterol biosynthetic pathway. Squalene epoxidase and oxidosqualene cyclase are other enzymes that act distally to squalene synthase. Pharmacologic inhibitors of these downstream enzymes have been developed, which may reduce low-density lipoprotein cholesterol and reduce the myopathy side effect seen with upstream inhibition of HMG-CoA. At this juncture, one squalene synthase inhibitor, lapaquistat (TAK-475) is in active clinical trials as a monotherapy, but there have been suggestions of increased hepatotoxicity with the drug.

  12. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells.

    PubMed

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, María Angeles; Sabater-Jara, Ana Belén

    2018-07-01

    Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight -1 ) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.

  13. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts.

    PubMed

    Ryan, E; Galvin, K; O'Connor, T P; Maguire, A R; O'Brien, N M

    2006-01-01

    Nuts contain bioactive constituents that elicit cardio-protective effects including phytosterols, tocopherols and squalene. The objective of the present study was to determine the total oil content, peroxide value, fatty acid composition and levels of tocopherols, squalene and phytosterols in oil extracted from freshly ground brazil, pecan, pine, pistachio and cashew nuts. The total oil content of the nuts ranged from 40.4 to 60.8% (w/w) while the peroxide values ranged from 0.14 to 0.22 mEq O2/kg oil. The most abundant monounsaturated fatty acid was oleic acid (C18:1), while linoleic acid (C18:2) was the most prevalent polyunsaturated fatty acid. The levels of total tocopherols ranged from 60.8 to 291.0 mg/g. Squalene ranged from 39.5 mg/g oil in the pine nut to 1377.8 mg/g oil in the brazil nut. beta-Sitosterol was the most prevalent phytosterol, ranging in concentration from 1325.4 to 4685.9 mg/g oil. In conclusion, the present data indicate that nuts are a good dietary source of unsaturated fatty acids, tocopherols, squalene and phytosterols.

  14. Sea Lions Develop Human-like Vernix Caseosa Delivering Branched Fats and Squalene to the GI Tract.

    PubMed

    Wang, Dong Hao; Ran-Ressler, Rinat; St Leger, Judy; Nilson, Erika; Palmer, Lauren; Collins, Richard; Brenna, J Thomas

    2018-05-10

    Vernix caseosa, the white waxy coating found on newborn human skin, is thought to be a uniquely human substance. Its signature characteristic is exceptional richness in saturated branched chain fatty acids (BCFA) and squalene. Vernix particles sloughed from the skin suspended in amniotic fluid are swallowed by the human fetus, depositing BCFA/squalene throughout the gastrointestinal (GI) tract, thereby establishing a unique microbial niche that influences development of nascent microbiota. Here we show that late-term California sea lion (Zalophus californianus) fetuses have true vernix caseosa, delivering BCFA and squalene to the fetal GI tract thereby recapitulating the human fetal gut microbial niche. These are the first data demonstrating the production of true vernix caseosa in a species other than Homo sapiens. Its presence in a marine mammal supports the hypothesis of an aquatic habituation period in the evolution of modern humans.

  15. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet.

    PubMed

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; Li, Man; Wang, Xin; Hu, Cheng; Gorman, Connor; Dai, Susie Y; Ding, Shi-You; Yuan, Joshua S

    2018-03-16

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.

  16. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    PubMed

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Squalene synthase inhibition: a novel target for the management of dyslipidemia.

    PubMed

    Davidson, Michael H

    2007-01-01

    A new class of compounds, known as squalene synthase inhibitors, has recently reached phase III clinical trials and may provide another therapeutic option for clinicians to improve risk management of low-density lipoprotein cholesterol (LDL-C). The clinical need for another LDL-C-lowering therapy is evident by the inability to achieve an LDL-C target of less than 70 mg/dL in the majority of very high-risk patients on statin monotherapy. Human clinical trial data with TAK-475, a novel and potent inhibitor of squalene synthase, have not yet been published.

  18. Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver[S

    PubMed Central

    Nagashima, Shuichi; Yagyu, Hiroaki; Tozawa, Ryuichi; Tazoe, Fumiko; Takahashi, Manabu; Kitamine, Tetsuya; Yamamuro, Daisuke; Sakai, Kent; Sekiya, Motohiro; Okazaki, Hiroaki; Osuga, Jun-ichi; Honda, Akira; Ishibashi, Shun

    2015-01-01

    Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality. PMID:25755092

  19. A comprehensive analysis of Italian web pages mentioning squalene-based influenza vaccine adjuvants reveals a high prevalence of misinformation

    PubMed Central

    2018-01-01

    ABSTRACT Squalene-based adjuvants have been included in influenza vaccines since 1997. Despite several advantages of adjuvanted seasonal and pandemic influenza vaccines, laypeople's perception of such formulations may be hesitant or even negative under certain circumstances. Moreover, in Italian, the term “squalene” has the same root as such common words as “shark” (squalo), “squalid” and “squalidness” that tend to have negative connotations. This study aimed to quantitatively and qualitatively analyze a representative sample of Italian web pages mentioning squalene-based adjuvants used in influenza vaccines. Every effort was made to limit the subjectivity of judgments. Eighty-four unique web pages were assessed. A high prevalence (47.6%) of pages with negative or ambiguous attitudes toward squalene-based adjuvants was established. Compared with web pages reporting balanced information on squalene-based adjuvants, those categorized as negative/ambiguous had significantly lower odds of belonging to a professional institution [adjusted odds ratio (aOR) = 0.12, p = .004], and significantly higher odds of containing pictures (aOR = 1.91, p = .034) and being more readable (aOR = 1.34, p = .006). Some differences in wording between positive/neutral and negative/ambiguous web pages were also observed. The most common scientifically unsound claims concerned safety issues and, in particular, claims linking squalene-based adjuvants to the Gulf War Syndrome and autoimmune disorders. Italian users searching the web for information on vaccine adjuvants have a high likelihood of finding unbalanced and misleading material. Information provided by institutional websites should be not only evidence-based but also carefully targeted towards laypeople. Conversely, authors writing for non-institutional websites should avoid sensationalism and provide their readers with more balanced information. PMID:29172967

  20. Some studies on the biosynthesis of ubiquinone, isoprenoid alcohols, squalene and sterols by marine invertebrates

    PubMed Central

    Walton, M. J.; Pennock, J. F.

    1972-01-01

    The ability of fourteen marine invertebrates to utilize [14C]mevalonate for the biosynthesis of isoprenoid compounds was investigated. Several of the animals, in particular crustaceans, bivalve molluscs, a coelenterate and a sponge, were unable to synthesize squalene and sterols, whereas gastropod molluscs, echinoderms, an annelid and a sponge could. Regardless of sterol-synthesizing ability the animals (with the exception of a sponge) always made dolichol and ubiquinone, and thus a specific block in squalene and sterol synthesis was indicated in some animals. Radioactivity accumulated in relatively large amounts in farnesol and geranylgeraniol in those animals incapable of making sterols. PMID:4403925

  1. Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: the variety as a key factor.

    PubMed

    Rudzińska, Magdalena; Górnaś, Paweł; Raczyk, Marianna; Soliven, Arianne

    2017-01-01

    The profile of sterols and squalene content in oils recovered from the kernels of 15 apricot (Prunus armeniaca L.) varieties were investigated. Nine sterols (campesterol, β-sitosterol, Δ5-avenasterol, 24-methylene-cycloartanol, cholesterol, gramisterol, Δ7-stigmasterol, Δ7-avenasterol and citrostadienol) were identified in apricot kernel oils. The β-sitosterol was the predominant sterol in each cultivar and consisted of 76-86% of the total detected sterols. The content of total sterols and squalene were significantly affected by the variety and ranged between 215.7-973.6 and 12.6-43.9 mg/100 g of oil, respectively.

  2. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Di Falco, Marcos; Zhou, Miaomiao; Aguilar-Pontes, Maria Victoria; Sietiö, Outi-Maaria; Tsang, Adrian; de Vries, Ronald P; Mäkelä, Miia R

    2017-03-01

    The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Extraction methods of Amaranthus sp. grain oil isolation.

    PubMed

    Krulj, Jelena; Brlek, Tea; Pezo, Lato; Brkljača, Jovana; Popović, Sanja; Zeković, Zoran; Bodroža Solarov, Marija

    2016-08-01

    Amaranthus sp. is a fast-growing crop with well-known beneficial nutritional values (rich in protein, fat, dietary fiber, ash, and minerals, especially calcium and sodium, and containing a higher amount of lysine than conventional cereals). Amaranthus sp. is an underexploited plant source of squalene, a compound of high importance in the food, cosmetic and pharmaceutical industries. This paper has examined the effects of the different extraction methods (Soxhlet, supercritical fluid and accelerated solvent extraction) on the oil and squalene yield of three genotypes of Amaranthus sp. grain. The highest yield of the extracted oil (78.1 g kg(-1) ) and squalene (4.7 g kg(-1) ) in grain was obtained by accelerated solvent extraction (ASE) in genotype 16. Post hoc Tukey's HSD test at 95% confidence limit showed significant differences between observed samples. Principal component analysis (PCA) and cluster analysis (CA) were used for assessing the effect of different genotypes and extraction methods on oil and squalene yield, and also the fatty acid composition profile. Using coupled PCA and CA of observed samples, possible directions for improving the quality of product can be realized. The results of this study indicate that it is very important to choose both the right genotype and the right method of extraction for optimal oil and squalene yield. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Drug evaluation: TAK-475--an oral inhibitor of squalene synthase for hyperlipidemia.

    PubMed

    Burnett, John R

    2006-09-01

    Takeda Pharmaceutical Co Ltd is developing TAK-475, a squalene synthetase inhibitor from a series of 4,1-benzoxazepine-3-acetic acid derivatives, for the potential oral treatment of hyperlipidemia. By March 2005, TAK-475 was undergoing phase III clinical trials in the US and Europe.

  5. Do the substituent effects affect conformational freedom of squalene in hopene biosynthesis?

    PubMed

    Nowosielski, Marcin; Hoffmann, Marcin

    2011-09-01

    The analysis of biochemical processes is one of the main challenges for modern computational chemistry. Probably the biggest issue facing scientists in this case is the number of factors that have to be taken into account, as even those factors that do not seem to be meaningful may eventually be crucial. Such a belief led to the investigation on the substituent effects during squalene cyclization process. We focused on the formation of lanosterol ring A through squalene epoxide and an analogue process observed in bacteria, leading to the hopene formation without an intermediate oxide. Interestingly, our results indicate that, opposite of chemical intuition, a more substituted chain is more likely to adopt a conformation suitable for the cyclization process. Presumably the rational for this behavior is the presence of intermolecular CH ... π interactions between the hydrogen atoms from methyl groups and the squalene π bonds in the open-chain structure. The effect seems to have a firm impact on the hopene formation process. Calculations were performed using two different methods: MP2 and M06-2X, combined with the cc-pVDZ basis set.

  6. Emerging lipid-lowering drugs: squalene synthase inhibitors.

    PubMed

    Elsayed, Raghda K; Evans, Jeffery D

    2008-06-01

    Lapaquistat was the only squalene synthase inhibitor in Phase III clinical trials in Europe and the United States, but was recently discontinued from clinical development. Unlike statins, the inhibition of de novo cholesterol biosynthesis by lapaquistat does not deplete mevalonate, a precursor of isoprenoids. Isoprenoids are critical in cell growth and metabolism. The present review will focus on the chemistry, pharmacology, and lipid-lowering effects of novel squalene synthase inhibitors. A search of Pubmed, IPA, and GoogleScholar for studies (animal and human) and review articles published in English between 1990 and April 2008, using the search terms "squalene synthase inhibitors" or "lapaquistat". All clinical trials identified were then cross-referenced for their citations. All literature identified was then complied for this analysis. Lapaquistat mainly targets LDL-C, but may have some effect on HDL-C and TG. Preliminary reports on Phase II and Phase III associated lapaquistat 100 mg with elevated hepatic enzymes. Hepatotoxicity, possible drug-drug interaction with statins, and the investigation of a statin/coenzyme Q10 combination are among the few challenges that impeded lapaquistat's clinical development.

  7. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?.

    PubMed

    Filipović, Mila; Gledović, Ana; Lukić, Milica; Tasić-Kostov, Marija; Isailović, Tanja; Pantelić, Ivana; Vuleta, Gordana; Savić, Snežana

    2016-11-01

    Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. With the employment of noninvasive skin biophysical measurements, skin hydration (EC), transepi-dermal water loss (TEWL), erythema index (EI) and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study) on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  8. A comparison of the impact of amaranth flour and squalene on plasma cholesterol in mice with diet-induced dyslipidemia.

    PubMed

    Chmelík, Zdenek; Kotolová, Hana; Piekutowská, Zuzana; Horská, Katerina; Bartosová, Ladislava; Suchý, Pavel; Kollár, Peter

    2013-01-01

    Amaranth was identified as a possible component of an anti-sclerotic diet. To date, particular substances responsible for this effect have not been exactly specified. Squalene, which is contained in amaranth, could be responsible for this effect. However, there are also other potential substances and the hypolipidemic effect of amaranth can be caused by a synergistic effect of several components. This study investigated and compared the impact of amaranth flour and squalene on the total cholesterol (CHOL(TOT)) and LDL cholesterol (CHOL(LDL)) levels in mice with dyslipidemia induced by a cholesterol- and sugar-rich diet. The experiment included 40 inbred mice (C57Bl/6J SPF). After a 7-days acclimatization period, animals were divided into four groups by random. Individual groups were fed different diets for 49 days: control (group C), high energy diet (group HED), high energy diet with amaranth flour (group HED+A) and high energy diet with squalene (group HED+S). The sugar- and cholesterol-rich diet in HED resulted in the significant increase in the levels of CHOL(TOT) by 125% (P < 0.05) and CHOL(LDL) by 304% (P < 0.05), and at the same time in a decrease of HDL cholesterol (CHOL(HDL)) levels by 58% (P < 0.05) compared to group C. To the contrary, amaranth flour enriched diet in group HED+A led to a decrease of CHOL(TOT) levels by 33% (P < 0.05) and CHOL(LDL) by 37% (P < 0.05), compared to HED. Both, amaranth flour and squalene, had a positive impact on CHOL(HDL) levels. Compared to group HED, there was a 47% increase in HED+A and a 60% increase in HED+S. Results proved the favorable impact of amaranth flour on the levels of total cholesterol CHOL(TOT) and also on CHOL(LDL). Furthermore, the results imply that amaranth flour contains besides squalene other substances, which can actively participate in its hypolipidemic effect.

  9. Detailed mechanism of squalene epoxidase inhibition by terbinafine.

    PubMed

    Nowosielski, Marcin; Hoffmann, Marcin; Wyrwicz, Lucjan S; Stepniak, Piotr; Plewczynski, Dariusz M; Lazniewski, Michal; Ginalski, Krzysztof; Rychlewski, Leszek

    2011-02-28

    Squalene epoxidase (SE) is a key flavin adenine dinucleotide (FAD)-dependent enzyme of ergosterol and cholesterol biosynthetic pathways and an attractive potential target for drugs used to inhibit the growth of pathogenic fungi or to lower cholesterol level. Although many studies on allylamine drugs activity have been published during the last 30 years, up until now no detailed mechanism of the squalene epoxidase inhibition has been presented. Our study brings such a model at atomic resolution in the case of yeast Saccharomyces cerevisiae . Presented data resulting from modeling studies are in excellent agreement with experimental findings. A fully atomic three-dimensional (3D) model of squalene epoxidase (EC 1.14.99.7) from S. cerevisiae was built with the help of 3D-Jury approach and further screened based on data known from mutation experiments leading to terbinafine resistance. Docking studies followed by molecular dynamics simulations and quantum interaction energy calculations [MP2/6-31G(d)] resulted in the identification of the terbinafine-squalene epoxidase mode of interaction. In the energetically most likely orientation of terbinafine its interaction energy with the protein is ca. 120 kJ/mol. In the favorable position the terbinafine lipophilic moiety is located vertically inside the squalene epoxidase binding pocket with the tert-butyl group oriented toward its center. Such a position results in the SE conformational changes and prevents the natural substrate from being able to bind to the enzyme's active site. That would explain the noncompetitive manner of SE inhibition. We found that the strongest interaction between terbinafine and SE stems from hydrogen bonding between hydrogen-bond donors, hydroxyl group of Tyr90 and amine nitrogen atom of terbinafine. Moreover, strong attractive interactions were recorded for amino acids whose mutations resulted in terbinafine resistance. Our results, elucidating at a molecular level the mode of terbinafine inhibitory activity, can be utilized in designing more potent or selective antifungal drugs or even medicines lowering cholesterol in humans.

  10. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.

    PubMed

    Choi, Sun Young; Lee, Hyun Jeong; Choi, Jaeyeon; Kim, Jiye; Sim, Sang Jun; Um, Youngsoon; Kim, Yunje; Lee, Taek Soon; Keasling, Jay D; Woo, Han Min

    2016-01-01

    Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.

  11. Squalene synthase inhibitors: An update on the search for new antihyperlipidemic and antiatherosclerotic agents.

    PubMed

    Kourounakis, A P; Katselou, M G; Matralis, A N; Ladopoulou, E M; Bavavea, E

    2011-01-01

    Atherosclerosis and related heart disease is strongly associated with elevated blood levels of total (and LDL) cholesterol. Due to the widespread incidence as well as severity of this pathological condition, major efforts have been made for the discovery and development of hypocholesteroleamic agents. In the past few decades, HMG-CoA reductase inhibitors (statins) are being extensively used as lipid lowering drugs. These agents act predominantly by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) that is the rate limiting step of cholesterol biosynthesis. Both the success as well as drawbacks of HMGRIs, have led to the investigation and design of inhibitors of other (downstream) enzymes involved in the multistep cholesterol biosynthetic pathway. One such class of agents consists of the squalene sythase inhibitors which act at the first and solely committed step towards the biosynthesis of the cholesterol nucleus. This target is considered not to interfere with the biosynthesis of other biologically important molecules and thus a better side-effect profile is expected for these inhibitors. Several classes of squalene synthase inhibitors (SQSIs), such as substrate or transition-state analogues, zaragozic acids or 2,8- dioxabicyclo[3.2.1]octane derivatives, dicarboxylic acid and quinuclidine derivatives, 4,1-benzoxazepine as well as substituted morpholine derivatives, have been studied as potent inhibitors of squalene synthase. So far only one benzoxazepine derivative (TAK-475) has been evaluated in advanced clinical trials. In this article we review the up to date research and literature on the therapeutic potential of this relatively new class of compounds, the drug discovery efforts towards the development of active squalene synthase inhibitors, their activity profile and effectiveness, as well as their structure-activity relationships.

  12. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  13. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    PubMed Central

    Ivanova, Slavyana; Tonchev, Vesselin; Yokoi, Norihiko; Yappert, Marta C.; Borchman, Douglas; Georgiev, Georgi As.

    2015-01-01

    Squalene (SQ) possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient) that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer) as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i) if SQ is in tear lipids and (ii) its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i) localized over the layers’ thinner regions and (ii) did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface. PMID:26370992

  14. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    PubMed

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    PubMed

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stimulation by unsaturated fatty acid of squalene uptake in rat liver microsomes.

    PubMed

    Chin, J; Bloch, K

    1985-07-01

    Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.

  17. Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil.

    PubMed

    Choo, Yuen May; Ng, Mei Han; Ma, Ah Ngan; Chuah, Cheng Hock; Hashim, Mohd Ali

    2005-04-01

    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.

  18. Identification of histamine receptors and reduction of squalene levels by an antihistamine in sebocytes.

    PubMed

    Pelle, Edward; McCarthy, James; Seltmann, Holger; Huang, Xi; Mammone, Thomas; Zouboulis, Christos C; Maes, Daniel

    2008-05-01

    Overproduction of sebum, especially during adolescence, is causally related to acne and inflammation. As a way to reduce sebum and its interference with the process of follicular keratinization in the pilosebaceous unit leading to inflammatory acne lesions, antihistamines were investigated for their effect on sebocytes, the major cell of the sebaceous gland responsible for producing sebum. Reverse transcriptase-PCR analysis and immunofluorescence of an immortalized sebocyte cell line (SZ95) revealed the presence of histamine-1 receptor (H-1 receptor), and thus indicated that histamines and, conversely, antihistamines could potentially modulate sebocyte function directly. When sebocytes were incubated with an H-1 receptor antagonist, diphenhydramine (DPH), at non-cytotoxic doses, a significant decrease in squalene levels, a biomarker for sebum, was observed. As determined by high-performance liquid chromatography, untreated sebocytes contained 6.27 (+/-0.73) nmol squalene per 10(6) cells, whereas for DPH-treated cells, the levels were 2.37 (+/-0.24) and 2.03 (+/-0.97) nmol squalene per 10(6) cells at 50 and 100 microM, respectively. These data were further substantiated by the identification of histamine receptors in human sebaceous glands. In conclusion, our data show the presence of histamine receptors on sebocytes, demonstrate how an antagonist to these receptors modulated cellular function, and may indicate a new paradigm for acne therapy involving an H-1 receptor-mediated pathway.

  19. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid α-Onocerin1[OPEN

    PubMed Central

    Almeida, Aldo; Khakimov, Bekzod; Bassard, Jean-Etienne; Appendino, Giovanni

    2018-01-01

    8,14-seco-Triterpenoids are characterized by their unusual open C-ring. Their distribution in nature is rare and scattered in taxonomically unrelated plants. The 8,14-seco-triterpenoid α-onocerin is only known from the evolutionarily distant clubmoss genus Lycopodium and the leguminous genus Ononis, which makes the biosynthesis of this seco-triterpenoid intriguing from an evolutionary standpoint. In our experiments with Ononis spinosa, α-onocerin was detected only in the roots. Through transcriptome analysis of the roots, an oxidosqualene cyclase, OsONS1, was identified that produces α-onocerin from squalene-2,3;22,23-dioxide when transiently expressed in Nicotiana bethamiana. In contrast, in Lycopodium clavatum, two sequential cyclases, LcLCC and LcLCD, are required to produce α-onocerin in the N. benthamiana transient expression system. Expression of OsONS1 in the lanosterol synthase knockout yeast strain GIL77, which accumulates squalene-2,3;22,23-dioxide, verified the α-onocerin production. A phylogenetic analysis predicts that OsONS1 branches off from specific lupeol synthases and does not group with the known L. clavatum α-onocerin cyclases. Both the biochemical and phylogenetic analyses of OsONS1 suggest convergent evolution of the α-onocerin pathways. When OsONS1 was coexpressed in N. benthamiana leaves with either of the two O. spinosa squalene epoxidases, OsSQE1 or OsSQE2, α-onocerin production was boosted, most likely because the epoxidases produce higher amounts of squalene-2,3;22,23-dioxide. Fluorescence lifetime imaging microscopy analysis demonstrated specific protein-protein interactions between OsONS1 and both O. spinosa squalene epoxidases. Coexpression of OsONS1 with the two OsSQEs suggests that OsSQE2 is the preferred partner of OsONS1 in planta. Our results provide an example of the convergent evolution of plant specialized metabolism. PMID:29203557

  20. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  1. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

    PubMed Central

    Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru; Takada, Kentaro; Molnár, István; Xu, Yuquan; Devarenne, Timothy P.

    2016-01-01

    The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C30 squalene. Confirming this hypothesis, the current study identifies C20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encoding a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C15 and C20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. This discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii. PMID:27050299

  2. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

    DOE PAGES

    Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru; ...

    2016-04-06

    Here, the green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C 40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C 30 squalene. Confirming this hypothesis, the current study identifies C 20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encodingmore » a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C 15 and C 20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. In conclusion, this discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii.« less

  3. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    DOE PAGES

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; ...

    2018-02-13

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  4. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  5. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    PubMed

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. Squalene-containing licensed adjuvants enhance strain-specific antibody responses against the influenza hemagglutinin and induce subtype-specific antibodies against the neuraminidase.

    PubMed

    Schmidt, Rebecca; Holznagel, Edgar; Neumann, Britta; Alex, Nina; Sawatsky, Bevan; Enkirch, Theresa; Pfeffermann, Kristin; Kruip, Carina; von Messling, Veronika; Wagner, Ralf

    2016-10-17

    While seasonal influenza vaccines are usually non-adjuvanted, H1N1pdm09 vaccines were formulated with different squalene-containing adjuvants, to enable the reduction of antigen content thus increasing the number of doses available. To comparatively assess the effects of these adjuvants on antibody responses against matched and mismatched strains, and to correlate antibody levels with protection from disease, ferrets were immunized with 2μg of commercial H1N1pdm09 vaccine antigen alone or formulated with different licensed adjuvants. The use of squalene-containing adjuvants increased neutralizing antibody responses around 100-fold, and resulted in a significantly reduced viral load after challenge with a matched strain. While all animals mounted strong total antibody responses against the homologous H1N1 hemagglutinin (HA) protein, which correlated with the respective neutralizing antibody titers, no reactivity with the divergent H3, H5, H7, and H9 proteins were detected. Only the adjuvanted vaccines also induced antibodies against the neuraminidase (NA) protein, which were able to also recognize NA proteins from other N1 carrying strains. These findings not only support the use of squalene-containing adjuvants in dose-sparing strategies but also support speculations that the induction of NA-specific responses associated with the use of these adjuvants may confer partial protection to heterologous strains carrying the same NA subtype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lapaquistat acetate, a squalene synthase inhibitor, changes macrophage/lipid-rich coronary plaques of hypercholesterolaemic rabbits into fibrous lesions.

    PubMed

    Shiomi, M; Yamada, S; Amano, Y; Nishimoto, T; Ito, T

    2008-07-01

    Inhibition of squalene synthesis could transform unstable, macrophage/lipid-rich coronary plaques into stable, fibromuscular plaques. We have here treated WHHLMI rabbits, a model for coronary atherosclerosis and myocardial infarction, with a novel squalene synthase inhibitor, lapaquistat acetate (TAK-475). Young male WHHLMI rabbits were fed a diet supplemented with lapaquistat acetate (100 or 200 mg per kg body weight per day) for 32 weeks. Serum lipid levels were monitored every 4 weeks. After the treatment, lipoprotein lipid and coenzyme Q10 levels were assayed, and coronary atherosclerosis and xanthomas were examined histopathologically or immunohistochemically. From histopathological and immunohistochemical sections, the composition of the plaque was analysed quantitatively with computer-assisted image analysis. Xanthoma was evaluated grossly. Lapaquistat acetate decreased plasma cholesterol and triglyceride levels, by lowering lipoproteins containing apoB100. Development of atherosclerosis and xanthomatosis was suppressed. Accumulation of oxidized lipoproteins, macrophages and extracellular lipid was decreased in coronary plaques of treated animals. Treatment with lapaquistat acetate increased collagen concentration and transformed coronary plaques into fibromuscular plaques. Lapaquistat acetate also suppressed the expression of matrix metalloproteinase-1 and plasminogen activator inhibitor-1 in the plaque and increased peripheral coenzyme Q10 levels. Increased coenzyme Q10 levels and decreased very low-density lipoprotein cholesterol levels were correlated with improvement of coronary plaque composition. Inhibition of squalene synthase by lapaquistat acetate delayed progression of coronary atherosclerosis and changed coronary atheromatous plaques from unstable, macrophage/lipid accumulation-rich, lesions to stable fibromuscular lesions.

  8. Contact lenses and the rate of evaporation measured in vitro; the influence of wear, squalene and wax.

    PubMed

    Vishnubhatla, Sravya; Borchman, Douglas; Foulks, Gary N

    2012-12-01

    Accelerated evaporation of tears may contribute to dry eye symptoms. It is not clear whether contact lenses decrease or increase the rate of evaporation of tears. In this study, the rates of evaporation through contact lenses (ERTCL) were measured in vitro to gain insight to this question. Contact lenses were equilibrated with various solutions to determine if they influenced ERTCL in vitro. ERTCL was measured gravimetrically. ERTCL measured in vitro for used contact lenses was about 20% faster than for buffer alone suggesting that natural tear components bound to the lenses changed the ERTCL. One natural tear component that binds to contact lenses is waxes. Equilibration of contact lenses with wax increased the ERTCL by about 30% suggesting that waxes might potentially increase ERTCL in vivo. Squalene, found in sebum and possibly meibum was infused into the contact lenses as a step toward decreasing the ERTCL. Squalene decreased ERTCL by over 60% in vitro. Soaking a contact lens in DuraSite(®) with benzalkonium chloride (BAK) did not alter the ERTCL. ERTCL were about 40% higher than the evaporation rate of DuraSite(®) alone or without BAK. In addition to lowering the ERTCL, the squalene in contact lenses could be a source of terpenoids to replace the terpenoids deficient in patients with MGD. If the ERTCL could be minimized in vivo, contact lenses could potentially be used to relieve dry eye symptoms in patients with evaporative dry eye. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  9. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  10. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  11. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE PAGES

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.; ...

    2016-03-08

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  12. Lapaquistat acetate, a squalene synthase inhibitor, changes macrophage/lipid-rich coronary plaques of hypercholesterolaemic rabbits into fibrous lesions

    PubMed Central

    Shiomi, M; Yamada, S; Amano, Y; Nishimoto, T; Ito, T

    2008-01-01

    Background and purpose: Inhibition of squalene synthesis could transform unstable, macrophage/lipid-rich coronary plaques into stable, fibromuscular plaques. We have here treated WHHLMI rabbits, a model for coronary atherosclerosis and myocardial infarction, with a novel squalene synthase inhibitor, lapaquistat acetate (TAK-475). Experimental approach: Young male WHHLMI rabbits were fed a diet supplemented with lapaquistat acetate (100 or 200 mg per kg body weight per day) for 32 weeks. Serum lipid levels were monitored every 4 weeks. After the treatment, lipoprotein lipid and coenzyme Q10 levels were assayed, and coronary atherosclerosis and xanthomas were examined histopathologically or immunohistochemically. From histopathological and immunohistochemical sections, the composition of the plaque was analysed quantitatively with computer-assisted image analysis. Xanthoma was evaluated grossly. Key results: Lapaquistat acetate decreased plasma cholesterol and triglyceride levels, by lowering lipoproteins containing apoB100. Development of atherosclerosis and xanthomatosis was suppressed. Accumulation of oxidized lipoproteins, macrophages and extracellular lipid was decreased in coronary plaques of treated animals. Treatment with lapaquistat acetate increased collagen concentration and transformed coronary plaques into fibromuscular plaques. Lapaquistat acetate also suppressed the expression of matrix metalloproteinase-1 and plasminogen activator inhibitor-1 in the plaque and increased peripheral coenzyme Q10 levels. Increased coenzyme Q10 levels and decreased very low-density lipoprotein cholesterol levels were correlated with improvement of coronary plaque composition. Conclusion and implications: Inhibition of squalene synthase by lapaquistat acetate delayed progression of coronary atherosclerosis and changed coronary atheromatous plaques from unstable, macrophage/lipid accumulation-rich, lesions to stable fibromuscular lesions. PMID:18587443

  13. Terbinafine inhibits gap junctional intercellular communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ju Yeun, E-mail: whitewndus@naver.com

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca{sup 2+} concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibitsmore » GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca{sup 2+} concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.« less

  14. New triterpenes from Barringtonia asiatica.

    PubMed

    Ragasa, Consolacion Yasaña; Espineli, Dinah Lorenzana; Shen, Chien-Chang

    2011-01-01

    The leaves of Barringtonia asiatica afforded two new triterpenes, germanicol caffeoyl ester (1) and camelliagenone (2). Their structures were elucidated by extensive 1D- and 2D-NMR spectroscopy. It also afforded germanicol trans-coumaroyl ester (3), germanicol cis-coumaroyl ester (4), germanicol (5), camelliagenin A (6), spinasterol, sitosterol, squalene, lutein and trilinolein. Compounds 3, spinasterol and trilinolein were isolated from the fruits, while the seeds yielded spinasterol, squalene, linoleic acid and trilinolein. Compounds 1-5 exhibited antifungal activity against Candida albicans, 1-3 and 5 showed antibacterial activity against Staphylococcus aureus, while 5 is active against Pseudomonas aeruginosa.

  15. Oxygen requirements for formation and activity of the squalene expoxidase in Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the 'mitochondrial' fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the 'microsomal' fraction. At 0.03 percent (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent K sub m for oxygen of 0.38 percent (vol/vol) was determined from a crude particulate preparation for the epoxidase.

  16. Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla.

    PubMed

    Zhang, Mengyan; Wang, Siyao; Yin, Jing; Li, Chunxiao; Zhan, Yaguang; Xiao, Jialei; Liang, Tian; Li, Xin

    2016-09-01

    Betula platyphylla is a rich repository of pharmacologically active secondary metabolites known as birch triterpenoids (TBP). Here, we cloned the squalene synthase (SS) and squalene epoxidase genetic (SE) sequences from B. platyphylla that encode the key enzymes that are involved in triterpenoid biosynthesis and analyzed the conserved domains and phylogenetics of their corresponding proteins. The full-length sequence of BpSS is 1588 bp with a poly-A tail, which contained an open reading frame (ORF) of 1241 bp that encoded a protein of 413 amino acids. Additionally, the BpSE full-length sequence of 2040 bp with a poly-A tail was also obtained, which contained an ORF of 1581 bp encoding a protein of 526 amino acids. Their organ-specific expression patterns in 4-week-old tissue culture seedlings of B. platyphylla were detected by real-time PCR and showed that they were all highly expressed in leaves, as compared to stem and root tissues. Additionaly, both BpSS and BpSE were enhanced following stimulation with ethephon and MeJA. The expression of BpSS was enhanced by ABA, whereas BpSE was not. The SA treatment did not affect the BpSS and BpSE transcripts notably. Using a genome walking approach, promoter sequences of 965 and 1193 bp, respectively, for BpSS and BpSE were isolated, and they revealed several key cis-regulatory elements known to be involved in the response to phytohormone and abiotic plant stress. We also found that the BpSS protein is localized in the cytoplasm. Opening reading frames of BpSS and BpSE were ligated into yeast expression plasmid pYES2 under control of GAL1 promoter and introduced into the yeast INVScl1 strain. The transformants were cultured for 12 h, the squalene content of galactose-induced BpSS expression yeast cells was 13.2 times of control (empty vector control yeast cells) by high-performance liquid chromatography (HPLC) test method. And, the squalene epoxidase activity of induced BpSE expression yeast cell was about 11.8 times of control. These indicated that we cloned birch BpSS and BpSE that were indeed involved in the synthesis of triteropenoids. This is the first report wherein SS and SE from B. platyphylla were cloned and may be of significant interest to understand the regulatory role of SS and SE in the triterpenoids biosynthesis of B. platyphylla. This is the first report wherein SS and SE from B. platyphylla were cloned and may be of significant interest to understand the regulatory role of SS and SE in the biosynthesis of birch triterpenoids.

  17. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimoto, Tomoyuki; Ishikawa, Eiichiro; Anayama, Hisashi

    2007-08-15

    High-dose statin treatment has been recommended as a primary strategy for aggressive reduction of LDL cholesterol levels and protection against coronary artery disease. The effectiveness of high-dose statins may be limited by their potential for myotoxic side effects. There is currently little known about the molecular mechanisms of statin-induced myotoxicity. Previously we showed that T-91485, an active metabolite of the squalene synthase inhibitor lapaquistat acetate (lapaquistat: a previous name is TAK-475), attenuated statin-induced cytotoxicity in human skeletal muscle cells [Nishimoto, T., Tozawa, R., Amano, Y., Wada, T., Imura, Y., Sugiyama, Y., 2003a. Comparing myotoxic effects of squalene synthase inhibitor, T-91485,more » and 3-hydroxy-3-methylglutaryl coenzyme A. Biochem. Pharmacol. 66, 2133-2139]. In the current study, we investigated the effects of lapaquistat administration on statin-induced myotoxicity in vivo. Guinea pigs were treated with either high-dose cerivastatin (1 mg/kg) or cerivastatin together with lapaquistat (30 mg/kg) for 14 days. Treatment with cerivastatin alone decreased plasma cholesterol levels by 45% and increased creatine kinase (CK) levels by more than 10-fold (a marker of myotoxicity). The plasma CK levels positively correlated with the severity of skeletal muscle lesions as assessed by histopathology. Co-administration of lapaquistat almost completely prevented the cerivastatin-induced myotoxicity. Administration of mevalonolactone (100 mg/kg b.i.d.) prevented the cerivastatin-induced myotoxicity, confirming that this effect is directly related to HMG-CoA reductase inhibition. These results strongly suggest that cerivastatin-induced myotoxicity is due to depletion of mevalonate derived isoprenoids. In addition, squalene synthase inhibition could potentially be used clinically to prevent statin-induced myopathy.« less

  18. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs.

    PubMed

    Nishimoto, Tomoyuki; Ishikawa, Eiichiro; Anayama, Hisashi; Hamajyo, Hitomi; Nagai, Hirofumi; Hirakata, Masao; Tozawa, Ryuichi

    2007-08-15

    High-dose statin treatment has been recommended as a primary strategy for aggressive reduction of LDL cholesterol levels and protection against coronary artery disease. The effectiveness of high-dose statins may be limited by their potential for myotoxic side effects. There is currently little known about the molecular mechanisms of statin-induced myotoxicity. Previously we showed that T-91485, an active metabolite of the squalene synthase inhibitor lapaquistat acetate (lapaquistat: a previous name is TAK-475), attenuated statin-induced cytotoxicity in human skeletal muscle cells [Nishimoto, T., Tozawa, R., Amano, Y., Wada, T., Imura, Y., Sugiyama, Y., 2003a. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A. Biochem. Pharmacol. 66, 2133-2139]. In the current study, we investigated the effects of lapaquistat administration on statin-induced myotoxicity in vivo. Guinea pigs were treated with either high-dose cerivastatin (1 mg/kg) or cerivastatin together with lapaquistat (30 mg/kg) for 14 days. Treatment with cerivastatin alone decreased plasma cholesterol levels by 45% and increased creatine kinase (CK) levels by more than 10-fold (a marker of myotoxicity). The plasma CK levels positively correlated with the severity of skeletal muscle lesions as assessed by histopathology. Co-administration of lapaquistat almost completely prevented the cerivastatin-induced myotoxicity. Administration of mevalonolactone (100 mg/kg b.i.d.) prevented the cerivastatin-induced myotoxicity, confirming that this effect is directly related to HMG-CoA reductase inhibition. These results strongly suggest that cerivastatin-induced myotoxicity is due to depletion of mevalonate derived isoprenoids. In addition, squalene synthase inhibition could potentially be used clinically to prevent statin-induced myopathy.

  19. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro.

    PubMed

    Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo

    2003-07-01

    1. Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. 2. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED(50), 2.9 mg kg(-1)) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. 3. In marmosets, TAK-475 (30, 100 mg kg(-1), p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg(-1), p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. 4. TAK-475 (60 mg kg(-1), p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. 5. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of (125)I-low-density lipoprotein (LDL) to LDL receptors. 6. These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia.

  20. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro

    PubMed Central

    Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo

    2003-01-01

    Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED50, 2.9 mg kg−1) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. In marmosets, TAK-475 (30, 100 mg kg−1, p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg−1, p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. TAK-475 (60 mg kg−1, p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of 125I-low-density lipoprotein (LDL) to LDL receptors. 6 These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia. PMID:12839864

  1. Discovering Peptide Inhibitors of Human Squalene Synthase Through Screening the Phage-Displayed Cyclic Peptide c7c Library.

    PubMed

    Shiuan, David; Chen, Yue-Hao; Lin, Hwan-Kang; Huang, Kao-Jean; Tai, Da-Fu; Chang, Ding-Kwo

    2016-06-01

    Many drugs for the treatment of hypercholesterolemia are targeting the enzymes involved in human cholesterol biosynthesis pathway. Squalene synthase, the rate-limiting enzyme located at the downstream of cholesterol synthesis pathway, has become a better candidate to develop next-generation hypocholesterolemia drugs. In the present study, we cloned and expressed the recombinant human squalene synthase (hSQS) as the lure to isolate potential peptide inhibitors from screening the conformation-constrained phage-displayed cyclic peptide c7c library. Their binding capabilities were further estimated by ELISA. Their pharmaceutical potentials were then analyzed through molecular modeling and the ADMET property evaluations. Four ennea-peptides and nine tetra-peptides were finally synthesized to evaluate their inhibitory potentials toward hSQS. The results indicate that the ennea-peptide CLSPHSMFC, tetra-peptides SMFC, CKTE, and WHQW can effectively inhibit hSQS activities (IC50 values equal to 64, 76, 87, and 90 μM, respectively). These peptides may have potentials to develop future cholesterol-lowering therapeutics. The ligand-protein interaction analysis also reveals that the inner hydrophobic pocket could be a more critical site of hSQS.

  2. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis.

    PubMed

    Miki, Takashi; Kori, Masakuni; Mabuchi, Hiroshi; Tozawa, Ryu-ichi; Nishimoto, Tomoyuki; Sugiyama, Yasuo; Teshima, Koichiro; Yukimasa, Hidefumi

    2002-09-26

    Modification of the carboxyl group at the 3-position and introduction of protective groups to the hydroxy group of the 4,1-benzoxazepine derivative 2 (metabolite of 1) were carried out, and the inhibitory activity for squalene synthase and cholesterol synthesis in the liver was investigated. Among these compounds, the glycine derivative 3a and beta-alanine derivative 3f exhibited the most potent inhibition of squalene synthase prepared from HepG2 cells (IC(50) = 15 nM). On the other hand, the piperidine-4-acetic acid derivative 4a, which was prepared by acetylation of 3j, was the most effective inhibitor of cholesterol synthesis in rat liver (ED(50) = 2.9 mg/kg, po). After oral administration, 4a was absorbed and rapidly hydrolyzed to deacylated 3j. Compound 3j was detected mainly in the liver, but the plasma level of 3j was found to be low. Compounds 3j and 4a were found to be competitive inhibitors with respect to farnesyl pyrophosphate. Further evaluation of 4a as a cholesterol-lowering and antiatherosclerotic agent is underway.

  3. Improved rubber nanofillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, T. J.

    2012-03-01

    During this task, Silane functionalized TiO2 and HK3Ti4O4(SiO4)3 were sent to Goodyear (GY) for testing. These materials were characterized based on their interaction with the model elastomer, squalene. The Van der Waals interactions and Hamaker Constants for ZnO particles in squalene and rubber materials were characterized and it was determined that a 10-20 nm spacing was necessary between primary filler particles to maintain a stable nanocomposite. Contact angle measurements on the ZnO and ZnO-silane materials indicated that the solvent should wet the particles, and solvophobic attractions should not be present. These studies showed that the surface modification with sulfosilane couplingmore » agents was successful, and high levels of dispersion of the particles remained possible. Further, a novel surface charging phenomenon where negative surface charging is developed in the squalene environment was observed and corroborated by measurements of particle size and of the surface modified materials in squalene. This impacts the dispersion of the particles according to the traditional colloidal interpretation of electrostatic repulsive forces between particles. Additionally, thin nanocomposite fibers were developed using electrospinning. The size and shape of the oxides did not change during the electrospinning process, although the shape of the fiber and the distribution of the particles, particularly for ZnO, was not ideal. There was an obvious increase in elastic modulus and hardness from the addition of the oxides, but differentiating the oxides, and particularly the surfactants, was difficult. The A-1289 lead to the greatest dispersion of the filler particles, while the A-1589 and the NXT produced clustered particle aggregates. This agrees with previous study of these materials in low molecular weight squalene solvent studies reported earlier. The behavior of the nanoparticle ZnO and the microparticle silica is different as well, with the ZnO being contained within the elastomer, and the SiO2 forming monolayers at the surface of the elastomer. The dynamic mechanical analysis did not show clear trends between the surface modification and the aggregate structure. In the silica particles, the NXT led to the least particle interaction, followed by the A-1289 and highest particle interaction found for the A-1589. For the nanosized ZnO, the best dispersion was found for the A-1589, with both the A-1289 and NXT exhibiting frequency dependent responses.« less

  4. Oxidative tryptophan modification by terpene- and squalene-hydroperoxides and a possible link to cross-reactions in diagnostic tests.

    PubMed

    Natsch, Andreas; Emter, Roger; Badertscher, Remo P; Brunner, Gerhard; Granier, Thierry; Kern, Susanne; Ellis, Graham

    2015-06-15

    Hydroperoxides can act as specific haptens and oxidatively modify proteins. Terpene hydroperoxides trigger unusually high frequencies of positive skin reactions in human patients if tested at high concentrations. It is unknown whether this is due to specific hapten formation. Here, we show that both terpene hydroperoxides and the endogenous hydroperoxide formed from squalene can oxidatively modify tryptophan. Oxidative modifications of Trp were recently postulated to explain cross-sensitization between unrelated photosensitizers. Current observations may extend this hypothesis: Oxidative events triggered by endogenous hydroperoxides and hydroperoxides/oxidants derived from xenobiotics might lead to a sensitized state detected by patch tests with high concentrations of hydroperoxides.

  5. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios.

    PubMed

    Wen, Chih-Jen; Yen, Tzu-Chen; Al-Suwayeh, Saleh A; Chang, Hui-Wen; Fang, Jia-You

    2011-11-01

    The objective of the present work was to investigate the influence of the inner cores of lipid nanocarriers on the efficiency of brain targeting. Cetyl palmitate and squalene were respectively chosen as the solid lipid and liquid oil in the inner phase of the nanocarriers. Nanoparticulate systems with different cetyl palmitate/squalene ratios were compared by evaluating the size, zeta potential, molecular environment, and mobility of lipids in the systems. The particulate diameter ranged from 190 to 210 nm, with systems containing 100% cetyl palmitate in the matrix (solid lipid nanoparticles [SLN]) showing the smallest size, followed by systems with both cetyl palmitate and squalene (nanostructured lipid carriers [NLC]) and with 100% squalene (lipid emulsions [LE]). A cationic surfactant, Forestall, was used to produce a positive surface charge of 40-55 mW. The in vitro release was evaluated using various dyes located in different phases of the nanocarriers. The release of sulforhodamine B occurred in a sustained manner from the shell of the nanocarriers. The in vivo brain distribution of lipid nanosystems after an intravenous injection into rats was monitored by a real-time fluorescence imaging system. LE showed higher brain accumulation than SLN and NLC. NLC only exhibited a slightly higher brain accumulation compared with the aqueous control. Incorporation of sulforhodamine B into LE could prolong its retention in the brain from 20 to 50 min. The results were further confirmed by imaging the entire brain and brain slices. The specific association of lipid nanocarriers with rat brain endothelial cells (bEnd3) was demonstrated using fluorescence microscopy. The cellular uptake of LE and SLN was higher compared with NLC and the aqueous control. LE were observed to be internalized by cells through caveola-mediated and macropinocytotic energy-dependent endocytosis. The experimental profiles indicated that LE with moderate additives are a promising brain-targeting nanocarrier. The composition of the lipid matrix played a significant role in delivering compounds to the brain.

  6. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race.

    PubMed

    Tsou, Chung-Yau; Matsunaga, Shigeki; Okada, Shigeru

    2018-01-01

    The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a k m for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 μM, and a k cat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 μmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  8. Terbinafine inhibits gap junctional intercellular communication.

    PubMed

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  10. Effect of baking of sardine (Sardina pilchardus) and frying of anchovy (Engraulis encrasicholus) in olive and sunflower oil on their quality.

    PubMed

    Zotos, Anastasios; Kotaras, Akylas; Mikras, Emmanouil

    2013-02-01

    Quality changes due to oven-baking of sardine for 20, 40, 50 and 60 min and due to deep frying of anchovy for 2, 3, 4 and 5 min in olive and sunflower oil were studied. Linear increase in total losses with the time of processing was observed. A linear inverse relationship was observed between moisture/lipid and moisture/protein due to time of baking of sardines and time of frying of anchovies (wet matter). However, no changes were detected in sardine samples due to time of baking (dry matter), while a reduction in proteins and ash followed by an increase in lipids was detected in fried anchovies due to time of frying (dry matter). The fatty acid profiles indicated that a rich in EPA + DHA (33.16%) and in ω-3/ω-6 ratio (9.40) baked sardines can be produced in 20 min at 200 °C. The fatty acid profiles of fried anchovies tremendously changed, indicating entirely different products. Olive oil is probably a better medium to fry fish products, since either the two beneficial fatty acids (EPA and DHA) detected at higher concentrations in anchovies fried in olive oil or the ω-3/ω-6 ratio remained at higher values (0.71-2.56). An increase of cholesterol and squalene content with increasing the time of baking was detected in sardine samples, probably due to decline of moisture content. On the contrary, cholesterol significantly reduced due to frying of anchovy in olive oil. Simultaneously squalene concentration significantly and linearly increased, from 3.87 mg/100 g in the unprocessed anchovies to 73.25 mg/100 g in the samples fried for 5 min, indicating its existence at beneficial levels, besides low cholesterol concentration detected in fried olive oil and squalene concentration gradually and linearly decreased, confirming the absorption from the anchovy samples. Similar was the changes of cholesterol and squalene in anchovies samples fried in sunflower oil.

  11. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in human myocytes.

    PubMed

    Nishimoto, Tomoyuki; Tozawa, Ryuichi; Amano, Yuichiro; Wada, Takeo; Imura, Yoshimi; Sugiyama, Yasuo

    2003-12-01

    TAK-475 is a squalene synthase inhibitor, rapidly metabolized to T-91485 in vivo. We investigated the myotoxicities of T-91485 and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in a human rhabdomyosarcoma cell line, RD, and in human skeletal myocytes. In differentiated RD cells, T-91485, atorvastatin (ATV) and simvastatin acid (SIM) inhibited cholesterol biosynthesis, with IC(50) values of 36, 2.8 and 3.8 nM, respectively. ATV and SIM decreased the intracellular ATP content, with IC(25) values (concentrations giving a 25% decrease in intracellular ATP content) of 0.61 and 0.44 microM, respectively. Although T-91485 potently inhibited cholesterol synthesis in RD cells, the IC(25) value exceeded 100 microM. In human skeletal myocytes, T-91485, ATV and SIM concentration-dependently inhibited cholesterol biosynthesis, with IC(50) values of 45, 8.6 and 8.4 nM, respectively. ATV and SIM decreased intracellular ATP content, with IC(25) values of 2.1 and 0.72 microM, respectively. Although T-91485 potently inhibited cholesterol synthesis, the IC(25) value exceeded 100 microM. Myotoxicity induced by ATV was prevented by mevalonate or geranylgeranyl-PP, but not by squalene in skeletal cells. Furthermore, T-91485 attenuated the myotoxicity of ATV. These findings suggest that TAK-475 and T-91485 may not only be far from myotoxic, they may also decrease statin-induced myotoxicity in lipid-lowering therapy.

  12. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    PubMed

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru

    Here, the green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C 40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C 30 squalene. Confirming this hypothesis, the current study identifies C 20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encodingmore » a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C 15 and C 20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. In conclusion, this discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii.« less

  14. Ethylene promotes mycelial growth and ganoderic acid biosynthesis in Ganoderma lucidum.

    PubMed

    Zhang, Guang; Ren, Ang; Wu, Fengli; Yu, Hanshou; Shi, Liang; Zhao, Mingwen

    2017-02-01

    To investigate the effects of ethylene, in the form of ethephon (2-chloroethylphosphonic acid), on mycelial growth and ganoderic acid (GA) accumulation in the higher basidiomycete Ganoderma lucidum. Treatment with both 10 and 15 mM ethephon enhanced the growth of G. lucidum on solid CYM plates and in CYM liquid medium. After optimization using response surface methodology, GA reached 33 mg/g dry cell weight (DW), an increase of 90 %, compared with the control. Lanosterol and squalene contents were 31 and 2.4 μg/g DW, being increased by 1.2- and 0.6-fold, respectively, in response to ethephon. Additionally, the transcriptional levels of hydroxymethylglutaryl-CoA reductase, squalene synthase and oxidosqualene cyclase were up-regulated by 2.6-, 4.3- and 3.8-fold, respectively, compared with the control group. This approach provides an efficient strategy for improving GA accumulation in G. lucidum, with potential future applications.

  15. Dynamic viscosity mapping of the oxidation of squalene aerosol particles.

    PubMed

    Athanasiadis, Athanasios; Fitzgerald, Clare; Davidson, Nicholas M; Giorio, Chiara; Botchway, Stanley W; Ward, Andrew D; Kalberer, Markus; Pope, Francis D; Kuimova, Marina K

    2016-11-09

    Organic aerosols (OAs) play important roles in multiple atmospheric processes, including climate change, and can impact human health. The physico-chemical properties of OAs are important for all these processes and can evolve through reactions with various atmospheric components, including oxidants. The dynamic nature of these reactions makes it challenging to obtain a true representation of their composition and surface chemistry. Here we investigate the microscopic viscosity of the model OA composed of squalene, undergoing chemical aging. We employ Fluorescent Lifetime Imaging Microscopy (FLIM) in conjunction with viscosity sensitive probes termed molecular rotors, in order to image the changes in microviscosity in real time during oxidation with ozone and hydroxyl radicals, which are two key oxidising species in the troposphere. We also recorded the Raman spectra of the levitated particles to follow the reactivity during particle ozonolysis. The levitation of droplets was achieved via optical trapping that enabled simultaneous levitation and measurement via FLIM or Raman spectroscopy and allowed the true aerosol phase to be probed. Our data revealed a very significant increase in viscosity of the levitated squalene droplets upon ozonolysis, following their transformation from the liquid to solid phase that was not observable when the oxidation was carried out on coverslip mounted droplets. FLIM imaging with sub-micron spatial resolution also revealed spatial heterogeneity in the viscosity distribution of oxidised droplets. Overall, a combination of molecular rotors, FLIM and optical trapping is able to provide powerful insights into OA chemistry and the microscopic structure that enables the dynamic monitoring of microscopic viscosity in aerosol particles in their true phase.

  16. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    PubMed Central

    Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike

    2003-01-01

    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499

  17. Photo-Oxidation Products of Skin Surface Squalene Mediate Metabolic and Inflammatory Responses to Solar UV in Human Keratinocytes

    PubMed Central

    Kostyuk, Vladimir; Potapovich, Alla; Stancato, Andrea; De Luca, Chiara; Lulli, Daniela; Pastore, Saveria; Korkina, Liudmila

    2012-01-01

    The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A). Conclusions/Significance Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin. PMID:22952984

  18. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.

    PubMed

    Kahlon, Amandeep Kaur; Roy, Sudeep; Sharma, Ashok

    2010-10-01

    Dehydrosqualene synthase of Staphylococcus aureus is involved in the synthesis of golden carotenoid pigment staphyloxanthin. This pigment of S. aureus provides the antioxidant property to this bacterium to survive inside the host cell. Dehydrosqualene synthase (CrtM) is having structural similarity with the human squalene synthase enzyme which is involved in the cholesterol synthesis pathway in humans (Liu et al., 2008). Cholesterol lowering drugs were found to have inhibitory effect on dehydrosqualene synthase enzyme of S. aureus. The present study attempts to focus on squalene synthase inhibitors, lapaquistat acetate and squalestatins reported as cholesterol lowering agents in vitro and in vivo but not studied in context to dehydrosqualene synthase of S. aureus. Mode of binding of lapaquistat acetate and squalestatin analogs on dehydrosqualene synthase (CrtM) enzyme of S. aureus was identified by performing docking analysis with Scigress Explorer Ultra 7.7 docking software. Based on the molecular docking analysis, it was found that the His18, Arg45, Asp48, Asp52, Tyr129, Gln165, Asn168 and Asp172 residues interacted with comparatively high frequency with the inhibitors studied. Comparative docking study with Discovery studio 2.0 also confirmed the involvement of these residues of dehydrosqualene synthase enzyme with the inhibitors studied. This further confirms the importance of these residues in the enzyme function. In silico ADMET analysis was done to predict the ADMET properties of the standard drugs and test compounds. This might provide insights to develop new drugs to target the virulence factor, dehydrosqualene synthase of S. aureus.

  19. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism1[OPEN

    PubMed Central

    Jiang, Zuodong; Kempinski, Chase; Bush, Caroline J.; Nybo, S. Eric; Chappell, Joe

    2016-01-01

    Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31–C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g−1 fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene. PMID:26603654

  20. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng

    PubMed Central

    Rahimi, Shadi; Kim, Yu-Jin; Sukweenadhi, Johan; Zhang, Dabing; Yang, Deok-Chun

    2016-01-01

    Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production. PMID:27811076

  1. Engineering triterpene metabolism in tobacco

    PubMed Central

    Shuiqin, Wu; Zuodong, Jiang; Chase, Kempinski; Eric Nybo, S.; Husodo, Satrio; Williams, Robert

    2013-01-01

    Terpenes comprise a distinct class of natural products that serve a diverse range of physiological functions, provide for interactions between plants and their environment and represent a resource for many kinds of practical applications. To better appreciate the importance of terpenes to overall growth and development, and to create a production capacity for specific terpenes of industrial interest, we have pioneered the development of strategies for diverting carbon flow from the native terpene biosynthetic pathways operating in the cytosol and plastid compartments of tobacco for the generation of specific classes of terpenes. In the current work, we demonstrate how difficult it is to divert the 5-carbon intermediates DMAPP and IPP from the mevalonate pathway operating in the cytoplasm for triterpene biosynthesis, yet diversion of the same intermediates from the methylerythritol phosphate pathway operating in the plastid compartment leads to the accumulation of very high levels of the triterpene squalene. This was assessed by the co-expression of an avian farnesyl diphosphate synthase and yeast squalene synthase genes targeting metabolism in the cytoplasm or chloroplast. We also evaluated the possibility of directing this metabolism to the secretory trichomes of tobacco by comparing the effects of trichome-specific gene promoters to strong, constitutive viral promoters. Surprisingly, when transgene expression was directed to trichomes, high-level squalene accumulation was observed, but overall plant growth and physiology were reduced up to 80 % of the non-transgenic controls. Our results support the notion that the biosynthesis of a desired terpene can be dramatically improved by directing that metabolism to a non-native cellular compartment, thus avoiding regulatory mechanisms that might attenuate carbon flux within an engineered pathway. PMID:22729821

  2. A Genomic DNA Reporter Screen Identifies Squalene Synthase Inhibitors That Act Cooperatively with Statins to Upregulate the Low-Density Lipoprotein Receptor

    PubMed Central

    Kerr, Alastair G.; Tam, Lawrence C. S.; Hale, Ashley B.; Cioroch, Milena; Douglas, Gillian; Agkatsev, Sarina; Hibbitt, Olivia; Mason, Joseph; Holt-Martyn, James; Bataille, Carole J. R.; Wynne, Graham M.; Channon, Keith M.; Russell, Angela J.

    2017-01-01

    Hypercholesterolemia remains one of the leading risk factors for the development of cardiovascular disease. Many large double-blind studies have demonstrated that lowering low-density lipoprotein (LDL) cholesterol using a statin can reduce the risk of having a cardiovascular event by approximately 30%. However, despite the success of statins, some patient populations are unable to lower their LDL cholesterol to meet the targeted lipid levels, due to compliance or potency issues. This is especially true for patients with heterozygous familial hypercholesterolemia who may require additional upregulation of the low-density lipoprotein receptor (LDLR) to reduce LDL cholesterol levels below those achievable with maximal dosing of statins. Here we identify a series of small molecules from a genomic DNA reporter screen that upregulate the LDLR in mouse and human liver cell lines at nanomolar potencies (EC50 = 39 nM). Structure-activity relationship studies carried out on the lead compound, OX03771 [(E)-N,N-dimethyl-3-(4-styrylphenoxy)propan-1-amine], led to the identification of compound OX03050 [(E)-3-(4-styrylphenoxy)propan-1-ol], which had similar potency (EC50 = 26 nM) but a much-improved pharmacokinetic profile and showed in vivo efficacy. Compounds OX03050 and OX03771 were found to inhibit squalene synthase, the first committed step in cholesterol biosynthesis. These squalene synthase inhibitors were shown to act cooperatively with statins to increase LDLR expression in vitro. Overall, we demonstrated here a novel series of small molecules with the potential to be further developed to treat patients either alone or in combination with statins. PMID:28360334

  3. Lipid-lowering effects of TAK-475, a squalene synthase inhibitor, in animal models of familial hypercholesterolemia.

    PubMed

    Amano, Yuichiro; Nishimoto, Tomoyuki; Tozawa, Ryu ichi; Ishikawa, Eiichiro; Imura, Yoshimi; Sugiyama, Yasuo

    2003-04-11

    The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.

  4. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients.

  5. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    PubMed Central

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  6. Online LC-GC-based analysis of minor lipids in various tree nuts and peanuts.

    PubMed

    Esche, Rebecca; Müller, Luisa; Engel, Karl-Heinz

    2013-11-27

    As information on free sterols/stanols and steryl/stanyl esters in nuts is lacking, the compositions and contents of these lipid constituents in ten different nut types were analyzed. The applied approach was based on online liquid chromatography-gas chromatography and enabled the simultaneous analysis of free sterols/stanols and individual steryl/stanyl fatty acid esters, and additionally of tocopherols and squalene. Total contents of free sterols/stanols ranged from 0.62 mg/g nut in hazelnuts to 1.61 mg/g nut in pistachios, with sitosterol as the predominant compound. Total contents of steryl/stanyl fatty acid esters were in the range of 0.11-1.26 mg/g nut, being lowest in Brazil nuts and highest in pistachios. There were considerable differences between the various nut types not only regarding the contents, but also the compositions of both classes. The levels of tocopherols were highest in pine nuts (0.33 mg/g nut); those of squalene were remarkably high in Brazil nuts (1.11 mg/g nut).

  7. Lignin degradation by selected fungal species.

    PubMed

    Knežević, Aleksandar; Milovanović, Ivan; Stajić, Mirjana; Lončar, Nikola; Brčeski, Ilija; Vukojević, Jelena; Cilerdžić, Jasmina

    2013-06-01

    As biological decomposition of plant biomass represents a popular alternative environmental-friendly and economically justified process, screening of ligninolytic enzyme systems of various fungal species is a topical study area. The goal of the study was to obtain clear insight into the dynamics of laccase, Mn-dependent peroxidase, and Mn-independent peroxidase activity and levels of wheat straw lignin degradation in seven wood-rotting fungi. The best laccase producers were Pleurotus ostreatus and Pleurotus eryngii. Lenzites betulinus and Fomitopsis pinicola were the best Mn-dependent peroxidase producers, and P. ostreatus the weakest one. The peak of Mn-independent peroxidase was noted in Dichomytus squalens, and the minimum value in P. ostreatus. The profiles of the three enzymes, obtained by isoelectric focusing, were variable depending on the species and cultivation period. D. squalens was the best lignin degrader (34.1% of total lignin amount), and P. ostreatus and P. eryngii the weakest ones (7.1% and 14.5%, respectively). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Olive-oil consumption and health: the possible role of antioxidants.

    PubMed

    Owen, R W; Giacosa, A; Hull, W E; Haubner, R; Würtele, G; Spiegelhalder, B; Bartsch, H

    2000-10-01

    In the Mediterranean basin, olive oil, along with fruits, vegetables, and fish, is an important constituent of the diet, and is considered a major factor in preserving a healthy and relatively disease-free population. Epidemiological data show that the Mediterranean diet has significant protective effects against cancer and coronary heart disease. We present evidence that it is the unique profile of the phenolic fraction, along with high intakes of squalene and the monounsaturated fatty acid, oleic acid, which confer its health-promoting properties. The major phenolic compounds identified and quantified in olive oil belong to three different classes: simple phenols (hydroxytyrosol, tyrosol); secoiridoids (oleuropein, the aglycone of ligstroside, and their respective decarboxylated dialdehyde derivatives); and the lignans [(+)-1-acetoxypinoresinol and pinoresinol]. All three classes have potent antioxidant properties. High consumption of extra-virgin olive oils, which are particularly rich in these phenolic antioxidants (as well as squalene and oleic acid), should afford considerable protection against cancer (colon, breast, skin), coronary heart disease, and ageing by inhibiting oxidative stress.

  9. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    PubMed

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  10. Development and validation of a simple high-performance liquid chromatography analytical method for simultaneous determination of phytosterols, cholesterol and squalene in parenteral lipid emulsions.

    PubMed

    Novak, Ana; Gutiérrez-Zamora, Mercè; Domenech, Lluís; Suñé-Negre, Josep M; Miñarro, Montserrat; García-Montoya, Encarna; Llop, Josep M; Ticó, Josep R; Pérez-Lozano, Pilar

    2018-02-01

    A simple analytical method for simultaneous determination of phytosterols, cholesterol and squalene in lipid emulsions was developed owing to increased interest in their clinical effects. Method development was based on commonly used stationary (C 18 , C 8 and phenyl) and mobile phases (mixtures of acetonitrile, methanol and water) under isocratic conditions. Differences in stationary phases resulted in peak overlapping or coelution of different peaks. The best separation of all analyzed compounds was achieved on Zorbax Eclipse XDB C 8 (150 × 4.6 mm, 5 μm; Agilent) and ACN-H 2 O-MeOH, 80:19.5:0.5 (v/v/v). In order to achieve a shorter time of analysis, the method was further optimized and gradient separation was established. The optimized analytical method was validated and tested for routine use in lipid emulsion analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Isolation of Betulin and Rearrangement to Allobetulin: A Biomimetic Natural Product Synthesis

    ERIC Educational Resources Information Center

    Green, Brian; Bentley, Michael D.; Chung, Bong Y.; Lynch, Nicholas G.; Jensen, Bruce L.

    2007-01-01

    The triterpenes are a diverse class of widely distributed natural products derived from squalene. Various cyclization and subsequent rearrangement reactions produce many complex structural types. These compounds frequently display a wide divergence of biological properties. For example the pentacyclic triterpene, betulin, is isolated from white…

  12. Characterization and Discrimination of Oueslati Virgin Olive Oils from Adult and Young Trees in Different Ripening Stages Using Sterols, Pigments, and Alcohols in Tandem with Chemometrics.

    PubMed

    Chtourou, Fatma; Jabeur, Hazem; Lazzez, Ayda; Bouaziz, Mohamed

    2017-05-03

    Dynamics of squalene, sterol, aliphatic alcohol, pigment, and triterpenic diol accumulations in olive oils from adult and young trees of the Oueslati cultivar were studied for two consecutive years, 2013-2014 and 2014-2015. Data were compared statistically for differences by age of trees, maturation of olive, and year of harvesting. Results showed that the mean campesterol content in olive oil from adult trees at the green stage of maturation was significantly (p < 0.02) above the limit established by IOC legislation. However, the mean values of campesterol and Δ-7-stigmastenol were significantly (p < 0.01) above the limits in oils from young trees at the black stage of ripening. Principal component analysis was applied to alcohols, squalene, pigments, and sterols having noncompliance with the legislation. Then, data of 36 samples were subjected to a discriminant analysis with "maturation" as grouping variable and principal components as input variables. The model revealed clear discrimination of each tree age/maturation stage group.

  13. Identification of volatiles from the secretions and excretions of African wild dogs (Lycaon pictus).

    PubMed

    Apps, Peter; Mmualefe, Lesego; McNutt, J Weldon

    2012-11-01

    Gas chromatography/mass spectrometry was used to identify 103 organic compounds from urine, feces, anal glands, and preputial glands of free-ranging African wild dogs, Lycaon pictus. Aliphatic acids were the dominant class of compound in all materials. In addition to aliphatic acids, urine contained dimethyl sulfone, 1,3-propanediol, benzoic acid, 1-methyl-2,4-imidazolidinedione, and squalene as major components: feces contained indole and cholesterol; and both contained 2-piperidone, phenol, 4-methyl phenol, benzeneacetic acid, and benzenepropanoic acid and other compounds. Anal gland secretion was particularly rich in cholesterol and fatty acids, and preputial gland secretion rich in squalene. A large majority of the identified compounds have been reported from other mammals, including species sympatric with African wild dogs. Eleven of the African wild dog components have not been reported previously from mammals and have not been found in sympatric species; one component, 1-methylimidazole-5-carboxaldehyde has not been reported previously as a natural product. In the chemical profiles of their urine, feces, and anal gland secretion African wild dogs differ markedly from other canids.

  14. Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic 'archaebacteria'

    NASA Technical Reports Server (NTRS)

    Tornabene, T. G.; Langworthy, T. A.; Holzer, G.; Oro, J.

    1979-01-01

    The neutral lipids from nine species of methanogenic bacteria (five methanobacilli, two methanococci, a methanospirillum and a methanosarcina) and two thermoacidophilic bacteria (Thermo-plasma and Sulfolobus) have been analyzed. The neutral lipids were found to comprise a wide range (C14 to C30) of polyisoprenyl hydrocarbons with varying degrees of saturation. The principal components represented the three major isoprenoid series (C20 phytanyl, C25 pentaisoprenyl, and C30 squalenyl), in contrast with the neutral lipids of extreme halophiles, which consist predominantly of C2O (phytanyl, geranylgeraniol), C30 (squalenes), C40 (carotenes) and C50 (bacterioruberins compounds), as reported by Kates (1978). These results, which indicate strong general similarities between genetically diverse organisms, support the classification of these organisms in a separate phylogenetic group. The occurrence of similar isoprenoid compounds in petroleum and ancient sediments and the fact that the methanogens, halophiles and thermoacidophiles live in conditions presumed to have prevailed in archaen times suggest that the isoprenoid compounds in petroleum compounds and sediment may have been directly synthesized by organisms of this type

  15. Squalene Synthase As a Target for Chagas Disease Therapeutics

    PubMed Central

    Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A.; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A.; Wang, Andrew H.-J.; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting

    2014-01-01

    Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335

  16. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  17. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    PubMed Central

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  18. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  19. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  20. Synthesis of n-squalenoyl cytarabine and evaluation of its affinity with phospholipid bilayers and monolayers.

    PubMed

    Sarpietro, Maria Grazia; Ottimo, Sara; Giuffrida, Maria Chiara; Rocco, Flavio; Ceruti, Maurizio; Castelli, Francesco

    2011-03-15

    Cytarabine (1-β-D-arabinofuranosylcytosine, Ara-C), a pyrimidine nucleoside analogue, is an attractive therapeutic agent for the treatment of both acute and chronic myeloblastic leukemias. 1,1',2-tris-nor-Squalene acid (squaleneCOOH) has been conjugated to cytarabine with the formation of the squalenoyl-cytarabine prodrug, in order to improve the drug lipophilicity and, consequently, the affinity towards the environment of biological membranes, as well as of lipophilic carriers. The interaction of cytarabine and its prodrug with dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and monolayers has been studied by the differential scanning calorimetry and the Langmuir-Blodgett techniques. The interaction has been evaluated considering the effect of the compounds on the DMPC MLV and monolayers behaviour. The aim was to have information on the interaction of the drug and the prodrug with the biological membranes and on the possibility to use liposomes as carriers for the prodrug. The results showed an improved affinity of the prodrug with MLV and monolayers with respect to the free drug. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Chemical composition of fingerprints for gender determination.

    PubMed

    Asano, Keiji G; Bayne, Charles K; Horsman, Katie M; Buchanan, Michelle V

    2002-07-01

    This work investigates the chemical nature of fingerprints to ascertain whether differences in chemical composition or the existence of chemical markers can be used to determine personal traits, such as age, gender, and personal habits. This type of information could be useful for reducing the pool of potential suspects in criminal investigations when latent fingerprints are unsuitable for comparison by traditional methods. Fingertip residue that has been deposited onto a bead was extracted with a solvent such as chloroform. Samples were analyzed by gas chromatography/mass spectrometry (GC/MS). The chemical components identified include fatty acids, long chain fatty acid esters, cholesterol and squalene. The area ratios of ten selected components relative to squalene were calculated for a small preliminary experiment that showed a slight gender difference for three of these components. However, when the experiment was repeated with a larger, statistically designed experiment no significant differences between genders were detected for any of the component ratios. The multivariate Hotelling's T2 test that tested all ten-component ratios simultaneously also showed no gender differences at the 5% significance level.

  2. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  3. Bioactive compounds from palm fatty acid distillate and crude palm oil

    NASA Astrophysics Data System (ADS)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  4. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    PubMed

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng.

    PubMed

    Rahimi, Shadi; Kim, Yu-Jin; Sukweenadhi, Johan; Zhang, Dabing; Yang, Deok-Chun

    2016-11-01

    Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Characterization of Transporters in the Hepatic Uptake of TAK-475 M-I, a Squalene Synthase Inhibitor, in Rats and Humans.

    PubMed

    Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S

    2016-06-01

    TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Biological, Biochemical, and Molecular Characterization of a New Clinical Trichophyton rubrum Isolate Resistant to Terbinafine

    PubMed Central

    Osborne, Colin S.; Leitner, Ingrid; Hofbauer, Bettina; Fielding, Ceri A.; Favre, Bertrand; Ryder, Neil S.

    2006-01-01

    We have characterized a new clinical strain of Trichophyton rubrum highly resistant to terbinafine but exhibiting normal susceptibility to drugs with other mechanisms of action. Resistance to terbinafine in this strain is caused by a missense mutation in the squalene epoxidase gene leading to the amino acid substitution F397L. PMID:16723593

  8. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostko, O.; Xu, B.; Jacobs, M. I.

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  9. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  10. Soft X-ray spectroscopy of nanoparticles by velocity map imaging

    DOE PAGES

    Kostko, O.; Xu, B.; Jacobs, M. I.; ...

    2017-05-05

    Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less

  11. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  12. Nonpolymeric nanoassemblies for ocular administration of acyclovir: pharmacokinetic evaluation in rabbits.

    PubMed

    Stella, Barbara; Arpicco, Silvia; Rocco, Flavio; Burgalassi, Susi; Nicosia, Nadia; Tampucci, Silvia; Chetoni, Patrizia; Cattel, Luigi

    2012-01-01

    The aim of this study was to increase bioavailability of the antiviral drug acyclovir (ACV) when administered by the ocular route. For this purpose, a new lipophilic derivative of acyclovir was synthesized, both possessing greater lipophilicity and providing the formation of a homogeneous water dispersion with higher amount of ACV than the aqueous solution of the parent drug. This was done by chemically linking acyclovir to the isoprenoid chain of squalene, obtaining 4'-trisnorsqualenoylacyclovir (SQACV), in which squalene is covalently coupled to the 4'-hydroxy group of acyclovir. This new prodrug was then formulated as nonpolymeric nanoassemblies through nanoprecipitation; the resulting particles were characterized in terms of mean diameter, zeta potential, and stability. The pharmacokinetic profile of the prodrug in the tear fluid and in the aqueous humor of rabbits was evaluated and compared to that of the parent drug. Data showed that SQACV nanoassemblies increased the amount of ACV in the aqueous humor of rabbits compared to free ACV solution. This new amphiphilic prodrug of acyclovir is a very promising tool to increase the ocular bioavailability of the parent drug. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material which later comes into contact with ozone can lead to strong artifact formation of these carbonyl compounds. Previously published results on these compounds must be seen in this new light.

  14. Lapaquistat acetate: development of a squalene synthase inhibitor for the treatment of hypercholesterolemia.

    PubMed

    Stein, Evan A; Bays, Harold; O'Brien, Dennis; Pedicano, Jim; Piper, Edward; Spezzi, Andrea

    2011-05-10

    Lapaquistat acetate is a squalene synthase inhibitor investigated for the treatment of hypercholesterolemia. This report summarizes the phase 2 and 3 results from the lapaquistat clinical program, which was halted at an advanced stage as a result of potential hepatic safety issues. Efficacy and safety data were pooled from 12 studies (n=6151). These were 6- to 96-week randomized, double-blind, parallel, placebo- or active-controlled trials with lapaquistat monotherapy or coadministration with other lipid-altering drugs in dyslipidemic patients, including a large (n=2121) 96-week safety study. All studies included lapaquistat 100 mg daily; 5 included 50 mg; and 1 included 25 mg. The main outcome measures were the percent change in low-density lipoprotein cholesterol, secondary lipid/metabolic parameters, and overall safety. Lapaquistat 100 mg significantly decreased low-density lipoprotein cholesterol by 21.6% in monotherapy and by 18.0% in combination with a statin. It also reduced other cardiovascular risk markers, such as C-reactive protein. Total adverse events were higher for lapaquistat than placebo, although individual events were generally similar. At 100 mg, there was an increase in alanine aminotransferase value ≥3 times the upper limit of normal on ≥2 consecutive visits (2.0% versus 0.3% for placebo in the pooled efficacy studies; 2.7% versus 0.7% for low-dose atorvastatin in the long-term study). Two patients receiving lapaquistat 100 mg met the Hy Law criteria of alanine aminotransferase elevation plus increased total bilirubin. Squalene synthase inhibition with lapaquistat acetate, alone or in combination with statins, effectively lowered low-density lipoprotein cholesterol in a dose-dependent manner. Elevations in alanine aminotransferase, combined with a rare increase in bilirubin, presented potential hepatic safety issues, resulting in termination of development. The lapaquistat experience illustrates the current challenges in lipid-altering drug development. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00487994, NCT00143663, NCT00143676, NCT00864643, NCT00263081, NCT00286481, NCT00249899, NCT00249912, NCT00813527, NCT00256178, NCT00268697, and NCT00251680.

  15. Two squalene synthase inhibitors, E5700 and ER-119884, interfere with cellular proliferation and induce ultrastructural and lipid profile alterations in a Candida tropicalis strain resistant to fluconazole, itraconazole, and amphotericin B.

    PubMed

    Ishida, Kelly; Visbal, Gonzalo; Rodrigues, Juliany Cola Fernandes; Urbina, Julio A; de Souza, Wanderley; Rozental, Sonia

    2011-08-01

    Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 μg/ml, E5700 and ER-119884 showed antifungal activity against C. tropicalis ATCC 28707, a strain resistant to FLC, ITC, and AMB, with IC(50) and IC(90) values (i.e., the minimum inhibitory concentrations of the drugs determined as the lowest drug concentrations leading to a 50 and 90% of reduction in turbidity at 492 nm, respectively, after 48 h of incubation) of 1 and 4 μg/ml, respectively. Analysis of free sterols showed that non-treated C. tropicalis ATCC 28707 cells contained only 14-methylated sterols and that treatment with E5700 or ER-119884 led to a marked reduction of squalene content and the complete disappearance of the endogenous sterols. The fatty acid and phospholipid profiles in C. tropicalis ATCC 28707 cells grown in the presence of E5700 and ER-119884 were also markedly altered, with a large increase in the content of linolenic acid (C18:3), associated with a reduction in the content of linoleic (C18:2) and oleic (C18:1) acids. Treatment of C. tropicalis ATCC 28707 with E5700 or ER-119884 IC(50) values induced several ultrastructural alterations, including a marked increase in the thickness of the cell wall and the appearance of a large number of electron-dense vacuoles. In conclusion, our results indicated that E5700 and ER-119884 inhibited the growth and altered the lipid prolife and the ultrastructure of a multiple drug-resistant C. tropicalis strain. Therefore, such compounds could act as leads for the development of new treatment options against multidrug resistant Candida species.

  16. New Approaches to Chemoprevention of Breast Cancer.

    DTIC Science & Technology

    1998-09-01

    breast cancer. Although the naturally occurring triterpenoids, ursolic acid (UA) and oleanolic acid (OA), have been shown to have some anti-carcinogenic...nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as oleanolic acid (OA) and ursolic acid (UA). Although...manuscript. b) Results and Discussion 1. Synthesis of New Triterpenoids The synthesis of new triterpenoid derivatives of oleanolic and ursolic acids is

  17. A clinically applicable adjuvant for an atherosclerosis vaccine in mice.

    PubMed

    Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica; Winkels, Holger; Pei, Hong; Kimura, Takayuki; Miller, Jacqueline; Wolf, Dennis; Ley, Klaus

    2018-06-22

    Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene oil similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  19. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  20. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  1. Molecular motions of [Beta]-carotene and a carotenoporphyrin dyad in solution. A carbon-13 NMR spin-lattice relaxation time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Swindle, S.L.; Smith, S.K.

    1995-03-09

    Analysis of [sup 13]C NMR spin-lattice relaxation times (T[sub 1]) yields information concerning both overall tumbling of molecules in solution and internal rotations about single bonds. Relaxation time and nuclear Overhauser effect data have been obtained for [Beta]-carotene and two related molecules, squalane and squalene, for zinc meso-tetraphenylporphyrin, and for a dyad consisting of a porphyrin covalently linked to a carotenoid polyene through a trimethylene bridge. Squalane and squalene, which lack conjugated double bonds, behave essentially as limp string, with internal rotations at least as rapid as overall isotropic tumbling motions. In contrast, [Beta]-carotene reorients as a rigid rod, withmore » internal motions which are too slow to affect relaxation times. Modeling it as an anisotropic rotor yields a rotational diffusion coefficient for motion about the major axis which is 14 times larger than that for rotation about axes perpendicular to that axis. The porphyrin reorients more nearly isotropically and features internal librational motions about the single bonds to the phenyl groups. The relaxation time data for the carotenoporphyrin are consistent with internal motions similar to those of a medieval military flail. 31 refs., 3 figs., 5 tabs.« less

  2. Enhanced Biosynthesis of Withanolides by Elicitation and Precursor Feeding in Cell Suspension Culture of Withania somnifera (L.) Dunal in Shake-Flask Culture and Bioreactor

    PubMed Central

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2014-01-01

    The present study investigated the biosynthesis of major and minor withanolides of Withania somnifera in cell suspension culture using shake-flask culture and bioreactor by exploiting elicitation and precursor feeding strategies. Elicitors like cadmium chloride, aluminium chloride and chitosan, precursors such as cholesterol, mevalonic acid and squalene were examined. Maximum total withanolides detected [withanolide A (7606.75 mg), withanolide B (4826.05 mg), withaferin A (3732.81 mg), withanone (6538.65 mg), 12 deoxy withanstramonolide (3176.63 mg), withanoside IV (2623.21 mg) and withanoside V (2861.18 mg)] were achieved in the combined treatment of chitosan (100 mg/l) and squalene (6 mM) along with 1 mg/l picloram, 0.5 mg/l KN, 200 mg/l L-glutamine and 5% sucrose in culture at 4 h and 48 h exposure times respectively on 28th day of culture in bioreactor. We obtained higher concentrations of total withanolides in shake-flask culture (2.13-fold) as well as bioreactor (1.66-fold) when compared to control treatments. This optimized protocol can be utilized for commercial level production of withanolides from suspension culture using industrial bioreactors in a short culture period. PMID:25089711

  3. Surface Lipids as Multifunctional Mediators of Skin Responses to Environmental Stimuli

    PubMed Central

    De Luca, Chiara; Valacchi, Giuseppe

    2010-01-01

    Skin surface lipid (SSL) film is a mixture of sebum and keratinocyte membrane lipids, protecting skin from environment. Its composition is unique for the high percentage of long chain fatty acids, and of the polyterpenoid squalene, absent in other human tissues, and in non-human Primates sebum. Here, the still incomplete body of information on SSL as mediators of external chemical, physical, and microbial signals and stressors is revised, focusing on the central event of the continuous oxidative modification induced by the metabolic activity of residential and pathological microbial flora, natural or iatrogenic UV irradiation, exposure to chemicals and cosmetics. Once alpha-tocopherol and ubiquinol-10 antioxidant defences of SSL are overcome, oxidation of squalene and cholesterol gives rise to reactive by-products penetrating deeper into skin layers, to mediate local defensive inflammatory, photo-protective, immune reactions or, at higher concentrations, inducing local but also systemic immune depression, ultimately implicating skin cancerogenesis. Qualitative modifications of SSL represent a pathogenetic sign of diagnostic value in dermatological disorders involving altered sebum production, like pytiriasis versicolor, acne, atopic or seborrheic dermatitis, as well as photo-aging. Achievements of nutriceutical interventions aimed at restoring normal SSL composition and homeostasis are discussed, as feasible therapeutic goals and major means of photo-protection. PMID:20981292

  4. Induction of lupus autoantibodies by adjuvants

    USGS Publications Warehouse

    Satoh, M.; Kuroda, Y.; Yoshida, H.; Behney, K.M.; Mizutani, A.; Akaogi, J.; Nacionales, D.C.; Lorenson, T.D.; Rosenbauer, R.J.; Reeves, W.H.

    2003-01-01

    Exposure to the hydrocarbon oil pristane induces lupus specific autoantibodies in non-autoimmune mice. We investigated whether the capacity to induce lupus-like autoimmunity is a unique property of pristane or is shared by other adjuvant oils. Seven groups of 3-month-old female BALB/cJ mice received a single intraperitoneal injection of pristane, squalene (used in the adjuvant MF59), incomplete Freund's adjuvant (IFA), three different medicinal mineral oils, or saline, respectively. Serum autoantibodies and peritoneal cytokine production were measured. In addition to pristane, the mineral oil Bayol F (IFA) and the endogenous hydrocarbon squalene both induced anti-nRNP/Sm and -Su autoantibodies (20% and 25% of mice, respectively). All of these hydrocarbons had prolonged effects on cytokine production by peritoneal APCs. However, high levels of IL-6, IL-12, and TNF?? production 2-3 months after intraperitoneal injection appeared to be associated with the ability to induce lupus autoantibodies. The ability to induce lupus autoantibodies is shared by several hydrocarbons and is not unique to pristane. It correlates with stimulation of the production of IL-12 and other cytokines, suggesting a relationship with a hydrocarbon's adjuvanticity. The potential to induce autoimmunity may complicate the use of oil adjuvants in human and veterinary vaccines. ?? 2003 Elsevier Ltd. All rights reserved.

  5. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.

    PubMed

    Lakey, P S J; Wisthaler, A; Berkemeier, T; Mikoviny, T; Pöschl, U; Shiraiwa, M

    2017-07-01

    Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m -3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. New Approaches to Chemoprevention of Breast Cancer.

    DTIC Science & Technology

    1997-09-01

    chemotherapy of breast cancer. Although the naturally occurring triterpenoids, ursolic acid (UA) and oleanolic acid (OA), have been shown to have some...formed in nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as oleanolic acid (OA) and ursolic acid ...and ursolic acids is described in detail in the attached manuscript, "New Enone Derivatives of Oleanolic Acid and Ursolic Acid as Inhibitors of Nitric

  7. Statins inhibit blastocyst formation by preventing geranylgeranylation

    PubMed Central

    Alarcon, Vernadeth B.; Marikawa, Yusuke

    2016-01-01

    STUDY HYPOTHESIS Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the mevalonate pathway and prescription drugs that treat hypercholesterolemia, compromise preimplantation mouse development via modulation of HIPPO signaling. STUDY FINDING HMG-CoA reductase activity is required for trophectoderm specification, namely blastocyst cavity formation and Yes-associated protein (YAP) nuclear localization, through the production of isoprenoid geranylgeranyl pyrophosphate (GGPP) and the action of geranylgeranyl transferase. WHAT IS KNOWN ALREADY Previous studies have shown that treatment of mouse embryos with mevastatin prevents blastocyst formation, but how HMG-CoA reductase is involved in preimplantation development is unknown. HIPPO signaling regulates specification of the trophectoderm lineage of the mouse blastocyst by controlling the nuclear localization of YAP. In human cell lines, the mevalonate pathway regulates YAP to mediate self-renewal and survival through geranylgeranylation of RHO proteins. These studies suggest that in preimplantation development, statins may act through HIPPO pathway to interfere with trophectoderm specification and thereby inhibit blastocyst formation. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Eight-cell stage (E2.5) mouse embryos were treated in hanging drop culture with chemical agents, namely statins (lovastatin, atorvastatin, cerivastatin and pravastatin), mevalonic acid (MVA), cholesterol, squalene, farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate (GGPP), geranylgeranyltransferase inhibitor GGTI-298, RHO inhibitor I, and squalene synthase inhibitor YM-53601, up to the late blastocyst stage (E4.5). Efficiency of blastocyst formation was assessed based on gross morphology and the measurement of the cavity size using an image analysis software. Effects on cell lineages and HIPPO signaling were analyzed using immunohistochemistry with confocal microscopy based on the expression patterns of the lineage-specific markers and the nuclear accumulation of YAP. Effects on cell lineages were also examined by quantitative RT–PCR based on the transcript levels of the lineage-specific marker genes. Data were analyzed using one-way ANOVA and two-sample t-test. MAIN RESULTS AND THE ROLE OF CHANCE All four statins examined inhibited blastocyst formation. The adverse impact of statins was rescued by supplementation of MVA (P < 0.01) or GGPP (P < 0.01) but not squalene nor cholesterol. Blastocyst formation was also prevented by GGTI-298 (P < 0.01). These results indicate that HMG-CoA reductase activity is required for blastocyst formation mainly through the production of GGPP but not cholesterol. Inhibition of RHO proteins, known targets of geranylgeranylation, impaired blastocyst formation, which was not reversed by GGPP supplementation. Nuclear localization of YAP was diminished by statin treatment but fully restored by supplementation of MVA (P < 0.01) or GGPP (P < 0.01). This suggests that HIPPO signaling is regulated by GGPP-dependent mechanisms, possibly geranylgeranylation of RHO, to enable trophectoderm formation. YM-53601 prevented blastocyst formation (P < 0.01), but its adverse impact was not rescued by supplementation of squalene or cholesterol, suggesting that squalene synthesis inhibition was not the cause of blastocyst defects. LIMITATIONS, REASONS FOR CAUTION Analyses were conducted on embryos cultured ex vivo, but they enable the determination of specific concentrations that impair embryo development which can be compared with drug concentrations in the reproductive tract when testing in vivo impact of statins through animal experimentations. Also, analyses were conducted in only one species, the mouse. Epidemiological studies on the effects of various types of statins on the fertility of women are necessary. WIDER IMPLICATIONS OF THE FINDINGS Our study reveals how the mevalonate pathway is required for blastocyst formation and intersects with HIPPO pathway to provide a mechanistic basis for the embryotoxic effect of statins. This bears relevance for women who are taking statins while trying to conceive, since statins have potential to prevent the conceptus from reaching the blastocyst stage and to cause early conceptus demise. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by grants from the George F. Straub Trust of the Hawaii Community Foundation (13ADVC-60315 to V.B.A.) and the National Institutes of Health, USA (P20GM103457 to V.B.A.). The authors have no conflict of interest to declare. PMID:26908642

  8. [Development of the devices for synthetic biology of triterpene saponins at an early stage: cloning and expression profiling of squalene epoxidase genes in panax notoginseng].

    PubMed

    Niu, Yun-Yun; Zhu, Xiao-Xuan; Luo, Hong-Mei; Sun, Chao; Huang, Lin-Fang; Chen, Shi-Lin

    2013-02-01

    Synthetic biology of traditional Chinese medicine (TCM) is a new and developing subject based on the research of secondary metabolite biosynthesis for nature products. The early development of synthetic biology focused on the screening and modification of parts or devices, and establishment of standardized device libraries. Panax notoginseng (Burk.) F.H.Chen is one of the most famous medicinal plants in Panax species. Triterpene saponins have important pharmacological activities in P. notoginseng. Squalene epoxidase (SE) has been considered as a key rate-limiting enzyme in biosynthetic pathways of triterpene saponins and phytosterols. SE acts as one of necessary devices for biosynthesis of triterpene saponins and phytosterols in vitro via synthetic biology approach. Here we cloned two genes encoding squalene epoxidase (PnSE1 and PnSE2) and analyzed the predict amino acid sequences by bioinformatic analysis. Further, we detected the gene expression profiling in different organs and the expression level of SEs in leaves elicited by methyl jasmonate (MeJA) treatment in 4-year-old P notoginseng using real-time quantitative PCR (real-time PCR). The study will provide a foundation for discovery and modification of devices in previous research by TCM synthetic biology. PnSE1 and PnSE2 encoded predicted proteins of 537 and 545 amino acids, respectively. Two amino acid sequences predicted from PnSEs shared strong similarity (79%), but were highly divergent in N-terminal regions (the first 70 amino acids). The genes expression profiling detected by real-time PCR, PnSE1 mRNA abundantly accumulated in all organs, especially in flower. PnSE2 was only weakly expressed and preferentially in flower. MeJA treatment enhanced the accumulation of PnSEI mRNA expression level in leaves, while there is no obvious enhancement of PnSE2 in same condition. Results indicated that the gene expressions of PnSE1 and PnSE2 were differently transcribed in four organs, and two PnSEs differently responded to MeJA stimuli. It was strongly suggested that PnSEs play different roles in secondary metabolite biosynthesis in P. notoginseng. PnSE1 might be involved in triterpenoid biosynthesis and PnSE2 might be involved in phytosterol biosynthesis.

  9. Nuclear magnetic resonance study of thermal oxidation of polyisoprene

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Hsu, M. S.

    1975-01-01

    An investigation was conducted concerning the microstructural changes occurring in cis- and trans-1,4-polyisoprenes during uncatalized thermal oxidation in the solid phase. The investigation made use of approaches based on proton and carbon-13 NMR spectroscopy. The oxidation of squalene and dihydromyrcene in the liquid phase was also studied. The studies provide the first NMR spectroscopic evidence for the presence of epoxy and peroxide, hydroperoxide, and alcohol groups within the oxidized polyisoprene chain.

  10. Antibodies to Squalene in US Navy Persian Gulf War Veterans with Chronic Multisymptom Illness

    DTIC Science & Technology

    2009-01-01

    worked in small teams and experienced many unique environmental and geographical exposures. Active - duty Seabees who remained in the US Navy after the...2009) 3921–3926 described byGray et al. [3].Members of 14 regular active -dutyNavy Seabee commands at Port Hueneme, CA, and Gulfport, Mississippi...either of the two federally sponsored Gulf War veteran registries [13]. Exposure and symptom questions were based on the deployment activities of

  11. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways.

    PubMed

    Singh, Anup Kumar; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Shasany, Ajit K; Nagegowda, Dinesh A

    2017-08-01

    Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Discovery of Potential Inhibitors of Squalene Synthase from Traditional Chinese Medicine Based on Virtual Screening and In Vitro Evaluation of Lipid-Lowering Effect.

    PubMed

    Chen, Yankun; Chen, Xi; Luo, Ganggang; Zhang, Xu; Lu, Fang; Qiao, Liansheng; He, Wenjing; Li, Gongyu; Zhang, Yanling

    2018-04-28

    Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of molecular modeling methods and biological assays. In this study, cynarin was selected as a potential SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and cynarin was unable to map with the pharmacophore of these targets, which indicated that the lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment of hyperlipidemia.

  13. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    PubMed

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  14. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    PubMed Central

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  15. Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated with Resistance to Terbinafine

    PubMed Central

    Osborne, Colin S.; Leitner, Ingrid; Favre, Bertrand; Ryder, Neil S.

    2005-01-01

    There has only been one clinically confirmed case of terbinafine resistance in dermatophytes, where six sequential Trichophyton rubrum isolates from the same patient were found to be resistant to terbinafine and cross-resistant to other squalene epoxidase (SE) inhibitors. Microsomal SE activity from these resistant isolates was insensitive to terbinafine, suggesting a target-based mechanism of resistance (B. Favre, M. Ghannoum, and N. S. Ryder, Med. Mycol. 42:525-529, 2004). In this study, we have characterized at the molecular level the cause of the resistant phenotype of these clinical isolates. Cloning and sequencing of the SE gene and cDNA from T. rubrum revealed the presence of an intron in the gene and an open reading frame encoding a protein of 489 residues, with an equivalent similarity (57%) to both yeast and mammalian SEs. The nucleotide sequences of SE from two terbinafine-susceptible strains were identical whereas those of terbinafine-resistant strains, serially isolated from the same patient, each contained the same single missense introducing the amino acid substitution L393F. Introduction of the corresponding substitution in the Candida albicans SE gene (L398F) and expression of this gene in Saccharomyces cerevisiae conferred a resistant phenotype to the transformants when compared to those expressing the wild-type sequence. Terbinafine resistance in these T. rubrum clinical isolates appears to be due to a single amino acid substitution in SE. PMID:15980358

  16. A novel bisphosphonate inhibitor of squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro[S

    PubMed Central

    Wasko, Brian M.; Smits, Jacqueline P.; Shull, Larry W.; Wiemer, David F.; Hohl, Raymond J.

    2011-01-01

    Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion. PMID:21903868

  17. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  18. Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid

    NASA Astrophysics Data System (ADS)

    Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.

    2018-05-01

    Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.

  19. Novel nonstatin strategies to lower low-density lipoprotein cholesterol.

    PubMed

    Davidson, Michael H

    2009-01-01

    There remains an unmet need to reduce elevated low-density lipoprotein cholesterol (LDL-C) in patients who are maximized on current therapy or intolerant to statins. Several novel agents have been developed to lower LDL-C, either as monotherapy or in combination with statins. These novel therapies include squalene synthase inhibitors, microsomal triglyceride transfer protein inhibitors, and antisense apolipoprotein B. Although each of these novel therapies effectively lowers LDL-C, challenges remain in the clinical development to assess long-term safety.

  20. 5-Aminolevulinic Acid-Squalene Nanoassemblies for Tumor Photodetection and Therapy: In Vitro Studies

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Herceg, V.; Bastien, E.; Lassalle, H.-P.; Bezdetnaya, L.; Lange, Norbert

    2018-01-01

    Protoporphyrin IX (PpIX) as natural photosensitizer derived from administration of 5-aminolevulinic acid (5-ALA) has found clinical use for photodiagnosis and photodynamic therapy of several cancers. However, broader use of 5-ALA in oncology is hampered by its charge and polarity that result in its reduced capacity for passing biological barriers and reaching the tumor tissue. Advanced drug delivery platforms are needed to improve the biodistribution of 5-ALA. Here, we report a new approach for the delivery of 5-ALA. Squalenoylation strategy was used to covalently conjugate 5-ALA to squalene, a natural precursor of cholesterol. 5-ALA-SQ nanoassemblies were formed by self-assembly in water. The nanoassemblies were monodisperse with average size of 70 nm, polydispersity index of 0.12, and ζ-potential of + 36 mV. They showed good stability over several weeks. The drug loading of 5-ALA was very high at 26%. In human prostate cancer cells PC3 and human glioblastoma cells U87MG, PpIX production was monitored in vitro upon the incubation with nanoassemblies. They were more efficient in generating PpIX-induced fluorescence in cancer cells compared to 5-ALA-Hex at 1.0 to 3.3 mM at short and long incubation times. Compared to 5-ALA, they showed superior fluorescence performance at 4 h which was diminished at 24 h. 5-ALA-SQ presents a novel nano-delivery platform with great potential for the systemic administration of 5-ALA.

  1. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    PubMed

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market.

    PubMed

    Cicero, Nicola; Albergamo, Ambrogina; Salvo, Andrea; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Mangano, Valentina; Rotondo, Archimede; Di Stefano, Vita; Di Bella, Giuseppa; Dugo, Giacomo

    2018-07-01

    Different specialty extra virgin oils, produced by cold-pressing fruits/nuts (olive, pequi, palm, avocado, coconut, macadamia and Brazil nut) and seeds (grapeseed and canola), and retailed in the Brazilian region of Minas Gerais, were chemically characterized. Specifically, for each type of oil, the fatty acid composition was elucidated by GC-FID, the contents of selected polyphenols and squalene were determined respectively by UHPLC-MS and UHPLC-PDA, whereas minerals were explored by means of ICP-MS. Olive oil was confirmed to have the highest MUFA content due to a valuable level of oleic acid, while oils from grapeseed, Brazil nut and canola were marked by nutritionally important PUFA levels. The highest SFA content found in coconut oil was mainly due to the high levels of lauric acid, known for its advantageous HDL-raising effects. As for polyphenols, gourmet oils from palm, coconut and canola showed higher levels of phenolic acids (e.g. p-hydroxybenzoic, ferulic, syringic, acids) than olive oil, which was though characterized by peculiar antioxidants, such as tyrosol and hydroxytyrosol. Also, olive oil had the highest amount of squalene, followed by the oil from Brazil nut. Finally, all the investigated oils had very low levels (order of μg/kg) of pro-oxidant elements, such as Cu, Fe and Mn. Overall, these findings may fill the gaps still present in literature on certain compositional aspects of commercially available gourmet oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene

    PubMed Central

    Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina

    2017-01-01

    ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. PMID:28416557

  4. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene.

    PubMed

    Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina; Monod, Michel

    2017-07-01

    Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu 393 , Phe 397 , Phe 415 , and His 440 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes ) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. Copyright © 2017 American Society for Microbiology.

  5. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  7. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  8. Antibacterial activity of the essential oils of Pistacia lentiscus used in Moroccan folkloric medicine.

    PubMed

    Mharti, Fatima Zohra; Lyoussi, Badiaa; Abdellaoui, Abdelfattah

    2011-10-01

    The essential oil of the leaves of Pistacia lentiscus, collected from the middle Atlas in Morocco, was analyzed by GC and GC-MS. Altogether 43 components in concentrations of more than 0.2% were identified representing 97.4% of the oil composition. The main constituents were germanicol (12.8%), thunbergol (8.8%), himachalene (7.4%), trans-squalene (6.7%), terpinyl propionate (6.7%), 3,3-dimenthol (6.2%) and cadina-1.4-diene (5.1%). The oils showed strong activity against Klebsiella pneumonia, but no activity against Pseudomonas aeruginosa.

  9. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes.

    PubMed

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G; Lorenzana, Alicia; Campelo, M Piedad; Hermosa, Rosa; Casquero, Pedro A

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen.

  10. Tetraterpene Synthase Substrate and Product Specificity in the Green Microalga Botryococcus braunii Race L.

    PubMed

    Thapa, Hem R; Tang, Su; Sacchettini, James C; Devarenne, Timothy P

    2017-09-15

    Recently, the biosynthetic pathway for lycopadiene, a C 40 tetraterpenoid hydrocarbon, was deciphered from the L race of Botryococcus braunii, an alga that produces hydrocarbon oils capable of being converted into combustible fuels. The lycopadiene pathway is initiated by the squalene synthase (SS)-like enzyme lycopaoctaene synthase (LOS), which catalyzes the head-to-head condensation of two C 20 geranylgeranyl diphosphate (GGPP) molecules to produce C 40 lycopaoctaene. LOS shows unusual substrate promiscuity for SS or SS-like enzymes by utilizing C 15 farnesyl diphosphate (FPP) and C 20 phytyl diphosphate in addition to GGPP as substrates. These three substrates can be combined by LOS individually or in combinations to produce six different hydrocarbons of C 30 , C 35 , and C 40 chain lengths. To understand LOS substrate and product specificity, rational mutagenesis experiments were conducted based on sequence alignment with several SS proteins as well as a structural comparison with the human SS (HSS) crystal structure. Characterization of the LOS mutants in vitro identified Ser276 and Ala288 in the LOS active site as key amino acids responsible for controlling substrate binding, and thus the promiscuity of this enzyme. Mutating these residues to those found in HSS largely converted LOS from lycopaoctaene production to C 30 squalene production. Furthermore, these studies were confirmed in vivo by expressing LOS in E. coli cells metabolically engineered to produce high FPP and GGPP levels. These studies also offer insights into tetraterpene hydrocarbon metabolism in B. braunii and provide a foundation for engineering LOS for robust production of specific hydrocarbons of a desired chain length.

  11. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere.

    PubMed

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    The use of Trichoderma isolates with efficient antagonistic activity represents a potentially effective and alternative disease management strategy to replace health hazardous chemical control. In this context, twenty isolates were obtained from tomato rhizosphere and evaluated by their antagonistic activity against four fungal pathogens ( Fusarium oxysporum f. sp. lycopersici , Alternaria alternata , Colletotrichum gloeosporoides and Rhizoctonia solani ). The production of extracellular cell wall degrading enzymes of tested isolates was also measured. All the isolates significantly reduced the mycelial growth of tested pathogens but the amount of growth reduction varied significantly as well. There was a positive correlation between the antagonistic capacity of Trichoderma isolates towards fungal pathogens and their lytic enzyme production. The Trichoderma isolates were initially sorted according to morphology and based on the translation elongation factor 1-α gene sequence similarity, the isolates were designated as Trichoderma harzianum , T. koningii , T. asperellum , T. virens and T. viride . PCA analysis explained 31.53, 61.95, 62.22 and 60.25% genetic variation among Trichoderma isolates based on RAPD, REP-, ERIC- and BOX element analysis, respectively. ERG - 1 gene, encoding a squalene epoxidase has been used for the first time for diversity analysis of antagonistic Trichoderma from tomato rhizosphere. Phylogenetic analysis of ERG -1 gene sequences revealed close relatedness of ERG -1sequences with earlier reported sequences of Hypocrea lixii , T. arundinaceum and T. reesei. However, ERG -1 gene also showed heterogeneity among some antagonistic isolates and indicated the possibility of occurrence of squalene epoxidase driven triterpene biosynthesis as an alternative biocontrol mechanism in Trichoderma species.

  12. Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q+ breast cancer and indicates poor clinical outcome in stage I and II disease.

    PubMed

    Helms, M W; Kemming, D; Pospisil, H; Vogt, U; Buerger, H; Korsching, E; Liedtke, C; Schlotter, C M; Wang, A; Chan, S Y; Brandt, B H

    2008-09-02

    Gains of chromosomes 7p and 8q are associated with poor prognosis among oestrogen receptor-positive (ER+) stage I/II breast cancer. To identify transcriptional changes associated with this breast cancer subtype, we applied suppression subtractive hybridisation method to analyse differentially expressed genes among six breast tumours with and without chromosomal 7p and 8q gains. Identified mRNAs were validated by real-time RT-PCR in tissue samples obtained from 186 patients with stage I/II breast cancer. Advanced statistical methods were applied to identify associations of mRNA expression with distant metastasis-free survival (DMFS). mRNA expression of the key enzyme of cholesterol biosynthesis, squalene epoxidase (SQLE, chromosomal location 8q24.1), was associated with ER+ 7p+/8q+ breast cancer. Distant metastasis-free survival in stage I/II breast cancer cases was significantly inversely related to SQLE mRNA in multivariate Cox analysis (P<0.001) in two independent patient cohorts of 160 patients each. The clinically favourable group associated with a low SQLE mRNA expression could be further divided by mRNA expression levels of the oestrogen-regulated zinc transporter LIV-1. The data strongly support that SQLE mRNA expression might indicate high-risk ER+ stage I/II breast cancers. Further studies on tumour tissue from standardised treated patients, for example with tamoxifen, may validate the role of SQLE as a novel diagnostic parameter for ER+ early stage breast cancers.

  13. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  14. Pharmacokinetics of TAK-475, a Squalene Synthase Inhibitor, in Rats and Dogs.

    PubMed

    Ebihara, T; Teshima, K; Kondo, T; Tagawa, Y; Moriwaki, T; Asahi, S

    2016-06-01

    The pharmacokinetics of TAK-475 (lapaquistat acetate), a squalene synthase inhibitor, was investigated in rats and dogs. After oral administration of (14)C-labeled TAK-475 ([(14)C]TAK-475) to rats and dogs at a dose of 10 mg/kg, the bioavailability (BA) was relatively low at 3.5 and 8.2%, respectively. The main component of the radioactivity in the plasma was M-I, which has a comparable pharmacological activity to TAK-475 in vitro. The radioactivity in the portal plasma after intraduodenal administration of [(14)C]TAK-475 to portal vein-cannulated rat was also mainly M-I, suggesting that most of the TAK-475 was hydrolyzed to M-I during the permeable process in the intestine. The concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration of [(14)C]TAK-475 to rats. The main elimination route of the radioactivity was fecal excretion after oral administration of [(14)C]TAK-475 to rats and dogs, and the absorbed radioactivity was mainly excreted via the bile as M-I in rats. M-I excreted into the bile was partially subjected to enterohepatic circulation. These results suggest that although the BA values of TAK-475 are low, M-I can exert compensatory pharmacological effects in the animals. These pharmacokinetic characteristics in animals were also confirmed in the clinical studies. The evaluation of M-I disposition is important for the pharmacokinetics, pharmacodynamics and toxicity of TAK-475 in animals and humans. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Analytical Characterization of an Oil-in-Water Adjuvant Emulsion.

    PubMed

    Sun, Jenny; Remmele, Richard L; Sanyal, Gautam

    2017-07-01

    Adjuvants are typically used in subunit vaccine formulations to enhance immune responses elicited by individual antigens. Physical chemical characterization of novel adjuvants is an important step in ensuring their effective use in vaccine formulations. This paper reports application of a panel of quantitative assays developed to analyze and characterize an oil-in-water adjuvant emulsion, which contains glucopyranosyl lipid A (GLA) and is a squalene-based emulsion. GLA is a fully synthetic analogue of monophosphoryl lipid A, which is a Toll-like receptor type 4 agonist and an FDA-approved adjuvant. The GLA-stable emulsion (GLA-SE) is currently being used for a respiratory syncytial virus vaccine in a phase 2 clinical trial. GLA was quantitated using reverse-phased high-performance liquid chromatography (RP-HPLC) coupled to a mass spectrometric detector, achieving higher assay sensitivity than the charged aerosol detection routinely used. Quantitation of the excipients of GLA-SE, including squalene, egg phosphatidyl choline, and Poloxamer 188, was achieved using a simple and rapid RP-HPLC method with evaporative light scattering detection, eliminating chemical derivatization typically required for these chromophore-lacking compounds. DL-α-tocopherol, the antioxidant of the GLA-SE, was quantitated using a RP-HPLC method with conventional UV detection. The experimental results compared well with values expected for these compounds based on targeted composition of the adjuvant. The assays were applied to identify degradation of individual components in a GLA-SE sample that degraded into distinct aqueous and oil phases. The methods developed and reported here are effective tools in monitoring physicochemical integrity of the adjuvant, as well as in formulation studies.

  16. A novel triterpenoid carbon skeleton in immature sulphur-rich sediments

    NASA Astrophysics Data System (ADS)

    Schouten, Stefan; Sinninghe Damsté, Jaap S.; de Leeuw, Jan W.

    1995-03-01

    A novel S compound, 1,4-bis(2',5',5',8a'-tetramethylhexahydrothiochroman)-butane has been detected in several immature S-rich sediments, of which the desulphurized counterpart was unambiguously identified by synthesis of an authentic standard and coinjection experiments. This C skeleton of the S compound, 1,10-bis(2',2',6'-trimethylcyclohexyl)-3,8-dimethyldodecane(I), has not been reported yet in any sediment or organism. We suggest that it may be biosynthesized through an enzymatic cyclization reaction of squalene (II), which shows similarities with the biosynthesis of β,β-carotene (III) from lycopene (IV).

  17. Oleuropein in Olive and its Pharmacological Effects

    PubMed Central

    Omar, Syed Haris

    2010-01-01

    Olive from Olea europaea is native to the Mediterranean region and, both the oil and the fruit are some of the main components of the Mediterranean diet. The main active constituents of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolic compounds, hydroxytyrosol and oleuropein, give extra-virgin olive oil its bitter, pungent taste. The present review focuses on recent works that have analyzed the relationship between the major phenolic compound oleuropein and its pharmacological activities including antioxidant, anti-inflammatory, anti-atherogenic, anti-cancer activities, antimicrobial activity, antiviral activity, hypolipidemic and hypoglycemic effect. PMID:21179340

  18. UPLC/Q-TOF MS-Based Metabolomics and qRT-PCR in Enzyme Gene Screening with Key Role in Triterpenoid Saponin Biosynthesis of Polygala tenuifolia

    PubMed Central

    Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    Background The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. Methodology/Findings In this study, ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS)-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1) were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS), squalene monooxygenase (SQE), and beta-amyrin synthase (β-AS) were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis. Conclusions/Significance This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia. PMID:25148032

  19. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  20. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth.

    PubMed

    Navarro Gallón, Sandra M; Elejalde-Palmett, Carolina; Daudu, Dimitri; Liesecke, Franziska; Jullien, Frédéric; Papon, Nicolas; Dugé de Bernonville, Thomas; Courdavault, Vincent; Lanoue, Arnaud; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Clastre, Marc; St-Pierre, Benoit; Atehortùa, Lucia; Yoshikawa, Nobuyuki; Giglioli-Guivarc'h, Nathalie; Besseau, Sébastien

    2017-07-01

    The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.

  1. UPLC/Q-TOF MS-based metabolomics and qRT-PCR in enzyme gene screening with key role in triterpenoid saponin biosynthesis of Polygala tenuifolia.

    PubMed

    Zhang, Fusheng; Li, Xiaowei; Li, Zhenyu; Xu, Xiaoshuang; Peng, Bing; Qin, Xuemei; Du, Guanhua

    2014-01-01

    The dried root of Polygala tenuifolia, named Radix Polygalae, is a well-known traditional Chinese medicine. Triterpenoid saponins are some of the most important components of Radix Polygalae extracts and are widely studied because of their valuable pharmacological properties. However, the relationship between gene expression and triterpenoid saponin biosynthesis in P. tenuifolia is unclear. In this study, ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS)-based metabolomic analysis was performed to identify and quantify the different chemical constituents of the roots, stems, leaves, and seeds of P. tenuifolia. A total of 22 marker compounds (VIP>1) were explored, and significant differences in all 7 triterpenoid saponins among the different tissues were found. We also observed an efficient reference gene GAPDH for different tissues in this plant and determined the expression level of some genes in the triterpenoid saponin biosynthetic pathway. Results showed that MVA pathway has more important functions in the triterpenoid saponin biosynthesis of P. tenuifolia. The expression levels of squalene synthase (SQS), squalene monooxygenase (SQE), and beta-amyrin synthase (β-AS) were highly correlated with the peak area intensity of triterpenoid saponins compared with data from UPLC/Q-TOF MS-based metabolomic analysis. This finding suggested that a combination of UPLC/Q-TOF MS-based metabolomics and gene expression analysis can effectively elucidate the mechanism of triterpenoid saponin biosynthesis and can provide useful information on gene discovery. These findings can serve as a reference for using the overexpression of genes encoding for SQS, SQE, and/or β-AS to increase the triterpenoid saponin production of P. tenuifolia.

  2. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes

    PubMed Central

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G.; Lorenzana, Alicia; Campelo, M. Piedad; Hermosa, Rosa; Casquero, Pedro A.

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen. PMID:26442006

  3. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    PubMed

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene.

    PubMed

    Singh, Ashutosh; Masih, Aradhana; Khurana, Ananta; Singh, Pradeep Kumar; Gupta, Meenakshi; Hagen, Ferry; Meis, Jacques F; Chowdhary, Anuradha

    2018-03-25

    In the last few years, infections caused by dermatophytes along with a concomitant increase in the number of difficult to treat cases have increasingly been recognised, indicating that dermatophytosis remains a challenging public health problem. The majority of infections are caused by Trichophyton rubrum and Trichophyton mentagrophytes complex. Terbinafine, an allylamine antifungal used orally and topically is considered to be a first-line drug in the therapy of dermatophyte infections. Terbinafine resistance has been predominately attributed to point mutations in the squalene epoxidase (SQLE) target gene a key enzyme in the ergosterol biosynthetic pathway leading to single amino acid substitutions. Here, we report the largest series of 20 terbinafine-resistant Trichophyton interdigitale isolates obtained predominately from cases of tinea corporis/cruris in three hospitals in Delhi, India exhibiting elevated MICs (4 to ≥32 μg/mL) to terbinafine and all harbouring single-point mutations Leu393Phe or Phe397Leu in the SQLE gene. In 12 (60%) T. interdigitale isolates, the Phe397Leu substitution was observed, whereas in the remaining 8 (40%) isolates the substitution Leu393Phe was reported for the first time in T. interdigitale. Furthermore, 10 susceptible T. interdigitale isolates (0.125-2 μg/mL) had a wild-type genotype. Remarkably, considerably high terbinafine resistance rate of 32% was observed among 63 T. interdigitale isolates identified by sequencing of the internal transcribed spacer region. This high level of terbinafine resistance of Indian dermatophyte isolates is worrisome warranting antifungal susceptibility testing and mutation analysis for monitoring this emerging resistance. © 2018 Blackwell Verlag GmbH.

  5. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    PubMed

    Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei

    2015-07-01

    Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components.

    PubMed

    Katsarou, Ageliki I; Kaliora, Andriana C; Chiou, Antonia; Kalogeropoulos, Nick; Papalois, Apostolos; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2016-04-01

    The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms. Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected. High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups. Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.

  7. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    PubMed

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines

    PubMed Central

    Wang, Chuan; Hart, Matthew; Chui, Cecilia; Ajuogu, Augustine; Brian, Iona J.; de Cassan, Simone C.; Borrow, Persephone; Draper, Simon J.

    2016-01-01

    There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. PMID:27412417

  9. A multi-criteria decision making approach to identify a vaccine formulation.

    PubMed

    Dewé, Walthère; Durand, Christelle; Marion, Sandie; Oostvogels, Lidia; Devaster, Jeanne-Marie; Fourneau, Marc

    2016-01-01

    This article illustrates the use of a multi-criteria decision making approach, based on desirability functions, to identify an appropriate adjuvant composition for an influenza vaccine to be used in elderly. The proposed adjuvant system contained two main elements: monophosphoryl lipid and α-tocopherol with squalene in an oil/water emulsion. The objective was to elicit a stronger immune response while maintaining an acceptable reactogenicity and safety profile. The study design, the statistical models, the choice of the desirability functions, the computation of the overall desirability index, and the assessment of the robustness of the ranking are all detailed in this manuscript.

  10. Functional microdomains in bacterial membranes.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  11. Influence of north climatic conditions on the peat lipids composition

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.

    2018-03-01

    The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.

  12. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2008-09-01

    The object of this research was improvement of prenyl alcohol production with squalene synthase-deficient mutant Saccharomyces cerevisiae ATCC 64031. On screening of many kinds of additives, we found that oils and detergents significantly enhanced the extracellular production of prenyl alcohols. Soybean oil showed the most prominent effect among the additives tested. Its effect was accelerated by a high concentration of glucose in the medium. The combination of these cultivation conditions led to the production of more than 28 mg/l of farnesol in the soluble fraction of the broth. The addition of these compounds to the medium was an effective method for large-scale production of prenyl alcohols with microorganisms.

  13. In Vitro Activities of ER-119884 and E5700, Two Potent Squalene Synthase Inhibitors, against Leishmania amazonensis: Antiproliferative, Biochemical, and Ultrastructural Effects▿

    PubMed Central

    Fernandes Rodrigues, Juliany Cola; Concepcion, Juan Luis; Rodrigues, Carlos; Caldera, Aura; Urbina, Julio A.; de Souza, Wanderley

    2008-01-01

    ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC50s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range. Growth inhibition was strictly associated with the depletion of the parasite's main endogenous sterols and the concomitant accumulation of exogenous cholesterol. Using electron microscopy, we identified the intracellular structures affected by the compounds. A large number of lipid inclusions displaying different shapes and electron densities were observed after treatment with both SQS inhibitors, and these inclusions were associated with an intense disorganization of the membrane that surrounds the cell body and flagellum, as well as the endoplasmic reticulum and the Golgi complex. Cells treated with ER-119884 but not those treated with E5700 had an altered cytoskeleton organization due to an abnormal distribution of tubulin, and many were arrested at cytokinesis. A prominent contractile vacuole and a phenotype typical of programmed cell death were frequently found in drug-treated cells. The selectivity of the drugs was demonstrated with the JC-1 mitochondrial fluorescent label and by trypan blue exclusion tests with macrophages, which showed that the IC50s against the host cells were 4 to 5 orders of magnitude greater that those against the intracellular parasites. Taken together, our results show that ER-119884 and E5700 are unusually potent and selective inhibitors of the growth of Leishmania amazonensis, probably because of their inhibitory effects on de novo sterol biosynthesis at the level of SQS, but some of our observations indicate that ER-119884 may also interfere with other cellular processes. PMID:18765694

  14. Solid nanoemulsion as antigen and immunopotentiator carrier for transcutaneous immunization.

    PubMed

    Gogoll, Karsten; Stein, Pamela; Lee, K D; Arnold, Philipp; Peters, Tanja; Schild, Hansjörg; Radsak, Markus; Langguth, Peter

    2016-10-01

    Imiquimod, a toll-like receptor 7 (TLR7) agonist, is an active pharmaceutical ingredient (API) established for the topical treatment of several dermal cancerous and precancerous skin lesions. Within this work, the immunostimulatory effect of imiquimod is further exploited in a transcutaneous immunization (TCI) approach based on a solid nanoemulsion (SN) formulation. SN contains a combination of imiquimod with the model peptide antigen SIINFEKL as a novel approach to omit needle and syringe and optimize dermal antigen administration. Excipients including sucrose fatty acid esters and the pharmaceutically acceptable oils MCT (middle chain triglycerides), avocado oil, jojoba wax and squalene are high pressure homogenized together with the antigen SIINFEKL. Freeze drying was performed to eliminate water and to achieve spreadable properties of the formulation for dermal administration. The influence of the different oil components was assessed regarding in vitro drug permeation in a Franz diffusion cell model using a murine skin setup. In vivo performance in terms of cytotoxic T-cell response was assessed in a C57BL/6 mouse model. Whereas Aldara® cream contains imiquimod in a dissolved state, the SN formulations carry the active in a suspended state. This resulted in a reduction of imiquimod permeation across murine skin from the SN when compared to Aldara® cream. In spite of this permeation rate reduction, each SN induced an in vivo immune response by specific T-cell lysis. A stabilized solid nanosuspension containing squalene/tocopherol exhibited a significantly higher performance (p⩽0.05) in comparison with Aldara® cream. MCT based SN exerted an in vivo effect comparable to Aldara®. In conclusion, anhydrous highly dispersed vehicles containing imiquimod in a submicron particle size distribution can represent promising formulations for TCI. The choice of the oil component has a strong influence on SN performance, independent of in vitro drug permeation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characterization of Squalene Epoxidase of Saccharomyces cerevisiae by Applying Terbinafine-Sensitive Variants▿

    PubMed Central

    Ruckenstuhl, Christoph; Lang, Silvia; Poschenel, Andrea; Eidenberger, Armin; Baral, Pravas Kumar; Kohút, Peter; Hapala, Ivan; Gruber, Karl; Turnowsky, Friederike

    2007-01-01

    Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1. All but one of the amino acid substitutions affected conserved FAD/nucleotide binding sites. The G25S, D335X (W, F, P), and G210A substitutions in the FADI, FADII, and NB sites, respectively, rendered the SE variants nonfunctional. The G30S and L37P variants exhibited decreased enzymatic activity, accompanied by a sevenfold increase in erg1 mRNA levels and an altered sterol composition, and rendered KLN1 more sensitive not only to allylamines (10 to 25 times) but also to other ergosterol biosynthesis inhibitors. The R269G variant exhibited moderately reduced SE activity and a 5- to 10-fold increase in allylamine sensitivity but no cross-sensitivity to the other ergosterol biosynthesis inhibitors. To further elucidate the roles of specific amino acids in SE function and inhibitor interaction, a homology model of Erg1p was built on the basis of the crystal structure of PHBH. All experimental data obtained with the sensitive Erg1 variants support this model. In addition, the amino acids responsible for terbinafine resistance, although they are distributed along the sequence of Erg1p, cluster on the surface of the Erg1p model, giving rise to a putative binding site for allylamines. PMID:17043127

  16. Assessment of squalene adjuvanted and non-adjuvanted vaccines against pandemic H1N1 influenza in children 6 months to 17 years of age

    PubMed Central

    Vesikari, Timo; Pepin, Stéphanie; Kusters, Inca; Hoffenbach, Agnès; Denis, Martine

    2012-01-01

    Vaccines were urgently needed in 2009 against A/H1N1 pandemic influenza. Based on the H5N1 experience, it was originally thought that 2 doses of an adjuvanted vaccine were needed for adequate immunogenicity. We tested H1N1 vaccines with or without AF03, a squalene-based adjuvant, in children. Two randomized, open-label, trials were conducted. Participants 3–17 y received two injections of 3.8 µg or 7.5 µg hemagglutinin (HA) with adjuvant or 15 µg HA without adjuvant. Participants aged 6–35 mo received two injections of 1.9 µg or 3.8 µg HA with full or half dose adjuvant or 7.5 µg HA without adjuvant. All subjects 3 to 17 y reached seroprotection (hemagglutination inhibition (HI) titer ≥ 40) after the first dose of the adjuvanted vaccine, and 94% and 98% in the 3–8 and 9–17 y groups respectively with the non-adjuvanted vaccine. In children aged 6–35 mo responses were modest after one dose, but after two doses virtually all children were seroprotected regardless of HA or adjuvant dose. In this age group, antibody titers were 5 to 7 times higher after adjuvanted than non-adjuvanted vaccine. The higher responses with the adjuvanted vaccine were also reflected as better antibody persistence. There was no clustering of adverse events that would be suggestive of a safety signal. While a single injection was sufficient in subjects from 3 y, in children aged 6–35 mo two injections of this A/H1N1 pandemic influenza vaccine were required. Formulation of this vaccine with adjuvant provided a significant advantage for immunogenicity in the latter age group. PMID:22906943

  17. Efficacy and safety of a non-mineral oil adjuvanted injectable vaccine for the protection of Atlantic salmon (Salmo salar L.) against Flavobacterium psychrophilum.

    PubMed

    Hoare, R; Jung, S-J; Ngo, T P H; Bartie, K; Bailey, J; Thompson, K D; Adams, A

    2017-10-07

    Flavobacterium psychrophilum is the causative agent of Rainbow Trout Fry Syndrome which has had a major impact on global salmonid aquaculture. Recent outbreaks in Atlantic salmon in Scotland and Chile have added to the need for a vaccine to protect both salmon and trout. At present no licensed vaccines are available in Europe, leaving antibiotics as the only course of action to contain disease outbreaks. Outbreaks generally occur in fry at temperatures between 10 and 15 °C. Recently outbreaks in larger fish have given added impetus to the development of a vaccine which can provide long term protection from this highly heterogeneous pathogen. Most fish injectable vaccines are formulated with oil emulsion adjuvants to induce strong and long lasting immunity, but which are known to cause side effects. Alternative adjuvants are currently sought to minimise these adverse effects. The current study was performed to assess the efficacy of a polyvalent, whole cell vaccine containing formalin-inactivated F. psychrophilum to induce protective immunity in Atlantic salmon. The vaccine was formulated with an adjuvant containing squalene and aluminium hydroxide, and was compared to a vaccine formulated with a traditional oil adjuvant, Montanide ISA 760VG, and a non-adjuvanted vaccine. Duplicate groups of salmon (23.5 ± 6.8 g) were vaccinated with each of the vaccine formulations or phosphate buffered saline by intraperitoneal injection. Fish were challenged by intramuscular injection with F. psychrophilum six weeks post-vaccination to test the efficacy of the vaccines. Cumulative mortality reached 70% in the control salmon, while the groups of salmon that received vaccine had significantly lower mortality than the controls (p = 0.0001), with no significant difference in survival between vaccinated groups. The squalene/alum adjuvant was safe, more readily metabolised by the fish and induced less histopathological changes than the traditional oil adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chemical composition of volatile oils from the pericarps of Indian sandalwood (Santalum album) by different extraction methods.

    PubMed

    Zhang, Xin Hua; da Silva, Jaime A Teixeira; Jia, Yong Xia; Zhao, Jie Tang; Ma, Guo Hua

    2012-01-01

    The chemical composition of volatile compounds from pericarp oils of Indian sandalwood, Santalum album L., isolated by hydrodistillation and solvent extraction, were analyzed by GC and GC-MS. The pericarps yielded 2.6 and 5.0% volatile oil by hydrodistillation and n-hexane extraction, and they were colorless and yellow in color, respectively. A total of 66 volatile components were detected. The most prominent compounds were palmitic and oleic acids, representing about 40-70% of the total oil. Many fragrant constituents and biologically active components, such as alpha- and beta-santalol, cedrol, esters, aldehydes, phytosterols, and squalene were present in the pericarp oils. This is the first report of the volatile composition of the pericarps of any Santalum species.

  19. Chemical constituents of the femoral gland secretions of male tegu lizards (Tupinambis merianae) (Family teiidae).

    PubMed

    Martín, José; Chamut, Silvia; Manes, Mario E; López, Pilar

    2011-01-01

    In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, the chemical compounds secreted by their femoral glands, which may be used as sexual signals, are only known for a few lizard species. Based on mass spectra, obtained by GC-MS, we found 49 lipophilic compounds in femoral gland secretions of male tegu lizards (Tupinambis merianae) (fam. Teiidae), including a very high proportion of carboxylic acids and their esters ranging between n-C8 and n-C20 (mainly octadecanoic and 9,12-octadecadienoic acids), with much less proportions of steroids, tocopherol, aldehydes, and squalene. We discuss the potential function of these compounds in secretions, and compare the compounds found here with those documented for other lizard species.

  20. Comparison between several techniques of olive tree bark extraction (Tunisian Chemlali variety).

    PubMed

    Issaoui, Aimen; Ksibi, Hatem; Ksibi, Mohamed

    2017-01-01

    In order to better understand the chemical composition of the olive tree bark of Tunisian chemlali variety (Olea europaea cv. 'Chemlali'), this material was extracted by different ways. Compositions of extracts were used at best-selected conditions for each technique, and characterised using HPLC, LC/MS and GC-MS techniques. Analyses are conducted to an important variety of high carbon number compounds such as aliphatic compounds as nanocosane and heptacosane, and molecules with high value added tax (VAT) which can be classified as follows: diterpenes as phytol, triterpenes as squalene and also esters as Benzyl cinnamate. Hydrodistillation at high pressure seems to be a very common method to get a wide variety of compounds, the results are better than the ones obtained using supercritical fluid extraction and solvent extraction.

  1. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.

    PubMed

    Xiao, Xiaomei; He, Liangmei; Chen, Yayun; Wu, Longhuo; Wang, Lin; Liu, Zhiping

    2017-11-01

    Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.

  2. Additional antiprotozoal constituents from Cuphea pinetorum, a plant used in Mayan traditional medicine to treat diarrhoea.

    PubMed

    Calzada, Fernando

    2005-08-01

    In addition to kaempferol and quercetin already found in the roots from Cuphea pinetorum, bioassay-guided fractionation of the crude extract of the aerial part of this species gave four flavonoid glycosides, quercetin-3-O-alpha-rhamnopyranoside, luteolin-7-O-beta-D-glucopyranoside, apigenin-7-O-alpha-L-rhamnopyranoside and apigenin-7-O-beta-D-glucopyranoside, as well as squalen and beta-sitosterol. In vitro antiamoebic and antigiardial activities of isolated compounds indicated that kaempferol is the principal antiprotozoal agent in C. pinetorum. Based on finding this antiprotozoal inhibitor, flavonoids were studied in order to elucidate structure-activity relationships. These data suggest that kaempferol may play an important role in antidiarrhoeal activity of C. pinetorum. Copyright (c) 2005 John Wiley & Sons, Ltd.

  3. Health promoting effects of phytonutrients found in palm oil.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2010-08-01

    The oil palm tree, Elaeis guineesis, is the source of palm oil, otherwise known as the "tropical golden oil". To date, Malaysia and Indonesia are the leading producers of palm oil. Palm oil is widely used for domestic cooking in Malaysia. Palm oil is a rich source of phytonutrients such as tocotrienols, tocopherol, carotene, phytosterols, squalene, coenzyme Q10, polyphenols, and phospholipids. Although the phytonutrients constitute only about 1% of its weight in crude palm oil, these are the main constituents through which palm oil exhibits its nutritional properties. Among the major health promoting properties shown to be associated with the various types of phytonutrients present in palm oil are anti-cancer, cardio-protection and anti-angiogenesis, cholesterol inhibition, brain development and neuro protective properties, antioxidative defence mechanisms, provitamin A activity and anti-diabetes.

  4. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient was remained stable even when stored until three months. Coalescence process between the droplets was not occurred significantly and droplet size was still below 500 nm. Over all, the emulsion remained stable, even it was centrifuged at 12000 rpm for 30 minutes.

  5. Diversity of squalene-hopene cyclases in a tropical carbonate-rich environment

    NASA Astrophysics Data System (ADS)

    Leavitt, W. D.; Pearson, A.

    2007-12-01

    Hopanoids are isoprenoid lipids which derive primarily from bacteria and are ubiquitous in contemporary Earth surface environments. In the geologic record, hopanes found in sedimentary rocks are used as proxies to help decipher ancient biological communities. However, in contrast to the ubiquity of these lipid products, biosynthesis of hopanoids appears to be a relatively rare physiological trait among bacteria in complex environmental communities. We have recently estimated that fewer than one in ten bacterial cells in soils and fewer than one in twenty bacterial cells in the ocean contains the gene squalene-hopene cyclase (sqhC) [1]. Biosynthesis of hopanoids is rarer in natural communities than it is among species that have been propagated in pure culture [2]. Here we continue our previous work to survey the phylogeny and diversity of hopanoid producers using culture-independent methods. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analyzed previously [1]. One possible explanation is that hopanoid-producing strains of cyanobacteria are regionally localized. It has been suggested that throughout the long-term sedimentary record there is a correlation between 2-methylhopanoid index (a putative indicator of cyanobacterial biomass) and the global prevalence of shallow carbonate platform environments [3], and in previous work we did not analyze any such environments. To address this question we surveyed a land-sea gradient across the Bahamian island of San Salvador. Samples were taken from upland soil, a hypersaline lake, a tidal creek, and the shallow open ocean. The data are remarkably similar to our previous results: environmental sqhCs average < 65% translated amino acid identity to their closest relatives in public databases, and non- cyanobacterial sequences continue to dominate. We will discuss the challenges these results pose for deciphering the global distribution of microbially-derived lipids from complex communities, and we will propose some future directions forward. [1] Pearson A, Flood Page SR, Jorgenson TL, Fischer WW, Higgins MB (2007) Novel hopanoid cyclases from the environment. Environmental Microbiology 9, 2175-2188. [2] Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in Prokaryotes. J. Gen. Microbiol. 130, 1137-1150. [3] Summons, RE (personal communication).

  6. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    PubMed

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition.

    PubMed

    León, Lorenzo; de la Rosa, Raúl; Velasco, Leonardo; Belaj, Angjelina

    2018-01-01

    A wide genetic diversity has been reported for wild olives, which could be particularly interesting for the introgression of some agronomic traits and resistance to biotic and abiotic stresses in breeding programs. However, the introgression of some beneficial wild traits may be paralleled by negative effects on some other important agronomic and quality traits. From the quality point of view, virgin olive oil (VOO) from olive cultivars is highly appreciated for its fatty acid composition (high monounsaturated oleic acid content) and the presence of several minor components. However, the composition of VOO from wild origin and its comparison with VOO from olive cultivars has been scarcely studied. In this work, the variability for fruit characters (fruit weight and oil content, OC), fatty acid composition, and minor quality components (squalene, sterols and tocopherols content and composition) was studied in a set of plant materials involving three different origins: wild genotypes ( n = 32), cultivars ( n = 62) and genotypes belonging to cultivar × wild progenies ( n = 62). As expected, values for fruit size and OC in wild olives were lower than those obtained in cultivated materials, with intermediate values for cultivar × wild progenies. Wild olives showed a remarkably higher C16:0 percentage and tocopherol content in comparison to the cultivars. Contrarily, lower C18:1 percentage, squalene and sterol content were found in the wild genotypes, while no clear differences were found among the different plant materials regarding composition of the tocopherol and phytosterol fractions. Some common highly significant correlations among components of the same chemical family were found in all groups of plant materials. However, some other correlations were specific for one of the groups. The results of the study suggested that the use of wild germplasm in olive breeding programs will not have a negative impact on fatty acid composition, tocopherol content, and tocopherol and phytosterol profiles provided that selection for these compounds is conducted from early generations. Important traits such as tocopherol content could be even improved by using wild parents.

  8. Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates

    NASA Astrophysics Data System (ADS)

    De Luna, Mark M.; Gupta, Malancha

    2018-05-01

    In this paper, we study DC magnetron sputtering of gold and silver onto liquid substrates of varying viscosities and surface tensions. We were able to separate the effects of viscosity from surface tension by depositing the metals onto silicone oils with a range of viscosities. The effects of surface tension were studied by depositing the metals onto squalene, poly(ethylene glycol), and glycerol. It was found that dispersed nanoparticles were formed on liquids with low surface tension and low viscosity whereas dense films were formed on liquids with low surface tension and high viscosity. Nanoparticles were formed on both the liquid surface and within the bulk liquid for high surface tension liquids. Our results can be used to tailor the metal and liquid interaction to fabricate particles and films for various applications in optics, electronics, and catalysis.

  9. Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

    PubMed

    Corcelli, Angela; Lattanzio, Veronica M T; Mascolo, Giuseppe; Papadia, Paride; Fanizzi, Francesco

    2002-01-01

    The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycolipid sulfate, 1 of phosphatidylglycerol, 1 of archaeal glycocardiolipin (GlyC), 2 of squalene plus minor amounts of phosphatidylglycerosulfate (PGS) and bisphosphatidylglycerol (archaeal cardiolipin) (BPG) and a negligible amount of vitamin MK8. The novel data of the present study are necessary to identify the lipids in the electron density map, and to shed light on the structural relationships of the lipid and protein components of the PM.

  10. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    PubMed

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  11. [Chemical components from essential oil of Pandanus amaryllifolius leaves].

    PubMed

    Chen, Xiao-Kai; Ge, Fa-Huan

    2014-04-01

    To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.

  12. The Role of Functional Foods in Cutaneous Anti-aging

    PubMed Central

    Cho, Soyun

    2014-01-01

    Oral supplementation of micronutrients, or functional foods, to prevent aging has gained much attention and popularity as society ages and becomes more affluent, and as science reveals the pathological mechanisms of aging. Aging of the skin combines biologic aging and extrinsic aging caused predominantly by sunlight and other environmental toxins. Anti-aging functional foods exert their influence mostly through their anti-oxidant and anti-inflammatory effects, thereby abrogating collagen degradation and/or increasing procollagen synthesis. Clinical evidence supporting a role in preventing cutaneous aging is available for oral supplements such as carotenoids, polyphenols, chlorophyll, aloe vera, vitamins C and E, red ginseng, squalene, and omega-3 fatty acids. Collagen peptides and proteoglycans are claimed to provide building blocks of the dermal matrix. This review summarizes the current study findings of these functional foods. PMID:26064850

  13. Safety and effectiveness of MF-59 adjuvanted influenza vaccines in children and adults.

    PubMed

    Black, Steven

    2015-06-08

    The squalene oil-in-water emulsion MF-59 adjuvant was developed initially to enhance the immunogenicity of influenza vaccines in populations such as children and adults with known suboptimal response. Developed in the 1990s, it was initially licensed in Europe for use in seasonal influenza vaccine in the elderly. Since that time, both Avian and p2009H1N1 vaccines have also been developed. Overall, more than 30,000 individuals have participated in clinical trials of MF-59 adjuvanted vaccine and more than 160 million doses of licensed vaccine have been administered. Safety and effectiveness data from clinical trials and observation studies attest to the safety of MF-59 and to its ability to enhance the effectiveness of influenza vaccines in children and the elderly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of medium modification and selected precursors on sterol production by short-term callus cultures of Euphorbia tirucalli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesboer, D.D.; Mahlberg, P.G.

    1979-01-01

    Latex from E. Tirucalli, a potential rubber source, contains steroidal alcohols that are high in energy and thus of value in biomass conversion to fuels. Euphol was present in large amounts in the latex, but tirucallol predominated in greater quantities in explants and callus indicating synthesis and/or accumulation of tirucallol by cells other than the laticifer cell. Sterol production was significantly enhanced by certain nutrient media, as well as indole-3-acetic acid, and depressed by benzyladenine. Precursor stimulation of product synthesis was successful only with squalene, which promoted sterol production at 1.0 mg/liter but inhibited cell growth at higher concentrations. DL-mevalonicmore » acid and lanosterol promoted neither growth nor sterol production. DL-(214C) mevalonate was used to confirm the biosynthesis of sterols in both latex and callus cultures.« less

  15. Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns.

    PubMed

    Patel, Seema; Rauf, Abdur

    2017-07-01

    Cucurbitaceae family members such as pumpkin and watermelon have seeds that are discarded as the by-products of food processing. However, they have been discovered to contain a rich repertoire of nutrients such as proteins, unsaturated fatty acids, phenolic acids, carotenoids, tocopherol, phytosterol, squalene etc. Biological assays have proven the seed extracts to exert antioxidative, hypoglycemic, anticancer, antihypertensive, cardioprotective, antilipemic, gynoprotective, and anthelmintic properties. Further, the seeds do not contain any major anti-nutrients. Phytoestrogens like β-sitosterol occur, which might be acting as agonists or antagonists of estrogen and testosterone, given their validated role in gyenic and prostate health. Few instances of intestinal bezoar, and allergy, following pumpkin seeds consumption have emerged. After the risk-benefit analysis though exhaustive literature search, it can be suggested that these seeds are underutilized and they can be used to formulate a myriad of nutraceuticals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McChesney, D.G.; Ledney, G.D.; Madonna, G.S.

    The survival of B6D2F1 female mice exposed to lethal doses of fission neutron radiation is increased when trehalose dimycolate (TDM) preparations are given either 1 h after exposure or 1 day before exposure to radiation. TDM in an emulsion of squalene, Tween 80, and saline was the most effective formulation for increasing the 30-day survival of mice when given 1 day before (90%) or 1 h after (88%) exposure to radiation. An aqueous suspension of a synthetic analog of TDM was less effective at increasing 30-day survival (60%) when given 1 day prior to radiation exposure and not effective whenmore » given 1 h after radiation. Mice receiving a sublethal dose (3.5 Gy) of fission neutron radiation and either the TDM emulsion or synthetic TDM 1 h after irradiation were substantially more resistant to challenge with 10, 100, 1000, or 5000 times the LD50/30 dose of Klebsiella pneumoniae than untreated mice.« less

  17. Antioxidants in Greek Virgin Olive Oils

    PubMed Central

    Kalogeropoulos, Nick; Tsimidou, Maria Z.

    2014-01-01

    Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878

  18. Influence of agronomic variables on the composition of mate tea leaves (Ilex paraguariensis) extracts obtained from CO2 extraction at 30 degrees C and 175 bar.

    PubMed

    Esmelindro, Angela Aquino; Girardi, Jonathan Dos Santos; Mossi, Altemir; Jacques, Rosângela Assis; Dariva, Cláudio

    2004-04-07

    The aim of this work is to assess the influence of light intensity (plants with direct sun exposure and in a controlled light intensity) and age of leaves (6-24 months) on the characteristics of the extracts of mate tea leaves obtained from carbon dioxide at high pressures. Samples of mate were collected in an experiment conducted under agronomic control at Industria e Comercio de Erva-Mate Barão LTDA, Brazil. The content of selected organic compounds of the extracts was evaluated by gas chromatography together with mass spectrometry. Quantitative analysis of caffeine, theobromine, phytol, vitamin E, squalene, and stigmasterol was performed, and the results showed that field variables exert a strong influence on the liquid yield and on the chemical distribution of the extracts.

  19. Survival of adult neurons lacking cholesterol synthesis in vivo.

    PubMed

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  20. Producing aglycons of ginsenosides in bakers' yeast

    PubMed Central

    Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli

    2014-01-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing β-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2 mg/L protopanaxadiol, 15.9 mg/L protopanaxatriol and 21.4 mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342

  1. Antioxidant activities and volatile constituents of various essential oils.

    PubMed

    Wei, Alfreda; Shibamoto, Takayuki

    2007-03-07

    Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.

  2. Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information.

    PubMed

    Watanabe, Kenshi; Arafiles, Kim Hazel V; Higashi, Risa; Okamura, Yoshiko; Tajima, Takahisa; Matsumura, Yukihiko; Nakashimada, Yutaka; Matsuyama, Keisuke; Aki, Tsunehiro

    2018-05-01

    The marine eukaryotic microheterotroph thraustochytrid genus Aurantiochytrium is a known producer of polyunsaturated fatty acids, carotenoids, and squalene. We previously constructed a lipid fermentation system for Aurantiochytrium sp. strains using underutilized biomass, such as canned syrup and brown macroalgae. To improve the productivity, in this study, Aurantiochytrium sp. RH-7A and RH-7A-7 that produced high levels of carotenoids, such as astaxanthin and canthaxanthin, were isolated through chemical mutagenesis. Moreover, metabolomic analysis of the strain RH-7A revealed that oxidative stress impacts carotenoid accumulation. Accordingly, the addition of ferrous ion (Fe 2+ ), as an oxidative stress compound, to the culture medium significantly enhanced the production of astaxanthin by the mutants. These approaches improved the productivity of astaxanthin up to 9.5 mg/L/day at the flask scale using not only glucose but also fructose which is the main carbon source in fermentation systems with syrup and brown algae as the raw materials.

  3. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    PubMed

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass.

    PubMed

    Durairaj, Varalakshmi; Hoda, Muddasarul; Shakya, Garima; Babu, Sankar Pajaniradje Preedia; Rajagopalan, Rukkumani

    2014-09-01

    To screen the phytochemical constituents and study antioxidant properties of the aqueous extract of the wheatgrass. The current study was focused on broad parameters namely, phytochemical analysis, gas chromatography-mass spectrometry analysis and antioxidant properties in order to characterize the aqueous extract of wheatgrass as a potential free radical quencher. The phytochemical screening of the aqueous extract of wheatgrass showed the presence of various secondary metabolites but the absence of sterols and quinone in general. Wheatgrass was proved to be an effective radical scavenger in all antioxidant assays. The gas chromatography-mass spectrometry analysis confirmed the presence of diverse category of bioactive compounds such as squalene, caryophyllene and amyrins in varying percentage. From the results obtained, we conclude that wheatgrass aqueous extract contains various effective compounds. It is a potential source of natural antioxidants. Further analysis of this herb will help in finding new effective compounds which can be of potent use in pharmacological field. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors.

    PubMed

    Xu, Liping; Vagner, Josef; Alleti, Ramesh; Rao, Venkataramanarao; Jagadish, Bhumasamudram; Morse, David L; Hruby, Victor J; Gillies, Robert J; Mash, Eugene A

    2010-04-15

    A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Recent insights into the Smith-Lemli-Opitz syndrome.

    PubMed

    Yu, H; Patel, S B

    2005-11-01

    Recent insights into the Smith-Lemli-Opitz syndrome. The Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation disorder caused by an inborn error of post-squalene cholesterol biosynthesis. Deficient cholesterol synthesis in SLOS is caused by inherited mutations of 3beta-hydroxysterol-Delta7 reductase gene (DHCR7). DHCR7 deficiency impairs both cholesterol and desmosterol production, resulting in elevated 7DHC/8DHC levels, typically decreased cholesterol levels and, importantly, developmental dysmorphology. The discovery of SLOS has led to new questions regarding the role of the cholesterol biosynthesis pathway in human development. To date, a total of 121 different mutations have been identified in over 250 patients with SLOS who represent a continuum of clinical severity. Two genetic mouse models have been generated which recapitulate some of the developmental abnormalities of SLOS and have been useful in elucidating the pathogenesis. This mini review summarizes the recent insights into SLOS genetics, pathophysiology and potential therapeutic approaches for the treatment of SLOS.

  7. Toward an Increased Functionality in Oyster ( Pleurotus) Mushrooms Produced on Grape Marc or Olive Mill Wastes Serving as Sources of Bioactive Compounds.

    PubMed

    Koutrotsios, Georgios; Kalogeropoulos, Nick; Kaliora, Andriana C; Zervakis, Georgios I

    2018-06-20

    Pleurotus ostreatus, P. eryngii, and P. nebrodensis were cultivated on nonconventional substrates containing grape marc (GMC) or olive mill byproducts (OMB); wheat straw (WHS) served as control. GMC-based media demonstrated equal/better mushroom productivity than WHS for P. eryngii and P. nebrodensis, while the cultivation performance of P. eryngii was improved in OMB-based media. Both GMC and OMB substrates led to large increase of fruit-bodies content in phenolic acids, resveratrol, triterpenic compounds, and ergosterol; in particular, P. eryngii mushrooms presented significantly more total phenolics and exhibited much higher antioxidant activity (2- to 8-fold increase). Furthermore, substrates containing GMC or OMB presented up to 27% increase in mushroom β-glucans. Overall, Pleurotus species responded in a different and mostly substrate-specific manner by selectively absorbing organic compounds. Phenolics and squalene content of substrates correlated very well with mushrooms antioxidant activity and ergosterol, respectively; the same was observed for triterpenics' content of substrates and mushrooms.

  8. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    PubMed

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  9. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries.

    PubMed

    Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz

    2015-04-29

    The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).

  10. Survival of adult neurons lacking cholesterol synthesis in vivo

    PubMed Central

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-01

    Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system. PMID:17199885

  11. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  12. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool.

    PubMed

    Ruiz-Aracama, Ainhoa; Goicoechea, Encarnación; Guillén, María D

    2017-08-01

    Proton Nuclear Magnetic Resonance ( 1 H NMR) was employed to study monovarietal commercial Spanish extra-virgin olive oils (EVOO) (Arbequina, Arroniz, Cornicabra, Hojiblanca and Picual). Each sample was analyzed by a standard pulse and by an experiment suppressing the main lipid signals, enabling the detection of signals of minor components. The aim was to determine the possibilities of both 1 H NMR approaches to characterize EVOO composition, focusing on acyl groups, squalene, sterols, triterpene acids/esters, fatty alcohols, wax esters and phenols (lignans, tyrosol, hydroxytyrosol, oleocanthal, oleacein, oleokoronal, oleomissional, ligstrodials and oleuropeindials), and to determine hydrolysis and oxidation levels. The signal assignments (in deuterated chloroform) are thoroughly described, identifying for the first time those of the protons of esters of phytol and of geranylgeraniol. Correct signal assignment is fundamental for obtaining sound results when interpreting statistical data from metabolomic studies of EVOO composition and adulteration, making it possible to differentiate and classify oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  14. Oxygen and the evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1986-01-01

    While a considerable amount of evidence has been accumulated about the history of oxygen on this planet, little is known about the relative amounts to which primitive cells might have been exposed. One clue may be found in the metabolic pathways of extant microorganisms. While eucaryotes are principally aerobic organisms, a number are capable of anaerobic growth by fermentation. One such eucaryotic microorganism, Saccharomyces cerevisiae, will grow in the complete absence of oxygen when supplemented with unsaturated fatty acid and sterol. Oxygen-requiring enzymes are involved in the synthesis of both of these compounds. Studies have demonstrated that the oxidative desaturation of palmitic acid and the conversion of squalene to sterols occur in the range of 10-(3) to 10(-2) PAL. Thus, if the oxygen requirements of these enzymatic processes are an indication, eucaryotes might be more primitive than anticipated from the microfossil record. Results of studies on the oxygen requirements for sterol and unsaturated fatty acid synthesis in a more primitive procaryotic system are also discussed.

  15. Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves.

    PubMed

    Batovska, Daniela Ilieva; Todorova, Iva Todorova; Nedelcheva, Daniela Valentinova; Parushev, Stoyan Parushev; Atanassov, Atanas Ivanov; Hvarleva, Tzvetanka Dimitrova; Djakova, Galina Jordanova; Bankova, Vassya Stefanova; Popov, Simeon Simeonov

    2008-05-26

    We examined the leaf chemical composition of six seedlings obtained by self-pollination of the Bulgarian wine-making variety Storgozia as well as the cultivar Bouquet, which is the susceptible parent of Storgozia. The chemical composition was investigated in the framework of a program for identification of metabolites associated with disease resistance in grape-vine. Acetone, dichloromethane and butanol extracts, as well as volatiles obtained from fresh material were analyzed by GC/MS. Based on the correlations of the GC/MS data and estimated resistance of the leaves towards the etiological agents of powdery mildew, downy mildew and botrytis as biomarkers for the fungal resistance, we proposed 16 individual metabolites--alpha- and gamma-tocopherol, squalene, alpha-amyrine, stigmasta-3,5-diene-7-one, hexahydrofarnesyl acetone, glycolic acid, 3-hydroxybutanoic acid, 3-hydroxycaproic acid, malic acid, tartaric acid, erythronic acid, arabinoic acid, monoethyl phosphate, undecyl laurate and isopropyl myristate. The obtained correlations were confirmed by cluster analysis.

  16. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    PubMed

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Feasibility of Freeze-Drying Oil-in-Water Emulsion Adjuvants and Subunit Proteins to Enable Single-Vial Vaccine Drug Products.

    PubMed

    Iyer, Vidyashankara; Cayatte, Corinne; Marshall, Jason D; Sun, Jenny; Schneider-Ohrum, Kirsten; Maynard, Sean K; Rajani, Gaurav Manohar; Bennett, Angie Snell; Remmele, Richard L; Bishop, Steve M; McCarthy, Michael P; Muralidhara, Bilikallahalli K

    2017-06-01

    To generate potent vaccine responses, subunit protein antigens typically require coformulation with an adjuvant. Oil-in-water emulsions are among the most widely investigated adjuvants, based on their demonstrated ability to elicit robust antibody and cellular immune responses in the clinic. However, most emulsions cannot be readily frozen or lyophilized, on account of the risk of phase separation, and may have a deleterious effect on protein antigen stability when stored long term as a liquid coformulation. To circumvent this, current emulsion-formulated vaccines generally require a complex multivial presentation with obvious drawbacks, making a single-vial presentation for such products highly desirable. We describe the development of a stable, lyophilized squalene emulsion adjuvant through innovative formulation and process development approaches. On reconstitution, freeze-dried emulsion preparations were found to have a minimal increase in particle size of ∼20 nm and conferred immunogenicity in BALB/c mice similar in potency to freshly prepared emulsion coformulations in liquid form. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity.

    PubMed

    Rahmani, Arshad H; Albutti, Aqel S; Aly, Salah M

    2014-01-01

    The current mode of treatment for various diseases is based on synthetic drugs are effective but they show adverse effect and also alter the genetic and metabolic activity. Moreover, some drugs prepared from plants and their constituents show potentiality with more efficacy than synthetic agents used in clinical therapy. Earlier report has shown that regular consumption of fruits and vegetables is strongly related with reduced risk of developing various diseases. Several epidemiological studies has shown that, the incidence heart disease and cancers is lowest in the Mediterranean basin as compared to the part of the world because of their diet rich in olives and olive products. Olives are commonly consumed in Mediterranean and Arabian Peninsula and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that, the constituents from olive such as oleuropein, squalene and hydroxytyrosol modulate the genes functions and other activities. In this review, the medicinal value of olives and their constituents are summarized in terms of therapeutic approach in the diseases management through regulation of various activities.

  19. Mango kernel fat fractions as potential healthy food ingredients: A review.

    PubMed

    Jin, Jun; Jin, Qingzhe; Akoh, Casimir C; Wang, Xingguo

    2018-01-16

    Mango kernel fat (MKF) has been reported to have high functional and nutritional potential. However, its application in food industry has not been fully explored or developed. In this review, the chemical compositions, physical properties and potential health benefits of MKF are described. MKF is a unique fat consisting of 28.9-65.0% of 1,3-distearoyl-2-oleoyl-glycerol with excellent oxidative stability index (58.8-85.2 h at 110 °C), making the fat and its fractions suitable for use as high-value added food ingredients such as cocoa butter alternatives, trans-free shortenings, and a source of natural antioxidants (e.g., sterol, tocopherol and squalene). Unfortunately, the long period of dehydration of mango kernels at hot temperature results in the hydrolysis of triacylglycerols. The high levels of hydrolysates (mainly free fatty acids and diacylglycerols) limit the application of MKF in manufacturing these food ingredients. It is suggested that the physico-chemical and functional properties of MKF could be further improved through moderated refining (e.g., degumming and physical deacidification), fractionation, and interesterification.

  20. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected bymore » 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.« less

  1. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces

    PubMed Central

    Arrach, Nabil; Fernández-Martín, Rafael; Cerdá-Olmedo, Enrique; Avalos, Javier

    2001-01-01

    Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces. PMID:11172012

  2. Recovery and Utilization of Palm Oil Mill Effluent Source as Value-Added Food Products.

    PubMed

    Teh, Soek Sin; Hock Ong, Augustine Soon; Mah, Siau Hui

    2017-01-01

    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13 C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.

  3. Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.

    1994-01-01

    Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.

  4. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity

    PubMed Central

    Rahmani, Arshad H; Albutti, Aqel S; Aly, Salah M

    2014-01-01

    The current mode of treatment for various diseases is based on synthetic drugs are effective but they show adverse effect and also alter the genetic and metabolic activity. Moreover, some drugs prepared from plants and their constituents show potentiality with more efficacy than synthetic agents used in clinical therapy. Earlier report has shown that regular consumption of fruits and vegetables is strongly related with reduced risk of developing various diseases. Several epidemiological studies has shown that, the incidence heart disease and cancers is lowest in the Mediterranean basin as compared to the part of the world because of their diet rich in olives and olive products. Olives are commonly consumed in Mediterranean and Arabian Peninsula and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that, the constituents from olive such as oleuropein, squalene and hydroxytyrosol modulate the genes functions and other activities. In this review, the medicinal value of olives and their constituents are summarized in terms of therapeutic approach in the diseases management through regulation of various activities. PMID:24955148

  5. Essential oils in the ranunculaceae family: chemical composition of hydrodistilled oils from Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum seeds.

    PubMed

    Kokoska, Ladislav; Urbanova, Klara; Kloucek, Pavel; Nedorostova, Lenka; Polesna, Lucie; Malik, Jan; Jiros, Pavel; Havlik, Jaroslav; Vadlejch, Jaroslav; Valterova, Irena

    2012-01-01

    In this study, we analyzed the chemical composition of volatile oils hydrodistilled from seeds of Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum using GC and GC/MS. In C. regalis, octadecenoic (77.79%) and hexadecanoic acid (8.34%) were the main constituents. Similarly, the oils from D. elatum and N. hispanica seeds consisted chiefly of octadecadienoic (42.83 and 35.58%, resp.), hexadecanoic (23.87 and 28.59%, resp.), and octadecenoic acid (21.67 and 19.76%, resp.). Contrastingly, the monoterpene hydrocarbons α-pinene (34.67%) and β-pinene (36.42%) were the main components of N. nigellastrum essential oil. Our results confirm the presence of essential oils in the family Ranunculaceae and suggest chemotaxonomical relationships within the representatives of the genera Consolida, Delphinium, and Nigella. In addition, the presence of various bioactive constituents such as linoleic acid, (-)-β-pinene, squalene, or carotol in seeds of D. elatum, N. hispanica, and N. nigellastrum indicates a possible industrial use of these plants. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Design of novel potent antihyperlipidemic agents with antioxidant/anti-inflammatory properties: exploiting phenothiazine's strong antioxidant activity.

    PubMed

    Matralis, Alexios N; Kourounakis, Angeliki P

    2014-03-27

    Because atherosclerosis is an inflammatory process involving a series of pathological events such as dyslipidemia, oxidative stress, and blood clotting mechanisms, we hereby report the synthesis and evaluation of novel compounds in which antioxidant, anti-inflammatory, and squalene synthase (SQS) inhibitory/hypolipidemic activities are combined in simple molecules through design. The coupling of two different pharmacophores afforded compounds 1-12, whose biological profile was markedly improved compared to those of parent lead structures (i.e., the hypolipidemic 2-hydroxy-2-aryl-(benzo)oxa(or thia)zine and the antioxidant phenothiazine). Most derivatives strongly inhibited in vitro microsomal lipid and LDL peroxidation, exhibiting potent free-radical scavenging activity. They further significantly inhibited SQS activity and showed remarkable antidyslipidemic activity in vivo in animal models of acute and high-fat-induced hyperlipidemia. Finally, several compounds showed anti-inflammatory activity in vitro, inhibiting cycloxygenase (COX-1/2) activity. The multimodal properties of the new compounds and especially their combined antioxidant/SQS/COX inhibitory activity render them interesting lead compounds for further evaluation against atherosclerosis.

  7. Freund's adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition

    PubMed Central

    Whitehouse, M. W.; Orr, K. J.; Beck, Frances W. J.; Pearson, C. M.

    1974-01-01

    Over a hundred compounds and natural materials were examined for their ability to induce arthritis in rats when mixed with heat-killed delipidated Mycobacteria tuberculosis. Many of these materials were also assessed for (CMI) adjuvant activity by their ability to induce allergic encephalomyelitis (EAE) in rats when mixed with guinea-pig spinal cord, both with and without added M. tuberculosis. Cyclization and/or the presence of oxygen atoms, or double bonds reduced (or abolished) the arthritogenic potential and adjuvanticity of alkanes>C10. Esters/triglycerides of fatty acids >C12, retinol acetate (not palmitate) and vitamins E and K showed co-arthritogenic and adjuvant activity. Other active lipids included squalene and cholesterol oleate, which are both present in human sebum. Sebaceous lipids may therefore perhaps function as natural adjuvants if resorbed during abrasion and infection. Squalane (perhydrosqualene), pristane and hexadecane were excellent substitutes for mineral oil in preparing arthritogenic adjuvants from various mycobacteria, C. rubrum and N. asteroides. These oily compounds were also very effective adjuvants per se, in the absence of bacterial material or emulsifier, for inducing EAE in Lewis rats. PMID:4214125

  8. Evaluation of extra virgin olive oil stability by artificial neural network.

    PubMed

    Silva, Simone Faria; Anjos, Carlos Alberto Rodrigues; Cavalcanti, Rodrigo Nunes; Celeghini, Renata Maria dos Santos

    2015-07-15

    The stability of extra virgin olive oil in polyethylene terephthalate bottles and tinplate cans stored for 6 months under dark and light conditions was evaluated. The following analyses were carried out: free fatty acids, peroxide value, specific extinction at 232 and 270 nm, chlorophyll, L(∗)C(∗)h color, total phenolic compounds, tocopherols and squalene. The physicochemical changes were evaluated by artificial neural network (ANN) modeling with respect to light exposure conditions and packaging material. The optimized ANN structure consists of 11 input neurons, 18 hidden neurons and 5 output neurons using hyperbolic tangent and softmax activation functions in hidden and output layers, respectively. The five output neurons correspond to five possible classifications according to packaging material (PET amber, PET transparent and tinplate can) and light exposure (dark and light storage). The predicted physicochemical changes agreed very well with the experimental data showing high classification accuracy for test (>90%) and training set (>85). Sensitivity analysis showed that free fatty acid content, peroxide value, L(∗)Cab(∗)hab(∗) color parameters, tocopherol and chlorophyll contents were the physicochemical attributes with the most discriminative power. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.

    PubMed

    Araújo, J; Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B

    2010-06-30

    The purpose of this study was to develop a novel nanostructured lipid carrier (NLC) for the intravitreal-targeting delivery of triamcinolone acetonide (TA) by direct ocular instillation. A five-level central composite rotable design was used to study the influence of four different variables on the physicochemical characteristics of NLCs. The analysis of variance (ANOVA) statistical test was used to assess the optimization of NLC production parameters. The systems were produced by high pressure homogenization using Precirol ATO5 and squalene as solid and liquid lipids respectively, and Lutrol F68 as surfactant. Homogenization at 600 bar for 3 cycles of the optimized formulation resulted in the production of small NLC (mean diameter < 200 nm) with a homogeneous particle size distribution (polydispersity index (PI) approximately 0.1), of negatively charged surface (approximately |45| mV) and high entrapment efficiency (approximately 95%). Surface morphology was assessed by SEM which revealed fairly spherical shape. DSC, WAXS and FT-IR analyses confirmed that TA was mostly entrapped into the NLC, characterized by an amorphous matrix. In vivo Draize test showed no signs of ocular toxicity. 2010 Elsevier B.V. All rights reserved.

  10. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M M; Pandey, Rakesh

    2017-02-03

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress.

  11. The impact of fruit maturation on bioactive microconstituents, inhibition of serum oxidation and inflammatory markers in stimulated PBMCs and sensory characteristics of Koroneiki virgin olive oils from Messenia, Greece.

    PubMed

    Kaliora, Andriana C; Artemiou, Anna; Giogios, Ioannis; Kalogeropoulos, Nick

    2013-08-01

    Olive fruits from the Koroneiki cultivar (Olea europaea L.) grown in Messenia, Greece, were hand-picked from the same trees in progressive maturity stages, covering three months, and processed identically with a commercial olive mill and a three-phase decanter. Data on quality parameters, and antioxidant activity of the obtained oils were collected by employing the conventional analytical methods set by European Union Commission Regulation no. 61/2011. Additionally, the potential of oils' polar extract to inhibit total serum lipid oxidation and inflammatory markers in stimulated human mononuclear cells was assayed. The results showed that ripening caused an increase in monounsaturated and decrease in polyunsaturated fatty acids, as well as an increase in phenolic compounds - mainly hydroxytyrosol - and in squalene. The extracts' ferric reducing power was in line with the increase of phenolic compounds. In later stages of maturation, lipoprotein oxidation was less potent and the decrease of inflammatory markers in stimulated human mononuclear cells was more powerful. Sensory evaluation detected differences in oils' "bitter" attributes, while the analysis of oils' volatiles revealed quantitative differences.

  12. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece.

    PubMed

    Kalogeropoulos, Nick; Chiou, Antonia; Ioannou, Maria S; Karathanos, Vaios T

    2013-09-01

    Available data suggest that genetic as well as environmental factors may influence nuts and seeds nutrients content. In this context nuts and seeds cultivated in Greece were studied. Macronutrients content was in agreement with that from other areas. Total phenolics content was in the range of 43.0 ± 2.1-1512.7 ± 60.7 mg GAE/100 g for chestnut and walnut, respectively. Thirteen to 22 individual phenolics were identified in the studied species. Oleanolic acid was in the range of 0.10-9.03 mg/100 g. Pumpkin seeds contained the higher squalene content (71.6 mg/100 g). β-Sitosterol predominated in all samples except pumpkin seeds. Tocopherols ranged from 8.9 mg/100 g (chestnut) to 29.3 mg/100 g (almond). Nuts and seeds hydrophilic extracts at quantities corresponding to the estimated daily consumption by the Greeks succeeded in inhibiting LDL oxidation in vitro by increasing lag time 1.1-14.1 times. One serving of nuts or seeds may cover a significant fraction of health promoting microconstituents daily intake.

  13. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    NASA Astrophysics Data System (ADS)

    Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.

    2012-08-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.

  14. Numerical modeling of particle generation from ozone reactions with human-worn clothing in indoor environments

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Lin, Chao-Hsin; Chen, Qingyan

    2015-02-01

    Ozone-terpene reactions are important sources of indoor ultrafine particles (UFPs), a potential health hazard for human beings. Humans themselves act as possible sites for ozone-initiated particle generation through reactions with squalene (a terpene) that is present in their skin, hair, and clothing. This investigation developed a numerical model to probe particle generation from ozone reactions with clothing worn by humans. The model was based on particle generation measured in an environmental chamber as well as physical formulations of particle nucleation, condensational growth, and deposition. In five out of the six test cases, the model was able to predict particle size distributions reasonably well. The failure in the remaining case demonstrated the fundamental limitations of nucleation models. The model that was developed was used to predict particle generation under various building and airliner cabin conditions. These predictions indicate that ozone reactions with human-worn clothing could be an important source of UFPs in densely occupied classrooms and airliner cabins. Those reactions could account for about 40% of the total UFPs measured on a Boeing 737-700 flight. The model predictions at this stage are indicative and should be improved further.

  15. Strategies to alleviate original antigenic sin responses to influenza viruses.

    PubMed

    Kim, Jin Hyang; Davis, William G; Sambhara, Suryaprakash; Jacob, Joshy

    2012-08-21

    Original antigenic sin is a phenomenon wherein sequential exposure to closely related influenza virus variants reduces antibody (Ab) response to novel antigenic determinants in the second strain and, consequently, impairs the development of immune memory. This could pose a risk to the development of immune memory in persons previously infected with or vaccinated against influenza. Here, we explored strategies to overcome original antigenic sin responses in mice sequentially exposed to two closely related hemagglutinin 1 neuraminidase 1 (H1N1) influenza strains A/PR/8/34 and A/FM/1/47. We found that dendritic cell-activating adjuvants [Bordetella pertussis toxin (PT) or CpG ODN or a squalene-based oil-in-water nanoemulsion (NE)], upon administration during the second viral exposure, completely protected mice from a lethal challenge and enhanced neutralizing-Ab titers against the second virus. Interestingly, PT and NE adjuvants when administered during the first immunization even prevented original antigenic sin in subsequent immunization without any adjuvants. As an alternative to using adjuvants, we also found that repeated immunization with the second viral strain relieved the effects of original antigenic sin. Taken together, our studies provide at least three ways of overcoming original antigenic sin.

  16. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    NASA Astrophysics Data System (ADS)

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  17. ANTIMICROBIAL AND ANTIBIOFILM EFFECTS OF EXTRACTS FROM TRAPA NATANS L., EVALUATION OF TOTAL PHENOLIC AND FLAVONOID CONTENTS AND GC-MS ANALYSIS.

    PubMed

    Radojevic, Ivana D; Vasic, Sava M; Dekic, Milan S; Radulovic, Niko S; Delic, Gorica T; Durdevic, Jelena S; Comic, Ljiljana R

    2016-11-01

    Research conducted in this study shows the applied in vitro antimicrobial and antibiofilm activity of the four extracts isolated from Trapa natans L. leaves. In this study, different methods were used (microdilution, tissue culture plate, different colorimetric methods, GC-FID and GC-MS analysis). While the water extract didn't show antibacterial activity, the acetone extract showed the strongest one. The same activity in the case of Pseudomonas aeruginosa (MIC was 313 μg/mL) was better than the activity of controls and it matched with antibiofilm activity. The effect of extracts was better on G+ bacteria (MICs were <78-625 μg/mL). For ethanol and ethyl acetate extracts all BIC values were better than MICs. Extracts showed a significant effect on Aspergillus restrictus (MICs were < 78/156 μg/mL). The GC and GC-MS analysis of the ethyl acetate extract revealed the identification of 22 compounds with (all E)-squalene (20.2%), n-alkanes and norlignan hinokiresinol among the most abundant ones. This is the first time that T. natans was studied using these methods.

  18. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling.

    PubMed

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.

  19. Serum from postmenopausal women treated with a by-product of olive-oil extraction process stimulates osteoblastogenesis and inhibits adipogenesis in human mesenchymal stem-cells (MSC).

    PubMed

    Casado-Díaz, Antonio; Túnez-Fiñana, Isaac; Mata-Granados, José María; Ruiz-Méndez, María Victoria; Dorado, Gabriel; Romero-Sánchez, María Concepción; Navarro-Valverde, Cristina; Quesada-Gómez, José Manuel

    2017-04-01

    Aging may enhance both oxidative stress and bone-marrow mesenchymal stem-cell (MSC) differentiation into adipocytes. That reduces osteoblastogenesis, thus favoring bone-mass loss and fracture, representing an important worldwide health-issue, mainly in countries with aging populations. Intake of antioxidant products may help to retain bone-mass density. Interestingly, a novel olive-pomace physical treatment to generate olive oil also yields by-products rich in functional antioxidants. Thus, diet of postmenopausal women was supplemented for two months with one of such by-products (distillate 6; D6), being rich in squalene. After treatment, serum from such women showed reduced both lipidic peroxidation and oxidized low-density lipoprotein (LDL). Besides, vitamin E and coenzyme Q10 levels increased. Furthermore, culture medium containing 10% of such serum both increased osteoblastogenesis and reduced adipogenesis in human MSC from bone marrow. Therefore, highly antioxidant by-products like D6 may represent a relevant source for development of functional products, for both prevention and treatment of degenerative pathologies associated with aging, like osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil.

    PubMed

    Pang, Min; He, Shujian; Wang, Lu; Cao, Xinmin; Cao, Lili; Jiang, Shaotong

    2014-08-01

    This study was designed to investigate physicochemical characterization of the oil extracted from foxtail millet bran (FMBO), and the antioxidant and hepatoprotective effects against acute ethanol-induced hepatic injury in mice. GC-MS analysis revealed that unsaturated fatty acids (UFAs) account for 83.76% of the total fatty acids; in particular, the linoleic acid (C18:2) is the predominant polyunsaturated fatty acid (PUFA), and the compounds of squalene and six phytosterols (or phytostanols) were identified in unsaponifiable matter of FMBO. The antioxidant activity examination of FMBO in vitro showed highly ferric-reducing antioxidant power and scavenging effects against DPPH· and HO· radicals. Furthermore, the protective effect of FMBO against acute hepatic injuries induced by ethanol was verified in mice. In this, intragastric administration with different dosages of FMBO in mice ahead of acute ethanol administration could observably antagonize the ethanol-induced increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and the hepatic malondialdehyde (MDA) levels, respectively, along with enhanced hepatic superoxide dismutase (SOD) levels relative to the control. Hepatic histological changes were also observed and confirmed that FMBO is capable of attenuating ethanol-induced hepatic injury.

  1. Fungal and enzymatic treatment of mature municipal landfill leachate.

    PubMed

    Kalčíková, Gabriela; Babič, Janja; Pavko, Aleksander; Gotvajn, Andreja Žgajnar

    2014-04-01

    The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  3. Assemblage composition of fungal wood-decay species has a major influence on how climate and wood quality modify decomposition.

    PubMed

    Venugopal, Parvathy; Junninen, Kaisa; Edman, Mattias; Kouki, Jari

    2017-03-01

    The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effect that decomposer diversity (species richness and assemblage composition) has on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperatures (16 and 21°C) and two humidity levels (70% and 90%) with two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris. In a 9-month experiment, the effects of fungal diversity were tested using four wood-decaying fungi (Antrodia xantha, Dichomitus squalens, Fomitopsis pinicola and Gloeophyllum protractum) at assemblage levels of one, two and four species. Wood quality and assemblage composition affected the influence of climatic factors on decomposition rates. Fungal assemblage composition was found to be more important than fungal species richness, indicating that species-specific fungal traits are of paramount importance in driving decomposition. We conclude that models containing fungal wood-decay species (and wood-based carbon) need to take into account species-specific and assemblage composition-specific properties to improve predictive capacity in regard to decomposition-related carbon dynamics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum

    PubMed Central

    2010-01-01

    Background Little genomic or trancriptomic information on Ganoderma lucidum (Lingzhi) is known. This study aims to discover the transcripts involved in secondary metabolite biosynthesis and developmental regulation of G. lucidum using an expressed sequence tag (EST) library. Methods A cDNA library was constructed from the G. lucidum fruiting body. Its high-quality ESTs were assembled into unique sequences with contigs and singletons. The unique sequences were annotated according to sequence similarities to genes or proteins available in public databases. The detection of simple sequence repeats (SSRs) was preformed by online analysis. Results A total of 1,023 clones were randomly selected from the G. lucidum library and sequenced, yielding 879 high-quality ESTs. These ESTs showed similarities to a diverse range of genes. The sequences encoding squalene epoxidase (SE) and farnesyl-diphosphate synthase (FPS) were identified in this EST collection. Several candidate genes, such as hydrophobin, MOB2, profilin and PHO84 were detected for the first time in G. lucidum. Thirteen (13) potential SSR-motif microsatellite loci were also identified. Conclusion The present study demonstrates a successful application of EST analysis in the discovery of transcripts involved in the secondary metabolite biosynthesis and the developmental regulation of G. lucidum. PMID:20230644

  5. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress

    PubMed Central

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M. M.; Pandey, Rakesh

    2017-01-01

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress. PMID:28157221

  6. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    PubMed Central

    Iwasaka, Hiroaki; Satoh, Ryota; Nagano, Akiko; Watanabe, Kenshi; Hisata, Kanako; Satoh, Noriyuki

    2018-01-01

    Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. PMID:29642531

  7. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105.

    PubMed

    Iwasaka, Hiroaki; Koyanagi, Ryo; Satoh, Ryota; Nagano, Akiko; Watanabe, Kenshi; Hisata, Kanako; Satoh, Noriyuki; Aki, Tsunehiro

    2018-04-09

    Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase ( crtB ), phytoene desaturase ( crtI ) and lycopene cyclase ( crtY ) were fused into single gene ( crtIBY ) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.

  8. Emulsions Made of Oils from Seeds of GM Flax Protect V79 Cells against Oxidative Stress

    PubMed Central

    Skorkowska-Telichowska, Katarzyna; Hasiewicz-Derkacz, Karolina; Gębarowski, Tomasz; Kulma, Anna; Kostyn, Kamil; Gębczak, Katarzyna; Szyjka, Anna; Wojtasik, Wioleta; Gąsiorowski, Kazimierz

    2016-01-01

    Polyunsaturated fatty acids, sterols, and hydrophilic phenolic compounds are components of flax oil that act as antioxidants. We investigated the impact of flax oil from transgenic flax in the form of emulsions on stressed Chinese hamster pulmonary fibroblasts. We found that the emulsions protect V79 cells against the H2O2 and the effect is dose dependent. They reduced the level of intracellular reactive oxygen species and protected genomic DNA against damage. The rate of cell proliferation increased upon treatment with the emulsions at a low concentration, while at a high concentration it decreased significantly, accompanied by increased frequency of apoptotic cell death. Expression analysis of selected genes revealed the upregulatory impact of the emulsions on the histones, acetylases, and deacetylases. Expression of apoptotic, proinflammatory, and anti-inflammatory genes was also altered. It is thus suggested that flax oil emulsions might be useful as a basis for biomedical products that actively protect cells against inflammation and degeneration. The beneficial effect on fibroblast resistance to oxidative damage was superior in the emulsion made of oil from transgenic plants which was correlated with the quantity of antioxidants and squalene. The emulsions from transgenic flax are promising candidates for skin protection against oxidative damage. PMID:26779302

  9. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica.

    PubMed

    Chauhan, Nitin; Kumar, Peeyush; Mishra, Sapna; Verma, Sharad; Malik, Anushree; Sharma, Satyawati

    2015-10-01

    The hexane and ether extracts of leaves, bark and roots of Jatropha curcas were screened for their toxicity against different developmental stages of housefly. The larvicidal, pupicidal and adulticidal activities were analysed at various concentrations (0.78-7.86 mg/cm(2)) of hexane and ether extracts. The lethal concentration values (LC50) of hexane extract of J. curcas leaves were 3.0 and 0.27 mg/cm(2) for adult and larval stages of housefly, respectively, after 48 h. Similarly, the ether extract of leaf showed the LC50 of 2.20 and 4.53 mg/cm(2) for adult and larval stages of housefly. Least toxicity was observed with hexane root extract of J. curcas with LC50 values of 14.18 and 14.26 mg/cm(2) for adult and larvae of housefly, respectively, after 48 h. The variation in LC50 against housefly pupae was found to be 8.88-13.10 mg/cm(2) at various J. curcas extract concentrations. The GC-MS analysis of J. curcas leaf extract revealed the presence of trans-phytol (60.81 %), squalene (28.58 %), phytol (2.52 %) and nonadecanone (1.06 %) as major components that could be attributed for insecticidal activity of J. curcas extracts.

  10. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  11. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS

    PubMed Central

    Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng

    2010-01-01

    Graphene was utilized for the first time as matrix for the analysis of low-molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with conventional matrix, graphene exhibited high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allowed for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as matrix avoided the fragmentation of analytes and provided good reproducibility and high salt tolerance, underscoring the potential application of graphene as matrix for MALDI-MS analysis of practical samples in complex sample matrices. We also demonstrated that the use of graphene as adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low-molecular weight compounds in areas such as metabolism research and natural products characterization. PMID:20565059

  12. Steroidal compounds in commercial parenteral lipid emulsions.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  13. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  14. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F).

    PubMed

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  15. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)

    PubMed Central

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    Objective To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. PMID:24144126

  16. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development.

    PubMed

    Lou-Bonafonte, José M; Arnal, Carmen; Navarro, María A; Osada, Jesús

    2012-07-01

    As olive oil is the main source of calories in the Mediterranean diet, a great deal of research has been devoted to characterizing its role in atherosclerosis. Virgin olive oil is an oily matrix that contains hydrocarbons, mainly squalene; triterpenes such as uvaol, erythrodiol, oleanolic, and maslinic acid; phytosterols; and a wide range of phenolic compounds comprising simple phenols, flavonoids, secoiridoids, and lignans. In this review, we analyze the studies dealing with atherosclerosis and olive oil in several species. A protective role of virgin olive oil against atherosclerosis has been shown in ApoE-deficient mice and hamsters. In the former animal, sex, dose, and dietary cholesterol are modulators of the outcome. Contradictory findings have been reported for rabbits, a circumstance that could be due to the profusion of experimental designs, differing in terms of doses and animal strains, as well as sources of olive oils. This role has yet to be fully validated in humans. Minor components of olive oil have been shown to be involved in atherosclerosis protection. Nevertheless, evidence of the potential of isolated compounds or the right combination of them to achieve the antiatherosclerotic effect of virgin olive oil is inconclusive and will undoubtedly require further experimental support. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  18. Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid-liquid-gas chromatography with dual detection.

    PubMed

    Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi

    2016-02-01

    Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [DNA microarray reveals changes in gene expression of endothelial cells under shear stress].

    PubMed

    Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua

    2004-04-01

    cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.

  20. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  1. Ozone and Ozone By-Products in the Cabins of Commercial Aircraft

    PubMed Central

    Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.

    2013-01-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  2. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

    PubMed

    Doblas, Verónica G; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M; Botella, Miguel A

    2013-02-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

  3. Forensic analysis of latent fingermarks by silver-assisted LDI imaging MS on nonconductive surfaces.

    PubMed

    Lauzon, N; Dufresne, M; Beaudoin, A; Chaurand, P

    2017-06-01

    Silver-assisted laser desorption ionization (AgLDI) imaging mass spectrometry (IMS) has been demonstrated to be a useful technology for fingermark analysis allowing for the detection of several classes of endogenous as well as exogenous compounds. Ideally, in IMS analyses, the fingermarks are deposited under controlled conditions on metallized conductive target slides. However, in forensic investigations, fingermarks are often found on a variety of nonconductive surfaces. A sputtered silver layer renders the target surface conductive, which allows the analyses of insulating surfaces by time-of-flight IMS. Ultimately, the major consideration when developing analytical methods for the analysis of latent fingermarks is their capability to be incorporated within forensic standard operational procedures. To demonstrate the potential of AgLDI IMS for forensic applications, fingermarks deposited on nonconductive surfaces commonly found during an investigation, including paper, cardboard, plastic bags and lifting tape, were first revealed by the Sûreté du Québec by using forensic enhancement techniques prior to the IMS analyses. Numerous endogenous compounds including fatty acids, cholesterol, squalene, wax esters, triglycerides and several exogenous substances were detected and imaged. Here, we show that silver sputtering can provide visual enhancements of fingerprint patterns after FET procedures through different scenarios in which AgLDI IMS can contribute to forensic investigations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT).

    PubMed

    Kreiling, R; Hollnagel, H M; Hareng, L; Eigler, D; Lee, M S; Griem, P; Dreessen, B; Kleber, M; Albrecht, A; Garcia, C; Wendel, A

    2008-06-01

    The skin sensitization potential of eight unsaturated and one saturated lipid (bio)chemicals was tested in both the LLNA and the GPMT to address the hypothesis that chemicals with unsaturated carbon-carbon double bonds may result in a higher number of unspecific (false positive) results in the LLNA compared to the GPMT. Seven substances (oleic acid, linoleic acid, linolenic acid, undecylenic acid, maleic acid, squalene and octinol) gave clear positive results in the LLNA (stimulation index (SI)> or = 3) and thus would require labelling as skin sensitizer. Fumaric acid and succinic acid gave clearly negative results. In the GPMT, besides some sporadic skin reactions, reproducible skin reactions indicating an allergic response were found in a few animals for four test substances. Based on the GPMT results, only undecylenic acid would have to be classified and labelled as a skin sensitizer according to the European Dangerous Substance Directive (67/548/EEC) (results for linoleic acid were inconclusive), while the other seven test substances would not require labelling. Possible mechanisms for unspecific skin cell stimulation and lymph node responses are discussed. In conclusion, the suitability of the LLNA for unsaturated compounds bearing structural similarity to the tested substances should be carefully considered and the GPMT should remain available as an accepted test method for skin sensitization hazard identification.

  5. Irritancy and Allergic Responses Induced by Exposure to the Indoor Air Chemical 4-Oxopentanal

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Jackson, Laurel G.; Wells, J. R.; Ham, Jason E.; Meade, B. J.

    2012-01-01

    Over the last two decades, there has been an increasing awareness regarding the potential impact of indoor air pollution on human health. People working in an indoor environment often experience symptoms such as eye, nose, and throat irritation. Investigations into these complaints have ascribed the effects, in part, to compounds emitted from building materials, cleaning/consumer products, and indoor chemistry. One suspect indoor air contaminant that has been identified is the dicarbonyl 4-oxopentanal (4-OPA). 4-OPA is generated through the ozonolysis of squalene and several high-volume production compounds that are commonly found indoors. Following preliminary workplace sampling that identified the presence of 4-OPA, these studies examined the inflammatory and allergic responses to 4-OPA following both dermal and pulmonary exposure using a murine model. 4-OPA was tested in a combined local lymph node assay and identified to be an irritant and sensitizer. A Th1-mediated hypersensitivity response was supported by a positive response in the mouse ear swelling test. Pulmonary exposure to 4-OPA caused a significant elevation in nonspecific airway hyperreactivity, increased numbers of lung-associated lymphocytes and neutrophils, and increased interferon-γ production by lung-associated lymph nodes. These results suggest that both dermal and pulmonary exposure to 4-OPA may elicit irritant and allergic responses and may help to explain some of the adverse health effects associated with poor indoor air quality. PMID:22403157

  6. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review

    PubMed Central

    Ghanbari, Rahele; Anwar, Farooq; Alkharfy, Khalid M.; Gilani, Anwarul-Hassan; Saari, Nazamid

    2012-01-01

    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1–3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed. PMID:22489153

  7. Anti-PDGF receptor β antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Pan, Tai-Long; Sung, Calvin T; Chang, Shu-Hao; Fang, Jia-You

    2015-08-01

    This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor β antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 μg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pro-inflammatory activity in rats of thiocyanate, a metabolite of the hydrocyanic acid inhaled from tobacco smoke.

    PubMed

    Whitehouse, Michael Wellesley; Jones, Mark

    2009-10-01

    To seek a mechanism linking tobacco smoking with the increased incidence and severity of rheumatoid arthritis, deduced from many retrospective surveys, by studying arthritis/fibrosis development in rats. Rats (>300) received low levels of sodium/potassium thiocyanate (10 or 25 mmol/l) in their drinking water to raise their blood thiocyanate levels, mimicking the elevated levels of blood, salivary and urinary thiocyanate found in smokers. Thiocyanate supplements increased the severity of experimental arthritis induced by tailbase injection of (1) Freund's complete adjuvants (mycobacteria plus various adjuvant-active oils), (2) collagen type-II with Freund's incomplete adjuvant (no mycobacteria), (3) the synthetic lipid amine, avridine in an oil and (4) the natural hydrocarbons squalene (C(30)H(50)) and pristane (C(19)H(40)). This pro-arthritic effect was independent of sex, rat strain or changing diet and housing facilities. Thiocyanate supplements also amplified the acute/persisting inflammatory responses to paw injections of pristane, zymosan and microcrystalline hydroxyapatite. Iodide salts also mimicked some of these effects of thiocyanate. Thiocyanate, a detoxication product of HCN present in tobacco smoke, increased (or even induced) inflammatory responses to several agents causing arthritis or fibrotic inflammation in rats. It, therefore, can act as a co-arthritigen, or 'virulence factor' and could be a therapeutic target to reduce arthritis expression and morbidity.

  9. The SUD1 Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Arabidopsis[C][W

    PubMed Central

    Doblas, Verónica G.; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M.; Botella, Miguel A.

    2013-01-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals. PMID:23404890

  10. Enhancement of skin radical scavenging activity and stratum corneum lipids after the application of a hyperforin-rich cream.

    PubMed

    Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C

    2014-02-01

    Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia (chromerida), a close relative of apicomplexans.

    PubMed

    Leblond, Jeffrey D; Dodson, Joshua; Khadka, Manoj; Holder, Sabrina; Seipelt, Rebecca L

    2012-01-01

    Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  12. A study of the suppression of body odour in elderly subjects by anti-fungal agents.

    PubMed

    Ozeki, C; Moro, O

    2016-06-01

    The suppression of body odour following the use of shampoos or soaps containing the anti-fungal agent miconazole nitrate (MCZ) has been recognized anecdotally. To determine whether MCZ could play a role in the suppression of body odour through inhibiting squalene oxidation. A prospective study recruited 54 elderly subjects residing in a nursing facility who needed bathing assistance. Subjects bathed with three types of body soap over a 6-week study period (regular soap, sample soap (soap containing MCZ), control soap; 2 weeks per type of soap). Body odour was evaluated based on olfactory assessment of the subjects and their clothing. The subjects and the examiners were blinded to the type of soap (sample or control) being used during the study. An analysis using GC/MS was also carried out to identify the volatile compounds associated with body odour. Suppression of unpleasant body odour of the neck and axilla was reported in subjects who used the sample soap. Three common volatile compounds were detected from the T-shirts worn by the subjects: 2-ethylbutanal, 6-methyl-5-hepten-2-one, and geranylacetone. The occurrence of these compounds was reduced using the sample soap. Our findings suggest that MCZ could play a role in the suppression of body odour. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  14. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  15. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

  16. Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways.

    PubMed

    Crespo, Rosana; Montero Villegas, Sandra; Abba, Martín C; de Bravo, Margarita G; Polo, Mónica P

    2013-06-01

    Geraniol, present in the essential oils of many aromatic plants, has in vitro and in vivo antitumor activity against several cell lines. We investigated the effects of geraniol on lipid metabolic pathways involved in Hep-G2 cell proliferation and found that geraniol inhibits the mevalonate pathway, phosphatidylcholine biosynthesis, cell growth, and cell cycle progression (with an arrest occurring at the G0/G1 interphase) and increases apoptosis. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting step in cholesterol synthesis, was inhibited at the transcriptional and posttranscriptional levels, as assessed by real-time RT-PCR, Western blots, and [(14)C]HMG-CoA-conversion radioactivity assays. That geraniol decreased cholesterogenesis but increased the incorporation of [(14)C]acetate into other nonsaponifiable metabolites indicated the existence of a second control point between squalene and cholesterol involved in redirecting the flow of cholesterol-derived carbon toward other metabolites of the mevalonate pathway. That exogenous mevalonate failed to restore growth in geraniol-inhibited cells suggests that, in addition to the inhibition of HMGCR, other dose-dependent actions exist through which geraniol can impact the mevalonate pathway and consequently inhibit cell proliferation. These results suggest that geraniol, a nontoxic compound found in many fruits and herbs, exhibits notable potential as a natural agent for combatting cancer and (or) cardiovascular diseases.

  17. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata.

    PubMed

    Lin, Yin-Ku; Al-Suwayeh, Saleh A; Leu, Yann-Lii; Shen, Feng-Ming; Fang, Jia-You

    2013-02-01

    Diphencyprone (DPCP) is a therapeutic agent for treating alopecia areata. To improve skin absorption and follicular targeting nanostructured lipid carriers (NLCs) were developed. Nanoparticles were characterized by size, zeta potential, molecular environment, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). In vitro and in vivo skin absorption experiments were performed. Fluorescence and confocal microscopes for imaging skin distribution were used. NLCs with different designs were 208 ~ 265 nm with  > 77% DPCP encapsulation. NLCs incorporating a cationic surfactant or more soybean phosphatidylcholine (SPC) showed higher lipophilicity compared to typical NLCs by Nile red emission. All NLCs tested revealed controlled DPCP release; burst release was observed for control. The formulation with more SPC provided 275 μg/g DPCP skin retention, which was greater than control and other NLCs. Intersubject deviation was reduced after DPCP loading into NLCs. Cyanoacrylate skin biopsy demonstrated greater follicular deposition for NLCs with more SPC compared to control. Cationic NLCs but not typical or SPC-containing carriers were largely internalized into keratinocytes. In vivo skin retention of NLCs with more SPC was higher than free control. Confocal imaging confirmed localization of NLCs in follicles and intercellular lipids of stratum corneum. This work encourages further investigation of DPCP absorption using NLCs with a specific formulation design.

  18. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi.

    PubMed

    Malmierca, Mónica G; McCormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Monte, Enrique; Gutiérrez, Santiago

    2015-08-01

    Trichothecenes are phytotoxic sesquiterpenic mycotoxins that can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in HA biosynthesis is the conversion of farnesyl diphosphate to trichodiene (TD), a volatile organic compound (VOC), catalysed by a sesquiterpene synthase encoded by the tri5 gene. Expression of tri5 in the biocontrol strain Trichoderma harzianum CECT 2413 resulted in production of TD in parallel with a reduction of ergosterol biosynthesis and an unexpected increase in the level of squalene. Transformants expressing tri5 displayed low chitinase activity and induced expression of Botrytis cinerea BOT genes, although their total antagonistic potential against phytopathogenic fungi was not reduced. VOCs released by the tri5-transformant induced expression of tomato defence genes related to salicylic acid (SA), and TD itself strongly induced the expression of SA-responsive genes and reduced the development of lateral roots. Together, these results suggest that TD acts as a signalling VOC in the interactions of Trichoderma with plants and other microorganisms by modulating the perception of this fungus to a given environment. Moreover, the TD ability to induce systemic defences indicates that complex trichothecene structures may not be necessary for inducing such responses. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins.

    PubMed

    El Harchaoui, Karim; Akdim, Fatima; Stroes, Erik S G; Trip, Mieke D; Kastelein, John J P

    2008-01-01

    Low-density lipoprotein-cholesterol (LDL-C) lowering is the mainstay of the current treatment guidelines in the management of cardiovascular risk. HMG-CoA reductase inhibitors (statins) are currently the most effective LDL-C-lowering drugs. However, a substantial number of patients do not reach treatment targets with statins. Therefore, an unmet medical need exists for lipid-lowering drugs with novel mechanisms of action to reach the recommended cholesterol target levels, either by monotherapy or combination therapy. Upregulation of the LDL receptor with squalene synthase inhibitors has shown promising results in animal studies but the clinical development of the lead compound lapaquistat (TAK-475) has recently been discontinued. Ezetimibe combined with statins allowed significantly more patients to reach their LDL-C targets. Other inhibitors of intestinal cholesterol absorption such as disodium ascorbyl phytostanol phosphate (FM-VP4) and bile acid transport inhibitors have shown positive results in early development trials, whereas the prospect of acyl coenzyme A: cholesterol acyltransferase inhibition in cardiovascular prevention is dire. Selective inhibition of messenger RNA (mRNA) by antisense oligonucleotides is a new approach to modify cholesterol levels. The inhibition of apolipoprotein B mRNA is in advanced development and mipomersen sodium (ISIS 301012) has shown striking results in phase II studies both as monotherapy as well as in combination with statins.

  20. Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?

    PubMed

    Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana

    2015-01-01

    Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages.

  1. European union regulatory developments for new vaccine adjuvants and delivery systems.

    PubMed

    Sesardic, Dorothea; Dobbelaer, Roland

    2004-06-23

    Interest in vaccine adjuvants and new delivery systems has grown rapidly over the past few years. New vaccine candidates have emerged, which, because of their poor immunogenicity, rely on adjuvants to improve their presentation and targeting and to potentiate their protective immune response. Better understandings of the mechanisms of action, together with logistic and economical considerations have resulted in an explosion of technologies. However, there have been few new registered products for human use, and antigens incorporated into immunostimulating reconstituted influenza virosomes have only relatively recently been licensed in European Union (EU) countries. Influenza vaccine, adjuvanted with water in oil emulsion containing squalene (adjuvant MF59C1) is now also approved. Although current EU regulations focus on traditional adjuvants, notably aluminium and calcium salts, advances have been made in regulatory considerations. The European agency for the evaluation of medicinal products, through its working parties, is actively drafting guidance on requirements for the evaluation of new adjuvants in vaccines. This paper summarises the new developments in EU regulatory aspects relevant to adjuvant quality at development stages, during the manufacturing process, and at the final bulk stage of adjuvant with antigen, and also summarises regulatory expectation regarding safety at pre-clinical and clinical stages. The paper highlights the regulatory concerns and existing bottlenecks that have led to slow approval of new technologies.

  2. Do sterols reduce proton and sodium leaks through lipid bilayers?

    PubMed

    Haines, T H

    2001-07-01

    Proton and/or sodium electrochemical gradients are critical to energy handling at the plasma membranes of all living cells. Sodium gradients are used for animal plasma membranes, all other living organisms use proton gradients. These chemical and electrical gradients are either created by a cation pumping ATPase or are created by photons or redox, used to make ATP. It has been established that both hydrogen and sodium ions leak through lipid bilayers at approximately the same rate at the concentration they occur in living organisms. Although the gradients are achieved by pumping the cations out of the cell, the plasma membrane potential enhances the leakage rate of these cations into the cell because of the orientation of the potential. This review proposes that cells use certain lipids to inhibit cation leakage through the membrane bilayers. It assumes that Na(+) leaks through the bilayer by a defect mechanism. For Na(+) leakage in animal plasma membranes, the evidence suggests that cholesterol is a key inhibitor of Na(+) leakage. Here I put forth a novel mechanism for proton leakage through lipid bilayers. The mechanism assumes water forms protonated and deprotonated clusters in the lipid bilayer. The model suggests how two features of lipid structures may inhibit H(+) leakage. One feature is the fused ring structure of sterols, hopanoids and tetrahymenol which extrude water and therefore clusters from the bilayer. The second feature is lipid structures that crowd the center of the bilayer with hydrocarbon. This can be accomplished either by separating the two monolayers with hydrocarbons such as isoprenes or isopranes in the bilayer's cleavage plane or by branching the lipid chains in the center of the bilayers with hydrocarbon. The natural distribution of lipids that contain these features are examined. Data in the literature shows that plasma membranes exposed to extreme concentrations of cations are particularly rich in the lipids containing the predicted qualities. Prokaryote plasma membranes that reside in extreme acids (acidophiles) contain both hopanoids and iso/anteiso- terminal lipid branching. Plasma membranes that reside in extreme base (alkaliphiles) contain both squalene and iso/anteiso- lipids. The mole fraction of squalene in alkaliphile bilayers increases, as they are cultured at higher pH. In eukaryotes, cation leak inhibition is here attributed to sterols and certain isoprenes, dolichol for lysosomes and peroxysomes, ubiquinone for these in addition to mitochondrion, and plastoquinone for the chloroplast. Phytosterols differ from cholesterol because they contain methyl and ethyl branches on the side chain. The proposal provides a structure-function rationale for distinguishing the structures of the phytosterols as inhibitors of proton leaks from that of cholesterol which is proposed to inhibit leaks of Na(+). The most extensively studied of sterols, cholesterol, occurs only in animal cells where there is a sodium gradient across the plasma membrane. In mammals, nearly 100 proteins participate in cholesterol's biosynthetic and degradation pathway, its regulatory mechanisms and cell-delivery system. Although a fat, cholesterol yields no energy on degradation. Experiments have shown that it reduces Na(+) and K(+) leakage through lipid bilayers to approximately one third of bilayers that lack the sterol. If sterols significantly inhibit cation leakage through the lipids of the plasma membrane, then the general role of all sterols is to save metabolic ATP energy, which is the penalty for cation leaks into the cytosol. The regulation of cholesterol's appearance in the plasma membrane and the evolution of sterols is discussed in light of this proposed role.

  3. Ethnobotanical survey, chemical composition, and antioxidant capacity of methanolic extract of the root bark of Annona cuneata Oliv.

    PubMed

    Khallouki, Farid; Haubner, Roswitha; Ulrich, Cornelia M; Owen, Robert W

    2011-11-01

    The root bark of Annona cuneata Oliv. is traditionally used in the Democratic Republic of Congo to treat several debilitating conditions, such as hernia, female sterility, sexual asthenia, and parasitic infections. However, little is known about the composition of the secondary plant substances, which may contribute to these traditional medicinal effects. We conducted an ethnobotanical study and then evaluated the composition of the secondary plant substances in extracts of the root bark by using spectroscopic methods. After delipidation, the root bark was lixiviated in methanol, and components in the extract were studied by gas chromatography-mass spectometry, high-performance liquid chromatography (HPLC)-electrospray ionization-MS and nano-electrospray ionization-MS-MS. These methods identified 13 secondary plant substances (almost exclusively phenolic compounds): p-hydroxybenzaldehyde (I), vanillin (II), tyrosol (III), 3,4-dihydroxybenzaldehyde (IV), p-hydroxybenzoic acid (V), vanillyl alcohol (VI), syringaldehyde (VII), 4-hydroxy-3-methoxyphenylethanol (VIII), vanillic acid (IX), 3,4-dihydroxybenzoic acid (X), syringic acid (XI), and ferulic acid (XII), along with the phytosterol squalene (XIII). In the HPLC-based hypoxanthine/xanthine oxidase antioxidant assay system, the methanolic extract exhibited potent antioxidant capacity, with a 50% inhibitory concentration of 72 μL, equivalent to 1.38 mg/mL of raw extract. Thus, a methanol extract of A. cuneata Oliv. contained a range of polyphenolic compounds, which may be partly responsible for its known traditional medicinal effects. More detailed studies on the phytochemistry of this important plant species are therefore warranted.

  4. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    PubMed

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  5. Medium's conductivity and stage of growth as crucial parameters for efficient hydrocarbon extraction by electric field from colonial micro-algae.

    PubMed

    Guionet, Alexis; Hosseini, Bahareh; Akiyama, Hidenori; Hosano, Hamid

    2018-04-25

    The green algae Botryococcus braunii produces a high amount of extracellular hydrocarbon, making it a promising algae in the field of bio-fuels production. As it mainly produces squalene like hydrocarbons, cosmetic industries are also interested in its milking. Pulsed electric fields (PEF) are an innovative method allowing oil extraction from micro-algae. In common algae accumulating hydrocarbon inside cytoplasm (Chlorella vulgaris, Nannochloropsis sp., etc), electric fields can destroy cell membranes, allowing the release of hydrocarbon. However, for B.braunii, hydrocarbons adhere to the cell wall outside of cells as a matrix. In a previous article we reported that electric fields can unstick cells from a matrix, allowing hydrocarbon harvesting. In this work, we deeper investigated this phenomenon of cell hatching by following 2 parameters: the conductivity of the medium and the cultivation duration of the culture. Cell hatching is accurately evaluated by both microscopic and macroscopic observations. For high conductivity and a short time of cultivation, almost no effect is observed even after up to 1000 PEF pulses are submitted to the cells. While lower conductivity and a longer cultivation period allow strong cell hatching after 200 PEF pulses are applied to the cells. We identify 2 new crucial parameters, able to turn the method from inefficient to very efficient. It might help companies to save energy and money in case of mass production. Copyright © 2018. Published by Elsevier B.V.

  6. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  7. Paraquat exposure-induced Parkinson's disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy.

    PubMed

    Soares, Jefferson J; Rodrigues, Daniela T; Gonçalves, Mayara B; Lemos, Maurício C; Gallarreta, Mariana S; Bianchini, Matheus C; Gayer, Mateus C; Puntel, Robson L; Roehrs, Rafael; Denardin, Elton L G

    2017-11-01

    Extracts from the leaves of Bougainvillea glabra Choisy are used in traditional medicines, but their actions on the central nervous system have not been studied. In the present study, we investigated the potential neuroprotective effects of Bougainvillea glabra Choisy leaf extract (BG extract) against paraquat (PQ)-induced neurotoxicity. Male adult wild-type flies (1- 4days old) were exposed to PQ (3.5mM) and/or BG extract (120μg/mL) through food for 4days. PQ-fed flies had decreased locomotor capacity in negative geotaxis and crossing number assays and had a higher incidence of mortality than the control group. PQ neurotoxicity was also associated with a marked decrease in dopamine levels and increase in acetylcholinesterase (AChE) activity, reactive oxygen species (ROS) production and lipid peroxidation. Co-exposure to BG extract prevented mortality, and dopamine depletion, improved locomotor performance and decreased AChE activity, ROS production and lipid peroxidation. GC-MS and HPLC analyses of BG extract revealed the presence of many antioxidant compounds such as phytol, α,γ-tocopherol, squalene, stigmasterol, geranylgeraniol, quercetin, and caffeic, vanillic, coumaric, ferulic acids. Our results showed neuroprotective effects of BG extract, reflecting the presence of antioxidant compounds. Thus, we suggested that B. glabra leaves could be considered an effective agent in the prevention of neurological disorders, where dopamine depletion and/or oxidative stress are involved, as in Parkinson's disease (PD). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. A mathematical model of the mevalonate cholesterol biosynthesis pathway.

    PubMed

    Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J

    2018-04-14

    We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    PubMed Central

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  10. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast1[C][W][OA

    PubMed Central

    Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.

    2012-01-01

    Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683

  11. Characterization of nonpolar lipids and selected steroids by using laser-induced acoustic desorption/chemical ionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-03-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) upon reaction with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusivelymore » the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids.« less

  12. Study of supercritical CO2 extraction of tamarillo (Cyphomandra Betacea) seed oil containing high added value compounds.

    PubMed

    Dorado Achicanoy, Daniela; Hurtado Benavides, Andrés; Martínez-Correa, Hugo A

    2018-04-16

    In the present investigation, the extraction of tamarillo seed oil was conducted using supercritical carbon dioxide (SC-CO2), under different conditions of pressure (20-38.1 MPa) and temperature (40-64°C). In order to determine the effect that these extraction parameters have over the yield and composition of the oil, a central composite design was used. The optimum yield was 21.07% obtained at 38.1 MPa and 64°C. The fatty acids of the tamarillo seed oil obtained with SC-CO2 were identified: linoleic (70.12%), oleic (16.18%), palmitic (9.68%), stearic (2.12%), linolenic (1.70%), and palmitoleic (0.23%). Other components, such as squalene (2.96-19.75 mg/mL), β-sitosterol (2.05-3.68 mg/mL), cycloartenol (1,23-2.81 mg/mL) dihydrolanosterol (0.28-0.70 mg/mL) sterols and γ-tocopherol (0.89-2.10 mg/mL) were also noted. The extraction kinetic was studied at 27.5 MPa -50°C and 38.1 MPa -64°C. The semi-empirical model of Sovová et al. [24] described 99.21% of the experimental behavior of extraction kinetics. High yields of tamarillo seed oil, as well as its unique composition of unsaturated fatty acids and minor components, show the potential for its application in the food, cosmetic, and pharmaceutical industries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C

    2016-05-01

    Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink.

  14. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences

    PubMed Central

    Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C.

    2016-01-01

    Purpose Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Methods Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. Results The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Conclusions Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink. PMID:27145473

  15. Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1.

    PubMed

    Andrade, Paola; Manzano, David; Ramirez-Estrada, Karla; Caudepon, Daniel; Arro, Montserrat; Ferrer, Albert; Phillips, Michael A

    2018-02-01

    The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 μg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} formore » fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.« less

  17. [Autoimmune/infl ammatory syndrome induced by adjuvants, ASIA].

    PubMed

    Stolarczyk, Jędrzej; Kubiś, Marek; Brzosko, Marek

    There have been many cases of the appearance of autoantibodies and symptoms of disease after exposure to adjuvants, not only after breast augmentation with silicone implants, but also as a very rare vaccination side effect, such as Gulf war syndrome or macrophagic myofasciitis syndrome. Diseases whose symptoms developed after such adjuvant exposure are called autoimmune/ inlammatory syndrome induced by adjuvants (ASIA). The group of adjuvants includes not only silicone implants, silica, squalen and aluminium, but also ink components used for making tattoos. Analyzing the available reports on the inluence of adjuvants on the development of autoimmune diseases, the conclusion is that apart from long -term silicone exposure, the coexistence of other factors such as genetic or environmental is also necessary. Metaanalyses clearly do not conirm an increased risk of developing autoimmune disease after breast augmentation with silicone implants, or tattooing, but it seems that among these patients there is a group that is more predestined to develop disease symptoms. In the general population the beneits of vaccination are obvious, and the risk of severe adverse events following immunisation is incomparably lower than the risk of developing a speciic disease and its complications, also for patients with diagnosed autoimmune diseases. Because of data heterogeneity in previous studies and dificulties in diagnosing ASIA it seems necessary to conduct further analyses of adjuvants’ inluence on autoimmune disease development, and to reine ASIA diagnostic criteria, which now allow too easy a diagnosis of this syndrome.

  18. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    PubMed

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  19. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  20. Repositioning Of Tak-475 In Mevalonate Kinase Disease: Translating Theory Into Practice.

    PubMed

    Marcuzzi, Annalisa; Loganes, Claudia; Celeghini, Claudio; Kleiner, Giulio

    2017-09-11

    Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK), due to a mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects lead to a complex multisystem inflammatory and metabolic syndrome. Although biologic therapies aimed at blocking the inflammatory cytokine interleukin-1 (IL-1) can significantly reduce inflammation, they cannot completely control the clinical symptoms that affects the nervous system. For this reason, MKD can still be considered an orphan drug disease. Cellular models for MKD can be obtained by biochemical inhibition of mevalonate-derived isoprenoids. Of note, these cells present an exaggerated response to inflammatory stimuli that can be reduced by treatment with zaragozic acid, an inhibitor of squalene synthase (SQS) able to increase the availability of isoprenoids intermediates upstream the enzymatic block. A similar action might be obtained by lapaquistat acetate (TAK-475, Takeda), a drug that underwent extensive clinical trials as a cholesterol lowering agent 10 years ago, with a good safety profile. Here we describe the preclinical evidence supporting the possible repositioning of TAK-475 from its originally intended use to the treatment of MKD and discuss its potential to modulate the mevalonate pathway in inflammatory diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Consequences of urban pollution upon skin status. A controlled study in Shanghai area.

    PubMed

    Lefebvre, M-A; Pham, D-M; Boussouira, B; Qiu, H; Ye, C; Long, X; Chen, R; Gu, W; Laurent, A; Nguyen, Q-L

    2016-06-01

    After preliminary studies aimed at measuring pertinent biochemical parameters, potentially modified in subjects exposed to bad environmental conditions, a dedicated study was performed in Shanghai city to evaluate the effect of Urban pollution upon human skin and to collect feedback from the volunteers under study. This study was performed during summer 2008 in two different districts of Shanghai, on 159 local residents: 79 subjects from Xu Jia Hui (a centre Shanghainese area), more exposed to pollution, and 80 subjects from Chong Ming, an agricultural region closely located north of Shanghai (<100 kms) and less exposed to pollution, according to official data. Biochemical parameters were measured on skin, and feedback from volunteers was collected through a graduated 'Likert scale' questionnaire under a point scale (strongly agree, agree, disagree, strongly disagree and none). The study demonstrated significant differences in several biochemical parameters measured in Chong Ming area, as compared to Urban area, with an increased ratio of squalene/lipids, a lower level of lactic acid and a better cohesion of stratum corneum. Both sebum excretion rate and sebum casual levels did not differ between the two districts. The volunteer's feedback evidenced a perceived link between pollution and their skin problems. This study demonstrated a significant impact of the pollution upon the skin status, as illustrated by changes in superficial biochemical parameters and volunteers' perception. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Antibody responses to natural influenza A/H1N1/09 disease or following immunization with adjuvanted vaccines, in immunocompetent and immunocompromised children.

    PubMed

    Meier, Sara; Bel, Michael; L'huillier, Arnaud; Crisinel, Pierre-Alex; Combescure, Christophe; Kaiser, Laurent; Grillet, Stéphane; Pósfay-Barbe, Klara; Siegrist, Claire-Anne

    2011-04-27

    To compare antibody responses elicited by influenza A/H1N1/09 disease and immunization with adjuvanted vaccines, in immunocompetent or immunocompromised children. Prospective parallel cohort field study enrolling children with confirmed influenza A/H1N1/09 disease or immunized with 1 (immunocompetent) or 2 (immunocompromised) doses of influenza A/H1N1/09 squalene-based AS03- or MF59-adjuvanted vaccines. Antibody geometric mean titers (GMT) were measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays 4-6 weeks after vaccination/disease. Vaccine adverse events were self-recorded in a 7-day diary. Antibody titers were as high in 48 immunocompetent children after a single immunization (HAI and MN seroprotection rates: 98%; HAI-GMT: 395, MN-GMT: 370) as in 51 convalescent children (seroprotection rates: 98% (HAI) and 92% (MN); GMT: 350 (HAI) and 212 (MN). Twenty-seven immunocompromised children reached slightly lower seroprotection rates (HAI: 89%, MN: 85%) but similar antibody titers (HAI-GMT: 306, MN-GMT: 225) after 2 immunizations. Adverse events increased with age (P=0.01) and were more frequent with Pandemrix® than Focetria® (P=0.03). Similarly high seroresponses may be expected in immunocompetent children after a single dose of adjuvanted vaccines as responses of convalescent children. Two vaccine doses were sufficient for most immunocompromised children. NCT0102293 and NCT01022905. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Modeling for influenza vaccines and adjuvants profile for safety prediction system using gene expression profiling and statistical tools

    PubMed Central

    Sasaki, Eita; Momose, Haruka; Hiradate, Yuki; Furuhata, Keiko; Takai, Mamiko; Asanuma, Hideki; Ishii, Ken J.

    2018-01-01

    Historically, vaccine safety assessments have been conducted by animal testing (e.g., quality control tests and adjuvant development). However, classical evaluation methods do not provide sufficient information to make treatment decisions. We previously identified biomarker genes as novel safety markers. Here, we developed a practical safety assessment system used to evaluate the intramuscular, intraperitoneal, and nasal inoculation routes to provide robust and comprehensive safety data. Influenza vaccines were used as model vaccines. A toxicity reference vaccine (RE) and poly I:C-adjuvanted hemagglutinin split vaccine were used as toxicity controls, while a non-adjuvanted hemagglutinin split vaccine and AddaVax (squalene-based oil-in-water nano-emulsion with a formulation similar to MF59)-adjuvanted hemagglutinin split vaccine were used as safety controls. Body weight changes, number of white blood cells, and lung biomarker gene expression profiles were determined in mice. In addition, vaccines were inoculated into mice by three different administration routes. Logistic regression analyses were carried out to determine the expression changes of each biomarker. The results showed that the regression equations clearly classified each vaccine according to its toxic potential and inoculation amount by biomarker expression levels. Interestingly, lung biomarker expression was nearly equivalent for the various inoculation routes. The results of the present safety evaluation were confirmed by the approximation rate for the toxicity control. This method may contribute to toxicity evaluation such as quality control tests and adjuvant development. PMID:29408882

  4. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-01-01

    Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.

  5. Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi

    2017-05-15

    This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Developmentally Regulated Sesquiterpene Production Confers Resistance to Colletotrichum gloeosporioides in Ripe Pepper Fruits

    PubMed Central

    Im, Soonduk; Han, Yun-Jeong; Lee, Sungbeom; Back, Kyoungwhan; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits. PMID:25286411

  7. Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?

    PubMed Central

    Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana

    2015-01-01

    Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages. PMID:26625350

  8. Health-promoting effects of red palm oil: evidence from animal and human studies.

    PubMed

    Loganathan, Radhika; Subramaniam, Kanthimathi M; Radhakrishnan, Ammu K; Choo, Yuen-May; Teng, Kim-Tiu

    2017-02-01

    The fruit of the oil palm tree (Elaeis guineesis) is the source of antioxidant-rich red palm oil. Red palm oil is a rich source of phytonutrients such as tocotrienols, tocopherols, carotenoids, phytosterols, squalene, and coenzyme Q10, all of which exhibit nutritional properties and oxidative stability. Mutagenic, nutritional, and toxicological studies have shown that red palm oil contains highly bioavailable β-carotene and vitamin A and is reasonably stable to heat without any adverse effects. This review provides a comprehensive overview of the nutritional properties of red palm oil. The possible antiatherogenic, antihemorrhagic, antihypertensive, anticancer, and anti-infective properties of red palm oil are examined. Moreover, evidence supporting the potential effectiveness of red palm oil to overcome vitamin A deficiency in children and pregnant women, to improve ocular complications of vitamin A deficiency, to protect against ischemic heart disease, to promote normal reproduction in males and females, to aid in the management of diabetes, to ameliorate the adverse effects of chemotherapy, and to aid in managing hypobaric conditions is presented. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use, please contact journals.permissions@oup.com.

  9. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-02-01

    Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 μg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress.

    PubMed

    Singh, Ruchi; Gupta, Pankhuri; Khan, Furqan; Singh, Susheel Kumar; Sanchita; Mishra, Tripti; Kumar, Anil; Dhawan, Sunita Singh; Shirke, Pramod Arvind

    2018-07-01

    In general medicinal plants grown under water limiting conditions show much higher concentrations of secondary metabolites in comparison to control plants. In the present study, Withania somnifera plants were subjected to water stress and data related to drought tolerance phenomenon was collected and a putative mechanistic concept considering growth responses, physiological behaviour, and metabolite content and gene expression aspects is presented. Drought induced metabolic and physiological responses as well as drastic decrease in CO 2 uptake due to stomatal limitations. As a result, the consumption of reduction equivalents (NADPH 2+ ) for CO 2 assimilation via the calvin cycle declines significantly resulting in the generation of a large oxidative stress and an oversupply of antioxidant enzymes. Drought also results in the shifting of metabolic processes towards biosynthetic activities that consume reduction equivalents. Thus, biosynthesis of reduced compounds (isoprenoids, phenols and alkaloids) is enhanced. The dynamics of various metabolites have been discussed in the light of gene expression analysis of control and drought treated leaves. Gene encoding enzymes of pathways leading to glucose, fructose and fructan production, conversion of triose phosphates to hexoses and hexose phosphorylation were up-regulated in the drought stressed leaves. The down-regulated Calvin cycle genes were co-ordinately regulated with the down-regulation of chloroplast triosephosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Expression of gene encoding Squalene Synthase (SQS) was highly upregulated under drought stress which is responsible for the diversion of carbon flux towards withanolides biosynthesis from isoprenoid pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil.

  12. Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific Ocean.

    PubMed

    Kharbush, Jenan J; Kejriwal, Kanchi; Aluwihare, Lihini I

    2016-02-01

    Hopanoids are bacterial membrane lipid biomarker molecules that feature prominently in the molecular fossil record. In the modern marine water column, recent reports implicate bacteria inhabiting low-oxygen environments as important sources of hopanoids to marine sediments. However, the preliminary biogeography reported by recent studies and the environmental conditions governing such distributions can only be confirmed when the numerical abundance of these organisms is known with more certainty. In this study, we employ two different approaches to examine the quantitative significance of phylogenetically distinct hopanoid producers in low-oxygen environments. First, we develop a novel quantitative PCR (qPCR) assay for the squalene hopene cyclase (sqhC) gene, targeting a subset of hopanoid producers previously identified to be important in the eastern North Pacific Ocean. The results represent the first quantitative gene abundance data of any kind for hopanoid producers in the marine water column and show that these putative alphaproteobacterial hopanoid producers are rare, comprising at most 0.2 % of the total bacterial community in our samples. Second, a complementary analysis of existing low-oxygen metagenomic datasets further examined the generality of the qPCR observation. We find that the dominant sqhC sequences in these metagenomic datasets are associated with phyla such as Nitrospinae rather than Proteobacteria, consistent with the qPCR finding that alphaproteobacterial hopanoid producers are not very abundant in low-oxygen environments. In fact, positive correlations between sqhC gene abundance and environmental parameters in these samples identify nitrite availability as a potentially important factor in the ecology of hopanoid producers that dominate low-oxygen environments.

  13. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  14. De novo assembly and comparative analysis of root transcriptomes from different varieties of Panax ginseng C. A. Meyer grown in different environments.

    PubMed

    Zhen, Gang; Zhang, Lei; Du, YaNan; Yu, RenBo; Liu, XinMin; Cao, FangRui; Chang, Qi; Deng, XingWang; Xia, Mian; He, Hang

    2015-11-01

    Panax ginseng C. A. Meyer is an important traditional herb in eastern Asia. It contains ginsenosides, which are primary bioactive compounds with medicinal properties. Although ginseng has been cultivated since at least the Ming dynasty to increase production, cultivated ginseng has lower quantities of ginsenosides and lower disease resistance than ginseng grown under natural conditions. We extracted root RNA from six varieties of fifth-year P. ginseng cultivars representing four different growth conditions, and performed Illumina paired-end sequencing. In total, 163,165,706 raw reads were obtained and used to generate a de novo transcriptome that consisted of 151,763 contigs (76,336 unigenes), of which 100,648 contigs (66.3%) were successfully annotated. Differential expression analysis revealed that most differentially expressed genes (DEGs) were upregulated (246 out of 258, 95.3%) in ginseng grown under natural conditions compared with that grown under artificial conditions. These DEGs were enriched in gene ontology (GO) terms including response to stimuli and localization. In particular, some key ginsenoside biosynthesis-related genes, including HMG-CoA synthase (HMGS), mevalonate kinase (MVK), and squalene epoxidase (SE), were upregulated in wild-grown ginseng. Moreover, a high proportion of disease resistance-related genes were upregulated in wild-grown ginseng. This study is the first transcriptome analysis to compare wild-grown and cultivated ginseng, and identifies genes that may produce higher ginsenoside content and better disease resistance in the wild; these genes may have the potential to improve cultivated ginseng grown in artificial environments.

  15. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    PubMed

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  16. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

    PubMed Central

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B.

    2009-01-01

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis. PMID:19416849

  17. Clinical Trichophyton rubrum Strain Exhibiting Primary Resistance to Terbinafine

    PubMed Central

    Mukherjee, Pranab K.; Leidich, Steven D.; Isham, Nancy; Leitner, Ingrid; Ryder, Neil S.; Ghannoum, Mahmoud A.

    2003-01-01

    The in vitro antifungal susceptibilities of six clinical Trichophyton rubrum isolates obtained sequentially from a single onychomycosis patient who failed oral terbinafine therapy (250 mg/day for 24 weeks) were determined by broth microdilution and macrodilution methodologies. Strain relatedness was examined by random amplified polymorphic DNA (RAPD) analyses. Data obtained from both broth micro- and macrodilution assays were in agreement and revealed that the six clinical isolates had greatly reduced susceptibilities to terbinafine. The MICs of terbinafine for these strains were >4 μg/ml, whereas they were <0.0002 μg/ml for the susceptible reference strains. Consistent with these findings, the minimum fungicidal concentrations (MFCs) of terbinafine for all six strains were >128 μg/ml, whereas they were 0.0002 μg/ml for the reference strain. The MIC of terbinafine for the baseline strain (cultured at the initial screening visit and before therapy was started) was already 4,000-fold higher than normal, suggesting that this is a case of primary resistance to terbinafine. The results obtained by the broth macrodilution procedure revealed that the terbinafine MICs and MFCs for sequential isolates apparently increased during the course of therapy. RAPD analyses did not reveal any differences between the isolates. The terbinafine-resistant isolates exhibited normal susceptibilities to clinically available antimycotics including itraconazole, fluconazole, and griseofulvin. However, these isolates were fully cross resistant to several other known squalene epoxidase inhibitors, including naftifine, butenafine, tolnaftate, and tolciclate, suggesting a target-specific mechanism of resistance. This is the first confirmed report of terbinafine resistance in dermatophytes. PMID:12499173

  18. A Novel Approach to Enhancing Ganoderic Acid Production by Ganoderma lucidum Using Apoptosis Induction

    PubMed Central

    You, Bang-Jau; Lee, Miin-Huey; Tien, Ni; Lee, Meng-Shiou; Hsieh, Hui-Chuan; Tseng, Lin-Hsien; Chung, Yu-Lin; Lee, Hong-Zin

    2013-01-01

    Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi. PMID:23326470

  19. Interactions of Lipoidal Materials and a Pyridazinone Inhibitor of Chloroplast Development

    PubMed Central

    Hilton, J. L.; John, J. B. St.; Christiansen, M. N.; Norris, K. H.

    1971-01-01

    Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol. PMID:16657757

  20. Psychotria viridis: Chemical constituents from leaves and biological properties.

    PubMed

    Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A

    2017-01-01

    The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.

  1. Identification and expression analysis of leptin-regulated immediate early response and late target genes.

    PubMed

    Waelput, W; Verhee, A; Broekaert, D; Eyckerman, S; Vandekerckhove, J; Beattie, J H; Tavernier, J

    2000-05-15

    Using PC12 cells as an in vitro model system, we have identified a series of transcripts induced through activation of the leptin receptor. On the basis of kinetic studies, two distinct gene sets could be discerned: signal transducer and activator of transciption-3 (STAT-3), suppressor of cytokine signalling-3 (SOCS-3), MT-II (metallothionein-II), the serine/threonine kinase fibroblast-growth-factor-inducible kinase (Fnk) and modulator recognition factor (MRF-1), which are immediate early response genes, and pancreatitis-associated protein I (PAP I), squalene epoxidase, uridine diphosphate glucuronosyltransferase and annexin VIII, which are late induced target genes. At late time points a strong co-stimulation with beta-nerve growth factor or with the adenylate cyclase activator forskolin was observed. To assess the validity of the PC12-cell model system, we examined the effect of leptin administration on the gene transcription of STAT-3, MT-II, Fnk and PAP I in vivo. Leptin treatment of leptin-deficient ob/ob mice increased the STAT-3, SOCS-3, MT-II and Fnk mRNA, and MT-I protein levels in liver, whereas, in jejunum, expression of PAP I mRNA was down-regulated. Furthermore, administration of leptin to starved wild-type mice enhanced the expression of MT-II and Fnk mRNA in liver, but decreased MT-II and PAP I mRNA expression in jejunum. These findings may help to explain the obese phenotype observed in some colonies of MT-I- and MT-II-null mice and/or the observation that leptin protects against tumour-necrosis-factor toxicity in vivo.

  2. The mevalonate pathway in neurons: It's not just about cholesterol.

    PubMed

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current.

    PubMed

    Kharbush, Jenan J; Ugalde, Juan A; Hogle, Shane L; Allen, Eric E; Aluwihare, Lihini I

    2013-12-01

    Hopanoids are pentacyclic triterpenoid lipids produced by many prokaryotes as cell membrane components. The structural variations of composite hopanoids, or bacteriohopanepolyols (BHPs), produced by various bacterial genera make them potentially useful molecular biomarkers of bacterial communities and metabolic processes in both modern and ancient environments. Building on previous work suggesting that organisms in low-oxygen environments are important contributors to BHP production in the marine water column and that there may be physiological roles for BHPs specific to these environments, this study investigated the relationship between trends in BHP structural diversity and abundance and the genetic diversity of BHP producers for the first time in a low-oxygen environment of the Eastern Tropical North Pacific. Amplification of the hopanoid biosynthesis gene for squalene hopene cyclase (sqhC) indicated far greater genetic diversity than would be predicted by examining BHP structural diversity alone and that greater sqhC genetic diversity exists in the marine environment than is represented by cultured representatives and most marine metagenomes. In addition, the genetic relationships in this data set suggest microaerophilic environments as potential "hot spots" of BHP production. Finally, structural analysis of BHPs showed that an isomer of the commonly observed BHP bacteriohopanetetrol may be linked to a producer that is more abundant in low-oxygen environments. Results of this study increase the known diversity of BHP producers and provide a detailed phylogeny with implications for the role of hopanoids in modern bacteria, as well as the evolutionary history of hopanoid biosynthesis, both of which are important considerations for future interpretations of the marine sedimentary record.

  4. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    PubMed

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  5. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum.

    PubMed

    Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S

    2015-09-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum

    PubMed Central

    Cardoza, R. E.; McCormick, S. P.; Malmierca, M. G.; Olivera, E. R.; Alexander, N. J.; Monte, E.

    2015-01-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. PMID:26150463

  7. Apolipoprotein B antisense inhibition--update on mipomersen.

    PubMed

    Gebhard, Catherine; Huard, Gabriel; Kritikou, Ekaterini A; Tardif, Jean-Claude

    2013-01-01

    Dyslipidemia is one of the main risk factors leading to cardiovascular disease (CVD). The standard of therapy, administration of statins, in conjunction with lifestyle and habit changes, can improve high cholesterol levels in the majority of patients. However, some patients with familial hypercholesterolemia (FH) need low-density-lipoprotein cholesterol (LDL-C) apheresis, as the available medications fail to reduce LDL-C levels sufficiently even at maximum doses. Intense research on cholesterol reducing agents and rapid progress in drug design have yielded many approaches that reduce cholesterol absorption or inhibit its synthesis. Antisense oligonucleotides (ASOs) targeting the production of apolipoprotein B-100 (apoB-100), inhibitors of proprotein convertase subtilisin/kexin type 9, microsomal triglyceride transfer protein inhibitors, squalene synthase inhibitors, peroxisome proliferator-activated receptor agonists, and thyroid hormone receptor agonists are some of the evolving approaches for lipid-lowering therapies. We provide an overview of the apoB ASO approach and its potential role in the management of dyslipidemia. Mipomersen (ISIS-301012, KYNAMRO™) is a synthetic ASO targeting the mRNA of apoB-100, which is an essential component of LDL particles and related atherogenic lipoproteins. ASOs bind to target mRNAs and induce their degradation thereby resulting in reduced levels of the corresponding protein levels. Mipomersen has been investigated in different indications including homozygous and heterozygous FH, as well as in high-risk hypercholesterolemic patients. Recent phase II and III clinical studies have shown a 25-47% reduction in LDL-C levels in mipomersen-treated patients. If future studies continue to show such promising results, mipomersen would likely be a viable additional lipid-lowering therapy for high-risk populations.

  8. Farnesyl Pyrophosphate Inhibits Epithelialization and Wound Healing through the Glucocorticoid Receptor*

    PubMed Central

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H.; Tomic-Canic, Marjana

    2010-01-01

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing. PMID:19903814

  9. Fast, sensitive, and selective gas chromatography tandem mass spectrometry method for the target analysis of chemical secretions from femoral glands in lizards.

    PubMed

    Sáiz, Jorge; García-Roa, Roberto; Martín, José; Gómara, Belén

    2017-09-08

    Chemical signaling is a widespread mode of communication among living organisms that is used to establish social organization, territoriality and/or for mate choice. In lizards, femoral and precloacal glands are important sources of chemical signals. These glands protrude chemical secretions used to mark territories and also, to provide valuable information from the bearer to other individuals. Ecologists have studied these chemical secretions for decades in order to increase the knowledge of chemical communication in lizards. Although several studies have focused on the chemical analysis of these secretions, there is a lack of faster, more sensitive and more selective analytical methodologies for their study. In this work a new GC coupled to tandem triple quadrupole MS (GC-QqQ (MS/MS)) methodology is developed and proposed for the target study of 12 relevant compounds often found in lizard secretions (i.e. 1-hexadecanol, palmitic acid, 1-octadecanol, oleic acid, stearic acid, 1-tetracosanol, squalene, cholesta-3,5-diene, α-tocopherol, cholesterol, ergosterol and campesterol). The method baseline-separated the analytes in less than 7min, with instrumental limits of detection ranging from 0.04 to 6.0ng/mL. It was possible to identify differences in the composition of the samples from the lizards analyzed, which depended on the species, the habitat occupied and the diet of the individuals. Moreover, α-tocopherol has been determined for the first time in a lizard species, which was thought to lack its expression in chemical secretions. Globally, the methodology has been proven to be a valuable alternative to other published methods with important improvements in terms of analysis time, sensitivity, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparative energetics of carbon storage molecules in green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKie-Krisberg, Zaid M.; Laurens, Lieve M. L.; Huang, Andy

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30).more » We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.« less

  11. Comparative energetics of carbon storage molecules in green algae

    DOE PAGES

    McKie-Krisberg, Zaid M.; Laurens, Lieve M. L.; Huang, Andy; ...

    2018-02-28

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30).more » We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.« less

  12. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n -butanol fraction was the best in improving liver biochemical parameters followed by the n -hexane fraction. However, serum lipid parameters were best improved with CHCl 3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O- α -l-arabinopyranosyl- β -d-glucopyranoside]-(2 E ,6 E -)-farnesol ( 6 ) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene ( 9 ), in addition to eight compounds reported here for the first time from the genus Albizia ; two benzyl glycosides, benzyl 1-O- β -d-glucopyranoside ( 1 ) and benzyl 6-O- α -l-arabinopyranosyl β -d-glucopyranoside ( 2 ); three acyclic monoterpene glycosides, linalyl β -d-glucopyranoside ( 3 ) and linalyl 6-O- α -l-arabinopyranosyl- β -d-glucopyranoside ( 4 ); (2 E )-3,7-dimethylocta-2,6-dienoate-6-O- α -l arabinopyranosyl- β -d-glucopyranoside ( 5 ), two oligoglycosides, n -hexyl- α -l arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (creoside) ( 7 ) and n -octyl α -l-arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (rhodiooctanoside) ( 8 ); and ethyl fructofuranoside ( 10 ). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  13. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  14. Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study.

    PubMed

    Lohan, Silke B; Müller, Robert; Albrecht, Stephanie; Mink, Kathrin; Tscherch, Kathrin; Ismaeel, Fakher; Lademann, Jürgen; Rohn, Sascha; Meinke, Martina C

    2016-05-01

    Sunlight represents an exogenous factor stimulating formation of free radicals which can induce cell damage. To assess the effect of the different spectral solar regions on the development of free radicals in skin, in vivo electron paramagnetic resonance (EPR) investigations with human volunteers and ex vivo studies on excised human and porcine skin were carried out. For all skin probes, the ultraviolet (UV) spectral region stimulates the most intensive radical formation, followed by the visible (VIS) and the near infrared (NIR) regions. A comparison between the different skin models shows that for UV light, the fastest and highest production of free radicals could be detected in vivo, followed by excised porcine and human skin. The same distribution pattern was found for the VIS/NIR spectral regions, whereby the differences in radical formation between in vivo and ex vivo were less pronounced. An analysis of lipid composition in vivo before and after exposure to UV light clearly showed modifications in several skin lipid components; a decrease of ceramide subclass [AP2] and an increase of ceramide subclass [NP2], sodium cholesterol sulphate and squalene (SQ) were detectable. In contrast, VIS/NIR irradiation led to an increase of ceramides [AP2] and SCS, and a decrease of SQ. These results, which are largely comparable for the different skin models investigated in vivo and ex vivo, indicate that radiation exposure in different spectral regions strongly influences radical production in skin and also results in changes in skin lipid composition, which is essential for barrier function. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Evaluation of the impact of urban pollution on the quality of skin: a multicentre study in Mexico.

    PubMed

    Lefebvre, M-A; Pham, D-M; Boussouira, B; Bernard, D; Camus, C; Nguyen, Q-L

    2015-06-01

    After pilot and preliminary studies aimed at identifying pertinent biochemical parameters, a multicenter clinical study was performed to evaluate the effect of pollution on human skin. The clinical study was performed in collaboration with the 'Centre Régional de lutte contre le cancer de Montpellier' and the 'National Institute of Public Health of Mexico' on 96 subjects in Mexico City (exposed to pollution) and 93 subjects in Cuernavaca (less exposed to pollution). Both biochemical and clinical skin parameters were studied. The study demonstrated significant quantitative and qualitative modifications of parameters related to sebum excretion in Mexico City compared to Cuernavaca one: An increased level of sebum excretion rate, a lower level of vitamin E and squalene in sebum, an increase of lactic acid and a higher erythematous index on the face of the subjects. In the stratum corneum, a significant higher level of carbonylated proteins and a lower level of IL 1α were noticed, as well as a decrease of ATP concentration with a decrease of chymotrysin like activity, without modifications of corneodesmosin content and trypsin like activity. From a clinical point of view, a higher frequency of atopic and urticarial skins, a higher frequency of red dermographism, an important seborrheic status at the forehead level and a lower level of dandruffs were noted in Mexico City population. The analysis taking into account the sex does not modify the observed results. The study demonstrated an important impact of polluted environmental conditions on skin quality, evidencing important modifications of superficial biochemical parameters. The cause/effects relationships of these modifications remain, however, to be further assessed by a complementary in vitro/in vivo approaches. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children.

    PubMed

    Stassijns, Jorgen; Bollaerts, Kaatje; Baay, Marc; Verstraeten, Thomas

    2016-02-03

    New adjuvants such as the AS- or the MF59-adjuvants improve vaccine efficacy and facilitate dose-sparing. Their use in influenza and malaria vaccines has resulted in a large body of evidence on their clinical safety in children. We carried out a systematic search for safety data from published clinical trials on newly adjuvanted vaccines in children ≤10 years of age. Serious adverse events (SAEs), solicited AEs, unsolicited AEs and AEs of special interest were evaluated for four new adjuvants: the immuno-stimulants containing adjuvant systems AS01 and AS02, and the squalene containing oil-in-water emulsions AS03 and MF59. Relative risks (RR) were calculated, comparing children receiving newly adjuvanted vaccines to children receiving other vaccines with a variety of antigens, both adjuvanted and unadjuvanted. Twenty-nine trials were included in the meta-analysis, encompassing 25,056 children who received at least one dose of the newly adjuvanted vaccines. SAEs did not occur more frequently in adjuvanted groups (RR 0.85, 95%CI 0.75-0.96). Our meta-analyses showed higher reactogenicity following administration of newly adjuvanted vaccines, however, no consistent pattern of solicited AEs was observed across adjuvant systems. Pain was the most prevalent AE, but often mild and of short duration. No increased risks were found for unsolicited AEs, febrile convulsions, potential immune mediated diseases and new onset of chronic diseases. Our meta-analysis did not show any safety concerns in clinical trials of the newly adjuvanted vaccines in children ≤10 years of age. An unexplained increase of meningitis in one Phase III AS01-adjuvanted malaria trial and the link between narcolepsy and the AS03-adjuvanted pandemic vaccine illustrate that continued safety monitoring is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of the difference in vehicles on gene expression in the rat liver--analysis of the control data in the Toxicogenomics Project Database.

    PubMed

    Takashima, Kayoko; Mizukawa, Yumiko; Morishita, Katsumi; Okuyama, Manabu; Kasahara, Toshihiko; Toritsuka, Naoki; Miyagishima, Toshikazu; Nagao, Taku; Urushidani, Tetsuro

    2006-05-08

    The Toxicogenomics Project is a 5-year collaborative project by the Japanese government and pharmaceutical companies in 2002. Its aim is to construct a large-scale toxicology database of 150 compounds orally administered to rats. The test consists of a single administration test (3, 6, 9 and 24 h) and a repeated administration test (3, 7, 14 and 28 days), and the conventional toxicology data together with the gene expression data in liver as analyzed by using Affymetrix GeneChip are being accumulated. In the project, either methylcellulose or corn oil is employed as vehicle. We examined whether the vehicle itself affects the analysis of gene expression and found that corn oil alone affected the food consumption and biochemical parameters mainly related to lipid metabolism, and this accompanied typical changes in the gene expression. Most of the genes modulated by corn oil were related to cholesterol or fatty acid metabolism (e.g., CYP7A1, CYP8B1, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, squalene epoxidase, angiopoietin-like protein 4, fatty acid synthase, fatty acid binding proteins), suggesting that the response was physiologic to the oil intake. Many of the lipid-related genes showed circadian rhythm within a day, but the expression pattern of general clock genes (e.g., period 2, arylhydrocarbon nuclear receptor translocator-like, D site albumin promoter binding protein) were unaffected by corn oil, suggesting that the effects are specific for lipid metabolism. These results would be useful for usage of the database especially when drugs with different vehicle control are compared.

  18. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  19. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods.

    PubMed

    Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2018-04-01

    Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    PubMed Central

    Zhang, Li-Wen; Al-Suwayeh, Saleh A; Hung, Chi-Feng; Chen, Chih-Chieh; Fang, Jia-You

    2011-01-01

    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 μm to ∼140 μm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA. PMID:21556344

  1. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    PubMed

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  2. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi

    PubMed Central

    Papademetrio, Daniela; Batlle, Alcira; Martino, Virginia S.; Frank, Fernanda M.; Lombardo, María E.

    2016-01-01

    Trypanosoma cruzi is the causative agent of Chagas’ disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its antiparasitic effect by interacting with hemin, while psilostachyin C interfered with sterol synthesis. PMID:26939119

  3. LemA and Erp Y-like recombinant proteins from Leptospira interrogans protect hamsters from challenge using AddaVax™ as adjuvant.

    PubMed

    Oliveira, Thaís Larré; Schuch, Rodrigo Andrade; Inda, Guilherme Roig; Roloff, Bárbara Couto; Neto, Amilton Clair Pinto Seixas; Amaral, Marta; Dellagostin, Odir Antonio; Hartwig, Daiane Drawanz

    2018-05-03

    Recombinant subunit vaccines have been extensively evaluated as promising alternatives against leptospirosis. Here, we evaluated two proteins in formulations containing the adjuvant AddaVax™ as vaccine candidates for prevention and control of leptospirosis. Recombinant proteins rErp Y-like and rLemA were characterized by ELISA to assess their ability to bind extracellular matrix (ECM) components and fibrinogen. Groups of eight hamsters were immunized intramuscularly with rErp Y-like or rLemA mixed with a squalene-based adjuvant (AddaVax), and then vaccine efficacy was determined in terms of protection against a lethal challenge. The humoral immune response was determined by ELISA, and the evidence of sub-lethal infection was evaluated by histopathology and kidney culture. rLemA protein binds laminin, fibrinogen, and collagen type IV, while rErp Y-like interacts with fibrinogen. Significant protection was achieved for rLemA and rErp Y-like vaccines, which showed 87.5% and 62.5% survivals, respectively. On day 28, the humoral immune response was significantly greater in the vaccine groups as compared to that in the control group, and the response was predominantly based on IgG2/3. The surviving animals showed negative results in culture isolation but presented with tissue lesions in the lungs and kidneys. Cumulatively, our findings suggest that LemA and Erp Y-like proteins act as adhesins and are able to protect against mortality, but not against tissue lesions. Moreover, AddaVax is a novel adjuvant with potential for improving the immunogenicity of leptospiral vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determiningmore » in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.« less

  5. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract.

    PubMed

    Pathomwichaiwat, Thanika; Ochareon, Pannee; Soonthornchareonnon, Noppamas; Ali, Zulfiqar; Khan, Ikhlas A; Prathanturarug, Sompop

    2015-02-03

    The stem of Cissus quadrangularis L. (CQ) is used in traditional medicine to treat bone fractures and swelling. Anti-osteoporotic activity of CQ hexane extract has been reported, but the active compounds in this extract remain unknown. Thus, we aimed to identify the active compounds in CQ hexane extract using bioassay-guided isolation. The CQ hexane extract was fractionated sequentially with benzene, dichloromethane, ethyl acetate, and methanol. The examination of CQ extract and its fractions was guided by bioassays for alkaline phosphatase (ALP) activity during the differentiation of MC3T3-E1 osteoblastic cells. The cells were treated with or without the CQ extract and its fractions for a period of time, and then the stimulatory effect of the alkaline phosphatase enzyme, a bone differentiation marker, was investigated. The compounds obtained were structurally elucidated using spectroscopic techniques and re-evaluated for activity during bone differentiation. A total of 29 compounds were isolated, viz., triterpenes, fatty acid methyl esters, glycerolipids, steroids, phytols, and cerebrosides. Four new dammarane-type triterpenes were isolated for the first time from nature, and this report is the first to identify this group of compounds from the Vitaceae family. Seven compounds, viz., glycerolipids and squalene, stimulated ALP activity at a dose of 10μg/mL. Moreover, the synergistic effect of these compounds on bone formation was demonstrated. This report describes, for the first time, the isolation of active compounds from CQ hexane extract; these active compounds will be useful for the quality control of extracts from this plant used to treat osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia; Cukovic, Daniela; Dombkowski, Alan A.

    2016-01-01

    Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway. PMID:27225895

  7. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  8. Comparative Safety and Efficacy Profile of a Novel Oil in Water Vaccine Adjuvant Comprising Vitamins A and E and a Catechin in Protective Anti-Influenza Immunity

    PubMed Central

    Patel, Sapna; Faraj, Yasser; Duso, Debra K.; Reiley, William W.; Karlsson, Erik A.; Schultz-Cherry, Stacey; Vajdy, Michael

    2017-01-01

    Non-replicating vaccines, such as those based on recombinant proteins, require adjuvants and delivery systems, which have thus far depended on mimicking pathogen danger signals and strong pro-inflammatory responses. In search of a safer and more efficacious alternative, we tested whether vaccinations with influenza recombinant hemagglutinin (HA) mixed with a novel vegetable oil in water emulsion adjuvant (Natural Immune-enhancing Delivery System, NIDS), based on the immune-enhancing synergy of vitamins A and E and a catechin, could protect against intra-nasal challenge with live influenza virus. Vaccinations of inbred Brag Albino strain c (BALB/c) mice, with HA mixed with NIDS compared to other adjuvants, i.e., a squalene oil in water emulsion (Sq. oil), and the Toll Like Receptor 3 (TLR3) agonist Poly (I:C), induced significantly lower select innate pro-inflammatory responses in serum, but induced significantly higher adaptive antibody and splenic T Helper 1 (TH1) or TH2, but not TH17, responses. Vaccinations with NIDS protected against infection, as measured by clinical scores, lung viral loads, and serum hemagglutination inhibition titers. The NIDS exhibited a strong dose sparing effect and the adjuvant action of NIDS was intact in the outbred CD1 mice. Importantly, vaccinations with the Sq. oil, but not NIDS, induced a significantly higher Serum Amyloid P component, an acute phase reactant secreted by hepatocytes, and total serum IgE. Thus, the NIDS may be used as a clinically safer and more efficacious vaccine adjuvant against influenza, and potentially other infectious diseases. PMID:28531130

  9. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury.

    PubMed

    Llacuna, Laura; Fernández, Anna; Montfort, Claudia Von; Matías, Núria; Martínez, Laura; Caballero, Francisco; Rimola, Antoni; Elena, Montserrat; Morales, Albert; Fernández-Checa, José C; García-Ruiz, Carmen

    2011-05-01

    Liver steatosis enhances ischemia/reperfusion (I/R) injury and is considered a primary factor in graft failure after liver transplantation. Although previous reports have shown a role for qualitative steatosis (macrovesicular vs. microvesicular) in hepatic I/R injury, no studies have compared side by side the specific contribution of individual lipids accumulating in fatty liver to I/R damage. We used nutritional and genetic models of micro and macrovesicular fatty livers exhibiting specific lipid profiles to assess their susceptibility to normothermic I/R injury. Unlike choline-deficient (CD) diet-fed mice, characterized by predominant liver triglycerides/free fatty acids (TG/FFA) accumulation, mice fed a cholesterol-enriched (HC) diet, which exhibited enhanced hepatic cholesterol loading in mitochondria, were highly sensitive to I/R-induced liver injury. In vivo two-photon confocal imaging revealed enhanced mitochondrial depolarization and generation of reactive oxygen species following hepatic I/R in HC-fed but not in CD-fed mice, consistent with decreased mitochondrial GSH (mGSH) observed in HC-fed mice. Moreover, ob/ob mice, characterized by increased hepatic TG, FFA, and cholesterol levels, were as sensitive to I/R-mediated liver injury as mice fed the HC diet. Livers from ob/ob mice displayed increased StAR expression and mitochondrial cholesterol accumulation, resulting in mGSH depletion. Interestingly, atorvastatin therapy or squalene synthase inhibition in vivo attenuated StAR overexpression, mitochondrial cholesterol loading, and mGSH depletion, protecting ob/ob mice from I/R-mediated liver injury. Cholesterol accumulation, particularly in mitochondria, sensitizes to hepatic I/R injury, and thus represents a novel target to prevent the enhanced damage of steatotic livers to I/R-mediated damage. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Structural and Functional Analyses of a Sterol Carrier Protein in Spodoptera litura

    PubMed Central

    Xu, Rui; Zheng, Sichun; He, Hongwu; Wan, Jian; Feng, Qili

    2014-01-01

    Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae. PMID:24454688

  11. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease

    PubMed Central

    Jones, Kathryn M.; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C. Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L.; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    ABSTRACT A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies. PMID:27737611

  12. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives

    PubMed Central

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-01-01

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy. PMID:26404323

  13. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    PubMed

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.

  14. Effects of adjuvants for human use in systemic lupus erythematosus (SLE)-prone (New Zealand black/New Zealand white) F1 mice.

    PubMed

    Favoino, E; Favia, E I; Digiglio, L; Racanelli, V; Shoenfeld, Y; Perosa, F

    2014-01-01

    The safety of four different adjuvants was assessed in lupus-prone New Zealand black/New Zealand white (BW)F1 mice. Four groups of mice were injected intraperitoneally with incomplete Freund's adjuvant (IFA), complete Freund's adjuvant (CFA), squalene (SQU) or aluminium hydroxide (ALU). An additional group received plain phosphate-buffered saline (PBS) (UNT group). Mice were primed at week 9 and boosted every other week up to week 15. Proteinuria became detectable at weeks 17 (IFA group), 24 (CFA group), 28 (SQU and ALU groups) and 32 (UNT group). Different mean values were obtained among the groups from weeks 17 to 21 [week 17: one-way analysis of variance (anova) P = 0·016; weeks 18 and 19: P = 0·048; weeks 20 and 21: P = 0·013] being higher in the IFA group than the others [Tukey's honestly significant difference (HSD) post-test P < 0·05]. No differences in anti-DNA antibody levels were observed among groups. Anti-RNP/Sm antibody developed at week 19 in only one CFA-treated mouse. Mean mouse weight at week 18 was lower in the ALU group than the IFA (Tukey's HSD post-test P = 0·04), CFA (P = 0·01) and SQU (P < 0·0001) groups, while the mean weight in the SQU group was higher than in the IFA (P = 0·009), CFA (P = 0·013) and UNT (P = 0·005) groups. The ALU group weight decreased by almost half between weeks 29 and 31, indicating some toxic effect of ALU in the late post-immunization period. Thus, SQU was the least toxic adjuvant as it did not (i) accelerate proteinuria onset compared to IFA; (ii) induce toxicity compared to ALU or (iii) elicit anti-RNP/Sm autoantibody, as occurred in the CFA group. © 2013 British Society for Immunology.

  15. Molecular interactions of natural and synthetic steroids in female hamsters' flank organs.

    PubMed

    Cabeza, Marisa; Naranjo, Barak; Heuze, Yvonne; Sánchez, Araceli; Hernández, Mercedes; Sainz, Teresita; Bratoeff, Eugene

    2012-05-01

    The initial step of steroidal action on target cells is gene activation; therefore, the quantification of mRNA is a direct method for comparing the role of different steroids in the skin. This study demonstrated the role of several steroids on the mRNA expression encoding for different enzymes involved in the lipid metabolism in hamsters' flank organs, which are a pilosebaceous complex. To determine the effect of treatments with testosterone (T) progesterone (P), levonorgestrel (LNG), 17α-p-chlorobenzoyloxy-6-chloropregn-4,6-diene-3,20-dione (5) and 17α-p-chlorobenzoyloxy-4,6-pregnadiene-3,20-dione (6); T and/or LNG; T and 5 or 6; P and/or 5 or 6 on the expression of mRNA encoding for lipid enzymes, the steroids were applied to the glands; later, the mRNAs expression for the enzymes was determined by PCR. The binding of 5 and 6 to the progesterone receptor (PR) was also evaluated. Treatments with T, LNG, T+LNG, P, T+P, 5, T+5, T+6, P, P+5 and P+6 increased the mRNA expression for glycerol 3-phosphate acyl transferase (GPAT), β-hydroxy-β-methylglutaryl-CoA synthase (HMG-CoA-S), β-hydroxy-β-methylglutaryl-CoA reductase (HMG-CoA-R), phosphatidylinositol synthase as compared to the controls. However, squalene synthase was increased with all treatments except with T+5 and 6; 6 did not significantly increase the expression for GPAT or HMG-CoA-S, however it increased the concentration of HMG-CoA-R enzyme. 5 and 6 bind to the PR, thus indicating that the effect of these steroids on the mRNA expression could be the result of their binding. The lipid metabolism is regulated by several steroids thought different mechanism of action, in flank organs. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Evaluation of immune response following one dose of an AS03A-adjuvanted H1N1 2009 pandemic influenza vaccine in Japanese adults 65 years of age or older.

    PubMed

    Ikematsu, Hideyuki; Tenjinbaru, Kazuyoshi; Li, Ping; Madan, Anu; Vaughn, David

    2012-08-01

    This study assessed the immunogenicity, long-term persistence of immune response and safety of a single dose of an A/California/07/2009 H1N1 pandemic influenza vaccine adjuvanted with AS03 (α-tocopherol and squalene based oil-in-water emulsion Adjuvant System) in subjects ≥ 65 y of age (NCT01114620). At Day 21, the HI immune response met all three European guidance criteria [seroconversion rate (SCR): 60.0%; seroprotection rate (SPR): 64.0%; geometric mean fold rise (GMFR): 10.2] and the US guidance criterion for SCR. At month 6, the HI immune response against the A/California/07/2009 H1N1 strain persisted but at levels lower than that observed at Day 21 (SCR: 38.8%; SPR: 42.9%; HI antibody geometric mean titer: 27.6); the European regulatory guidance criteria for SCR and GMFR were still met. Overall, the vaccine was well-tolerated. In this open-label, single group study, 50 subjects received one dose of the 3.75 µg hemagglutinin (HA) AS03-adjuvanted H1N1 2009 vaccine. Immunogenicity assessments were made before vaccination, 21 days and six months after vaccination using hemagglutination inhibition (HI) and microneutralization assays. Immunogenicity end points were based on US and European regulatory criteria. A single dose of the 3.75 µg HA AS03-adjuvanted H1N1 2009 pandemic vaccine induced immune responses against the vaccine strain that met the European regulatory guidance criteria at day 21 in the elderly Japanese population; the immune response persisted at lower levels at month 6. No safety concerns were identified. These results suggest that two vaccine doses might be useful for the elderly population to improve antibody induction and persistence.

  17. Dietary olive oil and corn oil differentially affect experimental breast cancer through distinct modulation of the p21Ras signaling and the proliferation-apoptosis balance.

    PubMed

    Solanas, Montserrat; Grau, Laura; Moral, Raquel; Vela, Elena; Escrich, Raquel; Escrich, Eduard

    2010-05-01

    Extra-virgin olive oil (EVOO) has been hypothesized to have chemopreventive effects on breast cancer, unlike high corn oil (HCO) diets that stimulate it. We have investigated mechanisms of these differential modulatory actions on experimental mammary cancer. In 7,12-dimethylbenz(a)anthracene adenocarcinomas of rats fed a high EVOO, HCO and control diets (n = 20 for each group), we have analyzed the expression and activity of ErbB receptors, p21Ras and its extracellular signal-regulated kinase (ERK) 1/2, Akt and RalA/B effectors by immunoblotting analyses. We explored the Ha-ras1 mutation status by Southern blot, mismatch amplification mutation assay and sequencing, and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase and squalene synthase messenger RNA expression by real-time polymerase chain reaction. We analyzed the tumor mitotic index, proliferating cell nuclear antigen (PCNA) levels, and apoptosis through Caspase-3 analysis and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assays. Finally, we measured the 8-oxo-2'-deoxyguanosine levels. Non-parametrical statistics were used. The EVOO diet decreased Ras activation, downregulated the Ras/phosphatidyl inositol 3-kinase/Akt pathway and upregulated the Raf/Erk pathway, compared with the control. In contrast, the HCO diet did not modify Ras activity but rather enhanced the Raf/Erk pathway. The EVOO diet decreased the cleaved ErbB4 levels, compared with the HCO diet, increased apoptosis and diminished the mono-ubiquitylated PCNA levels, which is related to DNA damage. Tumors from rats fed the EVOO diet displayed a more benign phenotype, whereas those from rats fed the HCO diet were biologically more aggressive. In conclusion, high EVOO and corn oil diets exert their modulatory effects on breast cancer through a different combination of Ras signaling pathways, a different proliferation-apoptosis balance and probably distinct levels of DNA damage.

  18. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding.

    PubMed

    Patil, Jitendra Gopichand; Ahire, Mahendra Laxman; Nitnaware, Kirti Manik; Panda, Sayantan; Bhatt, Vijay P; Kishor, Polavarapu B Kavi; Nikam, Tukaram Dayaram

    2013-03-01

    Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine-BA; kinetin-Kin; and thidiazuron-TDZ) and auxins (indole-3-acetic acid-IAA; α-naphthaleneacetic acid-NAA; and 2,4-dichlorophenoxy acetic acid-2,4-D). Maximum multiple shoots (12.7 ± 0.6) were produced from nodal explants on MS + 7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds respectively.

  19. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes.

    PubMed

    Rondini, Elizabeth A; Duniec-Dmuchowski, Zofia; Kocarek, Thomas A

    2016-04-01

    Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR-wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia

    2016-01-01

    Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR–wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism. PMID:26798158

  1. SQ109, a New Drug Lead for Chagas Disease

    PubMed Central

    Veiga-Santos, Phercyles; Li, Kai; Lameira, Lilianne; de Carvalho, Tecia Maria Ulisses; Huang, Guozhong; Galizzi, Melina; Shang, Na; Li, Qian; Gonzalez-Pacanowska, Dolores; Hernandez-Rodriguez, Vanessa; Benaim, Gustavo; Guo, Rey-Ting; Urbina, Julio A.; Docampo, Roberto; de Souza, Wanderley

    2015-01-01

    We tested the antituberculosis drug SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, for its in vitro activity against the trypanosomatid parasite Trypanosoma cruzi, the causative agent of Chagas disease. SQ109 was found to be a potent inhibitor of the trypomastigote form of the parasite, with a 50% inhibitory concentration (IC50) for cell killing of 50 ± 8 nM, but it had little effect (50% effective concentration [EC50], ∼80 μM) in a red blood cell hemolysis assay. It also inhibited extracellular epimastigotes (IC50, 4.6 ± 1 μM) and the clinically relevant intracellular amastigotes (IC50, ∼0.5 to 1 μM), with a selectivity index of ∼10 to 20. SQ109 caused major ultrastructural changes in all three life cycle forms, as observed by light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It rapidly collapsed the inner mitochondrial membrane potential (Δψm) in succinate-energized mitochondria, acting in the same manner as the uncoupler FCCP [carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone], and it caused the alkalinization of internal acidic compartments, effects that are likely to make major contributions to its mechanism of action. The compound also had activity against squalene synthase, binding to its active site; it inhibited sterol side-chain reduction and, in the amastigote assay, acted synergistically with the antifungal drug posaconazole, with a fractional inhibitory concentration index (FICI) of 0.48, but these effects are unlikely to account for the rapid effects seen on cell morphology and cell killing. SQ109 thus most likely acts, at least in part, by collapsing Δψ/ΔpH, one of the major mechanisms demonstrated previously for its action against Mycobacterium tuberculosis. Overall, the results suggest that SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, may also have potential as a drug lead against Chagas disease. PMID:25583723

  2. Evaluation of a primary course of H9N2 vaccine with or without AS03 adjuvant in adults: A phase I/II randomized trial.

    PubMed

    Madan, Anuradha; Collins, Harry; Sheldon, Eric; Frenette, Louise; Chu, Laurence; Friel, Damien; Drame, Mamadou; Vaughn, David W; Innis, Bruce L; Schuind, Anne

    2017-08-16

    Avian influenza A H9N2 strains have pandemic potential. In this randomized, observer-blind study (ClinicalTrials.gov: NCT01659086), 420 healthy adults, 18-64years of age, received 1 of 10 H9N2 inactivated split-virus vaccination regimens (30 participants per group), or saline placebo (120 participants). H9N2 groups received 2 doses (days 0, 21) of 15µg hemagglutinin (HA) without adjuvant, or 1.9µgHA+AS03 A , 1.9µgHA+AS03 B , 3.75µgHA+AS03 A , or 3.75µgHA+AS03 B ; followed by the same H9N2 formulation or placebo (day 182). AS03 is an adjuvant system containing α-tocopherol (AS03 A : 11.86mg; AS03 B : 5.93mg) and squalene in an oil-in-water emulsion. Immunogenicity (hemagglutination inhibition [HI] and microneutralization assays) and safety were assessed up to day 546. All adjuvanted formulations exceeded regulatory immunogenicity criteria at days 21 and 42 (HI assay), with seroprotection and seroconversion rates of ≥94.9% and ≥89.8% at day 21, and 100% and ≥98.1% at day 42. Immunogenicity criteria were also met for unadjuvanted vaccine, with lower geometric mean titers. In groups administered a third vaccine dose (day 182), an anamnestic immune response was elicited with robust increases in HI and microneutralization titers. Injection site pain was reported more frequently with adjuvanted vaccines. No vaccine-related serious adverse events were observed. All H9N2 vaccine formulations were immunogenic with a clinically acceptable safety profile; adjuvanted formulations were 4-8 times dose-sparing (3.75-1.9vs 15µgHA). Registered on ClinicalTrials.gov: NCT01659086. Copyright © 2017. Published by Elsevier Ltd.

  3. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera.

    PubMed

    Kulichevskaya, Irina S; Detkova, Ekaterina N; Bodelier, Paul L E; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Dedysh, Svetlana N

    2012-01-01

    An aerobic, pink-pigmented, budding bacterium, designated strain S26(T), was isolated from an acidic Sphagnum peat bog of north-western Russia. Cells were non-motile and spherical, occurring singly, in pairs or in short chains, and were able to attach to surfaces by means of a holdfast material. Strain S26(T) was a moderately acidophilic, mesophilic organism capable of growth at pH 3.2-7.1 (optimum at pH 4.8-5.0) and at 4-33 °C (optimum at 20-26 °C). Most sugars, several organic acids and polyalcohols were the preferred growth substrates. The major fatty acids were C(16:0), C(18:1)ω9c and C(18:2)ω6c,12c. The major neutral lipids were n-C(31:9) hydrocarbon and squalene; the polar lipids were phosphatidylglycerol, phosphatidylcholine and components with an unknown structure. The DNA G+C content of strain S26(T) was 62.2 mol%. 16S rRNA gene sequence analysis showed that strain S26(T) is a member of the order Planctomycetales. Among taxonomically characterized representatives of this order, highest levels of 16S rRNA gene sequence similarity (95.1-95.2%) were observed with strains of the non-filamentous, peat-inhabiting planctomycete Singulisphaera acidiphila. Strain S26(T) could be differentiated from Singulisphaera acidiphila based on pigmentation, significant differences in substrate utilization patterns, greater tolerance of acidic conditions and the presence of C(16:1)ω9c. Based on the data presented, strain S26(T) is considered to represent a novel species of the genus Singulisphaera, for which the name Singulisphaera rosea sp. nov. is proposed; the type strain is S26(T) (=DSM 23044(T)=VKM B-2599(T)).

  4. Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes.

    PubMed

    Holleran, A L; Lindenthal, B; Aldaghlas, T A; Kelleher, J K

    1998-12-01

    The objective of this study was to investigate the mechanisms by which tamoxifen modifies cholesterol metabolism in cellular models of liver metabolism, HepG2 cells and rat hepatocytes. The effect of tamoxifen on cholesterol and triglyceride-palmitate synthesis was measured using isotopomer spectral analysis (ISA) and gas chromatography-mass spectrometry (GC-MS) and compared with the effects of progesterone, estradiol, the antiestrogen ICI 182,780, and an oxysterol, 25-hydroxycholesterol (25OHC). Cholesterol synthesis in cells incubated in the presence of either [1-(13)C]acetate, [U-13C]glucose, or [4,5-(13)C]mevalonate for 48 hours was reduced in the presence of 10 micromol/L tamoxifen and 12.4 micromol/L 25OHC in both HepG2 cells and rat hepatocytes. The ISA methodology allowed a clear distinction between effects on synthesis and effects on precursor enrichment, and indicated that these compounds did not affect enrichment of the precursors of squalene. Progesterone was effective in both cell types at 30 micromol/L and only in HepG2 cells at 10 micromol/L. Estradiol and ICI 182,780 at 10 micromol/L did not inhibit cholesterol synthesis. None of the compounds altered the synthesis of triglyceride-palmitate in either cell type. Treatment of cells with tamoxifen produced accumulation of three sterol precursors of cholesterol, zymosterol, desmosterol, and delta8 cholesterol. This pattern of precursors indicates inhibition of delta24,25 reduction in addition to the previously described inhibition of delta8 isomerase. We conclude that tamoxifen is an effective inhibitor of the conversion of lanosterol to cholesterol in cellular models at concentrations comparable to those present in the plasma of tamoxifen-treated individuals. Our findings indicate that this mechanism may contribute to the effect of tamoxifen in reducing plasma cholesterol in humans.

  5. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.

  6. On the Significance of Bacterial triterpenic Biomarkers in Sediments

    NASA Astrophysics Data System (ADS)

    Rohmer, M.

    2004-12-01

    Triterpenic biomarkers are ubiquitous in the organic matter of sediments. Bacterial contribution is essential for several series. Despite the numerous investigations performed over the last decades, little is known about the distribution of triterpenoids in Eubacteria. An updated survey of triterpene distribution in Eubacteria points out a much broader diversity of the structures than expected ten years ago. Hopanoids characterized by their C35 skeleton resulting from a carbon/carbon linkage between the triterpene hopane skeleton and a D-ribose derivative are the most frequent ones. Their distribution cannot be readily interpreted and may result from lateral gene transfer. Many groups, such as strict anaerobes, are underrepresented in the screenings, mainly because of the complex techniques required for their growth. Most of the bacterial hopanoids belong to the (17α H,21β H) series, corresponding to the stereochemistry of hopanoid biomarkers from non-mature sediments. (17β H,21α H)- and especially (17α ,21β H)-hopanoids are derived from the former series via diagenesis and maturation of the organic matter. Both series were, however, recently found in widespread soil bacteria (Frankia spp., Geodermatophilus spp.) questioning at least partially their significance as maturation indicators. Quasi-hopanoids with the gammacerane skeleton were first found in ciliate protozoa. They are also present in high concentrations in the phylogenetically related bacteria Rhodopseudomonas palustris and all Bradyrhizobium spp. In all closely investigated hopanoid producing bacteria, a complex mixture of triterpene hydrocarbons accompanied in small amounts hop-22(29)-ene. They include pentacyclic triterpenes (rearranged hopenes, fernenes) as well as tetracyclic triterpenes (dammaradienes, euphadienes) and result from a lack of strict control of the cyclization process by the squalene/hopene cyclase. Triterpenoids related to sterol biosynthesis (lanosterol, cycloartenol) have been found in a few scattered taxa. Their contribution to the sediment biomarkers is not obvious. Finally, the reactions leading from biohopanoids to the geohopanoids are poorly known. Only evidence for abiotic degradation rather than for biological degradation is available.

  7. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers

    NASA Technical Reports Server (NTRS)

    Summons, R. E.; Jahnke, L. L.; Roksandic, Z.

    1994-01-01

    Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum. In particular, biomarker lipids produced by a single organism do not necessarily have the same carbon isotopic composition.

  8. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides themore » reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.« less

  9. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug. PMID:26986474

  10. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  11. Antifungal Activity of Gallic Acid In Vitro and In Vivo.

    PubMed

    Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu

    2017-07-01

    Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses.

    PubMed

    Seydoux, Emilie; Liang, Hong; Dubois Cauwelaert, Natasha; Archer, Michelle; Rintala, Nicholas D; Kramer, Ryan; Carter, Darrick; Fox, Christopher B; Orr, Mark T

    2018-05-16

    The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC -/- animals. Importantly, the early proliferation of Ag-specific CD4 + T cells was completely ablated after immunization in ASC -/- animals. Moreover, numbers of Ag-specific CD4 + T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC -/- , NLRP3 -/- , and IL-1R -/- mice compared with wild-type mice and were completely ablated in TLR4 -/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4 + T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Ceruminal diffusion activities and ceruminolytic characteristics of otic preparations – an in-vitro study

    PubMed Central

    2013-01-01

    Background An in-vitro setup was established in order to determine a) the diffusion activities of eight otic preparations (Aurizon®, Eas Otic®, Epi Otic®, Otifree®, Otomax®, Panolog®, Posatex®, Surolan®) through synthetic cerumen, and b) the ceruminolytic capacity and impregnation effects of these products. The main lipid classes of canine cerumen produced with moderate, non-purulent otitis externa were determined by thin layer chromatography and were subsequently used to produce a standardised synthetic cerumen (SCC). SCC was filled into capillary tubes, all of which were loaded with six commercially available multipurpose otic medications and two ear cleaners, each mixed with two markers in two experimental setups. These two marker compounds (Oil red O and marbofloxacin) were chosen, since they exhibit different physicochemical drug characteristics by which it is possible to determine and verify the diffusion activity of different types of liquids (i.e. the otic preparations). A synthetic cerumen described in the literature (JSL) was also used for comparison as its lipid composition was different to SCC. The diffusion activities of the otic preparations through both types of synthetic cerumen were studied over 24 hours. A second in-vitro experiment determined both the ceruminolytic activity and impregnation effect of the otic preparations by comparing the weight loss or weight gain after repeated incubation of JSL. Results Canine cerumen is mainly composed of triglycerides, sterol esters, fatty acid esters and squalene. The diffusion experiments showed a high diffusion efficacy along with a high impregnation effect for one test product. All the other products exhibited a lower diffusion activity with a mild to moderate impregnation effect. A mild ceruminolytic activity was observed for the two ear cleaners but not for any of the otic medications. Conclusions The present study demonstrates that there are significant differences in the diffusion characteristics and ceruminolytic properties of the eight tested otic preparations. PMID:23574753

  14. Heterologous Prime-Boost Vaccination Using an AS03B-Adjuvanted Influenza A(H5N1) Vaccine in Infants and Children <3 Years of Age

    PubMed Central

    Nolan, Terry; Izurieta, Patricia; Lee, Bee-Wah; Chan, Poh Chong; Marshall, Helen; Booy, Robert; Drame, Mamadou; Vaughn, David W.

    2014-01-01

    Background. Protecting young children from pandemic influenza should also reduce transmission to susceptible adults, including pregnant women. Methods. An open study assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005(H5N1)-AS03B (AS03B is an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion [5.93 mg tocopherol]) in infants and children aged 6 to < 36 months that was given 6 months following 2-dose primary vaccination with A/Indonesia/05/2005(H5N1)-AS03B. Vaccines contained 1.9 µg of hemagglutinin antigen and AS03B. Hemagglutinin inhibition (HI) responses, microneutralization titers, and antineuraminidase antibody levels were assessed for 6 months following the booster vaccination. Results. For each age stratum (defined on the basis of the subject's age at first vaccination as 6 to < 12 months, 12 to < 24 months, and 24 to < 36 months) and overall (n = 113), European influenza vaccine licensure criteria were fulfilled for responses to A/turkey/Turkey/1/2005(H5N1) 10 days following the booster vaccination. Local pain and fever increased with consecutive doses. Anamnestic immune responses were demonstrated for HI, neutralizing, and antineuraminidase antibodies against vaccine-homologous/heterologous strains. Antibody responses to vaccine-homologous/heterologous strains persisted in all children 6 months following the booster vaccination. Conclusions. Prevaccination of young children with a clade 2 strain influenza A(H5N1) AS03-adjuvanted vaccine followed by heterologous booster vaccination boosted immune responses to the homologous strain and a related clade, with persistence for at least 6 months. The results support a prime-boost vaccination approach in young children for pandemic influenza preparedness. Clinical Trials Registration. NCT01323946. PMID:24973461

  15. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis.

    PubMed

    Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia

    2011-01-21

    Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.

  16. [Vaccines: history and stories between reality and imagination].

    PubMed

    Terracciano, Elisa; Zorzoli, Ermanno; D'Alò, Gian Loreto; Zaratti, Laura; Franco, Elisabetta

    2016-01-01

    Vaccinations and the controversy around them always go in parallel. We identified four categories blending in various amounts of truth and imagination: history, myths, shams and frauds. Over the years, they have alternated and sometimes transformed into one another. This sharp separation into categories is certainly academic and forced. In fact, the line between these aspects is not clear enough to allow a rigid and well-defined division. Our work starts from the category containing the most truthfulness: history, and goes on to analyze two categories that add fantasy to facts: myths and shams (or better, "old wives' tales"). The history deals with the topics of variolation and the first anti-vaccine activists' disputes. Myths that arose around immunization include immune overload, homeoprophylaxis, and excessive hygiene. In this context, immunization itself risked becoming a myth, being considered not amenable to improvements. In the category of old wives' tales we find rumors about the presence in the vaccines of considerable quantities of supposedly toxic components such as aluminum, squalene, Thimerosal and nanoparticles, as well as the existence of secret techniques of vaccine preparation that involve unethical procedures. The last category, fraud, is the poorest in both truth and fantasy but it is still hard to confront. The most famous fraud is the supposed link between vaccines and autism. In this frame, disinformation is certainly a fertile substrate for the emergence both of elements close to reality and of very imaginative ones. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and increasing the risk of vaccine-preventable disease outbreaks and epidemics. The role of communication in immunization is essential to its success, especially taking into account the deep transformations the world of information is going through. The great multitude of voices seem to carry the same weight, but it is not so in science. Web searches are influenced by the filter bubble phenomenon, which contributes to the radicalization of people's opinion through cognitive isolation. A new, more effective strategy of communication is required in order to regain the trust of populations in immunization in a context characterized by the presence of groups impervious to scientific evidence.

  17. Search for the Evolution of Steroid Biosynthesis in the Geological Record

    NASA Astrophysics Data System (ADS)

    Brocks, J. J.

    2004-12-01

    To study the evolution of the structure of organisms we can directly examine fossilized shells, skeletons and petrified cells. In contrast, for the tentative reconstruction of the phylogeny of biosynthetic pathways, such as steroid anabolism, we rely entirely on the comparative molecular biology of living organisms. Thus, without fossil evidence, the times in geological history when successive steps of a metabolic pathway evolved remain particularly elusive. Molecular clocks of genes coding for the enzymes involved in a biosynthetic pathway might provide a rough guess when a natural product first appeared in geological time, but they are intrinsically unreliable without calibration points in the distant past. However, it might be possible to trace the evolutionary history of some biosynthetic pathways directly in the geological record by searching for hydrocarbon biomarkers of anabolic intermediates. Biomarkers are molecular fossils of natural products. They often retain the diagnostic carbon skeleton of their biological precursor and remain stable over hundreds of millions of years enclosed in organic-rich sedimentary rocks. Sterane hydrocarbons are particularly abundant biomarkers and potentially suitable for the search of biosynthetic intermediates. Steranes are the fossil equivalents of functionalized steroids found in eukaryotes and certain bacteria. The biosynthesis of typical eukaryotic steroids such as cholesterol (C27), ergosterol (C28) and sitosterol (C29) from the acyclic precursor squalene (C30) involves more than 20 enzymatic steps. The most crucial steps include modification of the carbon skeleton by removal of several methyl groups from the ring system and addition of alkyl groups to the steroid side chain. The evolution of this complex pathway must have occurred over geologically significant periods of time and likely involved several preadaptive intermediates that represented structurally less derived but fully functional lipids. Thus, if a molecular corollary of `ontogeny recapitulates phylogeny' applies, it might be possible to detect a sequence of increasingly modified fossil steroids in the geological record and to create a time frame for the evolution of this fundamental biosynthetic pathway. Here we present first results of an extensive search for the fossil remains of evolutionary intermediate steroids in sedimentary successions of Precambrian age.

  18. Transport methods for probing the barrier domain of lipid bilayer membranes.

    PubMed Central

    Xiang, T X; Chen, X; Anderson, B D

    1992-01-01

    Two experimental techniques have been utilized to explore the barrier properties of lecithin/decane bilayer membranes with the aim of determining the contributions of various domains within the bilayer to the overall barrier. The thickness of lecithin/decane bilayers was systematically varied by modulating the chemical potential of decane in the annulus surrounding the bilayer using different mole fractions of squalene in decane. The dependence of permeability of a model permeant (acetamide) on the thickness of the solvent-filled region of the bilayer was assessed in these bilayers to determine the contribution of this region to the overall barrier. The flux of acetamide was found to vary linearly with bilayer area with Pm = (2.9 +/- 0.3) x 10(-4) cm s-1, after correcting for diffusion through unstirred water layers. The ratio between the overall membrane permeability coefficient and that calculated for diffusion through the hydrocarbon core in membranes having maximum thickness was 0.24, suggesting that the solvent domain contributes only slightly to the overall barrier properties. Consistent with these results, the permeability of acetamide was found to be independent of bilayer thickness. The relative contributions of the bilayer interface and ordered hydrocarbon regions to the transport barrier may be evaluated qualitatively by exploring the effective chemical nature of the barrier microenvironment. This may be probed by comparing functional group contributions to transport with those obtained for partitioning between water and various model bulk solvents ranging in polarity or hydrogen-bonding potential. A novel approach is described for obtaining group contributions to transport using ionizable permeants and pH adjustment. Using this approach, bilayer permeability coefficients of p-toluic acid and p-hydroxymethyl benzoic acid were determined to be 1.1 +/- 0.2 cm s-1 and (1.6 +/- 0.4) x 10(-3) cm s-1, respectively. From these values, the -OH group contribution to bilayer transport [delta(delta G0-OH)] was found to be 3.9 kcal/mol. This result suggests that the barrier region of the bilayer does not resemble the hydrogen-bonding environment found in octanol, but is somewhat less selective (more polar) than a hydrocarbon solvent. PMID:1420875

  19. Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice.

    PubMed

    Wang, Yang; Zhang, Yun; Wu, Jialing; Lin, Ying; Wu, Zhihui; Wei, Ying; Wei, Xiaona; Qin, Jianru; Xue, Chunyi; Liu, George Dacai; Cao, Yongchang

    2017-10-15

    Since February 2013, H7N9 influenza virus, causing human infections with high mortality in China, has been a potential pandemic threat. The H7N9 viruses are found to diverge into distinct genotypes as other influenza viruses; thus a vaccine that can provide sufficient cross-protection against different genotypes of H7N9 viruses is urgently needed. Our previous studies demonstrated that the HA-based structural design approach by introducing a CFLLC minidomain into transmembrane domain (TM) of H1, H5 or H9 hemagglutinin (HA) proteins by replacing with H3 subtype HA TM could enhance their cross-protection. In this study, we used Sf9 insect cell expression system to express recombinant H7 HA proteins H7-53WT, in which HA gene was derived from H7N9-53 strain, and H7-53TM containing CFLLC minidomian by replacing its TM domain with H3 HA TM. We investigated whether introduction of CFLLC minidomain into H7 HA (H7-53TM) could increase its cross-reactivity and cross-protection against different genotypes of H7N9 viruses. The results showed that the H7-53TM either with or without squalene adjuvant induced increased HI antibodies, serum IgG antibodies, and IFN-γ production to a panel of 7 H7N9 viruses in mice. Vaccinated animals with H7-53TM alone showed complete protection against challenge with heterologous H7N9-MCX strain, while H7-53WT alone showed incomplete protection (80%). Furthermore, mice vaccinated with H7-53TM HA showed less body weight loss and less pulmonary lesions and inflammation after challenge with homologous or heterologous H7N9 viruses, comparing to H7-53WT. In summary, this study presents a better subunit vaccine candidate (H7-53TM) against potential H7N9 pandemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Terbinafine susceptibility and genotypic heterogeneity in clinical isolates of Trichophyton mentagrophytes by random amplified polymorphic DNA (RAPD).

    PubMed

    Alipour, M; Mozafari, N A

    2015-03-01

    The four RAPD systems tested in the present study have aimed at investigating DNA fingerprinting of Trichophyton mentagrophytes strains and the correlation between genotyping and antifungal susceptibility to terbinafine. Twenty-nine clinical isolates of T. mentagrophytes were recovered from patients suspected of having active dermatophytosis who were referred to the laboratory of medical mycology department in Tehran university. Then, they were subjected to conventional examination by performing direct microscopic examination, culture on primary media, physiological tests. The in vitro antifungal susceptibility of twenty-nine T. mentagrophytes isolates against terbinafine was evaluated by modified agar dilution method to determine the minimum inhibitory concentration (MIC). Twenty-one sensitive and eight resistant to terbinafine, were submitted to RAPD using 4 decamer primers (A, B, C, D) with the purpose of encountering a genetic marker to terbinafine sensibility and resistance. The UPGMA-Jaccard's correlation coefficient was used to build up dendogram that could represent clusters of similarity. According to their correlation coefficient, the samples were classified as much related (100%), moderately related (80%) and unrelated (<70%). All amplifications revealed distinct polymorphic bands and a total of 34 band positions was scored (0/1) for the 4 primers tested. Genetic distances between each of the isolates were calculated and cluster analysis was used to generate a dendrogram showing relationships between them. The combined dendrogram at an average similarity value of 65% grouped all strains into 2 (A, B) groups corresponding to their susceptibility reactions to terbinafine. All susceptible samples were properly grouped, but a few numbers of resistant isolates were also included. Nevertheless, further biochemical and molecular biological studies will be required to fully elucidate the point that resistance might be the result of a mutation in the gene encoding squalene epoxidase in T. mentagrophytes. This study proved efficacy of applying RAPD molecular technique to complement traditional mycological culture and drug susceptibility tests for accurate and appropriate management of recurrent dermatophytosis and highlights the need for newer antifungals that can combat the emergence of terbinafine-resistant T. mentagrophytes strains. Copyright © 2015. Published by Elsevier Masson SAS.

  1. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Dai, Zhubo; Liu, Yi; Huang, Luqi; Zhang, Xueli

    2012-11-01

    Metabolic engineering of microorganisms is an alternative and attractive route for production of valuable terpenoids that are usually extracted from plant sources. Tanshinones are the bioactive components of Salvia miltiorrhizha Bunge, which is a well-known traditional Chinese medicine widely used for treatment of many cardiovascular diseases. As a step toward microbial production of tanshinones, copalyl diphosphate (CPP) synthase, and normal CPP kaurene synthase-like genes, which convert the universal diterpenoid precursor geranylgeranyl diphosphate (GGPP) to miltiradiene (an important intermediate of the tanshinones synthetic pathway), was introduced into Saccharomyces cerevisiae, resulting in production of 4.2 mg/L miltiradiene. Improving supplies of isoprenoid precursors was then investigated for increasing miltiradiene production. Although over-expression of a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase (tHMGR) and a mutated global regulatory factor (upc2.1) gene did improve supply of farnesyl diphosphate (FPP), production of miltiradiene was not increased while large amounts of squalene (78 mg/L) were accumulated. In contrast, miltiradiene production increased to 8.8 mg/L by improving supply of GGPP through over-expression of a fusion gene of FPP synthase (ERG20) and endogenous GGPP synthase (BTS1) together with a heterologous GGPP synthase from Sulfolobus acidocaldarius (SaGGPS). Auxotrophic markers in the episomal plasmids were then replaced by antibiotic markers, so that engineered yeast strains could use rich medium to obtain better cell growth while keeping plasmid stabilities. Over-expressing ERG20-BTS1 and SaGGPS genes increased miltiradiene production from 5.4 to 28.2 mg/L. Combinatorial over-expression of tHMGR-upc2.1 and ERG20-BTS1-SaGGPS genes had a synergetic effects on miltiradiene production, increasing titer to 61.8 mg/L. Finally, fed-batch fermentation was performed, and 488 mg/L miltiradiene was produced. The yeast strains engineered in this work provide a basis for creating an alternative way for production of tanshinones in place of extraction from plant sources. Copyright © 2012 Wiley Periodicals, Inc.

  2. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions

    PubMed Central

    2014-01-01

    Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Trial registration Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117] PMID:24766766

  3. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    PubMed

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117].

  4. GC-MS analysis and hepatoprotective activity of the n-hexane extract of Acrocarpus fraxinifolius leaves against paracetamol-induced hepatotoxicity in male albino rats.

    PubMed

    Abd El-Ghffar, Eman A; El-Nashar, Heba A S; Eldahshan, Omayma A; Singab, Abdel Nasser B

    2017-12-01

    In Egypt, the burden of liver diseases is exceptionally high. To investigate the components of the n-hexane extract of Acrocarpus fraxinifolius Arn. (Leguminosae) and its hepatoprotective activity against paracetamol (APAP)-induced hepatotoxicity in rats. TRACE GC ultra gas chromatogaphic spectrometry was used for extract analysis. Thirty albino rats were divided into six groups (five rats in each). Group 1 was the healthy control; Groups 2 and 3 were healthy treated groups (250 and 500 mg/kg b.w. of the extract, respectively) for seven days. Group 4 was hepatotoxicity control (APAP intoxicated group). Groups 5 and 6 received APAP + extract 250 and APAP + extract 500, respectively. Chromatographic analysis revealed the presence of 36 components. Major compounds were α-tocopherol (18.23%), labda-8 (20)-13-dien-15-oic acid (13.15%), lupeol (11.93%), phytol (10.95%) and squalene (7.19%). In the acute oral toxicity study, the mortality rates and behavioural signs of toxicity were zero in all groups (doses from 0 to 5 g/kg b.w. of A. fraxinifolius). LD 50 was found to be greater than 5 g/kg of the extract. Only the high dose (500 mg/kg b.w.) of extract significantly alleviated the liver relative weight (4.01 ± 0.06) and biomarkers, as serum aspartate aminotransferase (62.87 ± 1.41), alanine aminotransferase (46.74 ± 1.45), alkaline phosphatase (65.96 ± 0.74), lipid profiles (180.39 ± 3.51), bilirubin profiles (2.30 ± 0.06) and hepatic lipid peroxidation (114.20 ± 2.06), and increased body weight (11.58 ± 0.20), serum protein profile (11.09 ± 0.46) and hepatic total antioxidant capacity (23.78 ± 0.66) in APAP-induced hepatotoxicity in rats. Our study proves the antihepatotoxic/antioxidant efficacies of A. fraxinifolius hexane extract.

  5. An observer-blind, randomized, multi-center trial assessing long-term safety and immunogenicity of AS03-adjuvanted or unadjuvanted H1N1/2009 influenza vaccines in children 10-17 years of age.

    PubMed

    Poder, Airi; Simurka, Pavol; Li, Ping; Roy-Ghanta, Sumita; Vaughn, David

    2014-02-19

    Vaccination is an effective strategy to prevent influenza. This observer-blind, randomized study in children 10-17 years of age assessed whether the hemagglutination inhibition (HI) antibody responses elicited by H1N1/2009 vaccines adjuvanted with AS03 (an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion) or without adjuvant, met the European regulatory immunogenicity criteria at Days 21 and 182. Three hundred and ten healthy children were randomized (3:3:3:5) to receive one dose of 3.75 μg hemagglutinin (HA) AS03A-adjuvanted vaccine, one or two doses of 1.9 μg HA AS03B-adjuvanted vaccine, or one dose of 15 μg HA pandemic vaccine. All children received a booster dose of the allocated vaccine at Day 182. Serum samples were tested for HI antibody response at Days 21, 42, 182 and 189. All vaccination regimens elicited HI antibody responses that met the European regulatory criteria at Days 21 and 42. HI antibody responses fulfilling European regulatory criteria were still observed six months after the first vaccine dose in all study vaccines groups. Two doses of 1.9 μg HA AS03B-adjuvanted vaccine elicited the strongest HI antibody response throughout the study. The non-adjuvanted 15 μg HA vaccine elicited a lower HI antibody response than the AS03-adjuvanted vaccines. At Day 189, the European regulatory criteria were met for all vaccines with baseline HI antibody titers as reference. An anamnestic response for all vaccines was suggested at Day 189, based on the rapid increase in HI antibody geometric mean titers (1.5-2.5-fold increase). Injection site reactogenicity was higher following the AS03-adjuvanted vaccines compared with the non-adjuvanted vaccine. No safety concerns were identified for any study vaccine. All study vaccines elicited HI antibody responses that persisted at purported protective levels through six months after vaccination and fulfilled the European regulatory criteria. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis.

    PubMed

    Sass, Andrea; Marchbank, Angela; Tullis, Elizabeth; Lipuma, John J; Mahenthiralingam, Eshwar

    2011-07-22

    Burkholderia cenocepacia is a member of the Burkholderia cepacia complex group of bacteria that cause infections in individuals with cystic fibrosis. B. cenocepacia isolate J2315 has been genome sequenced and is representative of a virulent, epidemic CF strain (ET12). Its genome encodes multiple antimicrobial resistance pathways and it is not known which of these is important for intrinsic or spontaneous resistance. To map these pathways, transcriptomic analysis was performed on: (i) strain J2315 exposed to sub-inhibitory concentrations of antibiotics and the antibiotic potentiator chlorpromazine, and (ii) on spontaneous mutants derived from J2315 and with increased resistance to the antibiotics amikacin, meropenem and trimethoprim-sulfamethoxazole. Two pan-resistant ET12 outbreak isolates recovered two decades after J2315 were also compared to identify naturally evolved gene expression changes. Spontaneous resistance in B. cenocepacia involved more gene expression changes and different subsets of genes than those provoked by exposure to sub inhibitory concentrations of each antibiotic. The phenotype and altered gene expression in the resistant mutants was also stable irrespective of the presence of the priming antibiotic. Both known and novel genes involved in efflux, antibiotic degradation/modification, membrane function, regulation and unknown functions were mapped. A novel role for the phenylacetic acid (PA) degradation pathway genes was identified in relation to spontaneous resistance to meropenem and glucose was found to repress their expression. Subsequently, 20 mM glucose was found to produce greater that 2-fold reductions in the MIC of multiple antibiotics against B. cenocepacia J2315. Mutation of an RND multidrug efflux pump locus (BCAM0925-27) and squalene-hopene cyclase gene (BCAS0167), both upregulated after chlorpromazine exposure, confirmed their role in resistance. The recently isolated outbreak isolates had altered the expression of multiple genes which mirrored changes seen in the antibiotic resistant mutants, corroborating the strategy used to model resistance. Mutation of an ABC transporter gene (BCAS0081) upregulated in both outbreak strains, confirmed its role in B. cenocepacia resistance. Global mapping of the genetic pathways which mediate antibiotic resistance in B. cenocepacia has revealed that they are multifactorial, identified potential therapeutic targets and also demonstrated that putative catabolite repression of genes by glucose can improve antibiotic efficacy.

  7. Towards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design.

    PubMed

    Filipovic, M; Lukic, M; Djordjevic, S; Krstonosic, V; Pantelic, I; Vuleta, G; Savic, S

    2017-10-01

    Consumers' demand for improved products' performance, alongside with the obligation of meeting the safety and efficacy goals, presents a key reason for the reformulation, as well as a challenging task for formulators. Any change of the formulation, whether it is wanted - in order to innovate the product (new actives and raw materials) or necessary - due to, for example legislative changes (restriction of ingredients), ingredients market unavailability, new manufacturing equipment, may have a number of consequences, desired or otherwise. The aim of the study was to evaluate the influence of multiple factors - variations of the composition, manufacturing conditions and their interactions, on emulsion textural and rheological characteristics, applying the general experimental factorial design and, subsequently, to establish the approach that could replace, to some extent, certain expensive and time-consuming tests (e.g. certain sensory analysis), often required, partly or completely, after the reformulation. An experimental design strategy was utilized to reveal the influence of reformulation factors (addition of new actives, preparation method change) on textural and rheological properties of cosmetic emulsions, especially those linked to certain sensorial attributes, and droplet size. The general experimental factorial design revealed a significant direct effect of each factor, as well as their interaction effects, on certain characteristics of the system and provided some valuable information necessary for fine-tuning reformulation conditions. Upon addition of STEM-liposomes, consistency, index of viscosity, firmness and cohesiveness were decreased, as along with certain rheology parameters (elastic and viscous modulus), whereas maximal and minimal apparent viscosities and droplet size were increased. The presence of an emollient (squalene) affected all the investigated parameters in a concentration-dependent manner. Modification of the preparation method (using Ultra Turrax instead of a propeller stirrer) produced emulsions with higher firmness and maximal apparent viscosity, but led to a decrease in minimal apparent viscosity, hysteresis loop area, all monitored parameters of oscillatory rheology and droplet size. The study showed that the established approach which combines a general experimental design and instrumental, rheological and textural measurements could be appropriate, more objective, repeatable and time and money-saving step towards developing cosmetic emulsions with satisfying, improved or unchanged, consumer-acceptable performance during the reformulation. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    PubMed

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.

  9. Hearing impairment associated with oral terbinafine use: a case series and case/non-case analysis in the Netherlands Pharmacovigilance Centre Lareb database and VigiBase™.

    PubMed

    Scholl, Joep H G; van Puijenbroek, Eugene P

    2012-08-01

    The Netherlands Pharmacovigilance Centre Lareb received reports of six cases of hearing impairment in association with oral terbinafine use. This study describes these cases and provides support for this association from the Lareb database for spontaneous adverse drug reaction (ADR) reporting and from Vigibase™, the ADR database of the WHO Collaborating Centre for International Drug Monitoring, the Uppsala Monitoring Centre. The objective of the current study was to identify whether the observed association between oral terbinafine use and hearing impairment, based on cases received by Lareb, constitutes a safety signal. Cases of hearing impairment in oral terbinafine users are described. In a case/non-case analysis, the strength of the association in Vigibase™ and the Lareb database was determined (date of analysis August 2011) by calculating the reporting odds ratios (RORs), adjusted for possible confounding by age, sex and ototoxic concomitant medication. For the purpose of this study, RORs were calculated for deafness, hypoacusis and the combination of both, defined as hearing impairment. In the Lareb database, six reports concerning individuals aged 31-82 years, who developed hearing impairment after starting oral terbinafine, were present. The use of oral terbinafine was disproportionally associated with hypoacusis in both the Lareb database (adjusted ROR 3.9; 95% CI 1.7, 9.0) and in Vigibase™ (adjusted ROR 1.7; 95% CI 1.0, 2.8). Deafness was not disproportionally present in either of the databases. Based on the described cases and the statistical analyses from both databases, a causal relationship between the use of oral terbinafine and hearing impairment is possible. The mechanism by which terbinafine could cause hearing impairment has not been elucidated yet. The pharmacological action of terbinafine is based on the inhibition of squalene epoxidase, an enzyme present in both fungal and human cells. This inhibition might result in a decrease in cholesterol levels in human cells, among which are the outer hair cells of the cochlea. It may be possible that the reduction in cochlear cholesterol levels leads to impaired cochlear function and possibly hearing impairment. In this study we describe hearing impairment as a possible ADR of oral terbinafine, based on six case reports and statistical support from Vigibase™ and the Lareb database. To our knowledge this association has not been described before.

  10. The Evolution of Sterol Biosynthesis in Bacteria: In Situ Fluorescence Localization of Sterols in the Nucleoid Bacterium Gemmata obscuriglobus

    NASA Astrophysics Data System (ADS)

    Budin, M.; Jorgenson, T. L.; Pearson, A.

    2004-12-01

    The biosynthesis of sterols is generally regarded as a eukaryotic process. The first enzymatic step in the production of sterols requires molecular oxygen. Therefore, both the origin of eukaryotes and the evolution of sterol biosynthesis were thought to postdate the rise of oxygen in earth's atmosphere, until Brocks et al. discovered steranes in rocks aged 2.7 Ga (1). Many prokaryotes produce hopanoids, sterol-like compounds that are synthesized from the common precursor squalene without the use of molecular oxygen. However, a few bacterial taxa are also known to produce sterols, suggesting this pathway could precede the rise of oxygen (2, 3). Recently, we discovered the shortest sterol-producing biosynthetic pathway known to date in the bacterium Gemmata obscuriglobus (4). Using genomic searches, we found that Gemmata has the enzymes necessary for synthesis of sterols, and lipid analyses showed that the sterols produced are lanosterol and its isomer parkeol. Gemmata is a member of the Planctomycetes, an unusual group of bacteria, all of the known species of which contain intracellular compartmentalization. Among the Planctomycetes, Gemmata uniquely is the only prokaryote known to contain a double-membrane-bounded nuclear body (5). Since sterols usually are found in eukaryotes, and Gemmata has a eukaryote-like nuclear organelle, we investigated the location of the sterols within Gemmata to postulate whether they play a role in stabilization of the nuclear membrane and control of genomic organization. We used the sterol-specific fluorescent dye Filipin III in conjunction with fluorescent dyes for internal and external cellular membranes in order to determine whether the sterols are located in the nuclear body membrane, external membrane, or both. We found that sterols in Gemmata are concentrated in the internal membrane, implying that they function in maintaining this unusual cellular component. It is notable that Gemmata also produce hopanoids, suggesting that they acquired the ability to produce sterols for a specialized function related to their nuclear membrane. 1. Brocks, J.J., et al., Science 285:1033-36 (1999). 2. Bird, C.W., et al., Nature 230:473-74 (1971). 3. Bode, H.B., et al., Mol. Microbiol. 47:471-81 (2003). 4. Pearson, A., et al., Proc. Natl. Acad. Sci. USA 100:15352-57 (2003). 5. Fuerst, J.A. and R.I. Webb, Proc. Natl. Acad. Sci. USA 88:8184-88 (1991).

  11. Pheno- and Genotyping of Hopanoid Production in Acidobacteria

    PubMed Central

    Damsté, Jaap S. Sinninghe; Rijpstra, W. Irene C.; Dedysh, Svetlana N.; Foesel, Bärbel U.; Villanueva, Laura

    2017-01-01

    Hopanoids are pentacyclic triterpenoid lipids synthesized by different bacterial groups. Methylated hopanoids were believed to be exclusively synthesized by cyanobacteria and aerobic methanotrophs until the genes encoding for the methylation at the C-2 and C-3 position (hpnP and hpnR) were found to be widespread in the bacterial domain, invalidating their use as specific biomarkers. These genes have been detected in the genome of the Acidobacterium “Ca. Koribacter versatilis,” but our knowledge of the synthesis of hopanoids and the presence of genes of their biosynthetic pathway in other member of the Acidobacteria is limited. We analyzed 38 different strains of seven Acidobacteria subdivisions (SDs 1, 3, 4, 6, 8, 10, and 23) for the presence of C30 hopenes and C30+ bacteriohopane polyols (BHPs) using the Rohmer reaction. BHPs and/or C30 hopenes were detected in all strains of SD1 and SD3 but not in SD4 (excepting Chloracidobacterium thermophilum), 6, 8, 10, and 23. This is in good agreement with the presence of genes required for hopanoid biosynthesis in the 31 available whole genomes of cultivated Acidobacteria. All genomes encode the enzymes involved in the non-mevalonate pathway ultimately leading to farnesyl diphosphate but only SD1 and 3 Acidobacteria and C. thermophilum encode all three enzymes required for the synthesis of squalene, its cyclization (shc), and addition and modification of the extended side chain (hpnG, hpnH, hpnI, hpnJ, hpnO). In almost all strains, only tetrafunctionalized BHPs were detected; three strains contained variable relative abundances (up to 45%) of pentafunctionalized BHPs. Only “Ca. K. versatilis” contained methylated hopanoids (i.e., 2,3-dimethyl bishomohopanol), although in low (<10%) amounts. These genes are not present in any other Acidobacterium, consistent with the absence of methylated BHPs in the other examined strains. These data are in agreement with the scattered occurrence of methylated BHPs in other bacterial phyla such as the Alpha-, Beta-, and Gammaproteobacteria and the Cyanobacteria, limiting their biomarker potential. Metagenomes of Acidobacteria were also examined for the presence of genes required for hopanoid biosynthesis. The complete pathway for BHP biosynthesis was evident in SD2 Acidobacteria and a group phylogenetically related to SD1 and SD3, in line with the limited occurrence of BHPs in acidobacterial cultures. PMID:28642737

  12. Evaluation of γ-oryzanol content and composition from the grains of pigmented rice-germplasms by LC-DAD-ESI/MS.

    PubMed

    Kim, Heon Woong; Kim, Jung Bong; Shanmugavelan, Poovan; Kim, Se Na; Cho, Young Sook; Kim, Haeng Ran; Lee, Jeong-Tae; Jeon, Weon-Tai; Lee, Dong Jin

    2013-04-15

    Rice is the staple food and one of the world’s three major grain crops. Rice contains more than 100 bioactive substances including phytic acid, isovitexin, γ-oryzanol, phytosterols, octacosanol, squalene, γ-aminobutyric acid (GABA), tocopherol, tocotrienol derivatives, etc. Out of them, γ-oryzanol is known to have important biological profile such as anti-oxidants, inhibitor of cholesterol oxidation, reduce serum cholesterol levels in animals, effective in the treatment of inflammatory diseases, inhibit tumor growth, reduce blood pressure and promotes food storage stability when used as a food additive, etc. Hence in the present investigation, we aimed to evaluate the content and composition of γ-oryzanol from pigmented rice germplasms using a liquid chromatography with diode array detection and electrospray ionization-mass spectrometry (LC-DAD-ESI/MS). In the present study, 33 exotic pigmented rice accessions (red, white and purple) have been evaluated. Among them, the contents of γ-oryzanol varied from 3.5 to 21.0 mg/100 g with a mean of 11.2 mg/100 g. A total of ten components of γ-oryzanol including Δ⁷-stigmastenyl ferulate were identified of which, cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesteryl ferulate and sitosteryl ferulate were identified as the major components. The mean proportions of steryl ferulates were in the descending order of 24-methylenecycloartanyl ferulate > cycloartenyl ferulate > campesteryl ferulate > sitosteryl ferulate > Δ⁷-campestenyl ferulate > campestanyl ferulate > sitostanyl ferulate > Δ⁷-stigmastenyl ferulate > stigamsteryl ferulate > Δ⁷-sitostenyl ferulate. Almost 11 accessions (33%) showed higher content than the control rice Chucheongbyeo and higher proportions ranged from 10 to 15 mg/100 g. Interestingly, the red rice accession Liberian Coll. B11/B-11 (21.0 mg/100 g) showed higher content γ-oryzanol than control rice Jeokjinjubyeo (19.1 mg/100 g) and the purple rice accession Padi Adong Dumarat, Mardi No.4376 (20.3 mg/100 g) showed a similar content with control rice Heugjinjubyeo (21.4 mg/100 g). Most of analyzed rice accessions were found to possess higher contents of γ-oryzanol than the control rice, Chucheongbyeo. In particular, the red accessions showed highest content than the white and purpleaccessions. The content and composition of γ-oryzanol in 33 exotic pigmented rice accessions have been evaluated and compared significantly by the present investigation.

  13. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either α-amyrin and/or β-amyrin synthase. MdOSC1 and MdOSC3 clustered with the multifunctional triterpene synthases, whereas MdOSC2 was most similar to the β-amyrin synthases. © 2011 The New Zealand Institute for Plant and Food Research Limited. Journal compilation © 2011 FEBS.

  14. Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris

    PubMed Central

    2013-01-01

    Background Acne vulgaris is a chronic skin disorder leading to inflammation as a result of the production of reactive oxygen species due to the active involvement of Propionibacterium acnes (P. acnes) in the infection site of the skin. The current study was designed to assess the potential of the leaf extract of Syzygium jambos L. (Alston) and its compounds for antibacterial and anti-inflammatory activity against the pathogenic P. acnes. Methods The broth dilution method was used to assess the antibacterial activity. The cytotoxicity investigation on mouse melanocyte (B16-F10) and human leukemic monocyte lymphoma (U937) cells was done using sodium 3’-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitrobenzene sulfonic acid hydrate (XTT) reagent. The non-toxic concentrations of the samples was investigated for the suppression of cytokines interleukin 8 (IL 8) and tumour necrosis factor (TNF α) by testing the supernatants in the co-culture of the human U937 cells and heat killed P. acnes using enzyme immunoassay kits (ELISA). The statistical analysis was done using the Graph Pad Prism 4 program. Results Bioassay guided isolation of ethanol extract of the leaves of S. jambos led to the isolation of three known compounds namely; squalene, an anacardic acid analogue and ursolic acid which are reported for the first time from this plant. The ethanol extract of S. jambos and one of the isolated compound namely, anacardic acid analogue were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 31.3 and 7.9 μg/ml, respectively. The ethanol extract and three commercially acquired compounds namely; myricetin, myricitrin, gallic acid exhibited significant antioxidant activity with fifty percent inhibitory concentration (IC50) ranging between 0.8-1.9 μg/ml which was comparable to that of vitamin C, the reference antioxidant agent. The plant extract, compounds ursolic acid and myricitrin (commercially acquired) significantly inhibited the release of inflammatory cytokines IL 8 and TNF α by suppressing them by 74 - 99%. TEM micrographs showed the lethal effects of selected samples against P. acnes. Conclusions The interesting antibacterial, antioxidant and anti-inflammatory effects of S. jambos shown in the present study warrant its further investigation in clinical studies for a possible alternative anti-acne agent. PMID:24168697

  15. Physiological, evolutionary, and genetic experiments with hopanoids in Methylobacterium: probing the function of geologically stable molecules

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Muller, E.; Bringel, F.; Vuilleumier, S.; Pearson, A.; Marx, C. J.

    2010-12-01

    Hopanoids are geologically stable triterpenoids with a rock record extending to the Archean (1), but little information exists regarding their physiological role in modern organisms. Determining the physiological role of hopanoids is a key step in deciphering their geological and evolutionary history. To this end, we are investigating the function of hopanoids in the facultative methylotrophic bacterium Methylobacterium through a series of experiments in which we compare the behavior of wild type strains to mutants deficient in key genes associated with hopanoid biosynthesis. Mutant strains of bacteria deficient in the gene shc for squalene-hopene cyclase (SHC) lack hopanoids, but show only a subtle growth defect under pH and temperature stress in Rhodopseudomonas (2), and no growth defect in Streptomyces (3). In contrast, mutant strains of Methylobacterium deficient in SHC show a severe growth defect under usual growth conditions, with slower growth rates, alterations in cell morphology, increased sensitivity to toxic compounds, and severe flocculation during growth in liquid media. This severe phenotype offered an opportunity to investigate the function of hopanoids through an experimental evolution protocol. By serial passage through batch culture, sixteen replicate populations of the mutant strain were evolved in liquid media for approximately 120 generations. Populations evolved on each substrate show improved growth rates, approaching that of wild type strains. Current work is aimed at characterizing the physiology, and resequencing genomes of evolved isolates to determine the adaptations corresponding improved fitness. We predict that these adaptations will lead to hypotheses regarding hopanoid function. Mutations of other hopanoid-associated genes in Methylobacterium produce an altered suite of hopanoid compounds. Through mutation of hopanoid-associated genes, we have identified the first steps of hopanoid side chain biosynthesis (4). These mutant strains offer the opportunity for further evolutionary experiments, which may elucidate the function of specific hopanoid structures. 1. J. J. Brocks, R. E. Summons, in Biogeochemistry W. H. Schlesinger, Ed. (Elsevier, Oxford, 2004), vol. 8, pp. 63-116. 2. P. V. Welander et al., Journal of Bacteriology 191, 6145 (2009). 3. R. F. Seipke, R. Loria, Journal of Bacteriology 191, 5216 (2009). 4. A. S. Bradley, A. Pearson, J. P. Sáenz, C. J. Marx, Organic Geochemistry, in press (2010).

  16. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.

    PubMed

    Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang

    2015-11-01

    Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O-transphosphorylation. For all these applications, we used our recently-developed path-integral method based on the KP theory, called automated integration-free path-integral (AIF-PI) method, to perform ab initio path-integral calculations of isotope effects. As opposed to the conventional path-integral molecular dynamics (PIMD) and Monte Carlo (PIMC) simulations, values calculated from our AIF-PI path-integral method can be as precise as (not as accurate as) the numerical precision of the computing machine. Lastly, comments are made on the general challenges in theoretical modeling of candidates matching the experimental "fingerprints" of RLTS. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evaluation of γ-oryzanol content and composition from the grains of pigmented rice-germplasms by LC-DAD-ESI/MS

    PubMed Central

    2013-01-01

    Background Rice is the staple food and one of the world’s three major grain crops. Rice contains more than 100 bioactive substances including phytic acid, isovitexin, γ-oryzanol, phytosterols, octacosanol, squalene, γ-aminobutyric acid (GABA), tocopherol, tocotrienol derivatives, etc. Out of them, γ-oryzanol is known to have important biological profile such as anti-oxidants, inhibitor of cholesterol oxidation, reduce serum cholesterol levels in animals, effective in the treatment of inflammatory diseases, inhibit tumor growth, reduce blood pressure and promotes food storage stability when used as a food additive, etc. Hence in the present investigation, we aimed to evaluate the content and composition of γ-oryzanol from pigmented rice germplasms using a liquid chromatography with diode array detection and electrospray ionization-mass spectrometry (LC-DAD-ESI/MS). Findings In the present study, 33 exotic pigmented rice accessions (red, white and purple) have been evaluated. Among them, the contents of γ-oryzanol varied from 3.5 to 21.0Âmg/100Âg with a mean of 11.2Âmg/100Âg. A total of ten components of γ-oryzanol including ∆7-stigmastenyl ferulate were identified of which, cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesteryl ferulate and sitosteryl ferulate were identified as the major components. The mean proportions of steryl ferulates were in the descending order of 24-methylenecycloartanyl ferulate > cycloartenyl ferulate > campesteryl ferulate > sitosteryl ferulate > ∆7-campestenyl ferulate > campestanyl ferulate > sitostanyl ferulate > ∆7-stigmastenyl ferulate > stigamsteryl ferulate > ∆7-sitostenyl ferulate. Almost 11 accessions (33%) showed higher content than the control rice Chucheongbyeo and higher proportions ranged from 10 to 15Âmg/100Âg. Interestingly, the red rice accession Liberian Coll. B11/B-11 (21.0Âmg/100Âg) showed higher content γ-oryzanol than control rice Jeokjinjubyeo (19.1Âmg/100Âg) and the purple rice accession Padi Adong Dumarat, Mardi No.4376 (20.3Âmg/100Âg) showed a similar content with control rice Heugjinjubyeo (21.4Âmg/100Âg). Conclusions Most of analyzed rice accessions were found to possess higher contents of γ-oryzanol than the control rice, Chucheongbyeo. In particular, the red accessions showed highest content than the white and purple accessions. The content and composition of γ-oryzanol in 33 exotic pigmented rice accessions have been evaluated and compared significantly by the present investigation. PMID:23587158

  18. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.

  19. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir

    PubMed Central

    Marshall, Jason D.; Dorwart, Michael R.; Heeke, Darren S.; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H.; Eisenberg, Roselyn J.

    2017-01-01

    ABSTRACT Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo. In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. PMID:28228587

  20. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch.

    PubMed

    Yin, Jing; Li, Xin; Zhan, Yaguang; Li, Ying; Qu, Ziyue; Sun, Lu; Wang, Siyao; Yang, Jie; Xiao, Jialei

    2017-11-21

    Birch (Betula platyphylla Suk.) contains triterpenoids with anti-HIV and anti-tumor pharmacological activities. However, the natural abundance of these triterpenoids is low, and their chemical synthesis is costly. Transcription factors have the ability to regulate the metabolite pathways of triterpenoids via multi-gene control, thereby improving metabolite yield. Thus, transcription factors have the potential to facilitate the production of birch triterpenoids. Plant bHLH (basic helix-loop-helix) transcription factors play important roles in stress response and secondary metabolism. In this study, we cloned two genes, BpMYC4 and BpbHLH9, that encode bHLH transcription factors in Betula platyphylla Suk. The open reading frame (ORF) of BpMYC4 was 1452 bp and encoded 483 amino acids, while the ORF of BpbHLH9 was 1140 bp and encoded 379 amino acids. The proteins of BpMYC4 and BpbHLH9 were localized in the cell membrane and nucleus. The tissue-specific expression patterns revealed that BpMYC4 expression in leaves was similar to that in the stem and higher than in the roots. The expression of BpbHLH9 was higher in the leaves than in the root and stem. The expressions of BpMYC4 and BpbHLH9 increased after treatment with abscisic acid, methyl jasmonate, and gibberellin and decreased after treatment with ethephon. The promoters of BpMYC4 and BpbHLH9 were isolated using a genome walking approach, and 900-bp and 1064-bp promoter sequences were obtained for BpMYC4 and BpbHLH9, respectively. The ORF of BpbHLH9 was ligated into yeast expression plasmid pYES3 and introduced into INVScl and INVScl1-pYES2-SS yeast strains. The squalene and total triterpenoid contents in the different INVScl1 transformants decreased in the following order INVScl1-pYES-SS-bHLH9 > INVScl1-pYES3-bHLH9 > INVScl1-pYES2- BpSS > INVScl-pYES2. In BpbHLH9 transgenic birch, the relative expression of the genes that encodes for enzymes critical for triterpenoid synthesis showed a different level of up-regulation compair with wild birch(control), and the contents of betulinic acid, oleanolic acid and betulin in bHLH9-8 transgenic birch were increased by 11.35%, 88.34% and 23.02% compared to in wild birch, respectively. Our results showed that the modulation of BpbHLH9 by different hormones affected triterpenoid synthesis and triterpenoid contents. This is the first report of the cloning of BpbHLH9, and the findings are important for understanding the regulatory role of BpbHLH9 in the synthesis of birch triterpenoids.

  1. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. Copyright © 2017 American Society for Microbiology.

  2. Organic compounds in hydrothermal systems on the Russian Far East: relevance to the origin of life

    NASA Astrophysics Data System (ADS)

    Kompanichenko, Vladimir

    In 70th of the last century L. Mukhin with co-authors (1) explored amino acids in the hot springs and water-steam mixture from the boreholes in Kamchatka peninsula of eastern Rus-sia. According to their results, 12 amino acids of biological origination were detected in hot springs inhabited by thermophiles and hyperthermophiles. Only a single amino acid -glycine -was found in the lifeless condensate of water-steam mixture. These authors proposed its abiotic genesis. Our research is devoted to exploration of moderately volatile organic com-pounds in the hot springs and water-steam mixture in Kamchatka peninsula, Kuriles and intracontinental part of eastern Russia. Samples were taken from hot springs far from poten-tial sources of contamination by human populations, and from boreholes 60 to 1200 meters in depth. The temperature ranged from 175C (sterile water-steam mixture) to 55C (hot water with thermophile populations). The samples were analyzed by the gas chromatomass-spectrometer Shimatsu (GCMS-QP20105). Lifeless condensate of water-steam mixture (t = 108-175C) con-tains aromatic hydrocarbons (naphthalene, 1,2-methylnaphtaline biphenyl, phenathrene, fluo-rene,squalene, 1,3-diethylbenzene, and trichlorobenzene)., n-alkanes (decane, dodecane, tride-cane, tetradecane, pentadecane, hexadecane, and geptadecane), aldehyde (oktadekanal), ketone (2-geptadekanon), and alcohol (2-undetsenol-1). 10 homologous series have been found in hot solutions (t = 55-99C) inhabited by thermophilic and hyperthermophilic microorganisms hav-ing low concentrations: aromatic hydrocarbons, n-alkanes, alkenes, aldehydes, dietoxyalkanes, naphthenes, fatty acids, methyl ethers of fatty acids, monoglycerides, and steroids. Especially diverse organic substance is detected in alkaline lower-temperature solutions (pH 9-9.5, t up to 72C). The source of these compounds is not yet established. They may represent pre-existing organic material that has been chemically degraded by pyrolysis. For instance, Simoneit et al. (2) established that the light oil associated with the Uzon caldera in Kamchatka was formed by pyrolysis of buried algal mats. More interesting would be to determine that the aromatics and alkanes are products of a Fischer-Tropsch type synthesis. Intermediately the possible in-put of the abiotic organics is confirmed with the availability of Cl-alkanes in the hot solution because these compounds cannot be produced in a living organism. Besides, concentrations of even and uneven carbon atoms are similar in the juvenile hot water from the central zone of Kuldur field (the intracontinental part) that indicates their probable abiotic origination, while the uneven carbon atoms much prevail over the even ones (in 5 times) in the lower-temperature meteoric water on the flank. The detected organic compounds could enter into the composi-tion of various prebiotic microsystems or aggregates existed in the changeable hydrothermal media suitable for the origin of life. It follows of the inversion approach to the origin of life (Kompanichenko, 2008) that synthesis of other biologically important molecules (sugars, ATP, nucleotides), which are not typical for hydrothermal medium, started at the moment of the in-version the ratio "free energy contribution to entropy contribution" in the network of chemical reactions. The re-organized and turned into negentropy way network might promote the syn-thesis of these molecules under higher temperature conditions than revealed for the laboratory experiments in Vitro (50-60C). References. 1. Mukhin L.M., Bondarev V.B., Vakin E.A., Iljukhina I.I., Kalinichenko V.I., Milekhina E.I., Safonova E.N., 1979. Amino acids in hydrothermal systems in Southern Kam-chatka. Doklady AN USSR 244 (4), 974-977, (In Russian). 2. Simoneit, B., Deamer, D.W. and Kompanichenko, V. 2009. Characterization of hydrothermally generated oil from the Uzon Caldera, Kamchatka. Applied Geochemistry 24: 303-309. 3. Kompanichenko V.N. 2008. Three stages of the origin-of-life process: bifurcation, stabilization and inversion. International Journal of Astrobiology 7 (1), 27-46.

  3. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel molecule (C30+ botryococcenes) native to the alga Botryococcus braunii . In addition to the genetic modification and bioreactor performance studies of these organisms for the production of botryococcene or squalene, the research examined the potential economic feasibility of the proposed platform through the use of bioreactor, microbial energetic models and experimentally measured growth yield and maintenance coefficients. In order to carry out an economic analysis, a process model was created in Aspen with the bioreactor at the center. This is presented in Chapter 2. The model looked at the effects of growth yield and maintenance coefficients of R. capsulatus and R. eutropha, reactor residence time, gas-liquid mass-transfer coefficients, gas composition and specific fuel productivity on the volumetric productivity and fuel yield on H2. It was found that the organism with the lowest maintenance coefficient performed better under very low growth rates evaluated in the model (based on residence time through the reactor) performed the best. The optimum parameter values were then used to determine the capital and operating costs for a 5000 bbl-fuel/day plant and the final fuel cost based on the Levelized Cost of Electricity (LCOE). It was found that under the assumptions used in this analysis and crude oil prices, the LCOE required for economic feasibility must be less than 2¢/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. This was the best case scenario of the two organisms evaluated, and an optimally suited organism with high growth yield and low maintenance coefficient should obviously improve the economics. This economic constraint will improve with the rise of fossil fuel prices, which should occur if the environmentally detrimental effects of their use are factored into the price, through higher taxation, for example. A review of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

Top