Sample records for square design experiments

  1. Orthogonalizing EM: A design-based least squares algorithm.

    PubMed

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.

  2. Latin and Magic Squares

    ERIC Educational Resources Information Center

    Emanouilidis, Emanuel

    2005-01-01

    Latin squares have existed for hundreds of years but it wasn't until rather recently that Latin squares were used in other areas such as statistics, graph theory, coding theory and the generation of random numbers as well as in the design and analysis of experiments. This note describes Latin and diagonal Latin squares, a method of constructing…

  3. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  4. The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.

    2018-05-01

    The Square Kilometre Array (SKA) Epoch of Reionisation and Cosmic Dawn (EoR/CD) experiments aim to explore the growth of structure and production of ionising radiation in the first billion years of the Universe. Here I describe the experiments planned for the future low-frequency components of the Observatory, and work underway to define, design and execute these programs.

  5. Helping students mathematical construction on square and rectangle’s area by using Sarong motive chess

    NASA Astrophysics Data System (ADS)

    Zuliana, Eka; Setyawan, Fariz; Veloo, Arsaythamby

    2017-12-01

    The aim of this study is developing the learning trajectory to construct students’ understanding of the concept of the area of square and rectangle by using Sarong Motive Chess. This research is a design research which is consists of three stages. The stages are preparing for the experiment, designing experiment, and making a retrospective analysis. The activities started by the activity of using sarong motive chess as the manipulative measurement unit. The Sarong motive chess helps students to understand the concept of area of square and rectangle. In the formal stage of cognitive level, students estimate the area of square and rectangle by determining the square unit at the surface area of sarong through many ways. The result of this study concludes that Sarong motive chess can be used for mathematics learning process. It helps the students to construct the concept of a square and rectangle’s area. This study produces learning trajectory to construct the concept of a square and rectangle’s area by using Sarong motive chess, especially for elementary school students.

  6. 2011 AERA Presidential Address: Designing Resilient Ecologies--Social Design Experiments and a New Social Imagination

    ERIC Educational Resources Information Center

    Gutiérrez, Kris D.

    2016-01-01

    This article is about designing for educational possibilities--designs that in their inception, social organization, and implementation squarely address issues of cultural diversity, social inequality, and robust learning. I discuss an approach to design-based research, social design experiments, that privileges a social scientific inquiry…

  7. How-To-Do-It: Snails, Pill Bugs, Mealworms, and Chi-Square? Using Invertebrate Behavior to Illustrate Hypothesis Testing with Chi-Square.

    ERIC Educational Resources Information Center

    Biermann, Carol

    1988-01-01

    Described is a study designed to introduce students to the behavior of common invertebrate animals, and to use of the chi-square statistical technique. Discusses activities with snails, pill bugs, and mealworms. Provides an abbreviated chi-square table and instructions for performing the experiments and statistical tests. (CW)

  8. Latin and Cross Latin Squares

    ERIC Educational Resources Information Center

    Emanouilidis, Emanuel

    2008-01-01

    Latin squares were first introduced and studied by the famous mathematician Leonhard Euler in the 1700s. Through the years, Latin squares have been used in areas such as statistics, graph theory, coding theory, the generation of random numbers as well as in the design and analysis of experiments. Recently, with the international popularity of…

  9. Short-range inverse-square law experiment in space

    NASA Technical Reports Server (NTRS)

    Paik, H. J.; Moody, M. V.

    2002-01-01

    Newton's inverse-square law is a cornerstone of General Relativity. Its validity has been demonstrated to better than one part in thousand in ranges greater than 1 cm. The range below 1 mm has been left largely unexplored, due to the difficulties associated with designing sensitive short-range experiments. However, the theoretical rationale for testing Newton's law at ranges below 1 mm has become very strong recently.

  10. Partially-reflected water-moderated square-piteched U(6.90)O 2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O 2 fuel rods.

  11. Design of model experiments for melt flow and solidification in a square container under time-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.

    2017-03-01

    This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.

  12. A method for simultaneously counterbalancing condition order and assignment of stimulus materials to conditions.

    PubMed

    Zeelenberg, René; Pecher, Diane

    2015-03-01

    Counterbalanced designs are frequently used in the behavioral sciences. Studies often counterbalance either the order in which conditions are presented in the experiment or the assignment of stimulus materials to conditions. Occasionally, researchers need to simultaneously counterbalance both condition order and stimulus assignment to conditions. Lewis (1989; Behavior Research Methods, Instruments, & Computers 25:414-415, 1993) presented a method for constructing Latin squares that fulfill these requirements. The resulting Latin squares counterbalance immediate sequential effects, but not remote sequential effects. Here, we present a new method for generating Latin squares that simultaneously counterbalance both immediate and remote sequential effects and assignment of stimuli to conditions. An Appendix is provided to facilitate implementation of these Latin square designs.

  13. LUX-ZEPLIN (LZ) Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, B. J.

    In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.

  14. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    NASA Technical Reports Server (NTRS)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  15. Methods for Improving Information from ’Undesigned’ Human Factors Experiments.

    DTIC Science & Technology

    Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction

  16. A User’s Guide to the Brave New World of Designing Simulation Experiments. State-of-the-Art Review

    DTIC Science & Technology

    2005-01-01

    Bardhan 1995, Saltelli et al. 1999, or Sanchez and Wu 2003). 4.8. Crossed and Combined Array Designs Selecting designs for finding robust solutions falls...5th ed. Wiley, New York. Morrice, D. J., I. R. Bardhan . 1995. A weighted least squares approach to computer simulation factor screening. Oper. Res

  17. On Improved Least Squares Regression and Artificial Neural Network Meta-Models for Simulation via Control Variates

    DTIC Science & Technology

    2016-09-15

    18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4

  18. ATLAS particle detector CSC ROD software design and implementation, and, Addition of K physics to chi-squared analysis of FDQM

    NASA Astrophysics Data System (ADS)

    Hawkins, Donovan Lee

    In this thesis I present a software framework for use on the ATLAS muon CSC readout driver. This C++ framework uses plug-in Decoders incorporating hand-optimized assembly language routines to perform sparsification and data formatting. The software is designed with both flexibility and performance in mind, and runs on a custom 9U VME board using Texas Instruments TMS360C6203 digital signal processors. I describe the requirements of the software, the methods used in its design, and the results of testing the software with simulated data. I also present modifications to a chi-squared analysis of the Standard Model and Four Down Quark Model (FDQM) originally done by Dr. Dennis Silverman. The addition of four new experiments to the analysis has little effect on the Standard Model but provides important new restrictions on the FDQM. The method used to incorporate these new experiments is presented, and the consequences of their addition are reviewed.

  19. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    PubMed

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  20. Comparative Investigation and Operational Performance Characteristics of a Wick Assisted and Axially Square Grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand

    2018-04-01

    The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.

  1. Developing Pedagogical Judgment in Novice Teachers: Mediated Field Experience as a Pedagogy for Teacher Education

    ERIC Educational Resources Information Center

    Horn, Ilana Seidel; Campbell, Sara Sunshine

    2015-01-01

    A common critique of teacher education centres on the gap between coursework and schools, with ample evidence that novice teachers seldom bring ambitious forms of instruction into classroom placements. We describe a 6-year design experiment conducted in a university teacher education program secondary mathematics methods course focused squarely on…

  2. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  3. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  4. Design and resolution analysis of parabolic mirror spectrometer

    NASA Astrophysics Data System (ADS)

    Wu, Su; Wang, Guodong; Xia, Guo; Sun, Yanchao; Hu, Mingyong

    2017-10-01

    In order to further eliminate aberration and improve resolution, the paper employs parabolic mirror as the collimating mirror and the focusing mirror to design "Z" configuration and "U" configuration optical structure of parabolic spectrometer with the F number 2.5 and the spectral range varying from 250 nm to 850 nm. We conduct experiments on ZEMAX to simulate and optimize the initial parameters of two structures with the root-mean-square (RMS) radius of spots along Y axis as the optimization goal. Through analyzing the spot diagram and the root-mean-square (RMS) of Y axis, we can see that the "U" configuration spectrometers can achieve much better spectral resolution than the "Z" configuration.

  5. Results from the Maine 1992 foliage penetration experiment

    NASA Astrophysics Data System (ADS)

    Toups, Michael F.; Ayasli, Serpil

    1993-11-01

    In order to investigate the detection of targets which are hidden by foliage, an experiment was designed which utilized a forest region located near Portage, Maine. The experiment was designed to address four issues. First, the properties of the backscatter or clutter which competes with the desired target were investigated. Second, the foliage induced attenuation that is experienced by the radar energy traversing the foliage were measured. Third, the ability of a synthetic aperture radar system to focus on a target obscured by foliage was investigated. Fourth, target signatures of foliage obscured and unobscured targets were measured. The forest region was investigated using two different airborne synthetic aperture radar (SAR) systems. A UHF wide-band SAR operated by SRI International was used as well as a L-, C-, and X-band SAR installed on a P-3 aircraft operated by the U.S. Navy. The SRI system was used to collect data over 16 square kilometers with repeat passes for verification of system performance. The P-3 system was used to collect over 50 square kilometers of data at three different depression angles with several repeat passes.

  6. Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments

    PubMed Central

    Erkoc, Ali; Emiroglu, Esra

    2014-01-01

    In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738

  7. Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.

    PubMed

    Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas

    2014-01-01

    In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.

  8. Mathematics in the Real World.

    ERIC Educational Resources Information Center

    Borenstein, Matt

    1997-01-01

    The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…

  9. Error analysis on squareness of multi-sensor integrated CMM for the multistep registration method

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Yiwen; Ye, Xiuling; Wang, Zhong; Fu, Luhua

    2018-01-01

    The multistep registration(MSR) method in [1] is to register two different classes of sensors deployed on z-arm of CMM(coordinate measuring machine): a video camera and a tactile probe sensor. In general, it is difficult to obtain a very precise registration result with a single common standard, instead, this method is achieved by measuring two different standards with a constant distance between them two which are fixed on a steel plate. Although many factors have been considered such as the measuring ability of sensors, the uncertainty of the machine and the number of data pairs, there is no exact analysis on the squareness between the x-axis and the y-axis on the xy plane. For this sake, error analysis on the squareness of multi-sensor integrated CMM for the multistep registration method will be made to examine the validation of the MSR method. Synthetic experiments on the squareness on the xy plane for the simplified MSR with an inclination rotation are simulated, which will lead to a regular result. Experiments have been carried out with the multi-standard device designed also in [1], meanwhile, inspections with the help of a laser interferometer on the xy plane have been carried out. The final results are conformed to the simulations, and the squareness errors of the MSR method are also similar to the results of interferometer. In other word, the MSR can also adopted/utilized to verify the squareness of a CMM.

  10. The Effect of Furnishing on Perceived Spatial Dimensions and Spaciousness of Interior Space

    PubMed Central

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room. PMID:25409456

  11. The effect of furnishing on perceived spatial dimensions and spaciousness of interior space.

    PubMed

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room.

  12. Artist rendition of the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  13. Micro-Bubble Experiments at the Van de Graaff Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less

  14. The relation between visualization size, grouping, and user performance.

    PubMed

    Gramazio, Connor C; Schloss, Karen B; Laidlaw, David H

    2014-12-01

    In this paper we make the following contributions: (1) we describe how the grouping, quantity, and size of visual marks affects search time based on the results from two experiments; (2) we report how search performance relates to self-reported difficulty in finding the target for different display types; and (3) we present design guidelines based on our findings to facilitate the design of effective visualizations. Both Experiment 1 and 2 asked participants to search for a unique target in colored visualizations to test how the grouping, quantity, and size of marks affects user performance. In Experiment 1, the target square was embedded in a grid of squares and in Experiment 2 the target was a point in a scatterplot. Search performance was faster when colors were spatially grouped than when they were randomly arranged. The quantity of marks had little effect on search time for grouped displays ("pop-out"), but increasing the quantity of marks slowed reaction time for random displays. Regardless of color layout (grouped vs. random), response times were slowest for the smallest mark size and decreased as mark size increased to a point, after which response times plateaued. In addition to these two experiments we also include potential application areas, as well as results from a small case study where we report preliminary findings that size may affect how users infer how visualizations should be used. We conclude with a list of design guidelines that focus on how to best create visualizations based on grouping, quantity, and size of visual marks.

  15. Child- and elder-friendly urban public places in Fatahillah Square Historical District

    NASA Astrophysics Data System (ADS)

    Srinaga, F.; LKatoppo, M.; Hidayat, J.

    2018-03-01

    Fatahillah square as an important historical urban square in Jakarta has problems in eye level area integrative processing. Visitors cannot enjoy their time while in the square regarding their visuals, feelings, space, and bodies comfort. These also lead to other problems in which the square is lack of friendly and convenient places for children, the elderly and also the disabled, especially people with limited moving space. The research will attempt in proposing design inception for the Fatahillah Square that is using inclusive user-centered design approach, while in the same time incorporate theoretical studies of children and elderly-design considerations. The first stage of this research was building inclusive design parameter; begin with a context-led research which assesses the quality of Fatahillah square through three basic components of urban space: hardware, software and orgware. The second stage of this research is to propose inclusive design inception for the Fatahillah square.

  16. Decoupling PI Controller Design for a Normal Conducting RF Cavity Using a Recursive LEVENBERG-MARQUARDT Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Sung-il; Lynch, M.; Prokop, M.

    2005-02-01

    This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.

  17. Engrained experience--a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares.

    PubMed

    Lenzholzer, Sanda

    2010-03-01

    Acceptance of public spaces is often guided by perceptual schemata. Such schemata also seem to play a role in thermal comfort and microclimate experience. For climate-responsive design with a focus on thermal comfort it is important to acquire knowledge about these schemata. For this purpose, perceived and "real" microclimate situations were compared for three Dutch urban squares. People were asked about their long-term microclimate perceptions, which resulted in "cognitive microclimate maps". These were compared with mapped microclimate data from measurements representing the common microclimate when people stay outdoors. The comparison revealed some unexpected low matches; people clearly overestimated the influence of the wind. Therefore, a second assumption was developed: that it is the more salient wind situations that become engrained in people's memory. A comparison using measurement data from windy days shows better matches. This suggests that these more salient situations play a role in the microclimate schemata that people develop about urban places. The consequences from this study for urban design are twofold. Firstly, urban design should address not only the "real" problems, but, more prominently, the "perceived" problems. Secondly, microclimate simulations addressing thermal comfort issues in urban spaces should focus on these perceived, salient situations.

  18. Analysis of Complex Intervention Effects in Time-Series Experiments.

    ERIC Educational Resources Information Center

    Bower, Cathleen

    An iterative least squares procedure for analyzing the effect of various kinds of intervention in time-series data is described. There are numerous applications of this design in economics, education, and psychology, although until recently, no appropriate analysis techniques had been developed to deal with the model adequately. This paper…

  19. Bring Engineering to Life: Pergola Design

    ERIC Educational Resources Information Center

    Dorrell, Abby; Berkeihiser, Mike

    2014-01-01

    The Family and Consumer Science (FCS) Department at Charles F. Patton Middle School in Kennett Square, Pennsylvania, planted a garden to provide students with an organic horticulture experience. Although the garden provided the FCS Department space to grow plants, Patton Middle School FCS teachers Betsy Ballard and Kim Hislert believed it wasn't…

  20. KSC-00padig018

    NASA Image and Video Library

    2000-05-02

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park

  1. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    PubMed

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Gas Generator Feedline Orifice Sizing Methodology: Effects of Unsteadiness and Non-Axisymmetric Flow

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; West, Jeffrey S.

    2011-01-01

    Engine LH2 and LO2 gas generator feed assemblies were modeled with computational fluid dynamics (CFD) methods at 100% rated power level, using on-center square- and round-edge orifices. The purpose of the orifices is to regulate the flow of fuel and oxidizer to the gas generator, enabling optimal power supply to the turbine and pump assemblies. The unsteady Reynolds-Averaged Navier-Stokes equations were solved on unstructured grids at second-order spatial and temporal accuracy. The LO2 model was validated against published experimental data and semi-empirical relationships for thin-plate orifices over a range of Reynolds numbers. Predictions for the LO2 square- and round-edge orifices precisely match experiment and semi-empirical formulas, despite complex feedline geometry whereby a portion of the flow from the engine main feedlines travels at a right-angle through a smaller-diameter pipe containing the orifice. Predictions for LH2 square- and round-edge orifice designs match experiment and semi-empirical formulas to varying degrees depending on the semi-empirical formula being evaluated. LO2 mass flow rate through the square-edge orifice is predicted to be 25 percent less than the flow rate budgeted in the original engine balance, which was subsequently modified. LH2 mass flow rate through the square-edge orifice is predicted to be 5 percent greater than the flow rate budgeted in the engine balance. Since CFD predictions for LO2 and LH2 square-edge orifice pressure loss coefficients, K, both agree with published data, the equation for K has been used to define a procedure for orifice sizing.

  3. Automobile ride quality experiments correlated to iso-weighted criteria

    NASA Technical Reports Server (NTRS)

    Healey, A. J.; Young, R. K.; Smith, C. C.

    1975-01-01

    As part of an overall study to evaluate the usefulness of ride quality criteria for the design of improved ground transportation systems an experiment was conducted involving subjective and objective measurement of ride vibrations found in an automobile riding over roadways of various roughness. Correlation of the results led to some very significant relationships between passenger rating and ride accelerations. The latter were collapsed using a frequency-weighted root mean square measure of the random vibration. The results suggest the form of a design criterion giving the relationship between ride vibration and acceptable automobile ride quality. Further the ride criterion is expressed in terms that relate to rides with which most people are familiar. The design of the experiment, the ride vibration data acquisition, the concept of frequency weighting and the correlations found between subjective and objective measurements are presented.

  4. Challenge Based Innovation: Translating Fundamental Research into Societal Applications

    ERIC Educational Resources Information Center

    Kurikka, Joona; Utriainen, Tuuli; Repokari, Lauri

    2016-01-01

    This paper is based on work done at IdeaSquare, a new innovation experiment at CERN, the European Organization for Nuclear Research. The paper explores the translation of fundamental research into societal applications with the help of multidisciplinary student teams, project- and problem-based learning and design thinking methods. The theme is…

  5. Atmospheric turbulence chamber for optical transmission experiment Characterization by thermal method

    NASA Technical Reports Server (NTRS)

    Gamo, H.; Majumdar, A. K.

    1978-01-01

    Consideration is given to an atmospheric turbulence chamber designed for optical wave propagation experiments. The chamber consists of ten small electric heater/blowers with an aluminum foil screen and three screens of 2-mm aluminum wire meshes. Calculations are made of the temperature structure constant squared on the basis of temperature structure function measurements derived from a differential microthermocouple system. Values are presented for the refractive-index structure constant squared. The average wind velocity and temperature are found to be, respectively, 0.41 m/sec and 53 C. The inner and outer scales of turbulence are 5.0 mm and 6.5 cm. It is shown that the measured temperature structure function and the power spectrum of temperature fluctuations satisfy, respectively, the 2/3 and -5/3 power similarity laws in the inertial subrange. Possible chamber improvements are discussed.

  6. Wide-angle Optical Telescope for the EUSO Experiments

    NASA Technical Reports Server (NTRS)

    Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.

    2003-01-01

    Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.

  7. Sampling strategies for square and boll-feeding plant bugs (Hemiptera: Miridae) occurring on cotton

    USDA-ARS?s Scientific Manuscript database

    Six sampling methods targeting square and boll-feeding plant bugs on cotton were compared during three cotton growth periods (early-season squaring, early bloom, and peak through late bloom) by samplers differing in experience (with prior years of sampling experience or no experience) along the coas...

  8. Solar Heating Proof-of-Concept Experiment for a Public School Building.

    ERIC Educational Resources Information Center

    Merrill, Glen L.

    Results and conclusions to date of a program to design, erect, and test a 5,000-square-foot solar energy system are presented in this report. The program described demonstrates the ability of solar collectors to supplement the heating and hot water requirements of North View Junior High School in suburban Minneapolis. The report discusses in…

  9. The impact of mathematical models of teaching materials on square and rectangle concepts to improve students' mathematical connection ability and mathematical disposition in middle school

    NASA Astrophysics Data System (ADS)

    Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani

    2017-05-01

    The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.

  10. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  11. Using volcano plots and regularized-chi statistics in genetic association studies.

    PubMed

    Li, Wentian; Freudenberg, Jan; Suh, Young Ju; Yang, Yaning

    2014-02-01

    Labor intensive experiments are typically required to identify the causal disease variants from a list of disease associated variants in the genome. For designing such experiments, candidate variants are ranked by their strength of genetic association with the disease. However, the two commonly used measures of genetic association, the odds-ratio (OR) and p-value may rank variants in different order. To integrate these two measures into a single analysis, here we transfer the volcano plot methodology from gene expression analysis to genetic association studies. In its original setting, volcano plots are scatter plots of fold-change and t-test statistic (or -log of the p-value), with the latter being more sensitive to sample size. In genetic association studies, the OR and Pearson's chi-square statistic (or equivalently its square root, chi; or the standardized log(OR)) can be analogously used in a volcano plot, allowing for their visual inspection. Moreover, the geometric interpretation of these plots leads to an intuitive method for filtering results by a combination of both OR and chi-square statistic, which we term "regularized-chi". This method selects associated markers by a smooth curve in the volcano plot instead of the right-angled lines which corresponds to independent cutoffs for OR and chi-square statistic. The regularized-chi incorporates relatively more signals from variants with lower minor-allele-frequencies than chi-square test statistic. As rare variants tend to have stronger functional effects, regularized-chi is better suited to the task of prioritization of candidate genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  13. Design of Experiment and Analysis for the Joint Dynamic Allocation of Fires and Sensors (JDAFS) Simulation

    DTIC Science & Technology

    2007-06-01

    other databases such as MySQL , Oracle , and Derby will be added to future versions of the program. Setting a factor requires more than changing a single...Non-Penetrating vs . Penetrating Results.............106 a. Coverage...Interaction Profile for D U-2 and C RQ-4 .......................................................89 Figure 59. R-Squared vs . Number of Regression Tree

  14. Holistic face perception is modulated by experience-dependent perceptual grouping.

    PubMed

    Curby, Kim M; Entenman, Robert J; Fleming, Justin T

    2016-07-01

    What role do general-purpose, experience-sensitive perceptual mechanisms play in producing characteristic features of face perception? We previously demonstrated that different-colored, misaligned framing backgrounds, designed to disrupt perceptual grouping of face parts appearing upon them, disrupt holistic face perception. In the current experiments, a similar part-judgment task with composite faces was performed: face parts appeared in either misaligned, different-colored rectangles or aligned, same-colored rectangles. To investigate whether experience can shape impacts of perceptual grouping on holistic face perception, a pre-task fostered the perception of either (a) the misaligned, differently colored rectangle frames as parts of a single, multicolored polygon or (b) the aligned, same-colored rectangle frames as a single square shape. Faces appearing in the misaligned, differently colored rectangles were processed more holistically by those in the polygon-, compared with the square-, pre-task group. Holistic effects for faces appearing in aligned, same-colored rectangles showed the opposite pattern. Experiment 2, which included a pre-task condition fostering the perception of the aligned, same-colored frames as pairs of independent rectangles, provided converging evidence that experience can modulate impacts of perceptual grouping on holistic face perception. These results are surprising given the proposed impenetrability of holistic face perception and provide insights into the elusive mechanisms underlying holistic perception.

  15. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  16. Tri-Squared Mean Cross Comparative Analysis: An Advanced Post Hoc Qualitative and Quantitative Metric for a More In-Depth Examination of the Initial Research Outcomes of the Tri-Square Test

    ERIC Educational Resources Information Center

    Osler, James Edward

    2013-01-01

    This monograph provides an epistemological rational for the design of an advanced novel analysis metric. The metric is designed to analyze the outcomes of the Tri-Squared Test. This methodology is referred to as: "Tri-Squared Mean Cross Comparative Analysis" (given the acronym TSMCCA). Tri-Squared Mean Cross Comparative Analysis involves…

  17. Low-cost solar array structure development

    NASA Astrophysics Data System (ADS)

    Wilson, A. H.

    1981-06-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  18. Low-cost solar array structure development

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  19. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aimmore » of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.« less

  20. Calibration of the LHAASO-KM2A electromagnetic particle detectors using charged particles within the extensive air showers

    NASA Astrophysics Data System (ADS)

    Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration

    2018-07-01

    In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.

  1. An experimental study on the effect of wind load around tall towers of square and hexagonal shapes in staggered form

    NASA Astrophysics Data System (ADS)

    Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad

    2017-06-01

    In this research work an experiment is conducted to observe the effect of wind load around square and hexagonal shaped cylinders in staggered form. The experiment is performed in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform at 14.3 m/s throughout the experiment. The test is conducted for single cylinders first and then in staggered form. The cylinders are rotated to create different angles of attack and the angles are chosen at a definite interval. The static pressure readings are taken at different locations of the cylinder by inclined multi-manometers. From the surface static pressure readings pressure coefficients, drag coefficients and lift coefficients are calculated using numerical integration method. These results will surely help engineers to design buildings more stable against wind load. All the results are expressed in non-dimensional form, so that they can be applied for prototype structures.

  2. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  3. Simulation, Design, and Test of Square, Apodized Photon Sieves for High Contrast, Exoplanet Imaging

    DTIC Science & Technology

    reason, square apodized photon sieves were simulated, designed, and tested for high-contrast performance and use in an exoplanet imaging telescope...for apodizing sieves, measuring PSFs, and characterizing high-contrast performance. Tests indicated that square apodized sieves could detect

  4. Noninvasive hemoglobin measurement using dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  5. An open-loop system design for deep space signal processing applications

    NASA Astrophysics Data System (ADS)

    Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi

    2018-06-01

    A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.

  6. Multivariate Approaches for Simultaneous Determination of Avanafil and Dapoxetine by UV Chemometrics and HPLC-QbD in Binary Mixtures and Pharmaceutical Product.

    PubMed

    2016-04-07

    Multivariate UV-spectrophotometric methods and Quality by Design (QbD) HPLC are described for concurrent estimation of avanafil (AV) and dapoxetine (DP) in the binary mixture and in the dosage form. Chemometric methods have been developed, including classical least-squares, principal component regression, partial least-squares, and multiway partial least-squares. Analytical figures of merit, such as sensitivity, selectivity, analytical sensitivity, LOD, and LOQ were determined. QbD consists of three steps, starting with the screening approach to determine the critical process parameter and response variables. This is followed by understanding of factors and levels, and lastly the application of a Box-Behnken design containing four critical factors that affect the method. From an Ishikawa diagram and a risk assessment tool, four main factors were selected for optimization. Design optimization, statistical calculation, and final-condition optimization of all the reactions were Carried out. Twenty-five experiments were done, and a quadratic model was used for all response variables. Desirability plot, surface plot, design space, and three-dimensional plots were calculated. In the optimized condition, HPLC separation was achieved on Phenomenex Gemini C18 column (250 × 4.6 mm, 5 μm) using acetonitrile-buffer (ammonium acetate buffer at pH 3.7 with acetic acid) as a mobile phase at flow rate of 0.7 mL/min. Quantification was done at 239 nm, and temperature was set at 20°C. The developed methods were validated and successfully applied for simultaneous determination of AV and DP in the dosage form.

  7. A polygonal double-layer coil design for high-efficiency wireless power transfer

    NASA Astrophysics Data System (ADS)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

  8. Entropic anomaly and maximal efficiency of microscopic heat engines.

    PubMed

    Bo, Stefano; Celani, Antonio

    2013-05-01

    The efficiency of microscopic heat engines in a thermally heterogenous environment is considered. We show that-as a consequence of the recently discovered entropic anomaly-quasistatic engines, whose efficiency is maximal in a fluid at uniform temperature, have in fact vanishing efficiency in the presence of temperature gradients. For slow cycles the efficiency falls off as the inverse of the period. The maximum efficiency is reached at a finite value of the cycle period that is inversely proportional to the square root of the gradient intensity. The relative loss in maximal efficiency with respect to the thermally homogeneous case grows as the square root of the gradient. As an illustration of these general results, we construct an explicit, analytically solvable example of a Carnot stochastic engine. In this thought experiment, a Brownian particle is confined by a harmonic trap and immersed in a fluid with a linear temperature profile. This example may serve as a template for the design of real experiments in which the effect of the entropic anomaly can be measured.

  9. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  10. Infant perception of the rotating Kanizsa square.

    PubMed

    Yoshino, Daisuke; Idesawa, Masanori; Kanazawa, So; Yamaguchi, Masami K

    2010-04-01

    This study examined the perception of the rotating Kanizsa square by using a fixed-trial familiarization method. If the Kanizsa square is rotated across the pacmen, adult observers perceive not only a rotating illusory square, but also an illusory expansion/contraction motion of this square. The phenomenon is called a "rotational dynamic illusion". In experiments 1 and 2, we investigated whether infants perceived the rotational dynamic illusion, finding that 3-8-month-old infants perceived the rotational dynamic illusion as a simple rotation of the Kanizsa square. In experiment 3, we investigated whether infants perceived the rotational dynamic illusion as a rotation of the Kanizsa square or as a deformation of shape, finding that 3-4-month-old infants did perceive the rotational dynamic illusion as a rotation of the Kanizsa square. Our results show that while 3-8-month-old infants perceive the rotating Kanizsa square, however, it is difficult for the infants to extract expansion/contraction motion from the rotational dynamic illusion. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Multiplier less high-speed squaring circuit for binary numbers

    NASA Astrophysics Data System (ADS)

    Sethi, Kabiraj; Panda, Rutuparna

    2015-03-01

    The squaring operation is important in many applications in signal processing, cryptography etc. In general, squaring circuits reported in the literature use fast multipliers. A novel idea of a squaring circuit without using multipliers is proposed in this paper. Ancient Indian method used for squaring decimal numbers is extended here for binary numbers. The key to our success is that no multiplier is used. Instead, one squaring circuit is used. The hardware architecture of the proposed squaring circuit is presented. The design is coded in VHDL and synthesised and simulated in Xilinx ISE Design Suite 10.1 (Xilinx Inc., San Jose, CA, USA). It is implemented in Xilinx Vertex 4vls15sf363-12 device (Xilinx Inc.). The results in terms of time delay and area is compared with both modified Booth's algorithm and squaring circuit using Vedic multipliers. Our proposed squaring circuit seems to have better performance in terms of both speed and area.

  12. Impact of pruning intensity on growth of young loblolly pine trees: some early results

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart

    2010-01-01

    In the spring of 2000, a designed experiment was established to study the effects of pruning intensity on the growth of loblolly pine (Pinus taeda L.) trees. Trees were planted at a 1.83 by 1.83 m square spacing in plots of eight rows with eight trees per row; the inner 36 trees constituted the measurement plot. Four blocks containing five treatment...

  13. Growth following pruning of young loblolly pine trees: some early results

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart

    2006-01-01

    In the spring of 2000, a designed experiment was established to study the effects of pruning on juvenile loblolly pine (Pinus taeda L.) tree growth and the subsequent formation of mature wood. Trees were planted at a 3 m x 3 m square spacing in plots of 6 rows with 6 trees per row, with the inner 16 trees constituting the measurement plot. Among the...

  14. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  15. Luminaire layout: Design and implementation

    NASA Technical Reports Server (NTRS)

    Both, A. J.

    1994-01-01

    The information contained in this report was presented during the discussion regarding guidelines for PAR uniformity in greenhouses. The data shows a lighting uniformity analysis in a research greenhouse for rose production at the Cornell University campus. The luminaire layout was designed using the computer program Lumen-Micro. After implementation of the design, accurate measurements were taken in the greenhouse and the uniformity analysis for both the design and implementation were compared. A study of several supplemental lighting installations resulted in the following recommendations: include only the actual growing area in the lighting uniformity analysis; for growing areas up to 20 square meters, take four measurements per square meter; for growing areas above 20 square meters, take one measurement per square meter; use one of the uniformity criteria and frequency graphs to compare lighting uniformity amongst designs; and design for uniformity criterion of a least 0.75 and the fraction within +/- 15% of the average PAR value should be close to one.

  16. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs

    ERIC Educational Resources Information Center

    Pierce, Charles A.; Block, Richard A.; Aguinis, Herman

    2004-01-01

    The authors provide a cautionary note on reporting accurate eta-squared values from multifactor analysis of variance (ANOVA) designs. They reinforce the distinction between classical and partial eta-squared as measures of strength of association. They provide examples from articles published in premier psychology journals in which the authors…

  17. Partial least squares model and design of experiments toward the analysis of the metabolome of Jatropha gossypifolia leaves: Extraction and chromatographic fingerprint optimization.

    PubMed

    Pilon, Alan Cesar; Carnevale Neto, Fausto; Freire, Rafael Teixeira; Cardoso, Patrícia; Carneiro, Renato Lajarim; Da Silva Bolzani, Vanderlan; Castro-Gamboa, Ian

    2016-03-01

    A major challenge in metabolomic studies is how to extract and analyze an entire metabolome. So far, no single method was able to clearly complete this task in an efficient and reproducible way. In this work we proposed a sequential strategy for the extraction and chromatographic separation of metabolites from leaves Jatropha gossypifolia using a design of experiments and partial least square model. The effect of 14 different solvents on extraction process was evaluated and an optimized separation condition on liquid chromatography was estimated considering mobile phase composition and analysis time. The initial conditions of extraction using methanol and separation in 30 min between 5 and 100% water/methanol (1:1 v/v) with 0.1% of acetic acid, 20 μL sample volume, 3.0 mL min(-1) flow rate and 25°C column temperature led to 107 chromatographic peaks. After the optimization strategy using i-propanol/chloroform (1:1 v/v) for extraction, linear gradient elution of 60 min between 5 and 100% water/(acetonitrile/methanol 68:32 v/v with 0.1% of acetic acid), 30 μL sample volume, 2.0 mL min(-1) flow rate, and 30°C column temperature, we detected 140 chromatographic peaks, 30.84% more peaks compared to initial method. This is a reliable strategy using a limited number of experiments for metabolomics protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. MRI-based intelligence quotient (IQ) estimation with sparse learning.

    PubMed

    Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.

  19. Optimal experimental designs for the estimation of thermal properties of composite materials

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  20. Search for sterile neutrinos at RENO

    NASA Astrophysics Data System (ADS)

    Yeo, In Sung; RENO Collaboration

    2017-09-01

    The RENO experiment was designed to measure a neutrino mixing angle, θ13, by detecting electron antineutrinos emitted from the Hanbit nuclear reactors in Korea, and succeeded to measure θ13 from the disappearance mode in three neutrino frame. We investigate the possibility of sterile neutrinos existence at RENO experiment and compare data with Monte Carlo generated in four neutrino frame. In this talk, we present some recent results using chi-square analysis method. The probability deficit curve as a function of an effective baseline and the excluded contour plot in sin2(2 θ14) - Δ(m41)2 space will be shown.

  1. Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept

    NASA Astrophysics Data System (ADS)

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-01

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  2. Combination of partial least squares regression and design of experiments to model the retention of pharmaceutical compounds in supercritical fluid chromatography.

    PubMed

    Andri, Bertyl; Dispas, Amandine; Marini, Roland Djang'Eing'a; Hubert, Philippe; Sassiat, Patrick; Al Bakain, Ramia; Thiébaut, Didier; Vial, Jérôme

    2017-03-31

    This work presents a first attempt to establish a model of the retention behaviour for pharmaceutical compounds in gradient mode SFC. For this purpose, multivariate statistics were applied on the basis of data gathered with the Design of Experiment (DoE) methodology. It permitted to build optimally the experiments needed, and served as a basis for providing relevant physicochemical interpretation of the effects observed. Data gathered over a broad experimental domain enabled the establishment of well-fit linear models of the retention of the individual compounds in presence of methanol as co-solvent. These models also allowed the appreciation of the impact of each experimental parameter and their factorial combinations. This approach was carried out with two organic modifiers (i.e. methanol and ethanol) and provided comparable results. Therefore, it demonstrates the feasibility to model retention in gradient mode SFC for individual compounds as a function of the experimental conditions. This approach also permitted to highlight the predominant effect of some parameters (e.g. gradient slope and pressure) on the retention of compounds. Because building of individual models of retention was possible, the next step considered the establishment of a global model of the retention to predict the behaviour of given compounds on the basis of, on the one side, the physicochemical descriptors of the compounds (e.g. Linear Solvation Energy Relationship (LSER) descriptors) and, on the other side, of the experimental conditions. This global model was established by means of partial least squares regression for the selected compounds, in an experimental domain defined by the Design of Experiment (DoE) methodology. Assessment of the model's predictive capabilities revealed satisfactory agreement between predicted and actual retention (i.e. R 2 =0.942, slope=1.004) of the assessed compounds, which is unprecedented in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophobic lenses.

    PubMed

    Werner, Liliana; Müller, Matthias; Tetz, Manfred

    2008-02-01

    To evaluate the microstructure of the edges of currently available square-edged hydrophobic intraocular lenses (IOLs) in terms of their deviation from an ideal square. Berlin Eye Research Institute, Berlin, Germany. Sixteen designs of hydrophobic acrylic or silicone IOLs were studied. For each design, a +20.0 diopter (D) IOL and a +0.0 D IOL (or the lowest available plus dioptric power) were evaluated. The IOL edge was imaged under high-magnification scanning electron microscopy using a standardized technique. The area above the lateral-posterior edge, representing the deviation from a perfect square, was measured in square microns using reference circles of 40 microm and 60 microm of radius and the AutoCAD LT 2000 system (Autodesk). The IOLs were compared with an experimental square-edged poly(methyl methacrylate) (PMMA) IOL (reference IOL) with an edge design that effectively stopped lens epithelial cell growth in culture in a preliminary study. Two round-edged silicone IOLs were used as controls. The hydrophobic IOLs used, labeled as square-edged IOLs, had an area of deviation from a perfect square ranging from 4.8 to 338.4 microm(2) (40 microm radius reference circle) and from 0.2 to 524.4 microm(2) (60 microm radius circle). The deviation area for the square-edged PMMA IOL was 34.0 microm(2) with a 40 microm radius circle and 37.5 microm(2) with a 60 microm radius circle. The respective values for the +20.0 D control silicone IOL were 729.3 microm(2) and 1525.3 microm(2) and for the +0.0 D control silicone IOL, 727.3 microm(2) and 1512.7 microm(2). Seven silicone IOLs of 5 designs had area values that were close to those of the reference square-edged PMMA IOL. Several differences in edge finishing between the IOLs analyzed were also observed. There was a large variation in the deviation area from a perfect square as well as in the edge finishing, not only between different IOL designs but also between different powers of the same design. Clinically, factors such as the shrink-wrapping of the IOL by the capsule may even out or modify the influence of these variations in terms of preventing posterior capsule opacification.

  4. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources

    DTIC Science & Technology

    2012-02-09

    different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16

  5. As-built design specification for the digital derivation of daily and monthly data bases from synoptic observations of temperature and precipitation for the People's Republic of China

    NASA Technical Reports Server (NTRS)

    Jeun, B. H.; Barger, G. L.

    1977-01-01

    A data base of synoptic meteorological information was compiled for the People's Republic of China, as an integral part of the Large Area Crop Inventory Experiment. A system description is provided, including hardware and software specifications, computation algorithms and an evaluation of output validity. Operations are also outlined, with emphasis placed on least squares interpolation.

  6. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  7. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-01-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  8. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-08-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  9. Testing environment shape differentially modulates baseline and nicotine-induced changes in behavior: Sex differences, hypoactivity, and behavioral sensitization.

    PubMed

    Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B

    2018-02-01

    In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance characteristics of the testing environment to provide a complete interpretation of drug-induced changes to behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Exploring Omics data from designed experiments using analysis of variance multiblock Orthogonal Partial Least Squares.

    PubMed

    Boccard, Julien; Rudaz, Serge

    2016-05-12

    Many experimental factors may have an impact on chemical or biological systems. A thorough investigation of the potential effects and interactions between the factors is made possible by rationally planning the trials using systematic procedures, i.e. design of experiments. However, assessing factors' influences remains often a challenging task when dealing with hundreds to thousands of correlated variables, whereas only a limited number of samples is available. In that context, most of the existing strategies involve the ANOVA-based partitioning of sources of variation and the separate analysis of ANOVA submatrices using multivariate methods, to account for both the intrinsic characteristics of the data and the study design. However, these approaches lack the ability to summarise the data using a single model and remain somewhat limited for detecting and interpreting subtle perturbations hidden in complex Omics datasets. In the present work, a supervised multiblock algorithm based on the Orthogonal Partial Least Squares (OPLS) framework, is proposed for the joint analysis of ANOVA submatrices. This strategy has several advantages: (i) the evaluation of a unique multiblock model accounting for all sources of variation; (ii) the computation of a robust estimator (goodness of fit) for assessing the ANOVA decomposition reliability; (iii) the investigation of an effect-to-residuals ratio to quickly evaluate the relative importance of each effect and (iv) an easy interpretation of the model with appropriate outputs. Case studies from metabolomics and transcriptomics, highlighting the ability of the method to handle Omics data obtained from fixed-effects full factorial designs, are proposed for illustration purposes. Signal variations are easily related to main effects or interaction terms, while relevant biochemical information can be derived from the models. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of a transient heat transfer property of acrylic using thermochromic liquid crystals

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    1994-01-01

    An experiment was performed to determine a transient heat transfer property of acrylic. The experiment took advantage of the known analytical solution for heat conduction in a homogeneous semi-infinite solid with a constant surface heat flux. Thermochromic liquid crystals were used to measure the temperature nonintrusively. The relevant property in this experiment was the transient thermal conduction coefficient h(sub t), which is the square root of the product of density p, specific heat c(sub p), and thermal conductivity k (i.e., square root of pc(sub p)k). A value of 595.6 W square root of s/sq m K was obtained for h(sub t), with a standard deviation of 5.1 W square root of s/sq m K. Although there is no generally accepted value for h(sub t), a commonly used one is 580 W square root of s/sq m K, which is almost 3 percent less than the h(sub t) value obtained in this experiment. Since these results were highly repeatable and since there is no definitive value for h(sub t), the new value is recommended for future use.

  12. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis

    PubMed Central

    Abdulrahman, Hunar; Henson, Richard N.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All” (LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs < 5 s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299

  13. Effects of fat and/or methionine hydroxy analog added to a molasses-urea-based supplement on ruminal and postruminal digestion and duodenal flow of nutrients in beef steers consuming low-quality lovegrass hay

    USDA-ARS?s Scientific Manuscript database

    Five crossbred beef steers (initial BW = 338.6 ± 7.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 × 5 Latin square design experiment to evaluate the effects of methionine hydroxy analog (MHA) and/or yellow grease (fat) added to a molassesurea-based supplement on intake and characte...

  14. Unsteady Airloads in Separated and Transonic Flow

    DTIC Science & Technology

    1977-07-01

    pressure distributions on a cylindrical body with a square flat plate airbrake." January, 1956 RAE T.N. Aero 2396 7-5 FIG. 1 FATIGUE DESIGN STATUS INHERENT...These findings correlate very well with the experiences of Magnus and Yoshihara (Ref., 11), Laval (Ref., 12) and Krupp and Murman (Ref. 13), who in their...followed. In this respect the ideas developed by Magnus and Yoshihara (Ref, 21) deserve attention, since their relatively simple "viscous ramp" model

  15. MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning

    PubMed Central

    Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject’s IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge. PMID:25822851

  16. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  17. Modal Parameter Identification of a Flexible Arm System

    NASA Technical Reports Server (NTRS)

    Barrington, Jason; Lew, Jiann-Shiun; Korbieh, Edward; Wade, Montanez; Tantaris, Richard

    1998-01-01

    In this paper an experiment is designed for the modal parameter identification of a flexible arm system. This experiment uses a function generator to provide input signal and an oscilloscope to save input and output response data. For each vibrational mode, many sets of sine-wave inputs with frequencies close to the natural frequency of the arm system are used to excite the vibration of this mode. Then a least-squares technique is used to analyze the experimental input/output data to obtain the identified parameters for this mode. The identified results are compared with the analytical model obtained by applying finite element analysis.

  18. Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.

  19. Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers

    PubMed Central

    Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.

    2011-01-01

    Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602

  20. Computational logic with square rings of nanomagnets

    NASA Astrophysics Data System (ADS)

    Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.

    2018-06-01

    Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

  1. Venus, the goddess of fertility, numerologically 15 in Babylon and the origin of the Chinese system of 8 designs, called Pa-Kua.

    PubMed

    Mahdihassan, S

    1987-01-01

    In Babylonia, numerology was invented and Venus, as the goddess of fertility, was first depicted as a 6-cornered star. But, numerologically she was designated 15. As a 6-cornered star, its make-up shows two opposite triangles interpenetrated. This was changed to two squares fused into one where geometrically the shape became a square. It created 9 cells which were so numbered that the numbers counted in any row gave the sum 15. Venus thus became a Magic Square of 15. Geometrically it was a Magic Square, but numerologically it was 15. In the make-up the squares were two and opposites. As goddess of fertility she especially helped the pregnant to an easy delivery. Some 8 variants of the Magic Square, with different arrangements of numbers, represented 4 cosmic elements and 4 cosmic qualities. The Magic Squares, which represented elements, had the numbers 1, 3, 5 and 8 near one another forming a miniature square by themselves. A Magic Square representing a quality did not have the numbers 1, 3, 5 and 8, as a consolidated unit. This explains the importance of the numbers 1, 3, 5 and 8, a mystery which had remained unsolved. Venus was also the star of copper. When copper technology migrated from Babylon to China, the occult science associated with Venus also reached China. Here the 8 Magic Squares were translated into a system of whole and broken lines, called Pa-Kua, meaning 8 designs.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  3. Recent Results from the Daya Bay Experiment

    NASA Astrophysics Data System (ADS)

    Yu, Z. Y.; Daya Bay Collaboration

    2017-09-01

    The Daya Bay reactor neutrino experiment was designed to precisely measure the neutrino oscillation parameter θ 13 via the relative comparison of neutrino rates and spectra at different baselines. Eight identically designed detectors were deployed in two near experimental halls and a far hall. Six 2.9 GWth nuclear power reactors served as intense {\\bar ν _e} sources. Since Dec. 2011, the experiment has been running stably. The latest neutrino oscillation results were based on 1230 days of data. Analysis using a three-flavor oscillation model yielded sin22θ 13 = 0.0841 ± 0.0027(stat.) ± 0.0019(syst.), and effective neutrino mass-squared difference ≤ft| {Δ mee^2} \\right| = ≤ft( {2.50 +/- 0.06≤ft( {stat.} \\right) +/- 0.06≤ft( {syst.} \\right)} \\right) × {10 - 3}e{V^2}. Besides, results from the absolute measurement of reactor {\\bar ν _e} flux and energy spectrum, and a search for a light sterile neutrino are also presented.

  4. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  5. Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

    PubMed Central

    Zhou, Hanying; Homer, Margie L.; Shevade, Abhijit V.; Ryan, Margaret A.

    2006-01-01

    The Jet Propulsion Laboratory has recently developed and built an electronic nose (ENose) using a polymer-carbon composite sensing array. This ENose is designed to be used for air quality monitoring in an enclosed space, and is designed to detect, identify and quantify common contaminants at concentrations in the parts-per-million range. Its capabilities were demonstrated in an experiment aboard the National Aeronautics and Space Administration's Space Shuttle Flight STS-95. This paper describes a modified nonlinear least-squares based algorithm developed to analyze data taken by the ENose, and its performance for the identification and quantification of single gases and binary mixtures of twelve target analytes in clean air. Results from laboratory-controlled events demonstrate the effectiveness of the algorithm to identify and quantify a gas event if concentration exceeds the ENose detection threshold. Results from the flight test demonstrate that the algorithm correctly identifies and quantifies all registered events (planned or unplanned, as singles or mixtures) with no false positives and no inconsistencies with the logged events and the independent analysis of air samples.

  6. Robustness of crossover trials against subject drop-out - Examples of perpetually connected designs.

    PubMed

    Godolphin, P J; Godolphin, E J

    2017-01-01

    When performing a repeated measures experiment, such as a clinical trial, there is a risk of subject drop-out during the experiment. If one or more subjects leave the study prematurely, a situation could arise where the eventual design is disconnected, implying that very few treatment contrasts for both direct effects and carryover effects are estimable. This paper aims to identify experimental conditions where this problem with the eventual design can be avoided. It is shown that in the class of uniformly balanced repeated measurement designs consisting of two or more Latin squares, there are planned designs with the following useful property. Provided that all subjects have completed the first two periods of study, such a design will not be replaced by a disconnected eventual design due to drop-out, irrespective of the type of drop-out behaviour that may occur. Designs with this property are referred to as perpetually connected. These experimental conditions are identified and examined in the paper and an example of at least one perpetually connected uniformly balanced repeated measurement design is given in each case. The results improve upon previous contributions in the literature that have been confined largely to cases in which drop-out occurs only in the final periods of study.

  7. 75 FR 7434 - Endangered and Threatened Species; Proposed Rule to Revise the Critical Habitat Designation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... include two adjacent marine areas totaling approximately 46,100 square miles (119,400 square km... of a line approximating the 2,000 meter depth contour. The areas proposed for designation comprise...

  8. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  9. Band Gap Optimization Design of Photonic Crystals Material

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  10. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  11. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  12. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    PubMed

    Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija

    2015-07-15

    Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. 36 CFR 910.2 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: public improvements construction and square development. Public improvements construction consists of... configuration, and pedestrian amenities. Square development consists of design and construction of development projects primarily on city blocks, known as squares, within the Development Area. These development...

  14. 36 CFR 910.2 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: public improvements construction and square development. Public improvements construction consists of... configuration, and pedestrian amenities. Square development consists of design and construction of development projects primarily on city blocks, known as squares, within the Development Area. These development...

  15. 36 CFR 910.2 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: public improvements construction and square development. Public improvements construction consists of... configuration, and pedestrian amenities. Square development consists of design and construction of development projects primarily on city blocks, known as squares, within the Development Area. These development...

  16. 36 CFR 910.2 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: public improvements construction and square development. Public improvements construction consists of... configuration, and pedestrian amenities. Square development consists of design and construction of development projects primarily on city blocks, known as squares, within the Development Area. These development...

  17. Red square test for visual field screening. A sensitive and simple bedside test.

    PubMed

    Mandahl, A

    1994-12-01

    A reliable bedside test for screening of visual field defects is a valuable tool in the examination of patients with a putative disease affecting the sensory visual pathways. Conventional methods such as Donders' confrontation method, counting fingers in the visual field periphery, of two-hand confrontation are not sufficiently sensitive to detect minor but nevertheless serious visual field defects. More sensitive methods requiring only simple tools are also described. In this study, a test card with four red squares surrounding a fixation target, a black dot, with a total test area of about 11 x 12.5 degrees at a distance of 30 cm, was designed for testing experience of red colour saturation in four quadrants, red square test. The Goldmann visual field was used as reference. 125 consecutive patients with pituitary adenoma (159 eyes), craniopharyngeoma (9 eyes), meningeoma (21 eyes), vascular hemisphere lesion (40 eyes), hemisphere tumour (10 eyes) and hemisphere abscess (2 eyes) were examined. The Goldmann visual field and red square test were pathological in pituitary adenomas in 35%, in craniopharyngeomas in 44%, in meningeomas in 52% and in hemisphere tumours or abscess in 100% of the eyes. Among these, no false-normal or false-pathological tests were found. However, in vascular hemisphere disease the corresponding figures were Goldmann visual field 90% and red square test 85%. The 5% difference (4 eyes) was due to Goldmann visual field defects strictly peripheral to the central 15 degrees. These defects were easily diagnosed with two-hand confrontation and

  18. Round versus rectangular: Does the plot shape matter?

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.

    2016-04-01

    Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference: Iserloh, T., Pegoraro, D., Schlösser, A., Thesing, H., Seeger, M., Ries, J.B. (2015): Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff. Geophysical Research Abstracts, Vol. 17, EGU2015-5817.

  19. A set of devices for Mechanics Laboratory assisted by a Computer

    NASA Astrophysics Data System (ADS)

    Rusu, Alexandru; Pirtac, Constantin

    2015-12-01

    The booklet give a description of a set of devices designed for unified work out of a number of Laboratory works in Mechanics for students at Technical Universities. It consists of a clock, adjusted to a computer, which allows to compute times with an error not greater than 0.0001 s. It allows also to make the calculations of the physical quantities measured in the experience and present the compilation of the final report. The least square method is used throughout the workshop.

  20. 36 CFR § 910.2 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: public improvements construction and square development. Public improvements construction consists of... configuration, and pedestrian amenities. Square development consists of design and construction of development projects primarily on city blocks, known as squares, within the Development Area. These development...

  1. Spectral performance of Square Kilometre Array Antennas - II. Calibration performance

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.

    2017-09-01

    We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.

  2. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    PubMed Central

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  4. The Square Light Clock and Special Relativity

    ERIC Educational Resources Information Center

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  5. ON THE CONSTRUCTION OF LATIN SQUARES COUNTERBALANCED FOR IMMEDIATE SEQUENTIAL EFFECTS.

    ERIC Educational Resources Information Center

    HOUSTON, TOM R., JR.

    THIS REPORT IS ONE OF A SERIES DESCRIBING NEW DEVELOPMENTS IN THE AREA OF RESEARCH METHODOLOGY. IT DEALS WITH LATIN SQUARES AS A CONTROL FOR PROGRESSIVE AND ADJACENCY EFFECTS IN EXPERIMENTAL DESIGNS. THE HISTORY OF LATIN SQUARES IS ALSO REVIEWED, AND SEVERAL ALGORITHMS FOR THE CONSTRUCTION OF LATIN AND GRECO-LATIN SQUARES ARE PROPOSED. THE REPORT…

  6. 46 CFR 108.487 - Helicopter deck fueling operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...

  7. 46 CFR 108.487 - Helicopter deck fueling operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...

  8. 46 CFR 108.487 - Helicopter deck fueling operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...

  9. 46 CFR 108.487 - Helicopter deck fueling operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...

  10. 46 CFR 108.487 - Helicopter deck fueling operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed with foam at— (i) If protein foam is used, 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot) of area covered for five minutes; (ii) If aqueous film forming foam is used, 4.07 liters per minute for each square meter (.1 gallons per minute for each square foot...

  11. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties

    PubMed Central

    2015-01-01

    Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited. It would be advantageous to display RNA nanoparticles of diverse shape and size derived from a given primary sequence. Here, we report an approach to construct RNA nanoparticles with tunable size and stability. Multifunctional RNA squares with a 90° angle were constructed by tuning the 60° angle of the three-way junction (3WJ) motif from the packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor. The physicochemical properties and size of the RNA square were also easily tuned by modulating the “core” strand and adjusting the length of the sides of the square via predictable design. Squares of 5, 10, and 20 nm were constructed, each showing diverse thermodynamic and chemical stabilities. Four “arms” extending from the corners of the square were used to incorporate siRNA, ribozyme, and fluorogenic RNA motifs. Unique intramolecular contact using the pre-existing intricacy of the 3WJ avoids relatively weaker intermolecular interactions via kissing loops or sticky ends. Utilizing the 3WJ motif, we have employed a modular design technique to construct variable-size RNA squares with controllable properties and functionalities for diverse and versatile applications with engineering, pharmaceutical, and medical potential. This technique for simple design to finely tune physicochemical properties adds a new angle to RNA nanotechnology. PMID:24971772

  12. Multi-objective aerodynamic shape optimization of small livestock trailers

    NASA Astrophysics Data System (ADS)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  13. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  14. A method for cone fitting based on certain sampling strategy in CMM metrology

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Chaopeng

    2018-04-01

    A method of cone fitting in engineering is explored and implemented to overcome shortcomings of current fitting method. In the current method, the calculations of the initial geometric parameters are imprecise which cause poor accuracy in surface fitting. A geometric distance function of cone is constructed firstly, then certain sampling strategy is defined to calculate the initial geometric parameters, afterwards nonlinear least-squares method is used to fit the surface. The experiment is designed to verify accuracy of the method. The experiment data prove that the proposed method can get initial geometric parameters simply and efficiently, also fit the surface precisely, and provide a new accurate way to cone fitting in the coordinate measurement.

  15. A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems

    NASA Astrophysics Data System (ADS)

    Chan, Tony; Szeto, Tedd

    1994-03-01

    We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.

  16. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction.

    PubMed

    Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou

    2018-02-08

    The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.

  17. Square Turing patterns in reaction-diffusion systems with coupled layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn; Center for Quantitative Biology, Peking University, Beijing 100871

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  18. 36 CFR § 910.3 - Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Square Guidelines, described below, provides interested parties with the urban planning and design information sufficient to understand and participate in the process of square development within the... Development Area, and provides a glossary of defined terms applicable to this part as well as Square...

  19. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.

  20. 46 CFR 32.60-40 - Construction and testing of cargo tanks and bulkheads-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cargo tanks vented at gage pressure of 4 pounds per square inch or less shall be constructed and tested... 4 pounds per square inch but not exceeding 10 pounds per square inch gage pressure will be given... square inch are considered to be pressure vessels and shall be of cylindrical or similar design and shall...

  1. 46 CFR 32.60-40 - Construction and testing of cargo tanks and bulkheads-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cargo tanks vented at gage pressure of 4 pounds per square inch or less shall be constructed and tested... 4 pounds per square inch but not exceeding 10 pounds per square inch gage pressure will be given... square inch are considered to be pressure vessels and shall be of cylindrical or similar design and shall...

  2. 40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... insulation. The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...

  3. 46 CFR 32.60-40 - Construction and testing of cargo tanks and bulkheads-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cargo tanks vented at gage pressure of 4 pounds per square inch or less shall be constructed and tested... 4 pounds per square inch but not exceeding 10 pounds per square inch gage pressure will be given... square inch are considered to be pressure vessels and shall be of cylindrical or similar design and shall...

  4. 46 CFR 32.60-40 - Construction and testing of cargo tanks and bulkheads-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cargo tanks vented at gage pressure of 4 pounds per square inch or less shall be constructed and tested... 4 pounds per square inch but not exceeding 10 pounds per square inch gage pressure will be given... square inch are considered to be pressure vessels and shall be of cylindrical or similar design and shall...

  5. 46 CFR 32.60-40 - Construction and testing of cargo tanks and bulkheads-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cargo tanks vented at gage pressure of 4 pounds per square inch or less shall be constructed and tested... 4 pounds per square inch but not exceeding 10 pounds per square inch gage pressure will be given... square inch are considered to be pressure vessels and shall be of cylindrical or similar design and shall...

  6. 40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...

  7. 40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...

  8. Milli-Biology

    DTIC Science & Technology

    2011-10-30

    techniques can produce nanostructured programmable objects. The length scale of the driving physics limits the size scale of objects in DNA origami ...been working on developing a more compact design for 3D origami , with layers of helices packed on a square lattice, that can be folded successfully...version of the CADnano DNA origami CAD software to support square lattice designs. Achieving a simple and standardized way to create designs with the

  9. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  10. Multivariable regression analysis of list experiment data on abortion: results from a large, randomly-selected population based study in Liberia.

    PubMed

    Moseson, Heidi; Gerdts, Caitlin; Dehlendorf, Christine; Hiatt, Robert A; Vittinghoff, Eric

    2017-12-21

    The list experiment is a promising measurement tool for eliciting truthful responses to stigmatized or sensitive health behaviors. However, investigators may be hesitant to adopt the method due to previously untestable assumptions and the perceived inability to conduct multivariable analysis. With a recently developed statistical test that can detect the presence of a design effect - the absence of which is a central assumption of the list experiment method - we sought to test the validity of a list experiment conducted on self-reported abortion in Liberia. We also aim to introduce recently developed multivariable regression estimators for the analysis of list experiment data, to explore relationships between respondent characteristics and having had an abortion - an important component of understanding the experiences of women who have abortions. To test the null hypothesis of no design effect in the Liberian list experiment data, we calculated the percentage of each respondent "type," characterized by response to the control items, and compared these percentages across treatment and control groups with a Bonferroni-adjusted alpha criterion. We then implemented two least squares and two maximum likelihood models (four total), each representing different bias-variance trade-offs, to estimate the association between respondent characteristics and abortion. We find no clear evidence of a design effect in list experiment data from Liberia (p = 0.18), affirming the first key assumption of the method. Multivariable analyses suggest a negative association between education and history of abortion. The retrospective nature of measuring lifetime experience of abortion, however, complicates interpretation of results, as the timing and safety of a respondent's abortion may have influenced her ability to pursue an education. Our work demonstrates that multivariable analyses, as well as statistical testing of a key design assumption, are possible with list experiment data, although with important limitations when considering lifetime measures. We outline how to implement this methodology with list experiment data in future research.

  11. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.

    2018-06-01

    This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.

  12. Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.

    PubMed

    Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana

    2013-06-01

    This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.

  13. Generalized adjustment by least squares ( GALS).

    USGS Publications Warehouse

    Elassal, A.A.

    1983-01-01

    The least-squares principle is universally accepted as the basis for adjustment procedures in the allied fields of geodesy, photogrammetry and surveying. A prototype software package for Generalized Adjustment by Least Squares (GALS) is described. The package is designed to perform all least-squares-related functions in a typical adjustment program. GALS is capable of supporting development of adjustment programs of any size or degree of complexity. -Author

  14. 40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for... to the plant's written procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot) template. 3.3Weigh product and obtain area weight (lb/ft2). 3.4Measure sample...

  15. 40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for... to the plant's written procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot) template. 3.3Weigh product and obtain area weight (lb/ft2). 3.4Measure sample...

  16. Ku-band signal design study. [for space shuttle orbiter communication links

    NASA Technical Reports Server (NTRS)

    Lindsey, W. L.; Woo, K. T.

    1977-01-01

    The acquisition/tracking performance of a practical squaring loop in which the times two multiplier is mechanized as a limiter/multiplier combination is evaluated. This squaring approach serves to produce the absolute value of the arriving signal as opposed to the perfect square law action which is required in order to render acquisition and tracking performance equivalent to that of a Costas loop. The Ku-Band orbiter signal design for the forward link is assessed. Acquisition time results and acquisition and tracking thresholds are summarized. A tradeoff study which pertains to bit synchronization techniques for the high rate Ku-Band channel is included and an optimum selection is made based upon the appropriate design constraints.

  17. Causal Perception of Action-and-Reaction Sequences in 8- to 10-Month-Olds

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Surian, Luca; Ray, Elizabeth D.

    2009-01-01

    Four experiments with 202 8- to 10-month-old infants studied their sensitivity to causation-at-a-distance in schematic events seen as goal-directed action and reaction by adults and whether this depends on attributes associated with animate agents. In Experiment 1, a red square moved toward a blue square without making contact; in "reaction"…

  18. LC-MS determination of steroidal glycosides from Dioscorea deltoidea Wall cell suspension culture: Optimization of pre-LC-MS procedure parameters by Latin Square design.

    PubMed

    Sarvin, Boris; Fedorova, Elizaveta; Shpigun, Oleg; Titova, Maria; Nikitin, Mikhail; Kochkin, Dmitry; Rodin, Igor; Stavrianidi, Andrey

    2018-03-30

    In this paper, the ultrasound assisted extraction method for isolation of steroidal glycosides from D. deltoidea plant cell suspension culture with a subsequent HPLC-MS determination was developed. After the organic solvent was selected via a two-factor experiment the optimization via Latin Square 4 × 4 experimental design was carried out for the following parameters: extraction time, organic solvent concentration in extraction solution and the ratio of solvent to sample. It was also shown that the ultrasound assisted extraction method is not suitable for isolation of steroidal glycosides from the D. deltoidea plant material. The results were double-checked using the multiple successive extraction method and refluxing extraction. Optimal conditions for the extraction of steroidal glycosides by the ultrasound assisted extraction method were: extraction time, 60 min; acetonitrile (water) concentration in extraction solution, 50%; the ratio of solvent to sample, 400 mL/g. Also, the developed method was tested on D. deltoidea cell suspension cultures of different terms and conditions of cultivation. The completeness of the extraction was confirmed using the multiple successive extraction method. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Adaptive Digital Signature Design and Short-Data-Record Adaptive Filtering

    DTIC Science & Technology

    2008-04-01

    rate BPSK binary phase shift keying CA − CFAR cell averaging− constant false alarm rate CDMA code − division multiple − access CFAR constant false...Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation criterion,” EURASIP Journal...415-428, Mar. 2002. [6] P. Cotae, “Spreading sequence design for multiple cell synchronous DS-CDMA systems under total weighted squared correlation

  20. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    NASA Astrophysics Data System (ADS)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  1. Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation

    NASA Astrophysics Data System (ADS)

    Choi, J.; Raguin, L. G.

    2010-10-01

    Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.

  2. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  3. Counterbalancing and Other Uses of Repeated-Measures Latin-Square Designs: Analyses and Interpretations.

    ERIC Educational Resources Information Center

    Reese, Hayne W.

    1997-01-01

    Recommends that when repeated-measures Latin-square designs are used to counterbalance treatments across a procedural variable or to reduce the number of treatment combinations given to each participant, effects be analyzed statistically, and that in all uses, researchers consider alternative interpretations of the variance associated with the…

  4. Theoretical and subjective bit assignments in transform picture

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.

  5. A novel variable baseline visibility detection system and its measurement method

    NASA Astrophysics Data System (ADS)

    Li, Meng; Jiang, Li-hui; Xiong, Xing-long; Zhang, Guizhong; Yao, JianQuan

    2017-10-01

    As an important meteorological observation instrument, the visibility meter can ensure the safety of traffic operation. However, due to the optical system contamination as well as sample error, the accuracy and stability of the equipment are difficult to meet the requirement in the low-visibility environment. To settle this matter, a novel measurement equipment was designed based upon multiple baseline, which essentially acts as an atmospheric transmission meter with movable optical receiver, applying weighted least square method to process signal. Theoretical analysis and experiments in real atmosphere environment support this technique.

  6. Optical restoration of images blurred by atmospheric turbulence using optimum filter theory.

    PubMed

    Horner, J L

    1970-01-01

    The results of optimum filtering from communications theory have been applied to an image restoration problem. Photographic film imagery, degraded by long-term artificial atmospheric turbulence, has been restored by spatial filters placed in the Fourier transform plane. The time-averaged point spread function was measured and used in designing the filters. Both the simple inverse filter and the optimum least-mean-square filters were used in the restoration experiments. The superiority of the latter is conclusively demonstrated. An optical analog processor was used for the restoration.

  7. Selecting optimal structure of burners for tubular cylindrical furnaces by the mathematical experiment planning method

    NASA Astrophysics Data System (ADS)

    Katin, Viktor; Kosygin, Vladimir; Akhtiamov, Midkhat

    2017-10-01

    This paper substantiates the method of mathematical planning for experimental research in the process of selecting the most efficient types of burning devices for tubular refinery furnaces of vertical-cylindrical design. This paper provides detailed consideration of an experimental plan of a 4×4 Latin square type when studying the impact of three factors with four levels of variance. On the basis of the experimental research we have developed practical recommendations on the employment of optimal burners for two-step fuel combustion.

  8. Partial polarization: a comprehensive student exercise

    NASA Astrophysics Data System (ADS)

    Topasna, Gregory A.; Topasna, Daniela M.

    2015-10-01

    We present a comprehensive student exercise in partial polarization. Students are first introduced to the concept of partial polarization using Fresnel Equations. Next, MATHCAD is used to compute and graph the reflectance for dielectrics materials. The students then design and construct a simple, easy to use collimated light source for their experiment, which is performed on an optical breadboard using optical components typically found in an optics lab above the introductory level. The students obtain reflection data that is compared with their model by a nonlinear least square fit using EXCEL. Sources of error and uncertainty are discussed and students present a final written report. In this one exercise students learn how an experiment is constructed "from the ground up". They gain practical experience on data modeling and analysis, working with optical equipment, machining and construction, and preparing a final presentation.

  9. Strawberry Square II: Take Time. Teacher's Guide. 33 Lessons in the Arts to Help Children Take Time with Life.

    ERIC Educational Resources Information Center

    Marcy, Nancy

    This teacher's guide accompanies a series of telelessons designed to stimulate arts activities in grades 2 and 3. It follows a story line established in "Strawberry Square" which centers around the revitilization of Strawberry Square by Skipper, the owner of the Tune Shoppe in the square. Each of the 15 lessons has four sections, which contain a…

  10. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  11. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  12. Short-range inverse-square law experiment in space

    NASA Technical Reports Server (NTRS)

    Strayer, D.; Paik, H. J.; Moody, M. V.

    2002-01-01

    The objective of ISLES (Inverse-Square Law Experiment in Space) is to perform a null test ofNewton's law on the ISS with a resolution of one part in lo5 at ranges from 100 pm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R z 5 pm.

  13. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  14. Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design.

    PubMed

    Pine, P Scott; Munro, Sarah A; Parsons, Jerod R; McDaniel, Jennifer; Lucas, Anne Bergstrom; Lozach, Jean; Myers, Timothy G; Su, Qin; Jacobs-Helber, Sarah M; Salit, Marc

    2016-06-24

    Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.

  15. A Selection of Test Cases for the Validation of Large-Eddy Simulations of Turbulent Flows (Quelques cas d’essai pour la validation de la simulation des gros tourbillons dans les ecoulements turbulents)

    DTIC Science & Technology

    1998-04-01

    they approach the more useful (higher) Reynolds numbers. 8.6 SUMMARY OF COMPLEX FLOWS SQUARE DUCT CMPO00 UDOv 6.5 x 10’i E Yokosawa ei al. 164] pg...Sheets for: Chapter 8. Complex Flows 184 185 CMPOO: Flow in a square duct - Experiments Yokosawa , Fujita, Hirota, & Iwata 1. Description of the flow...These are the experiments of Yokosawa ei al (1989). Air was blown through a flow meter and a settling chamber into a square duct. Measuremsents were

  16. Advanced photovoltaic solar array design assessment

    NASA Technical Reports Server (NTRS)

    Stella, Paul; Scott-Monck, John

    1987-01-01

    The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.

  17. Tri-Center Analysis: Determining Measures of Trichotomous Central Tendency for the Parametric Analysis of Tri-Squared Test Results

    ERIC Educational Resources Information Center

    Osler, James Edward

    2014-01-01

    This monograph provides an epistemological rational for the design of a novel post hoc statistical measure called "Tri-Center Analysis". This new statistic is designed to analyze the post hoc outcomes of the Tri-Squared Test. In Tri-Center Analysis trichotomous parametric inferential parametric statistical measures are calculated from…

  18. Slovenia’s Construction Act and Implementation Plans: A Case Study of Izola IPA-8

    NASA Astrophysics Data System (ADS)

    Ažman Momirski, Lucija

    2017-10-01

    The guidelines for urban design in Izola’s IPA-8 planning area, which is earmarked for hotels, apartment complexes, and sports, specify diverse forms of leisure living space required by modern society. The new tourist complex is not a large monotonous hotel complex, but rather a spatial arrangement in which guests experience an authentic local environment and city residents enjoy the new high-quality ambience. The hotel area is defined by three major communication axes from north to south, linking the countryside to the coastal area and opening up attractive sea views in the new complex. Internal east-west links connect buildings and public spaces. Because of the terraced terrain, a large number of paved ramps and internal public gardens have been designed between the structures. The extensions of the communication axes are laid out as squares, named based on the function of the public spaces. Hotel Street is the central axis and main connecting street, with public hotel services and restaurants. The west axis extends into Culture Square, where activities related to Izola’s culture and history are presented; here there is an opportunity to create new galleries, a small local museum, and an exhibition room. Apartment Square is located on the east communication axis, along which only a limited number of trade, catering, and service activities are planned. The plan received first prize in a public competition, and it later developed into detailed municipal spatial plan. In this process, it became clear that Slovenia’s Construction Act (ZGO-1) does not support plans to create terraced buildings.

  19. A Graphic Chi-Square Test For Two-Class Genetic Segregation Ratios

    Treesearch

    A.E. Squillace; D.J. Squillace

    1970-01-01

    A chart is presented for testing the goodness of fit of observed two-class genetic segregation ratios against hypothetical ratios, eliminating the need of computing chi-square. Although designed mainly for genetic studies, the chart can also be used for other types of studies involving two-class chi-square tests.

  20. Vacuum insulation of the high energy negative ion source for fusion application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Inoue, T.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less

  1. Quantitative nanoparticle tracking: applications to nanomedicine.

    PubMed

    Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae

    2011-06-01

    Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.

  2. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  3. Designing Experiments to Discriminate Families of Logic Models.

    PubMed

    Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito

    2015-01-01

    Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.

  4. Research on spacecraft electrical power conversion

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1974-01-01

    The steady state characteristics and starting behavior of some widely used self-oscillating magnetically coupled square wave inverters were studied and the development of LC-tuned square wave inverters is reported. An analysis on high amplitude voltage spikes which occur in dc-to-square-wave parallel converters shows the importance of various circuit parameters for inverter design and for the suppression of spikes. A computerized simulation of an inductor energy storage dc-to-dc converter with closed loop regulators and of a preregulating current step-up converter are detailed. Work continued on the computer aided design of two-winding energy storage dc-to-dc converters.

  5. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of complementary ssDNA functionality on individual particles ('multi-flavoring') as opposed to functionalization of particles with the same type of ssDNA ('uni-flavoring') is explored as a possible design handle for tuning interparticle interactions and, thereby, accessing diverse structures. We employ a combination of simulations, theory, and experimental validation toward establishing 'multi-flavoring' as a rational design strategy. Firstly, MD simulations are carried out using effective pair potentials to describe interparticle interactions that are representative of different degrees of ssDNA 'multi-flavoring'. These simulations reveal the template-free assembly of a diversity of 2D crystal polymorphs that is apparently tunable by controlling the relative attractive strengths between like and unlike functionalized particles. The resulting phase diagrams predict conditions (i.e., strengths of relative interparticle interactions) for obtaining crystalline phases with lattice symmetries ranging among square, alternating string hexagonal, random hexagonal, rhombic, honeycomb, and even kagome. Finally, these model findings are translated to experiments, in which binary microparticles are decorated with a tailored mixture of two different complementary ssDNA strands as a straight-forward means to realize tunable particle interactions. Guided by simple statistical mechanics and the detailed MD simulations, 'multi-flavoring' and control of solution phase particle stoichiometry resulted in experimental realization of structurally diverse 2D microparticle assemblies consistent with predictions, such as square, pentagonal and hexagonal lattices (honeycomb, kagome). The combined simulation, theory, and experimental findings reveal how control of interparticle interactions via DNA-functionalized particle "multi-flavoring" can lead to an even wider range of accessible colloidal crystal structures. The 2D experiments coupled with the model predictions may be used to provide new fundamental insight into nano- or microparticle assembly in three dimensions.

  6. An NN-Based SRD Decomposition Algorithm and Its Application in Nonlinear Compensation

    PubMed Central

    Yan, Honghang; Deng, Fang; Sun, Jian; Chen, Jie

    2014-01-01

    In this study, a neural network-based square root of descending (SRD) order decomposition algorithm for compensating for nonlinear data generated by sensors is presented. The study aims at exploring the optimized decomposition of data 1.00,0.00,0.00 and minimizing the computational complexity and memory space of the training process. A linear decomposition algorithm, which automatically finds the optimal decomposition of N subparts and reduces the training time to 1N and memory cost to 1N, has been implemented on nonlinear data obtained from an encoder. Particular focus is given to the theoretical access of estimating the numbers of hidden nodes and the precision of varying the decomposition method. Numerical experiments are designed to evaluate the effect of this algorithm. Moreover, a designed device for angular sensor calibration is presented. We conduct an experiment that samples the data of an encoder and compensates for the nonlinearity of the encoder to testify this novel algorithm. PMID:25232912

  7. Letting students discover the power, and the limits, of simple models: Coulomb's law

    NASA Astrophysics Data System (ADS)

    Bohacek, Peter; Vonk, Matthew; Dill, Joseph; Boehm, Emma

    2017-09-01

    The inverse-square law pops up all over. It's a simplified model of reality that describes light, sound, gravity, and static electricity. But when it's brought up in class, students are often just handed the equations. They rarely have an opportunity to discover Coulomb's law or Newton's law of gravitation for themselves. It's not hard to understand why. A quantitative demonstration of Coulomb's law can be difficult. The forces are smaller than many force sensors can measure and static electricity tends to be finicky. In addition, off-the-shelf units are expensive or difficult to use. As a result, many instructors skip this lab in favor of qualitative demonstrations or simulations. Adolf Cortel sought to remedy this by designing a straightforward experiment for measuring Coulomb's law using charged metalized-glass spheres (Christmas ornaments) and an electronic balance. Building on Cortel's design, we've made a series of video-based experiments that students can use to discover the relationships that underlie electric force.

  8. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2005-01-01

    Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies?Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA.Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire.Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1- or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale.Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean-climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below-ground niche space outside the sample area.

  9. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  10. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  11. Fabrication and Deployment Testing of Solar Sail Quadrants for a 20-Meter Solar Sail Ground Test System Demonstration

    NASA Technical Reports Server (NTRS)

    Laue, Greg; Case, David; Moore, Jim

    2005-01-01

    A 20-meter Scalable Square Solar Sail (S(sup 4)) System was produced and successfully completed functional vacuum testing in NASA Glenn's Space Power Facility at Plum Brook Station Ohio in May 2005. The S(sup 4) system was designed and developed by ATK Space Systems, and the design and production of the Solar Sails for this system was carried out by SRS Technologies. The S(sup 4) system consists of a central structure with four deployable carbon fiber masts that support four triangular sails. SRS has developed an effective and efficient design for triangular sail quadrants that are supported at three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline some of the sail design and fabrication processes and the mature production, packaging and deployment processes that have been developed. This paper will also detail the successful ambient and vacuum testing of the sails and the ATK spacecraft structure. Based on recent experience and testing, SRS is confidant that high Technology Readiness Level (TRL) 5-6 solar sails in the 40-120-meter size range with areal density in the 4-5 grams per square meters (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 2.0 grams per square meters using the current design, resulting in a system areal densities as low as 5.3 grams per square meters (sail and structure). These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the scientific community. The fundamental technologies required to produce these systems has been demonstrated on the 20-meter S(sup 4) sails that have recently completed ground testing demonstrating a mature and technology suitable for incorporation into future flight validation and future mission. Solar Sails can support NASA's Vision for Space Exploration by allowing communication satellite orbits that can maintain continuous communication with the polar regions of the Moon and Mars and to support solar weather monitoring to provide early warning of solar flares and storms that could threaten the safety of astronauts and other spacecraft.

  12. Mechanical Circle-Squaring

    ERIC Educational Resources Information Center

    Wagon, Stan; Cox, Barry

    2009-01-01

    A technique discovered in 1939 can be used to build a device that is driven by standard circular motion (as in a drill press) and drills exact square holes. This device is quite different from the classic design by Watts, which uses a Reuleaux triangle and drills a hole that is almost, but not exactly, square. We describe the device in detail,…

  13. On the Partitioning of Squared Euclidean Distance and Its Applications in Cluster Analysis.

    ERIC Educational Resources Information Center

    Carter, Randy L.; And Others

    1989-01-01

    The partitioning of squared Euclidean--E(sup 2)--distance between two vectors in M-dimensional space into the sum of squared lengths of vectors in mutually orthogonal subspaces is discussed. Applications to specific cluster analysis problems are provided (i.e., to design Monte Carlo studies for performance comparisons of several clustering methods…

  14. Wright St Univ Participation in AFRL University Engineering Design Challenge

    DTIC Science & Technology

    2014-12-23

    18 Figure 9: Loading results from 10 min. heat treatment cure on 1 square inch Kevlar Patch, air cool, and concrete...loading and Average for Three Trials of 10 min heat treatment cure, 1 square inch Kevlar Patch, air cool, and concrete...19 Figure 11: Loading results from 10 min. heat treatment cure on 1 square

  15. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  16. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  17. 46 CFR 98.25-10 - Design and construction of cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for a pressure of not less than 250 pounds per square inch gage. (c) Where unrefrigerated cargo tanks... less than 215 pounds per square inch gage. (d) Refrigerated cargo tanks, in which the temperature of... system is to be maintained, plus 25 pounds per square inch gage. (e) Each tank shall be provided with not...

  18. 7 CFR 25.103 - Area size and boundary requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  19. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  20. 46 CFR 98.25-10 - Design and construction of cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for a pressure of not less than 250 pounds per square inch gage. (c) Where unrefrigerated cargo tanks... less than 215 pounds per square inch gage. (d) Refrigerated cargo tanks, in which the temperature of... system is to be maintained, plus 25 pounds per square inch gage. (e) Each tank shall be provided with not...

  1. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    PubMed

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA methodology in experimental aesthetics and beyond.

  2. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  3. Knowledge and opinions of Downsview physicians regarding the chiropractic profession

    PubMed Central

    Newton-Leo, Linda; King-Isaacs, Debra; Lichti, Janice

    1994-01-01

    This study was a preliminary investigation into the knowledge of and current attitudes towards the chiropractic profession by medical practitioners with varying years of clinical experience. A questionnaire was designed and mailed to seventy general practitioners in Downsview, Ontario who agreed to participate in the study. Twenty-six were returned for a response rate of 37%. The data were analyzed and responses from doctors with differing years of practice experience were compared using the chi square statistic. When comparing attitudes towards the chiropractic profession between medical practitioners with greater and less than 15 years of clinical experience a statistically significant difference was found (p = 0.0005). However, no significant differences were observed in terms of their interaction with or knowledge of the chiropractic profession. Further, 88% of respondents reported that they had referred a patient to a chiropractor. The limitations of the study and suggestions for improvement are discussed.

  4. CVD SiC deformable mirror with monolithic cooling channels.

    PubMed

    Ahn, Kyohoon; Rhee, Hyug-Gyo; Yang, Ho-Soon; Kihm, Hagyong

    2018-04-16

    We propose a novel deformable mirror (DM) for adaptive optics in high power laser applications. The mirror is made of a Silicon carbide (SiC) faceplate, and cooling channels are embedded monolithically inside the faceplate with the chemical vapor desposition (CVD) method. The faceplate is 200 mm in diameter and 3 mm in thickness, and is actuated by 137 stack-type piezoelectric transducers arranged in a square grid. We also propose a new actuator influence function optimized for modelling our DM, which has a relatively stiffer faceplate and a higher coupling ratio compared with other DMs having thin faceplates. The cooling capability and optical performance of the DM are verified by simulations and actual experiments with a heat source. The DM is proved to operate at 1 kHz without the coolant flow and 100 Hz with the coolant flow, and the residual errors after compensation are less than 30 nm rms (root-mean-square). This paper presents the design, fabrication, and optical performance of the CVD SiC DM.

  5. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  6. The GLC8 - A miniature low cost ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Godart, D.-F.; Peghaire, J.-P.

    SAGEM is enlarging its family of ring laser gyros (RLG) which already includes a triangular 32-cm path-length gyro and a square 16-cm path-length gyro, in order to meet the increasing demand for low cost, medium accuracy strap-down inertial measurement units for applications such as short- and medium-range tactical missiles as well as aided navigation systems for aircrafts and land vehicles. Based on the experience acquired in the past 13 years in the RLG field, and especially in mirror manufacturing, SAGEM developed the GLC8 which has a square 8-cm path length cavity, central piezoelectric dither. It incorporates two cathodes, a single anode, and is technologically designed to minimize production-costs while optimizing the performance to global device size ratio. This gyro is characterized by a bias and a scale-factor stability respectively better than 0.5 deg/h and 100 ppm (1 sigma), and has an operating lifetime compatible with the most demanding relevant applications and a high robustness to mechanical environments.

  7. Realisation Of Polarisation Sensitive And Frequency Selective Surfaces On Microwave Reflectors By Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Halm, R.; Kupper, Th.; Fischer, A.

    1987-01-01

    Gridded reflectors are used on communication satellites antennas to provide frequency reuse in dual linear polarisation mode of operation. The polarisation sensitive surface consists of metallic strips, forming a grid with width and spacings of the order of 0.1 mm. The use of frequency-selective surface (FSS) subreflectors allows the simultaneous generation of different microwave beams with the same main reflector. Such a reflector will require a structure of conductive arrays of either dipoles, rings, squares or square loops with typical dimensions of the order of 3-6 mm. Optimisation of the electrical design leads to critical dimensioning of these structures. By direct ablation of an aluminium surface coating by means of laser evaporation, high accuracies can be achieved. The major requirements were to minimize thermal damage of the substrate material and to produce dimensionally accurate grids. Experiments were carried out using a pulsed TEA-CO2 laser and a Q-switched Alexandrite laser. Details of the experimental set-up and conditions are described.

  8. An Analysis of the Relationship among Ability Measures, Education and Earnings.

    DTIC Science & Technology

    1987-12-01

    other high and low values did not form any pattern by education level. Perhaps the most interesting comparisons among subgroups are the differences ...salary and wages in 1983. Independent variables included measures of education, education squared, experience, experience squared, gender , race, marital...1983, p.15) In 1977 a decision was made to begin a new longitudinal study of young men and women . This study was ’o allow for replication of analyses

  9. The effects of figure/ground, perceived area, and target saliency on the luminosity threshold.

    PubMed

    Bonato, F; Cataliotti, J

    2000-02-01

    Observers adjusted the luminance of a target region until it began to appear self-luminous, or glowing. In Experiment 1, the target was either a face-shaped region (figure) or a non-face-shaped region (ground) of identical area that appeared to be the face's background. In Experiment 2, the target was a square or a trapezoid of identical area that appeared as a tilted rectangle. In Experiment 3, the target was a square surrounded by square, circular, or diamond-shaped elements. Targets that (1) were perceived as figures, (2) were phenomenally small in area, or (3) did not group well with other elements in the array because of shape appeared self-luminous at significantly lower luminance levels. These results indicate that like lightness perception, the luminosity threshold is influenced by perceptual organization and is not based on low-level retinal processes alone.

  10. A search for muon neutrino to electron neutrino oscillation mediated by sterile neutrinos in MINOS+

    NASA Astrophysics Data System (ADS)

    Germani, Stefano; Schreckenberger, Adam P.

    2017-09-01

    The MINOS experiment made precision measurements of the neutrino oscillation parameters that are governed by the atmospheric mass-squared splitting. These measurements were made with data that were collected while the NuMI muon neutrino beam operated in a low energy mode that peaks around 3 GeV. Today the NuMI beam is running with a higher energy mode that produces a neutrino energy spectrum that peaks around 7 GeV, allowing the MINOS+ experiment to probe neutrino oscillation phenomena that could potentially be governed by a fourth mass-squared splitting. If observed, the presence of a fourth mass-squared splitting would be compelling evidence for a sterile neutrino state. In this analysis, we will present the results of a search for νµ → νe oscillation mediated by sterile neutrinos in MINOS+. The results will be contrasted against the measurements made by the LSND experiment.

  11. Response Surface Analysis of Experiments with Random Blocks

    DTIC Science & Technology

    1988-09-01

    partitioned into a lack of fit sum of squares, SSLOF, and a pure error sum of squares, SSPE . The latter is obtained by pooling the pure error sums of squares...from the blocks. Tests concerning the polynomial effects can then proceed using SSPE as the error term in the denominators of the F test statistics. 3.2...the center point in each of the three blocks is equal to SSPE = 2.0127 with 5 degrees of freedom. Hence, the lack of fit sum of squares is SSLoF

  12. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle.

    PubMed

    Beauchemin, K A; McGinn, S M; Martinez, T F; McAllister, T A

    2007-08-01

    Our objective was to determine if condensed tannin extract from quebracho trees (Schinopsis quebracho-colorado; red quebracho) could be used to reduce enteric methane emissions from cattle. The experiment was designed as a repeated 3 x 3 Latin square (4 squares) with 3 treatments (0, 1, and 2% of dietary DM as quebracho tannin extract) and 3 28-d periods. Six spayed Angus heifers (238 +/- 13.3 kg of initial BW) and 6 Angus steers (207 +/- 8.2 kg of initial BW) were each assigned to 2 squares. The measured condensed tannin content of the extract was 91%, and the basal diet contained 70% forage (DM basis). Feeding quebracho tannin extract had no effect on BW, ADG, or nutrient intakes. Furthermore, it had no effect on DM, energy, or fiber (ADF and NDF) digestibility, but apparent digestibility of CP decreased linearly (P < 0.001) by 5 and 15% with 1 and 2% quebracho tannin extract, respectively. There were no effects of quebracho tannin extract on methane emissions (g/d, g/kg of DM, % of GE intake, or % of DE intake). Feeding up to 2% of the dietary DM as quebracho tannin extract failed to reduce enteric methane emissions from growing cattle, although the protein-binding effect of the quebracho tannin extract was evident.

  13. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    PubMed Central

    Rabani, Amir

    2016-01-01

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324

  14. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor.

    PubMed

    Rabani, Amir

    2016-10-12

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  15. Chemical library subset selection algorithms: a unified derivation using spatial statistics.

    PubMed

    Hamprecht, Fred A; Thiel, Walter; van Gunsteren, Wilfred F

    2002-01-01

    If similar compounds have similar activity, rational subset selection becomes superior to random selection in screening for pharmacological lead discovery programs. Traditional approaches to this experimental design problem fall into two classes: (i) a linear or quadratic response function is assumed (ii) some space filling criterion is optimized. The assumptions underlying the first approach are clear but not always defendable; the second approach yields more intuitive designs but lacks a clear theoretical foundation. We model activity in a bioassay as realization of a stochastic process and use the best linear unbiased estimator to construct spatial sampling designs that optimize the integrated mean square prediction error, the maximum mean square prediction error, or the entropy. We argue that our approach constitutes a unifying framework encompassing most proposed techniques as limiting cases and sheds light on their underlying assumptions. In particular, vector quantization is obtained, in dimensions up to eight, in the limiting case of very smooth response surfaces for the integrated mean square error criterion. Closest packing is obtained for very rough surfaces under the integrated mean square error and entropy criteria. We suggest to use either the integrated mean square prediction error or the entropy as optimization criteria rather than approximations thereof and propose a scheme for direct iterative minimization of the integrated mean square prediction error. Finally, we discuss how the quality of chemical descriptors manifests itself and clarify the assumptions underlying the selection of diverse or representative subsets.

  16. Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design.

    PubMed

    Watanabe, Toshifumi; Koga, Hideyuki; Horie, Masafumi; Katagiri, Hiroki; Sekiya, Ichiro; Muneta, Takeshi

    2017-12-01

    The post-cam mechanism in posterior stabilized (PS) prostheses plays an important role in total knee arthroplasty (TKA). The purpose of this study is to clarify the difference of the contact stress on the tibial post between a rounded post-cam design and a squared design during deep knee flexion and at hyperextension using the three-dimensional (3D) finite element models. We created 2 types of 3D, finite element models of PS prostheses (types A and B), whose surfaces were identical except for the post-cam geometries: type A has a rounded post-cam design, while type B has a squared design. Both types have a similar curved-shape intercondylar notch of the femoral component. Stress distributions, peak contact stresses, and contact areas on the tibial posts at 90°, 120°, and 150° flexion with/without 10° tibial internal rotation and at 10° hyperextension were compared between the 2 models. Type B demonstrated more concentrated stress distribution compared to type A. The peak contact stresses were similar in both groups during neutral flexion; however, the stresses were much higher in type B during flexion with 10° rotation and at hyperextension. The higher peak contact stresses corresponded to the smaller contact areas in the tibial post. A rounded post-cam design demonstrated less stress concentration during flexion with rotation and at hyperextension compared with a squared design. The results would be useful for development of implant designs and prediction of the contact stress on the tibial post in PS total knee arthroplasty. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The microcomputer scientific software series 3: general linear model--analysis of variance.

    Treesearch

    Harold M. Rauscher

    1985-01-01

    A BASIC language set of programs, designed for use on microcomputers, is presented. This set of programs will perform the analysis of variance for any statistical model describing either balanced or unbalanced designs. The program computes and displays the degrees of freedom, Type I sum of squares, and the mean square for the overall model, the error, and each factor...

  18. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  19. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    PubMed

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  20. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  1. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter

    NASA Astrophysics Data System (ADS)

    Moaveni, Bijan; Khosravi Roqaye Abad, Mahdi; Nasiri, Sayyad

    2015-10-01

    In this paper, vehicle longitudinal velocity during the braking process is estimated by measuring the wheels speed. Here, a new algorithm based on the unknown input Kalman filter is developed to estimate the vehicle longitudinal velocity with a minimum mean square error and without using the value of braking torque in the estimation procedure. The stability and convergence of the filter are analysed and proved. Effectiveness of the method is shown by designing a real experiment and comparing the estimation result with actual longitudinal velocity computing from a three-axis accelerometer output.

  2. 77 FR 77076 - Notice of Intent: Designation of an Expanded Ocean Dredged Material Disposal Site (ODMDS) off...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... area includes an area approximately 7.18 square miles in size, for the disposal of dredged material from the proposed harbor deepening dredging at Charleston Harbor (4.04 square miles are within the current ODMDS and 3.14 square miles are outside the current ODMDS). The size of an expanded ODMDS will...

  3. Divided attention enhances the recognition of emotional stimuli: evidence from the attentional boost effect.

    PubMed

    Rossi-Arnaud, Clelia; Spataro, Pietro; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo

    2018-01-01

    The present study examined predictions of the early-phase-elevated-attention hypothesis of the attentional boost effect (ABE), which suggests that transient increases in attention at encoding, as instantiated in the ABE paradigm, should enhance the recognition of neutral and positive items (whose encoding is mostly based on controlled processes), while having small or null effects on the recognition of negative items (whose encoding is primarily based on automatic processes). Participants were presented a sequence of negative, neutral and positive stimuli (pictures in Experiment 1, words in Experiment 2) associated to target (red) squares, distractor (green) squares or no squares (baseline condition). They were told to attend to the pictures/words and simultaneously press the spacebar of the computer when a red square appeared. In a later recognition task, stimuli associated to target squares were recognised better than stimuli associated to distractor squares, replicating the standard ABE. More importantly, we also found that: (a) the memory enhancement following target detection occurred with all types of stimuli (neutral, negative and positive) and (b) the advantage of negative stimuli over neutral stimuli was intact in the DA condition. These findings suggest that the encoding of negative stimuli depends on both controlled (attention-dependent) and automatic (attention-independent) processes.

  4. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  5. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  6. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  7. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Peddieson, John; Garbe, Gregory

    2010-01-01

    Future science missions will require solar sails on the order of 200 square meters (or larger). However, ground demonstrations and flight demonstrations must be conducted at significantly smaller sizes, due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This paper will approach the problem of scaling in solar sail models by developing a set of scaling laws or similarity criteria that will provide constraints in the sail design process. These scaling laws establish functional relationships between design parameters of a prototype and model sail that are created at different geometric sizes. This work is applied to a specific solar sail configuration and results in three (four) similarity criteria for static (dynamic) sail models. Further, it is demonstrated that even in the context of unique sail material requirements and gravitational load of earth-bound experiments, it is possible to develop appropriate scaled sail experiments. In the longer term, these scaling laws can be used in the design of scaled experimental tests for solar sails and in analyzing the results from such tests.

  8. Note: A novel method for generating multichannel quasi-square-wave pulses.

    PubMed

    Mao, C; Zou, X; Wang, X

    2015-08-01

    A 21-channel quasi-square-wave nanosecond pulse generator was constructed. The generator consists of a high-voltage square-wave pulser and a channel divider. Using an electromagnetic relay as a switch and a 50-Ω polyethylene cable as a pulse forming line, the high-voltage pulser produces a 10-ns square-wave pulse of 1070 V. With a specially designed resistor-cable network, the channel divider divides the high-voltage square-wave pulse into 21 identical 10-ns quasi-square-wave pulses of 51 V, exactly equal to 1070 V/21. The generator can operate not only in a simultaneous mode but also in a delay mode if the cables in the channel divider are different in length.

  9. Multifunctional Public Space As Exemplified By the Concept of the Development of Kopernik Square in Opole

    NASA Astrophysics Data System (ADS)

    Wilczek, Iwona; Tenczyński, Mariusz

    2017-10-01

    In 2015 the authorities of the city of Opole decided to sell a part of Kopernik Square, one of the main city squares, to a private investor. The objective of this project was the extension of the existing shopping mall and the construction of an underground car park within the scope of a public-private partnership. In order to find the best solution to design the remaining part of the square, a competition for its development was announced in cooperation with the Opole branch of the Association of Polish Architects. The article presents a description of the studies and analyses of the aforementioned space conducted by the db2 architekci architectural studio for the purpose of preparing a competition entry. The square development concept was based on an analysis of the urban context of the Opole city centre. The character of the public spaces within a twenty-minute walk from Kopernik Square was analysed. In the course of the works, a decision was made to develop the public space in a manner different from that originally intended by the Investor. A graphic visualization of the maximum scope of the shopping mall extension was presented in accordance with the urban layout of this part of the city, allowing the preservation of the historical view corridors. The article presents a competition entry prepared by us along with a justification of decisions concerning the design. One of the fundamental design assumptions was the connection of all frontages with the square and the creation of a recreational part abounding in green areas. The concept provided for the division of the area into three parts of various characters. The central part of the square is a green area of a recreational character - a space so far absent in the city centre. Catering and food services, shops, parking spaces for bicycles as well as services related to the parking area are located at the southern frontage of the square under one roofing. The area directly adjoining the shopping mall is an open multifunctional and partly roofed square - a place where cyclical events are held in the city. The project allows for a harmonious combination of various functions performed by Kopernik Square. The adopted traffic solutions, in particular the entrance to and exit from the underground car park have a positive influence on road traffic in this part of the city. Due to maintaining the historical urban layout and view corridors, the new building development does not overwhelm the square space but constitutes its harmonious closure.

  10. Multilayer DNA Origami Packed on a Square Lattice

    PubMed Central

    Ke, Yonggang; Douglas, Shawn M.; Liu, Minghui; Sharma, Jaswinder; Cheng, Anchi; Leung, Albert; Liu, Yan; Shih, William M.; Yan, Hao

    2009-01-01

    Molecular self-assembly using DNA as a structural building block has proven to be an efficient route to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable “scaffolded DNA origami” strategy, Rothemund demonstrated that a long single-stranded DNA from a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100 nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a square lattice, that can be folded successfully into structures of designed dimensions in a one-step annealing process, despite the increased density of DNA helices. A square lattice provides a more natural framework for designing rectangular structures, the option for a more densely packed architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a square lattice provides a general foundational advance for increasing the versatility and scope of DNA nanotechnology. PMID:19807088

  11. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  12. Software For Least-Squares And Robust Estimation

    NASA Technical Reports Server (NTRS)

    Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James

    1990-01-01

    GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.

  13. 42 CFR 5a.3 - Definition of Underserved Rural Community.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 3 that are larger than 400 square miles and have population density of less than 30 people per square mile; and (b) Located in a current: (1) Federally-designated Primary Health Care Geographic Health...

  14. Sparse partial least squares regression for simultaneous dimension reduction and variable selection

    PubMed Central

    Chun, Hyonho; Keleş, Sündüz

    2010-01-01

    Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611

  15. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  16. Square lattice honeycomb reactor for space power and propulsion

    NASA Astrophysics Data System (ADS)

    Gouw, Reza; Anghaie, Samim

    2000-01-01

    The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .

  17. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  18. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture.

    PubMed

    Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe

    2017-06-26

    In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.

  19. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  20. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.

    PubMed

    Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong

    2012-06-01

    This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  1. A Stochastic Total Least Squares Solution of Adaptive Filtering Problem

    PubMed Central

    Ahmad, Noor Atinah

    2014-01-01

    An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412

  2. Exogenous attention influences visual short-term memory in infants.

    PubMed

    Ross-Sheehy, Shannon; Oakes, Lisa M; Luck, Steven J

    2011-05-01

    Two experiments examined the hypothesis that developing visual attentional mechanisms influence infants' Visual Short-Term Memory (VSTM) in the context of multiple items. Five- and 10-month-old infants (N = 76) received a change detection task in which arrays of three differently colored squares appeared and disappeared. On each trial one square changed color and one square was cued; sometimes the cued item was the changing item, and sometimes the changing item was not the cued item. Ten-month-old infants exhibited enhanced memory for the cued item when the cue was a spatial pre-cue (Experiment 1) and 5-month-old infants exhibited enhanced memory for the cued item when the cue was relative motion (Experiment 2). These results demonstrate for the first time that infants younger than 6 months can encode information in VSTM about individual items in multiple-object arrays, and that attention-directing cues influence both perceptual and VSTM encoding of stimuli in infants as in adults.

  3. 46 CFR 64.11 - Design of MPTs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cargo that has a vapor pressure of 43 pounds per square inch absolute (psia) or less at a temperature of... pressure of not less than 20 pounds per square inch gauge (psig) but not more than 48 psig; and (f) To...

  4. 46 CFR 64.11 - Design of MPTs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cargo that has a vapor pressure of 43 pounds per square inch absolute (psia) or less at a temperature of... pressure of not less than 20 pounds per square inch gauge (psig) but not more than 48 psig; and (f) To...

  5. 46 CFR 64.11 - Design of MPTs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cargo that has a vapor pressure of 43 pounds per square inch absolute (psia) or less at a temperature of... pressure of not less than 20 pounds per square inch gauge (psig) but not more than 48 psig; and (f) To...

  6. 46 CFR 64.11 - Design of MPTs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cargo that has a vapor pressure of 43 pounds per square inch absolute (psia) or less at a temperature of... pressure of not less than 20 pounds per square inch gauge (psig) but not more than 48 psig; and (f) To...

  7. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  8. Performance simulation of BaBar DIRC bar boxes in TORCH

    NASA Astrophysics Data System (ADS)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  9. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  10. The Influence of Loss of Visual Cues on Pilot Performance During the Final Approach and Landing Phase of a Remotely Piloted Vehicle Mission

    NASA Technical Reports Server (NTRS)

    Howard, James C.

    1976-01-01

    Remotely piloted research vehicles (RPRVS) are currently being flown from fixed-base control centers, and visual information is supplied to the remote pilot by a TV camera mounted in the vehicle. In these circumstances, the possibility of a TV failure or an interruption in the downlink to the pilot must be considered. To determine the influence of loss of TV information on pilot performance during the final approach and landing phase of a mission, an experiment was conducted in which pilots were asked to fly a fixed-base simulation of a Piper PA-30 aircraft with loss of TV information occurring at altitudes of 15.24, 30.48, and 45.72 m (50, 100, and 150 ft). For this experiment, a specially designed display configuration was presented to four pilots in accordance with a Latin square design. Initial results indicate that pilots could not ensure successful landings from altitudes exceeding 15.24 m (.50 ft) without the visual cues supplied by the TV picture.

  11. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight ratio.

  12. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  13. Observation management challenges of the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Williams, Stewart J.; Nicol, Mark; Klaassen, Pamela; Thompson, Roger S.; Knapic, Cristina; Jerse, Giovanna; Orlati, Andrea; Messina, Marco; Valame, Snehal

    2016-07-01

    The Square Kilometre Array (SKA) will be the world's most advanced radio telescope, designed to explore some of the biggest questions in astronomy today, such as the epoch of re-ionization, the nature of gravity and the origins of cosmic magnetism. SKA1, the first phase of SKA construction, is currently being designed by a large team of experts world-wide. SKA1 comprises two telescopes: a 200-element dish interferometer in South Africa and a 130000-element dipole antenna aperture array in Australia. To enable the ground-breaking science of the SKA an advanced Observation Management system is required to support both the needs of the astronomical community users and the SKA Observatory staff. This system will ensure that the SKA realises its scientiffc aims and achieves optimal scientific throughput. This paper provides an overview of the design of the system that will accept proposals from SKA users, and result in the execution of the scripts that will obtain science data, taking in the stages of detailed preparation, planning and scheduling of the observations and onwards tracking. It describes the unique challenges of the differing requirements of two telescopes, one of which is very much a software telescope, including the need to schedule the data processing as well as the acquisition, and to react to both internally and externally discovered transient events. The scheduling of multiple parallel sub-array use is covered, along with the need to handle commensal observing - using the same data stream to satisfy the science goals of more than one project simultaneously. An international team from academia and industry, drawing on expertise and experience from previous telescope projects, the virtual observatory and comparable problems in industry, has been assembled to design the solution to this challenging but exciting problem.

  14. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  15. Evaluation of the break-out square post breakaway system.

    DOT National Transportation Integrated Search

    2015-02-01

    Determine the effectiveness of the Break-Out Square (BOS) Post coupler as a : possible alternative to other breakaway devices. This product is designed to (upon : impact) break flush with grade with no damage apparent to base or anchor and offer a : ...

  16. Parametric design of tri-axial nested Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Abbott, Jake J.

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  17. Parametric design of tri-axial nested Helmholtz coils.

    PubMed

    Abbott, Jake J

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  18. Parametric design of tri-axial nested Helmholtz coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Jake J., E-mail: jake.abbott@utah.edu

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  19. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  20. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  1. Developing the Fundamental Theorem of Calculus. Applications of Calculus to Work, Area, and Distance Problems. [and] Atmospheric Pressure in Relation to Height and Temperature. Applications of Calculus to Atmospheric Pressure. [and] The Gradient and Some of Its Applications. Applications of Multivariate Calculus to Physics. [and] Kepler's Laws and the Inverse Square Law. Applications of Calculus to Physics. UMAP Units 323, 426, 431, 473.

    ERIC Educational Resources Information Center

    Lindstrom, Peter A.; And Others

    This document consists of four units. The first of these views calculus applications to work, area, and distance problems. It is designed to help students gain experience in: 1) computing limits of Riemann sums; 2) computing definite integrals; and 3) solving elementary area, distance, and work problems by integration. The second module views…

  2. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  3. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  4. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  5. Pulsed excitation system to measure the resonant frequency of magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Xie, Hong; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    An electrical circuit was designed and tested to measure the resonant frequency of micron-scale magnetoelastic (ME) biosensors using a pulsed wave excitation technique. In this circuit, a square pulse current is applied to an excitation coil to excite the vibration of ME biosensors and a pick-up coil is used to sense the ME biosensor's mechanical vibration and convert it to an electrical output signal. The output signal is filtered and amplified by a custom designed circuit to allow the measurement of the resonant frequency of the ME biosensor from which the detection of specific pathogens can be made. As a proof-in-concept experiment, JRB7 phage-coated ME biosensors were used to detect different concentrations of Bacillus anthracis Sterne strain spores. A statistically significant difference was observed for concentrations of 5 × 102 spore/ml and above.

  6. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    PubMed

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  7. Drag-Free Performance of the ST7 Disturbance Reduction System Flight Experiment on the LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; O'Donnell, James R.; Hsu, Oscar H.; Ziemer, John K.; Dunn, Charles E.

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free controlflight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nm/(square root of Hz), along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 x 10(exp -14) (1 + ([f/3 mHz](exp 2))) m/sq s/(square root of Hz), over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.

  8. Integrated parallel reception, excitation, and shimming (iPRES).

    PubMed

    Han, Hui; Song, Allen W; Truong, Trong-Kha

    2013-07-01

    To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming. This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62-81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil integrated parallel reception, excitation, and shimming array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66-79% as compared with static second-order spherical harmonic shimming and by 12-23% as compared with dynamic shimming with a 48-coil conventional shim array. Our results demonstrate the feasibility of the integrated parallel reception, excitation, and shimming concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. Copyright © 2013 Wiley Periodicals, Inc.

  9. Integrated Parallel Reception, Excitation, and Shimming (iPRES)

    PubMed Central

    Han, Hui; Song, Allen W.; Truong, Trong-Kha

    2013-01-01

    Purpose To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming (iPRES). Theory This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Methods Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Results Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62–81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil iPRES array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66–79% as compared to static 2nd-order spherical harmonic shimming and by 12–23% as compared to dynamic shimming with a 48-coil conventional shim array. Conclusion Our results demonstrate the feasibility of the iPRES concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. PMID:23629974

  10. GEM detector performance and efficiency in Proton Charge Radius (PRad) Experiment

    NASA Astrophysics Data System (ADS)

    Bai, Xinzhan; PRad Collaboration

    2017-09-01

    The PRad experiment (E12-11-106) was performed in 2016 at Jefferson Lab in Hall B. It aims to investigate the proton charge radius puzzle through electron proton elastic scattering process. The experiment used a non-magnetic spectrometer method, and reached a very small ep scattering angle and thus an unprecedented small four-momentum transfer squared region, Q2 from 2 ×10-4 to 0.06(GeV / c) 2 . PRad experiment was designed to measure the proton charge radius within a sub-percent precision. Gas Electron Multiplier (GEM) detectors have contributed to reach the experimental goal. A pair of large area GEM detectors, and a large acceptance, high resolution calorimeter(HyCal) were utilized in the experiment to detect the scattered electrons. The precision requirements of the experiment demands a highly accurate understanding of efficiency and stability of GEM detectors. In this talk, we will present the preliminary results on the performance and efficiency of GEM detectors. This work is supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy under Contract No. DE-FG02-07ER41528, No. DE-FG02-03ER41240 and Thomas Jefferson National Laboratory.

  11. Predictive Array Design. A method for sampling combinatorial chemistry library space.

    PubMed

    Lipkin, M J; Rose, V S; Wood, J

    2002-01-01

    A method, Predictive Array Design, is presented for sampling combinatorial chemistry space and selecting a subarray for synthesis based on the experimental design method of Latin Squares. The method is appropriate for libraries with three sites of variation. Libraries with four sites of variation can be designed using the Graeco-Latin Square. Simulated annealing is used to optimise the physicochemical property profile of the sub-array. The sub-array can be used to make predictions of the activity of compounds in the all combinations array if we assume each monomer has a relatively constant contribution to activity and that the activity of a compound is composed of the sum of the activities of its constitutive monomers.

  12. Recent Developments: PKI Square Dish for the Soleras Project

    NASA Technical Reports Server (NTRS)

    Rogers, W. E.

    1984-01-01

    The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.

  13. Recent developments: PKI square dish for the Soleras Project

    NASA Astrophysics Data System (ADS)

    Rogers, W. E.

    1984-03-01

    The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.

  14. Improvement of depth resolution in depth-resolved wavenumber-scanning interferometry using wavenumber-domain least-squares algorithm: comparison and experiment.

    PubMed

    Bai, Yulei; Jia, Quanjie; Zhang, Yun; Huang, Qiquan; Yang, Qiyu; Ye, Shuangli; He, Zhaoshui; Zhou, Yanzhou; Xie, Shengli

    2016-05-01

    It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.

  15. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  16. Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail

    NASA Technical Reports Server (NTRS)

    Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.

    2017-01-01

    Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.

  17. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids.

    PubMed

    Mahecha, L; Angulo, J; Salazar, B; Cerón, M; Gallo, J; Molina, C H; Molina, E J; Suárez, J F; Lopera, J J; Olivera, M

    2008-04-01

    This study was conducted to evaluate if supplementing bypass fat to cows under silvopastoral systems, increases the concentration of unsaturated fatty acids in milk, thus improving the saturated/ unsaturated ratio without a negative effect on total milk yield in fat or protein. Two concentrations of two different sources of bypass fat were evaluated for 40 days, each in a group of 24 multiparous Lucerna (Colombian breed) cows. A cross-over design of 8 Latin squares 3 x 3 was used. The variables submitted to analysis were body condition, daily milk production and milk composition. Body condition, milk yield and milk quality were not different but there was a significant decrease in the amount of saturated fatty acid in both experiments while the unsaturated fat increased significantly in experiment 1 and remained stable in experiment 2. Results, such as these have as far as we know, not been reported previously and they provide an approach for the improvement of milk as a "functional food".

  18. Concentrations of progesterone and insulin in serum of nonlactating dairy cows in response to carbohydrate source and processing.

    PubMed

    Moriel, P; Scatena, T S; Sá Filho, O G; Cooke, R F; Vasconcelos, J L M

    2008-12-01

    Two experiments were conducted to investigate the effects of carbohydrate source and processing on serum progesterone (P4) and insulin concentrations of nonlactating dairy cows. In experiment 1, 12 ovariectomized grazing Gir x Holstein cows were stratified by body weight and body condition score, and randomly assigned to receive a supplement containing either finely ground corn or citrus pulp in a Latin square crossover design. Diets were fed individually, twice daily at a rate of 10.9 kg of dry matter per cow. Cows received a controlled intravaginal P4-releasing insert before the beginning of the study, and inserts were replaced every 7 d. During the first experimental period, cows were adapted to treatments from d 0 to 13 and blood was collected on d 14, whereas during the second experimental period cows were adapted to treatments from d 0 to 6 and blood samples were collected on d 7. In both periods, blood samples were collected immediately before and at 1, 2, 3, 4, 5, and 6 h after the first supplement feeding of the collection day. In experiment 2, the cows utilized in experiment 1 were randomly assigned to receive a supplement based on finely ground corn, coarsely ground corn, or high-moisture corn in a Latin square crossover design. Cows were fed and received the controlled intravaginal P4-releasing insert as in experiment 1. Within each of the 3 experimental periods, cows were adapted to diets from d 0 to 6, and blood samples were collected on d 7 as in experiment 1. Time effects were detected in experiments 1 and 2 because insulin concentrations increased by 1 h (4.6 +/- 0.90 vs. 7.4 +/- 0.91 microIU/mL for 0 and 1 h, respectively) and P4 concentrations decreased by 3 h (1.8 +/- 0.12 vs. 1.2 +/- 0.11 ng/mL for 0 and 3 h, respectively) after supplements were offered. In experiment 2, insulin concentrations were greater in cows fed high-moisture corn compared with those fed coarsely or finely ground corn (8.8 +/- 1.05, 5.7 +/- 1.05, and 6.1 +/- 1.05 microIU/mL, respectively). Data combined from both experiments indicated that cows with median insulin >or=4.5 microIU/mL before supplement feeding had greater P4 concentrations at 1 h, but lesser P4 concentrations at 5 h compared with cows with insulin <4.5 microIU/mL. Carbohydrate processing, but not carbohydrate source, affected serum insulin of nonlactating dairy cows.

  19. Single-polarization hollow-core square photonic bandgap waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less

  20. French Influence on Portuguese Architects in the Age of Enlightenment

    NASA Astrophysics Data System (ADS)

    Sampayo, Mafalda

    2017-10-01

    This investigation shows the European influence on the work of Portuguese architects of the Enlightenment period. Based on previous studies we focus our attention on the design of “Praça do Comércio” square and on a hypothesis, that it was based on the French Royal Square. We demonstrate that the design of Lisbon from the second half of the eighteenth-century was influenced by the theories and best practices of the time. We also confirm that the architect Eugénio dos Santos e Carvalho, a member of the reconstruction team for the Baixa, had in his personal library several reference books of French architectural practice that certainly influenced his architecture. The plans for the main square of Lisbon’s lower city, “Praça do Comércio”, can be compared to the “Place de Nos Conquêtes”, predecessor of the “Place Vêndome”, in its design, architecture and dimensions. This research analysed the cartography and iconography of Lisbon’s reconstruction. In particular, the drawings of “Praça do Comércio” and “Place de nos Conquêtes” were exhaustively studied. The comparative study of the elements for both squares lead to the conclusion that the Portuguese square presents many aspects of the French Age of Enlightenment, and in particular those featured in the “Place de nos Conquêtes”. This paper concludes that the Portuguese urban design and architectural projects of the 18th century are the result of previous knowledge where it was always possible to articulate the vernacular with academic design, and where many different influences left their mark on the culture of the period. The plans for the lower part of Lisbon display a mixture of references that relate to architectural and urban planning traditions of the Portuguese military engineering and contemporary French urban planning.

  1. Application of quadratic optimization to supersonic inlet control.

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.

    1972-01-01

    This paper describes the application of linear stochastic optimal control theory to the design of the control system for the air intake, the inlet, of a supersonic air-breathing propulsion system. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant controllers are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain a linear controller that minimizes the nonquadratic index. The two controllers are compared on the basis of unstart prevention, control effort requirements, and frequency response. It is concluded that while controls designed to minimize unstarts are desirable in that the index minimized is physically meaningful, computation time required is longer than for the minimum mean square shock position approach. The simpler minimum mean square shock position solution produced expected unstart frequency values which were not significantly larger than those of the nonquadratic solution.

  2. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  4. [On-line monitoring of biomass in 1,3-propanediol fermentation by Fourier-transformed near-infrared spectra analysis].

    PubMed

    Wang, Lu; Liu, Tao; Chen, Yang; Sun, Yaqin; Xiu, Zhilong

    2017-01-25

    Biomass is an important parameter reflecting the fermentation dynamics. Real-time monitoring of biomass can be used to control and optimize a fermentation process. To overcome the deficiencies of measurement delay and manual errors from offline measurement, we designed an experimental platform for online monitoring the biomass during a 1,3-propanediol fermentation process, based on using the fourier-transformed near-infrared (FT-NIR) spectra analysis. By pre-processing the real-time sampled spectra and analyzing the sensitive spectra bands, a partial least-squares algorithm was proposed to establish a dynamic prediction model for the biomass change during a 1,3-propanediol fermentation process. The fermentation processes with substrate glycerol concentrations of 60 g/L and 40 g/L were used as the external validation experiments. The root mean square error of prediction (RMSEP) obtained by analyzing experimental data was 0.341 6 and 0.274 3, respectively. These results showed that the established model gave good prediction and could be effectively used for on-line monitoring the biomass during a 1,3-propanediol fermentation process.

  5. A comparison of abundance estimates from extended batch-marking and Jolly–Seber-type experiments

    PubMed Central

    Cowen, Laura L E; Besbeas, Panagiotis; Morgan, Byron J T; Schwarz, Carl J

    2014-01-01

    Little attention has been paid to the use of multi-sample batch-marking studies, as it is generally assumed that an individual's capture history is necessary for fully efficient estimates. However, recently, Huggins et al. (2010) present a pseudo-likelihood for a multi-sample batch-marking study where they used estimating equations to solve for survival and capture probabilities and then derived abundance estimates using a Horvitz–Thompson-type estimator. We have developed and maximized the likelihood for batch-marking studies. We use data simulated from a Jolly–Seber-type study and convert this to what would have been obtained from an extended batch-marking study. We compare our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz (CMAS) model with those of the extended batch-marking model to determine the efficiency of collecting and analyzing batch-marking data. We found that estimates of abundance were similar for all three estimators: CMAS, Huggins, and our likelihood. Gains are made when using unique identifiers and employing the CMAS model in terms of precision; however, the likelihood typically had lower mean square error than the pseudo-likelihood method of Huggins et al. (2010). When faced with designing a batch-marking study, researchers can be confident in obtaining unbiased abundance estimators. Furthermore, they can design studies in order to reduce mean square error by manipulating capture probabilities and sample size. PMID:24558576

  6. Distance-constrained orthogonal Latin squares for brain-computer interface.

    PubMed

    Luo, Gang; Min, Wanli

    2012-02-01

    The P300 brain-computer interface (BCI) using electroencephalogram (EEG) signals can allow amyotrophic lateral sclerosis (ALS) patients to instruct computers to perform tasks. To strengthen the P300 response and increase classification accuracy, we proposed an experimental design where characters are intensified according to orthogonal Latin square pairs. These orthogonal Latin square pairs satisfy certain distance constraint so that neighboring characters are not intensified simultaneously. However, it is unknown whether such distance-constrained, orthogonal Latin square pairs actually exist. In this paper, we show that for every matrix size commonly used in P300 BCI, thousands to millions of such distance-constrained, orthogonal Latin square pairs can be systematically and efficiently constructed and are sufficient for the purpose of being used in P300 BCI.

  7. Multi-Maneuver Clohessy-Wiltshire Targeting

    NASA Technical Reports Server (NTRS)

    Dannemiller, David P.

    2011-01-01

    Orbital rendezvous involves execution of a sequence of maneuvers by a chaser vehicle to bring the chaser to a desired state relative to a target vehicle while meeting intermediate and final relative constraints. Intermediate and final relative constraints are necessary to meet a multitude of requirements such as to control approach direction, ensure relative position is adequate for operation of space-to-space communication systems and relative sensors, provide fail-safe trajectory features, and provide contingency hold points. The effect of maneuvers on constraints is often coupled, so the maneuvers must be solved for as a set. For example, maneuvers that affect orbital energy change both the chaser's height and downrange position relative to the target vehicle. Rendezvous designers use experience and rules-of-thumb to design a sequence of maneuvers and constraints. A non-iterative method is presented for targeting a rendezvous scenario that includes a sequence of maneuvers and relative constraints. This method is referred to as Multi-Maneuver Clohessy-Wiltshire Targeting (MM_CW_TGT). When a single maneuver is targeted to a single relative position, the classic CW targeting solution is obtained. The MM_CW_TGT method involves manipulation of the CW state transition matrix to form a linear system. As a starting point for forming the algorithm, the effects of a series of impulsive maneuvers on the state are derived. Simple and moderately complex examples are used to demonstrate the pattern of the resulting linear system. The general form of the pattern results in an algorithm for formation of the linear system. The resulting linear system relates the effect of maneuver components and initial conditions on relative constraints specified by the rendezvous designer. Solution of the linear system includes the straight-forward inverse of a square matrix. Inversion of the square matrix is assured if the designer poses a controllable scenario - a scenario where the the constraints can be met by the sequence of maneuvers. Matrices in the linear system are dependent on selection of maneuvers and constraints by the designer, but the matrices are independent of the chaser's initial conditions. For scenarios where the sequence of maneuvers and constraints are fixed, the linear system can be formed and the square matrix inverted prior to real-time operations. Example solutions are presented for several rendezvous scenarios to illustrate the utility of the method. The MM_CW_TGT method has been used during the preliminary design of rendezvous scenarios and is expected to be useful for iterative methods in the generation of an initial guess and corrections.

  8. Quality aspects of ex vivo root canal treatments done by undergraduate dental students using four different endodontic treatment systems.

    PubMed

    Jungnickel, Luise; Kruse, Casper; Vaeth, Michael; Kirkevang, Lise-Lotte

    2018-04-01

    To evaluate factors associated with treatment quality of ex vivo root canal treatments performed by undergraduate dental students using different endodontic treatment systems. Four students performed root canal treatment on 80 extracted human teeth using four endodontic treatment systems in designated treatment order following a Latin square design. Lateral seal and length of root canal fillings was radiographically assessed; for lateral seal, a graded visual scale was used. Treatment time was measured separately for access preparation, biomechanical root canal preparation, obturation and for the total procedure. Mishaps were registered. An ANOVA mirroring the Latin square design was performed. Use of machine-driven nickel-titanium systems resulted in overall better quality scores for lateral seal than use of the manual stainless-steel system. Among systems with machine-driven files, scores did not significantly differ. Use of machine-driven instruments resulted in shorter treatment time than manual instrumentation. Machine-driven systems with few files achieved shorter treatment times. With increasing number of treatments, root canal-filling quality increased, treatment time decreased; a learning curve was plotted. No root canal shaping file separated. The use of endodontic treatment systems with machine-driven files led to higher quality lateral seal compared to the manual system. The three contemporary machine-driven systems delivered comparable results regarding quality of root canal fillings; they were safe to use and provided a more efficient workflow than the manual technique. Increasing experience had a positive impact on the quality of root canal fillings while treatment time decreased.

  9. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  10. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  11. Instrument For Simulation Of Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Mcnichol, Randal S.

    1996-01-01

    Electronic instrument designed to simulate dynamic output of integrated-circuit piezoelectric acceleration or pressure transducer. Operates in conjunction with external signal-conditioning circuit, generating square-wave signal of known amplitude for use in calibrating signal-conditioning circuit. Instrument also useful as special-purpose square-wave generator in other applications.

  12. Latin-square three-dimensional gage master

    DOEpatents

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  13. Latin square three dimensional gage master

    DOEpatents

    Jones, Lynn L.

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  14. A Survey on Nickel Titanium Rotary Instruments and their Usage Techniques by Endodontists in India.

    PubMed

    Patil, Thimmanagowda N; Saraf, Prahlad A; Penukonda, Raghavendra; Vanaki, Sneha S; Kamatagi, Laxmikant

    2017-05-01

    The preference and usage of nickel titanium rotary instruments varies from individual to individual based on their technique, experience with the rotary systems and the clinical situation. Very limited information is available to explain the adoption of changing concepts with respect to nickel titanium rotary instruments pertaining to the endodontists in India. The aim of this study was to conduct a questionnaire survey to acquire the knowledge concerning different NiTi rotary instruments and their usage techniques by endodontists in India. A Survey questionnaire was designed which consisted of 32 questions regarding designation, demographics, experience with rotary instruments, usage of different file systems, usage techniques, frequency of reuse, occurrence of file fracture, reasons and their management was distributed by hand in the national postgraduate convention and also disseminated via electronic medium to 400 and 600 endodontists respectively. Information was collected from each individual to gain insight into the experiences and beliefs of endodontists concerning the new endodontic technology of rotary NiTi instrumentation based on their clinical experience with the rotary systems. The questions were designed to ascertain the problems, patterns of use and to identify areas of perceived or potential concern regarding the rotary instruments and the data acquired was statistically evaluated using Fisher's-exact test and the Chi-Square test. Overall 63.8% (638) endodontists responded. ProTaper was one of the most commonly used file system followed by M two and ProTaper Next. There was a significant co relation between the years of experience and the file re use frequency, preparation technique, file separation, management of file separation. A large number of Endodontists prefer to reuse the rotary NiTi instruments. As there was an increase in the experience, the incidence of file separation reduced with increasing number of re use frequency and with experience, the management of separated file was better.

  15. A Survey on Nickel Titanium Rotary Instruments and their Usage Techniques by Endodontists in India

    PubMed Central

    Saraf, Prahlad A; Penukonda, Raghavendra; Vanaki, Sneha S; Kamatagi, Laxmikant

    2017-01-01

    Introduction The preference and usage of nickel titanium rotary instruments varies from individual to individual based on their technique, experience with the rotary systems and the clinical situation. Very limited information is available to explain the adoption of changing concepts with respect to nickel titanium rotary instruments pertaining to the endodontists in India. Aim The aim of this study was to conduct a questionnaire survey to acquire the knowledge concerning different NiTi rotary instruments and their usage techniques by endodontists in India. Materials and Methods A Survey questionnaire was designed which consisted of 32 questions regarding designation, demographics, experience with rotary instruments, usage of different file systems, usage techniques, frequency of reuse, occurrence of file fracture, reasons and their management was distributed by hand in the national postgraduate convention and also disseminated via electronic medium to 400 and 600 endodontists respectively. Information was collected from each individual to gain insight into the experiences and beliefs of endodontists concerning the new endodontic technology of rotary NiTi instrumentation based on their clinical experience with the rotary systems. The questions were designed to ascertain the problems, patterns of use and to identify areas of perceived or potential concern regarding the rotary instruments and the data acquired was statistically evaluated using Fisher’s-exact test and the Chi-Square test. Results Overall 63.8% (638) endodontists responded. ProTaper was one of the most commonly used file system followed by M two and ProTaper Next. There was a significant co relation between the years of experience and the file re use frequency, preparation technique, file separation, management of file separation. Conclusion A large number of Endodontists prefer to reuse the rotary NiTi instruments. As there was an increase in the experience, the incidence of file separation reduced with increasing number of re use frequency and with experience, the management of separated file was better. PMID:28658903

  16. SIMS prototype system 4: Design data brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  17. Controller Design for the ST7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman; Markley, F. Landis; Dennehey, Neil; Houghton, Martin B.; Folkner, William M.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass and a set of micro-Newton colloidal thrusters. The Disturbance Reduction System is designed to maintain a spacecraft's position with respect to the free-floating test mass to less than 10 nm/ square root of Hz, over the frequency range 10(exp -3) Hz to 10(exp -2) Hz. This paper presents the design and analysis of the coupled drag-free and attitude control system that closes the loop between the gravitational reference sensor and the micro-Newton thrusters while incorporating star tracker data at low frequencies. The effects of actuation and measurement noise and disturbances on the spacecraft and test masses are evaluated in a seven-degree-of-freedom planar model incorporating two translational and one rotational degrees of freedom for the spacecraft and two translational degrees of freedom for each test mass.

  18. Design and Analysis of the ST7 Disturbance Reduction System (DRS) Spacecraft Controller

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Markley, F. L.; Houghton, M. B.; Dennehy, C. J.

    2003-01-01

    The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass and a set of micronewton colloidal thrusters. The Disturbance Reduction System is designed to maintain a spacecraft's position with respect to the free-floating test mass to less than 10 nm/square root of Hz, over the frequency range 10(exp -3) Hz to 10(exp -2) Hz. This paper presents the design and analysis of the coupled drag-free and attitude control system that closes the loop between the gravitational reference sensor and the micronewton thrusters while incorporating star tracker data at low frequencies. The effects of actuation and measurement noise and disturbances on the spacecraft and test masses are evaluated in a seven-degree-of-freedom planar model incorporating two translational and one rotational degrees of freedom for the spacecraft and two translational degrees of freedom for each test mass.

  19. Analysis of an experiment aimed at improving the reliability of transmission centre shafts.

    PubMed

    Davis, T P

    1995-01-01

    Smith (1991) presents a paper proposing the use of Weibull regression models to establish dependence of failure data (usually times) on covariates related to the design of the test specimens and test procedures. In his article Smith made the point that good experimental design was as important in reliability applications as elsewhere, and in view of the current interest in design inspired by Taguchi and others, we pay some attention in this article to that topic. A real case study from the Ford Motor Company is presented. Our main approach is to utilize suggestions in the literature for applying standard least squares techniques of experimental analysis even when there is likely to be nonnormal error, and censoring. This approach lacks theoretical justification, but its appeal is its simplicity and flexibility. For completeness we also include some analysis based on the proportional hazards model, and in an attempt to link back to Smith (1991), look at a Weibull regression model.

  20. The quality estimation of exterior wall’s and window filling’s construction design

    NASA Astrophysics Data System (ADS)

    Saltykov, Ivan; Bovsunovskaya, Maria

    2017-10-01

    The article reveals the term of “artificial envelope” in dwelling building. Authors offer a complex multifactorial approach to the design quality estimation of external fencing structures, which is based on various parameters impact. These referred parameters are: functional, exploitation, cost, and also, the environmental index is among them. The quality design index Qк is inputting for the complex characteristic of observed above parameters. The mathematical relation of this index from these parameters is the target function for the quality design estimation. For instance, the article shows the search of optimal variant for wall and window designs in small, middle and large square dwelling premises of economic class buildings. The graphs of target function single parameters are expressed for the three types of residual chamber’s dimensions. As a result of the showing example, there is a choice of window opening’s dimensions, which make the wall’s and window’s constructions properly correspondent to the producible complex requirements. The authors reveal the comparison of recommended window filling’s square in accordance with the building standards, and the square, due to the finding of the optimal variant of the design quality index. The multifactorial approach for optimal design searching, which is mentioned in this article, can be used in consideration of various construction elements of dwelling buildings in accounting of suitable climate, social and economic construction area features.

  1. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  2. Cyber-workstation for computational neuroscience.

    PubMed

    Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C

    2010-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.

  3. Cyber-Workstation for Computational Neuroscience

    PubMed Central

    DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.

    2009-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436

  4. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models

    NASA Astrophysics Data System (ADS)

    Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin

    2017-06-01

    This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.

  5. A survey of various enhancement techniques for square rings antennas

    NASA Astrophysics Data System (ADS)

    Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.

    2017-09-01

    The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.

  6. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  7. Dedicated Space | Poster

    Cancer.gov

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and

  8. Dedicated Space | Poster

    Cancer.gov

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and external collaborations.

  9. THE URBAN DISPERSION PROGRAM ( UDP ) NYC MSG05 EXPERIMENT

    EPA Science Inventory

    The multi-organizational Urban Dispersion Program (UDP) has been conducting tracer release experiments at various locations within the United States. In March 2005 the UDP conducted the first NYC based experiment called Madison Square Garden -05 (MSG05). The field study involved ...

  10. A highly sensitive in-situ turbidity sensor with low power consumption

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Sun, Lei; Ye, Shuming; Chen, Hang; Jiang, Kai; Pan, Jianming

    2014-03-01

    A highly sensitive in-situ turbidity sensor with the low power consumption was proposed and evaluated in this study. To meet the practical requirements of the in-situ detection, we have designed the light scattering path, watertight mechanical structure, and ultra-weak scattering light detecting method. Experiments showed that the sensor had a sensitivity of 0.0076 FTU with the concentration range of 0-25 FTU and the R-square of 0.9999. The sensor could withstand the water pressure in depth of 1000 m and had the low power consumption in the active mode 10.4 mA, sleep mode 65 μA with a supply voltage of 8.4 V. Southern China Sea buoy experiments indicated that the sensor could work well in the actual in-situ environment. In comparison with sensors of other companies, our sensor had relatively more comprehensive performance.

  11. Survivors of brain injury: the narrative experiences of being a college or university student.

    PubMed

    Cahill, Susan M; Rotter, Jamie M; Lyons, Kara K; Marrone, Antonina R

    2014-04-01

    The deficits associated with a brain injury may pose many challenges to young adult students. The purpose of this study was to conduct an in-depth exploration of the experiences and processes individuals who self-identify as having a brain injury go through during college or university to overcome obstacles. This study used a basic interpretative qualitative design. Data were collected through semi-structured interviews and analyzed with the constant comparative method. Three themes emerged: balancing act, reality versus injury, and square peg in a round hole. Participants discussed personal strategies that they used to help them be successful. Despite these strategies, the participants continued to feel out of place and felt that seeking disability services would further set them apart from their non-injured peers. Individuals post-brain injury may benefit from occupational therapy services to reduce the challenges associated with functioning in the student role in college and university environments.

  12. Adding crumb rubber into exterior wall materials.

    PubMed

    Zhu, Han; Thong-On, Norasit; Zhang, Xiong

    2002-10-01

    In Arizona US, most houses are built with walls covered by stuccos/coatings/mortars. This paper presents an explorative investigation of adding crumb rubber into stuccos/coatings/mortars. A series of experiments are conducted to examine the thermal and mechanical performance of the crumb rubber mixes. The results show that, the mixes with crumb rubber do exhibit more desirable performances like being high in crack-resistance and thermal insulation, and low in thermal expansion/contraction. The drawback for the crumb rubber mixes is the reduction in compressive strength, but which can be compensated by other means. As a site experiment, an area of 100 square-feet of crumb rubber coatings for two mix designs is sprayed on a tire-adobe wall. After being sprayed more than 14 months, the coatings apparently are in good condition. Significance of this study is that this practice, if accepted, will yield improved products that consume large quantities of crumb rubber.

  13. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  14. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  15. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  16. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  17. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  18. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Region segmentation and contextual cuing in visual search.

    PubMed

    Conci, Markus; von Mühlenen, Adrian

    2009-10-01

    Contextual information provides an important source for behavioral orienting. For instance, in the contextual-cuing paradigm, repetitions of the spatial layout of elements in a search display can guide attention to the target location. The present study explored how this contextual-cuing effect is influenced by the grouping of search elements. In Experiment 1, four nontarget items could be arranged collinearly to form an imaginary square. The presence of such a square eliminated the contextual-cuing effect, despite the fact that the square's location still had a predictive value for the target location. Three follow-up experiments demonstrated that other types of grouping abolished contextual cuing in a similar way and that the mere presence of a task-irrelevant singleton had only a diminishing effect (by half) on contextual cuing. These findings suggest that a segmented, salient region can interfere with contextual cuing, reducing its predictive impact on search.

  20. A comparison of methods for DPLL loop filter design

    NASA Technical Reports Server (NTRS)

    Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.

    1986-01-01

    Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.

  1. What speeds up the internal clock? Effects of clicks and flicker on duration judgements and reaction time.

    PubMed

    Wearden, J H; Williams, Emily A; Jones, Luke A

    2017-03-01

    Four experiments investigated the effect of pre-stimulus events on judgements of the subjective duration of tones that they preceded. Experiments 1 to 4 used click trains, flickering squares, expanding circles, and white noise as pre-stimulus events and showed that (a) periodic clicks appeared to "speed up" the pacemaker of an internal clock but that the effect wore off over a click-free delay, (b) aperiodic click trains, and visual stimuli in the form of flickering squares and expanding circles, also produced similar increases in estimated tone duration, as did white noise, although its effect was weaker. A fifth experiment examined the effects of periodic flicker on reaction time and showed that, as with periodic clicks in a previous experiment, reaction times were shorter when preceded by flicker than without.

  2. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    PubMed

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  3. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project

    NASA Astrophysics Data System (ADS)

    Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.

    2018-07-01

    The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.

  4. The BigBOSS spectrograph

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael

    2012-09-01

    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  5. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  6. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  7. Development and optimization of an energy-regenerative suspension system under stochastic road excitation

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Hsieh, Chen-Yu; Golnaraghi, Farid; Moallem, Mehrdad

    2015-11-01

    In this paper a vehicle suspension system with energy harvesting capability is developed, and an analytical methodology for the optimal design of the system is proposed. The optimization technique provides design guidelines for determining the stiffness and damping coefficients aimed at the optimal performance in terms of ride comfort and energy regeneration. The corresponding performance metrics are selected as root-mean-square (RMS) of sprung mass acceleration and expectation of generated power. The actual road roughness is considered as the stochastic excitation defined by ISO 8608:1995 standard road profiles and used in deriving the optimization method. An electronic circuit is proposed to provide variable damping in the real-time based on the optimization rule. A test-bed is utilized and the experiments under different driving conditions are conducted to verify the effectiveness of the proposed method. The test results suggest that the analytical approach is credible in determining the optimality of system performance.

  8. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  9. A Cool Urban Island Change 1990 - 2014. Comparative Bioclimatic Analysis in a Desert Climate, the Case of Antofagasta City Square

    NASA Astrophysics Data System (ADS)

    Pérez Lancellotti, Gino; Ziede Bize, Marcela

    2017-10-01

    This article proposes to make a comparative bioclimatic analysis from 1990 to 2014 of the main square of Antofagasta, a coastal desert city in Chile, which was remodelled in 1995, and shows how the redesigning of green areas affects the microclimatic conditions and thermal comfort of the urban space. Ex ante measurements dating 1990 were compared with ex post results from 2014. Data were obtained in both cases in the month of September at different times of a day and in different climate conditions. The variables studied were: land surface temperature, humidity, wind speed, amount of light and square use frequency inside the square and in surrounding streets. The temperatures are not statistically different during the years 1990 and 2014 for the city of Antofagasta. The main layout of the square has not changed, and inside the square it is similar for both periods, but new species were introduced and bigger trees with shadow projection were cut down. The square had a micro-climate role in 2014 as well as in 1990. The highest frequency zone with an important surface lost it is comfort thermic condition with an increase of 1°C. Other smaller zones with less relevance for users gained in cooling with a 0.5°C reduction. The new design has been detrimental to the intensity of its micro climatic regulatory function affecting the thermic comfort of the square’s internal spaces, especially those formerly protected by shadow, which mitigate a high solar radiation. The study results suggest that bio-climatic analysis of public open spaces is a key component for the design of future projects as a heat mitigating tool in the context of climate change. Research question is: How does the redesign of the square impact a cool urban island and the thermic comfort of users? Significant differences between data in situ collected in 1990 and 2014. Thermal comfort was negatively affected by the redesign in the square. The square is still a cool island but with less strength.

  10. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging.

    PubMed

    Koay, Cheng Guan; Chang, Lin-Ching; Carew, John D; Pierpaoli, Carlo; Basser, Peter J

    2006-09-01

    A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (

  11. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  12. View-Based Organization and Interplay of Spatial Working and Long-Term Memories

    PubMed Central

    Röhrich, Wolfgang G.; Hardiess, Gregor; Mallot, Hanspeter A.

    2014-01-01

    Space perception provides egocentric, oriented views of the environment from which working and long-term memories are constructed. “Allocentric” (i.e. position-independent) long-term memories may be organized as graphs of recognized places or views but the interaction of such cognitive graphs with egocentric working memories is unclear. Here we present a simple coherent model of view-based working and long-term memories, together with supporting evidence from behavioral experiments. The model predicts that within a given place, memories for some views may be more salient than others, that imagery of a target square should depend on the location where the recall takes place, and that recall favors views of the target square that would be obtained when approaching it from the current recall location. In two separate experiments in an outdoor urban environment, pedestrians were approached at various interview locations and asked to draw sketch maps of one of two well-known squares. Orientations of the sketch map productions depended significantly on distance and direction of the interview location from the target square, i.e. different views were recalled at different locations. Further analysis showed that location-dependent recall is related to the respective approach direction when imagining a walk from the interview location to the target square. The results are consistent with a view-based model of spatial long-term and working memories and their interplay. PMID:25409437

  13. Permeation fill-tube design for inertial confinement fusion target capsules

    DOE PAGES

    Rice, B. S.; Ulreich, J.; Fella, C.; ...

    2017-03-22

    A unique approach for permeation filling of nonpermeable inertial confinement fusion target capsules with deuterium–tritium (DT) is presented. This process uses a permeable capsule coupled into the final target capsule with a 0.03-mm-diameter fill tube. Leak free permeation filling of glow-discharge polymerization (GDP) targets using this method have been successfully demonstrated, as well as ice layering of the target, yielding an inner ice surface roughness of 1-more » $$\\unicode[STIX]{x03BC}$$m rms (root mean square). Finally, the measured DT ice-thickness profile for this experiment was used to validate a thermal model’s prediction of the same thickness profile.« less

  14. Modeling and control of non-square MIMO system using relay feedback.

    PubMed

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Cymatics for the cloaking of flexural vibrations in a structured plate

    PubMed Central

    Misseroni, D.; Colquitt, D. J.; Movchan, A. B.; Movchan, N. V.; Jones, I. S.

    2016-01-01

    Based on rigorous theoretical findings, we present a proof-of-concept design for a structured square cloak enclosing a void in an elastic lattice. We implement high-precision fabrication and experimental testing of an elastic invisibility cloak for flexural waves in a mechanical lattice. This is accompanied by verifications and numerical modelling performed through finite element simulations. The primary advantage of our square lattice cloak, over other designs, is the straightforward implementation and the ease of construction. The elastic lattice cloak, implemented experimentally, shows high efficiency. PMID:27068339

  16. New Bounds on the Total-Squared-Correlation of Quaternary Signature Sets and Optimal Designs

    DTIC Science & Technology

    2010-03-01

    2004. [8] G. S. Rajappan and M. L. Honig, “Signature sequence adaptation for DS - CDMA with multipath,” IEEE Journal on Selected Areas in Commun., vol...vol. 51, pp. 1900-1907, May 2005. [10] G. N. Karystinos and D. A. Pados, “New bounds on the total squared correlation and optimum design of DS - CDMA ...Pados bounds on DS - CDMA binary signature sets,” Des., Codes Cryp- togr., vol. 30, pp. 73-84, Aug. 2003. [12] V. P. Ipatov, “On the Karystinos-Pados bounds

  17. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    PubMed

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  18. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.

    PubMed

    D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn

    2013-07-15

    Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

  19. Design and performance of heart assist or artificial heart control systems

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1978-01-01

    The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.

  20. Anomalous structural transition of confined hard squares.

    PubMed

    Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo

    2016-11-01

    Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.

  1. A spectral mimetic least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochev, Pavel; Gerritsma, Marc

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  2. A spectral mimetic least-squares method

    DOE PAGES

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  3. Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting

    NASA Astrophysics Data System (ADS)

    Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen

    2017-06-01

    The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.

  4. The Psychometrics of Educational Science: Designing Trichotomous Inventive Investigative Instruments for Qualitative and Quantitative Inquiry

    ERIC Educational Resources Information Center

    Osler, James Edward

    2013-01-01

    This monograph provides an active discourse on the novel field of "Educational Science" and how it conducts in-depth research investigations first presented in an article by the author in the i-managers "Journal of Mathematics." Educational Science uses the innovative Total Transformative Trichotomy-Squared [Tri-Squared] Test…

  5. Using Disks as Models for Proofs of Series

    ERIC Educational Resources Information Center

    Somchaipeng, Tongta; Kruatong, Tussatrin; Panijpan, Bhinyo

    2012-01-01

    Exploring and deriving proofs of closed-form expressions for series can be fun for students. However, for some students, a physical representation of such problems is more meaningful. Various approaches have been designed to help students visualize squares of sums and sums of squares; these approaches may be arithmetic-algebraic or combinatorial…

  6. C[squared] = Creative Coordinates

    ERIC Educational Resources Information Center

    McHugh, Shelley R.

    2007-01-01

    "C[squared] = Creative Coordinates" is an engaging group of tasks that fosters the integration of mathematics and art to create meaningful understanding. The project lets students illustrate of find an image, then plot points to map their design on a grid. The project usually takes about a week to complete. When it is finished, students who are…

  7. Effects of acute feed restriction combined with targeted use of increasing luteinizing hormone content of follicle-stimulating hormone preparations on ovarian superstimulation, fertilization, and embryo quality in lactating dairy cows

    PubMed Central

    Bender, R. W.; Hackbart, K. S.; Dresch, A. R.; Carvalho, P. D.; Vieira, L. M.; Crump, P. M.; Guenther, J. N.; Fricke, P. M.; Shaver, R. D.; Combs, D. K.; Wiltbank, M. C.

    2018-01-01

    Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 μU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered to optimize success of ovarian superstimulatory protocols. PMID:24359829

  8. 2015 RECS Square Footage Methodology

    EIA Publications

    2017-01-01

    The square footage, or size, of a home is an important characteristic in understanding its energy use. The amounts of energy used for major end uses such as space heating and air conditioning are strongly related to the size of the home. The Residential Energy Consumption Survey (RECS), conducted by the U.S. Energy Information Administration (EIA), collects information about the size of the responding housing units as part of the data collection protocol. The methods used to collect data on housing unit size produce square footage estimates that are unique to RECS because they are designed to capture the energy-consuming space within a home. This document discusses how the 2015 RECS square footage estimates were produced.

  9. Design of vibration isolation systems using multiobjective optimization techniques

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.

  10. POOLMS: A computer program for fitting and model selection for two level factorial replication-free experiments

    NASA Technical Reports Server (NTRS)

    Amling, G. E.; Holms, A. G.

    1973-01-01

    A computer program is described that performs a statistical multiple-decision procedure called chain pooling. It uses a number of mean squares assigned to error variance that is conditioned on the relative magnitudes of the mean squares. The model selection is done according to user-specified levels of type 1 or type 2 error probabilities.

  11. High Accuracy Optical Inverse Square Law Experiment Using Inexpensive Light to Frequency Converters

    ERIC Educational Resources Information Center

    Wanser, Keith H.; Mahrley, Steve; Tanner, Joshua

    2012-01-01

    In this paper we report on the use of two different light to frequency converters, four different light sources, three of which are novel and inexpensive, and a hand held digital multimeter with a frequency counter, suitable for making accurate and rapid determination of the optical inverse square law exponent of -2 to better than [plus or…

  12. The value of homemade phantoms for training veterinary students in the ultrasonographic detection of radiolucent foreign bodies.

    PubMed

    Mariano Beraldo, Carolina; Rondon Lopes, Érika; Hage, Raduan; Hage, Maria Cristina F N S

    2017-03-01

    Ingested or penetrating foreign bodies are common in veterinary medicine. When they are radiolucent, these objects become a diagnostic challenge, but they can be investigated sonographically. However, successful object identification depends on the skill of the sonographer. Considering that these cases appear randomly during hospital routines, it is not always possible to train all students to identify them correctly. Therefore, the aim of this study was to produce homemade simulations of radiolucent foreign bodies for veterinary student demonstrations that could be identified sonographically and to evaluate the acceptability, applicability, and usefulness of these simulations according to a visual analog scale questionnaire and subjective questions. For this purpose, object models (a pacifier nipple, a toy ball, a sock, nylon thread, and a mango seed) were designed, produced, and immersed in gelatin. To simulate wood splinters in the integumentary and musculoskeletal system, a piece of meat punctured with a toothpick and ice cream stick splinters were used. The type of phantom had a determinant effect on the visualization (chi-square = 36.528, P < 0.0001) and recognition (chi-square = 18.756, P = 0.0021) capability of the students. All of the students answered that their experience with the models could help in real situations. The student responses to the questionnaire indicated that the project was well accepted, and the participants believed that this experience could be applicable to and useful in veterinary routines. Copyright © 2017 the American Physiological Society.

  13. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    PubMed Central

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-01-01

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244

  14. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  15. Square wave voltammetry at the dropping mercury electrode: Experimental

    USGS Publications Warehouse

    Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.

    1977-01-01

    Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.

  16. Fast three-dimensional inner volume excitations using parallel transmission and optimized k-space trajectories.

    PubMed

    Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien

    2016-10-01

    To design short parallel transmission (pTx) pulses for excitation of arbitrary three-dimensional (3D) magnetization patterns. We propose a joint optimization of the pTx radiofrequency (RF) and gradient waveforms for excitation of arbitrary 3D magnetization patterns. Our optimization of the gradient waveforms is based on the parameterization of k-space trajectories (3D shells, stack-of-spirals, and cross) using a small number of shape parameters that are well-suited for optimization. The resulting trajectories are smooth and sample k-space efficiently with few turns while using the gradient system at maximum performance. Within each iteration of the k-space trajectory optimization, we solve a small tip angle least-squares RF pulse design problem. Our RF pulse optimization framework was evaluated both in Bloch simulations and experiments on a 7T scanner with eight transmit channels. Using an optimized 3D cross (shells) trajectory, we were able to excite a cube shape (brain shape) with 3.4% (6.2%) normalized root-mean-square error in less than 5 ms using eight pTx channels and a clinical gradient system (Gmax  = 40 mT/m, Smax  = 150 T/m/s). This compared with 4.7% (41.2%) error for the unoptimized 3D cross (shells) trajectory. Incorporation of B0 robustness in the pulse design significantly altered the k-space trajectory solutions. Our joint gradient and RF optimization approach yields excellent excitation of 3D cube and brain shapes in less than 5 ms, which can be used for reduced field of view imaging and fat suppression in spectroscopy by excitation of the brain only. Magn Reson Med 76:1170-1182, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. UAV Deployed Sensor System for Arctic Ocean Remote Sensing

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Lawrence, D.; Weibel, D.; LoDolce, G.; Krist, S.; Crocker, I.; Maslanik, J. A.

    2012-12-01

    The Marginal Ice Zone Observations and Processes Experiment (MIZOPEX), is an Arctic field project scheduled for summer 2013. The goals of the project are to understand how warming of the marginal ice zone affects sea ice melt and if this warming has been over or underestimated by satellite measurements. To achieve these goals calibrated physical measurements, both remote and in-situ, of the marginal ice zone over scales of square kilometers with a resolution of square meters is required. This will be accomplished with a suite of unmanned aerial vehicles (UAVs) equipped with both remote sensing and in-situ instruments, air deployed microbuoys, and ship deployed buoys. In this talk we will present details about the air-deployed micro-buoy (ADMB) and self-deployed surface-sonde (SDSS) components of the MIZOPEX project, developed at the University of Colorado. These systems were designed to explore the potential of low-cost, on-demand access to high-latitude areas of important scientific interest. Both the ADMB and SDSS share a common measurement suite with the capability to measure water temperature at three distinct depths and provide position information via GPS. The ADMBs are dropped from the InSitu ScanEagle UAV and expected to operate and log ocean temperatures for 14 days. The SDSS are micro UAVs that are designed to fly one-way to a region of interest and land at specified coordinates, thereafter becoming a surface sensor similar to the ADMB. A ScanEagle will periodically return to the deployment zone to gather ADMB/SDSS data via low power radio links. Design decisions based upon operational constraints and the current status of the ADMB and SDSS will be presented.

  18. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  19. Classes of Split-Plot Response Surface Designs for Equivalent Estimation

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2006-01-01

    When planning an experimental investigation, we are frequently faced with factors that are difficult or time consuming to manipulate, thereby making complete randomization impractical. A split-plot structure differentiates between the experimental units associated with these hard-to-change factors and others that are relatively easy-to-change and provides an efficient strategy that integrates the restrictions imposed by the experimental apparatus. Several industrial and scientific examples are presented to illustrate design considerations encountered in the restricted randomization context. In this paper, we propose classes of split-plot response designs that provide an intuitive and natural extension from the completely randomized context. For these designs, the ordinary least squares estimates of the model are equivalent to the generalized least squares estimates. This property provides best linear unbiased estimators and simplifies model estimation. The design conditions that allow for equivalent estimation are presented enabling design construction strategies to transform completely randomized Box-Behnken, equiradial, and small composite designs into a split-plot structure.

  20. Luminance gradient at object borders communicates object location to the human oculomotor system.

    PubMed

    Kilpeläinen, Markku; Georgeson, Mark A

    2018-01-25

    The locations of objects in our environment constitute arguably the most important piece of information our visual system must convey to facilitate successful visually guided behaviour. However, the relevant objects are usually not point-like and do not have one unique location attribute. Relatively little is known about how the visual system represents the location of such large objects as visual processing is, both on neural and perceptual level, highly edge dominated. In this study, human observers made saccades to the centres of luminance defined squares (width 4 deg), which appeared at random locations (8 deg eccentricity). The phase structure of the square was manipulated such that the points of maximum luminance gradient at the square's edges shifted from trial to trial. The average saccade endpoints of all subjects followed those shifts in remarkable quantitative agreement. Further experiments showed that the shifts were caused by the edge manipulations, not by changes in luminance structure near the centre of the square or outside the square. We conclude that the human visual system programs saccades to large luminance defined square objects based on edge locations derived from the points of maximum luminance gradients at the square's edges.

  1. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  2. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  3. 76 FR 40773 - Additional Designation of Entities Pursuant to Executive Order 13382 and Information Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... INVESTMENT COMPANY; a.k.a. MEHR IRANIAN ECONOMY COMPANY; a.k.a. MEHR IRANIAN ECONOMY INVESTMENTS; f.k.a... Square, Tehran, Iran; No. 48, 14th Alley, Ahmad Qassir Street, Argentina Square, Tehran, Iran; Business Registration Document 103222 (Iran); Web site http://www.mebank.ir ; Telephone: 982188526300; Alt. Telephone...

  4. The Triangulation Algorithmic: A Transformative Function for Designing and Deploying Effective Educational Technology Assessment Instruments

    ERIC Educational Resources Information Center

    Osler, James Edward

    2013-01-01

    This paper discusses the implementation of the Tri-Squared Test as an advanced statistical measure used to verify and validate the research outcomes of Educational Technology software. A mathematical and epistemological rational is provided for the transformative process of qualitative data into quantitative outcomes through the Tri-Squared Test…

  5. The Influence of Relational Complexity and Strategy Selection on Children's Reasoning in the Latin Square Task

    ERIC Educational Resources Information Center

    Perret, Patrick; Bailleux, Christine; Dauvier, Bruno

    2011-01-01

    The present study focused on children's deductive reasoning when performing the Latin Square Task, an experimental task designed to explore the influence of relational complexity. Building on Birney, Halford, and Andrew's (2006) research, we created a version of the task that minimized nonrelational factors and introduced new categories of items.…

  6. Metamaterial composition comprising frequency-selective-surface resonant element disposed on/in a dielectric flake, methods, and applications

    DOEpatents

    Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey

    2015-11-10

    Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.

  7. Generalization in Place Learning and Geometry Knowledge in Rats

    ERIC Educational Resources Information Center

    Tommasi, Luca; Thinus-Blanc, Catherine

    2004-01-01

    Rats were trained to search for a food reward hidden under sawdust in the center of a square-shaped enclosure designed to force orientation on the basis of the overall geometry of the environment. They were then tested in a number of enclosures differing in shape and in size (rectangular-, double-side square-, and equilateral triangle-shaped…

  8. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  9. Squaring Up: Experiences of Transition from Off-Street Sex Work to Square Work and Duality--Concurrent Involvement in Both--in Vancouver, BC.

    PubMed

    Bowen, Raven R

    2015-11-01

    Many studies of exit from sex work are inspired by role theory, where people experience a lack of attachment to a role; are faced with individual, interactional, and structural challenges; contemplate transition and exit a role; and then struggle to establish postrole identities and new lives. This framework has been used to explicate the factors and experiences of those who leave or attempt to leave the sex industry; however, it is limited because studies present sex work as a harmful and dangerous profession that people are trapped in, escaping, or have survived. In this paper, I discuss Vancouver's history of violence against sex workers and I review research on sex work exiting and bring forward recommendations for the design of exit program based on the experiences of 22 active and former off-street sex workers from Vancouver, British Columbia. I describe study participants who include Sex-Work-No-More participants who would not return to the industry, Sex-Work-Maybe participants who consider reinvolvement, and Dual-Life participants who are employed in sex work and conventional work simultaneously. These participants uniquely challenge narrow, binary understandings of involvement and transition because they discuss their use of deception to obtain resources needed to make change; the support that clients have provided; their strategic engagement in sex work as a means to exit; their considerations of reentry; and for some, their dual employment. In light of new legislation that criminalizes activities related to sex work-the Protection of Communities and Exploited Persons Act-and the Federal government announcement of $20 million dollars for the creation of exit services nationwide, hearing from sex workers is essential to advancing agendas in this area. © 2015 Canadian Sociological Association/La Société canadienne de sociologie.

  10. Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment.

    PubMed

    Guo, Tao; Cao, Zhengtao; Zhang, Zhengbo; Li, Deyu; Yu, Mengsun

    2015-08-05

    Pulse oxygen saturation (SpO2) is an important parameter for healthcare, and wearable sensors and systems for SpO2 monitoring have become increasingly popular. The aim of this paper is to develop a novel SpO2 monitoring system, which detects photoplethysmographic (PPG) signals at hypothenar with a reflection-mode sensor embedded into a glove. A special photo-detector section was designed with two photodiodes arranged symmetrically to the red and infrared light-emitting diodes (LED) to enhance the signal quality. The reflective sensor was placed in a soft silicon substrate sewn in a glove to fit the surface of the hypothenar. To lower the power consumption, the LED driving current was reduced and energy-efficient electronic components were applied. The performance for PPG signal detection and SpO2 monitoring was evaluated by human hypoxia experiments. Accelerometer-based adaptive noise cancellation (ANC) methods applying the least mean squares (LMS) and recursive least squares (RLS) algorithms were studied to suppress motion artifact. A total of 20 subjects participated in the hypoxia experiment. The degree of comfort for wearing this system was accepted by them. The PPG signals were detected effectively at SpO2 levels from about 100-70%. The experiment validated the accuracy of the system was 2.34%, compared to the invasive measurements. Both the LMS and RLS algorithms improved the performance during motion. The total current consumed by the system was only 8 mA. It is feasible to detect PPG signal and monitor SpO2 at the location of hypothenar. This novel system can achieve reliable SpO2 measurements at different SpO2 levels and on different individuals. The system is light-weighted, easy to wear and power-saving. It has the potential to be a solution for wearable monitoring, although more work should be conducted to improve the motion-resistant performance significantly.

  11. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presented are physics experiments, laboratory procedures, demonstrations, and classroom materials/activities. Experiments include: speed of sound in carbon dioxide; inverse square law; superluminal velocities; and others. Equipment includes: current switch; electronic switch; and pinhole camera. Discussion of mechanics of walking is also included.…

  12. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  13. Simulation and Spectrum Extraction in the Spectroscopic Channel of the SNAP Experiment

    NASA Astrophysics Data System (ADS)

    Tilquin, Andre; Bonissent, A.; Gerdes, D.; Ealet, A.; Prieto, E.; Macaire, C.; Aumenier, M. H.

    2007-05-01

    A pixel-level simulation software is described. It is composed of two modules. The first module applies Fourier optics at each active element of the system to construct the PSF at a large variety of wavelengths and spatial locations of the point source. The input is provided by the engineer's design program (Zemax). It describes the optical path and the distortions. The PSF properties are compressed and interpolated using shapelets decomposition and neural network techniques. A second module is used for production jobs. It uses the output of the first module to reconstruct the relevant PSF and integrate it on the detector pixels. Extended and polychromatic sources are approximated by a combination of monochromatic point sources. For the spectrum extraction, we use a fast simulator based on a multidimensional linear interpolation of the pixel response tabulated on a grid of values of wavelength, position on sky and slice number. The prediction of the fast simulator is compared to the observed pixel content, and a chi-square minimization where the parameters are the bin contents is used to build the extracted spectrum. The visible and infrared arms are combined in the same chi-square, providing a single spectrum.

  14. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator.

    PubMed

    Liang, Jinyang; Kohn, Rudolph N; Becker, Michael F; Heinzen, Daniel J

    2009-04-01

    We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose-Einstein condensate cold atom experiments.

  15. Comparison of estimators of standard deviation for hydrologic time series

    USGS Publications Warehouse

    Tasker, Gary D.; Gilroy, Edward J.

    1982-01-01

    Unbiasing factors as a function of serial correlation, ρ, and sample size, n for the sample standard deviation of a lag one autoregressive model were generated by random number simulation. Monte Carlo experiments were used to compare the performance of several alternative methods for estimating the standard deviation σ of a lag one autoregressive model in terms of bias, root mean square error, probability of underestimation, and expected opportunity design loss. Three methods provided estimates of σ which were much less biased but had greater mean square errors than the usual estimate of σ: s = (1/(n - 1) ∑ (xi −x¯)2)½. The three methods may be briefly characterized as (1) a method using a maximum likelihood estimate of the unbiasing factor, (2) a method using an empirical Bayes estimate of the unbiasing factor, and (3) a robust nonparametric estimate of σ suggested by Quenouille. Because s tends to underestimate σ, its use as an estimate of a model parameter results in a tendency to underdesign. If underdesign losses are considered more serious than overdesign losses, then the choice of one of the less biased methods may be wise.

  16. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  17. Evaluation of days of total collection and use of internal markers in nutritional trials with small ruminants.

    PubMed

    da Teixeira, Catarine S C; de Carvalho, Gleidson G P; Nicory, Isis C M; Santos, Aracele V; Dos Pina, Douglas S; de Júnior, José E F; de Araújo, Maria L G M L; de Rufino, Luana M A; Cirne, Luís G A; Pires, Aureliano J V

    2018-04-01

    Two experiments were conducted to evaluate the number of days required for total fecal collection and the viability of using the indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF), and indigestible acid detergent fiber (iADF) internal markers to determine the fecal excretion of dry matter (FEDM) and digestibility in nutritional trials with small ruminants. Eight sheep in the first experiment and eight goats in the second experiment were distributed into two 4 × 4 Latin square designs. There were no significant differences between days of total fecal collection for FEDM; digestibility of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber corrected for ash and protein (NDFap), and non-fibrous carbohydrates corrected for ash and protein (NFCap); and total digestible nutrients (TDN) in both species. The results suggest that only 1 day of total collection is sufficient to obtain the FEDM and the digestibility of the nutritional components in sheep and goats. The markers are efficient in determining fecal production and digestibility in these animal species.

  18. An experimental investigation of wind flow over tall towers in staggered form

    NASA Astrophysics Data System (ADS)

    Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad

    2016-07-01

    In this research work an experiment is conducted to see the effect of wind loading on square, pentagonal and Hexagonal shape cylinders in staggered form. The experiment is done in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform throughout the experiment at 14.3 m/s. The test has been conducted for single cylinders first and then in staggered form. Angle of attack is chosen at a definite interval. The static pressure at different locations of the cylinder is measured by inclined multi-manometer. From the surface static pressure readings pressure coefficients are calculated first, then drag and lift coefficients are calculated using numerical Integration Method. These results will surely help engineers to design buildings with such shapes more efficiently. All the results are expressed in non-dimensional form, so they can be applied for prototype buildings and determine the wind loading at any wind speed on structures of similar external shapes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    On January 14, 1974, AAI Corporation received a contract from the National Science Foundation to conduct a Solar Heating Proof-of-Concept Experiment (POCE) for a public school building. On March 1, 1974, one and a half months later, the experiment began as Timonium Elementary School became the first school in the United States heated by solar energy. In this brief period of time, AAI designed, manufactured, and installed a 5000 square foot collector array complete with mounting trusses, a 15,000 gallon water storage tank, school hot water heating system, and instrumentation. From March 1 to May 15 the selected wing ofmore » the school received 90% of its heat from the solar heating system. During this period, experimental data were collected and are presented in this report. This experiment has been successful since it has proven that the solar heating of schools is possible, practical, and socially acceptable. In addition, over 1200 gallons of fuel oil have been saved in the brief period the system has been in operation. This report describes the system in detail, presents the analysis of operation, and discusses recommendations and conclusions based upon the results of the experiment so far. (auth)« less

  20. Analysis of low gravity tolerance of model experiments for space station: Preliminary results for directional solidification

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Ouazzani, Jalil

    1988-01-01

    It has become clear from measurements of the acceleration environment in the Spacelab that the residual gravity levels on board a spacecraft in low Earth orbit can be significant and should be of concern to experimenters who wish to take advantage of the low gravity conditions on future Spacelab missions and on board the Space Station. The basic goals are to better understand the low gravity tolerance of three classes of materials science experiments: crystal growth from a melt, a vapor, and a solution. The results of the research will provide guidance toward the determination of the sensitivity of the low gravity environment, the design of the laboratory facilites, and the timelining of materials science experiments. To data, analyses of the effects of microgravity environment were, with a few exceptions, restricted to order of magnitude estimates. Preliminary results obtained from numerical models of the effects of residual steady and time dependent acceleration are reported on: heat, mass, and momentum transport during the growth of a dilute alloy by the Bridgman-Stockbarger technique, and the response of a simple fluid physics experiment involving buoyant convection in a square cavity.

  1. Crashworthiness analysis on alternative square honeycomb structure under axial loading

    NASA Astrophysics Data System (ADS)

    Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen

    2013-07-01

    Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.

  2. Silicon-controlled-rectifier square-wave inverter with protection against commutation failure

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1971-01-01

    The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.

  3. Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder

    NASA Astrophysics Data System (ADS)

    Bandura, Kevin; Addison, Graeme E.; Amiri, Mandana; Bond, J. Richard; Campbell-Wilson, Duncan; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gibbs, Kenneth; Gilbert, Adam; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom L.; Masui, Kiyoshi; Mena Parra, Juan; Newburgh, Laura B.; Pen, Ue-li; Peterson, Jeffrey B.; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Mike; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-07-01

    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beam forming that characterized previous designs. The Pathfinder consists of two cylinders 37m long by 20m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ~100 degrees by 1-2 degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ~30 cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800 MHz, and directly sampled at 800 MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation. The lessons learned from its implementation will be used to inform and improve the final CHIME design.

  4. Applying Statistics in the Undergraduate Chemistry Laboratory: Experiments with Food Dyes.

    ERIC Educational Resources Information Center

    Thomasson, Kathryn; Lofthus-Merschman, Sheila; Humbert, Michelle; Kulevsky, Norman

    1998-01-01

    Describes several experiments to teach different aspects of the statistical analysis of data using household substances and a simple analysis technique. Each experiment can be performed in three hours. Students learn about treatment of spurious data, application of a pooled variance, linear least-squares fitting, and simultaneous analysis of dyes…

  5. Enhanced data reduction of the velocity data on CETA flight experiment. [Crew and Equipment Translation Aid

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    1993-01-01

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  6. Results on nucleon life-time from the Kolar gold field experiment

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Sreekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment has been in operation since October 1980 with a 140 ton calorimetric detector at a depth of 2.3 Km underground. The detector comprises 34 layers of proportional counters arranged in an orthogonal geometry with 12 mm thick iron plates in between successive layers. The proportional counters are made up of square (10 x 10 square centimeters) iron plates of wall thickness 2.3 mm. Each of the 1600 counters is instrumented to provide data on ionization, DE/dx and arrival time. The visible energy of a particle is determined to an accuracy of approximately 20% from the ionization and range of its track. The end point ionization of a stopping track provides the direction of motion as well as the nature of the particle (mu/pi,k,p). Decay of mu is recorded with an overall efficiency of only 20% in view of the thickness of 13 g/square centimeters between successive layers.

  7. A novel beamformer design method for medical ultrasound. Part I: Theory.

    PubMed

    Ranganathan, Karthik; Walker, William F

    2003-01-01

    The design of transmit and receive aperture weightings is a critical step in the development of ultrasound imaging systems. Current design methods are generally iterative, and consequently time consuming and inexact. We describe a new and general ultrasound beamformer design method, the minimum sum squared error (MSSE) technique. The MSSE technique enables aperture design for arbitrary beam patterns (within fundamental limitations imposed by diffraction). It uses a linear algebra formulation to describe the system point spread function (psf) as a function of the aperture weightings. The sum squared error (SSE) between the system psf and the desired or goal psf is minimized, yielding the optimal aperture weightings. We present detailed analysis for continuous wave (CW) and broadband systems. We also discuss several possible applications of the technique, such as the design of aperture weightings that improve the system depth of field, generate limited diffraction transmit beams, and improve the correlation depth of field in translated aperture system geometries. Simulation results are presented in an accompanying paper.

  8. A study to determine the feasibility of a low sonic boom supersonic transport

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    A study was made to determine the feasibility of supersonic transport configurations designed to produce a goal sonic boom signature with low overpressure. The results indicate that, in principle, such a concept represents a potentially realistic design approach assuming technology of the 1985 time period. Two sonic boom goals were selected which included: (1) A high speed design that would produce shock waves no stronger than 48 Newtons per square meter (1.0 psf); and an intermediate Mach number (mid-Mach) design that would produce shock waves no stronger than 24 Newtons per square meter. The high speed airplane design was a Mach 2.7 blended arrow wing configuration which was capable of carrying 183 passengers a distance of 7000 km (3780 nmi) while meeting the signature goal. The mid-Mach airplane designed was a Mach 1.5 low arrow wing configuration with a horizontal tail which could carry 180 passengers a distance of 5960 km (3220 nmi).

  9. A Generalized Least Squares Regression Approach for Computing Effect Sizes in Single-Case Research: Application Examples

    ERIC Educational Resources Information Center

    Maggin, Daniel M.; Swaminathan, Hariharan; Rogers, Helen J.; O'Keeffe, Breda V.; Sugai, George; Horner, Robert H.

    2011-01-01

    A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of…

  10. 14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...

  11. 14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...

  12. 14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...

  13. The Design of a Four Square Gear Tester for Noise and Vibration Measurements.

    DTIC Science & Technology

    1986-12-01

    Four Square Gear Tester ...... . 25 2.3 The Speed-Torque Relationship of Contraves Blower Ventilated Motor ....... ..................... ... 31 2.4...The Speed-Torque Relationship of Contraves Self- Ventilated Motor ....... ..................... ... 32 2.5 The Contraves Motor...34 2.6 The Contraves Motor Mounted Blower ... ............ ... 35 2.7 The Fixed-Fixed End Condition (to determine the natural frequency of the

  14. Coded-Aperture X- or gamma -ray telescope with Least- squares image reconstruction. III. Data acquisition and analysis enhancements

    NASA Astrophysics Data System (ADS)

    Kohman, T. P.

    1995-05-01

    The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.

  15. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  16. Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini,Benjamin; Young, Daniel

    1990-01-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite bonded joints below the cryogenic temperature of 30K (-405 F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to M55J/954-6 and T300/954-6 hybrid composite tubes (75mm square). Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  17. Determining the Effect of Material Hardness During the Hard Turning of AISI4340 Steel

    NASA Astrophysics Data System (ADS)

    Kambagowni, Venkatasubbaiah; Chitla, Raju; Challa, Suresh

    2018-05-01

    In the present manufacturing industries hardened steels are most widely used in the applications like tool design and mould design. It enhances the application range of hard turning of hardened steels in manufacturing industries. This study discusses the impact of workpiece hardness, feed and depth of cut on Arithmetic mean roughness (Ra), root mean square roughness (Rq), mean depth of roughness (Rz) and total roughness (Rt) during the hard turning. Experiments have been planned according to the Box-Behnken design and conducted on hardened AISI4340 steel at 45, 50 and 55 HRC with wiper ceramic cutting inserts. Cutting speed is kept constant during this study. The analysis of variance was used to determine the effects of the machining parameters. 3-D response surface plots drawn based on RSM were utilized to set up the input-output relationships. The results indicated that the feed rate has the most significant parameter for Ra, Rq and Rz and hardness has the most critical parameter for the Rt. Further, hardness shows its influence over all the surface roughness characteristics.

  18. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O

    2009-04-01

    This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.

  19. Updating QR factorization procedure for solution of linear least squares problem with equality constraints.

    PubMed

    Zeb, Salman; Yousaf, Muhammad

    2017-01-01

    In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.

  20. Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles

    NASA Astrophysics Data System (ADS)

    Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.

    2005-03-01

    Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.

  1. Least square neural network model of the crude oil blending process.

    PubMed

    Rubio, José de Jesús

    2016-06-01

    In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Improving the Ability of Mathematic Representation Capabilities and Students Skills in Importing Square Forms to Square Using Variation Solutions

    NASA Astrophysics Data System (ADS)

    Nirawati, R.

    2018-04-01

    This research was conducted to see whether the variation of the solution is acceptable and easy to understand by students with different level of ability so that it can be seen the difference of students ability in facilitating the quadratic form in the upper, middle and lower groups. This research used experimental method with factorial design. Based on the result of final test analysis, there were differences of students ability in upper group, medium group, and lower group in putting squared form based on the use certain variation of solution.

  3. Results of heating mode performance tests of a solar-assisted heat pump

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  4. Root-sum-square structural strength verification approach

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1994-01-01

    Utilizing a proposed fixture design or some variation thereof, this report presents a verification approach to strength test space flight payload components, electronics boxes, mechanisms, lines, fittings, etc., which traditionally do not lend themselves to classical static loading. The fixture, through use of ordered Euler rotation angles derived herein, can be mounted on existing vibration shakers and can provide an innovative method of applying single axis flight load vectors. The versatile fixture effectively loads protoflight or prototype components in all three axes simultaneously by use of a sinusoidal burst of desired magnitude at less than one-third the first resonant frequency. Cost savings along with improved hardware confidence are shown. The end product is an efficient way to verify experiment hardware for both random vibration and strength.

  5. Nonlocal variational model and filter algorithm to remove multiplicative noise

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Qiang; Zhang, Hui; Cheng, Li-Zhi

    2010-07-01

    The nonlocal (NL) means filter proposed by Buades, Coll, and Morel (SIAM Multiscale Model. Simul. 4(2), 490-530, 2005), which makes full use of the redundancy information in images, has shown to be very efficient for image denoising with Gauss noise added. On the basis of the NL method and a striver to minimize the conditional mean-square error, we design a NL means filter to remove multiplicative noise, and combining the NL filter to regularity method, we propose a NL total variational (TV) model and present a fast iterated algorithm for it. Experiments demonstrate that our algorithm is better than TV method; it is superior in preserving small structures and textures and can obtain an improvement in peak signal-to-noise ratio.

  6. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

  7. A pdf-Free Change Detection Test Based on Density Difference Estimation.

    PubMed

    Bu, Li; Alippi, Cesare; Zhao, Dongbin

    2018-02-01

    The ability to detect online changes in stationarity or time variance in a data stream is a hot research topic with striking implications. In this paper, we propose a novel probability density function-free change detection test, which is based on the least squares density-difference estimation method and operates online on multidimensional inputs. The test does not require any assumption about the underlying data distribution, and is able to operate immediately after having been configured by adopting a reservoir sampling mechanism. Thresholds requested to detect a change are automatically derived once a false positive rate is set by the application designer. Comprehensive experiments validate the effectiveness in detection of the proposed method both in terms of detection promptness and accuracy.

  8. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  9. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    PubMed

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  10. Secondary iris recognition method based on local energy-orientation feature

    NASA Astrophysics Data System (ADS)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing

    2015-01-01

    This paper proposes a secondary iris recognition based on local features. The application of the energy-orientation feature (EOF) by two-dimensional Gabor filter to the extraction of the iris goes before the first recognition by the threshold of similarity, which sets the whole iris database into two categories-a correctly recognized class and a class to be recognized. Therefore, the former are accepted and the latter are transformed by histogram to achieve an energy-orientation histogram feature (EOHF), which is followed by a second recognition with the chi-square distance. The experiment has proved that the proposed method, because of its higher correct recognition rate, could be designated as the most efficient and effective among its companion studies in iris recognition algorithms.

  11. Influence of stimulated Brillouin scattering on positioning accuracy of long-range dual Mach-Zehnder interferometric vibration sensors

    NASA Astrophysics Data System (ADS)

    He, Xiangge; Xie, Shangran; Cao, Shan; Liu, Fei; Zheng, Xiaoping; Zhang, Min; Yan, Han; Chen, Guocai

    2016-11-01

    The properties of noise induced by stimulated Brillouin scattering (SBS) in long-range interferometers and their influences on the positioning accuracy of dual Mach-Zehnder interferometric (DMZI) vibration sensing systems are studied. The SBS noise is found to be white and incoherent between the two arms of the interferometer in a 1-MHz bandwidth range. Experiments on 25-km long fibers show that the root mean square error (RMSE) of the positioning accuracy is consistent with the additive noise model for the time delay estimation theory. A low-pass filter can be properly designed to suppress the SBS noise and further achieve a maximum RMSE reduction of 6.7 dB.

  12. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    PubMed Central

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  13. 30 CFR 7.505 - Structural components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...

  14. 30 CFR 7.505 - Structural components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...

  15. 30 CFR 7.505 - Structural components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...

  16. 30 CFR 7.505 - Structural components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...

  17. 30 CFR 7.505 - Structural components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...

  18. Using Design To Achieve Sustainability

    EPA Science Inventory

    Sustainability is defined as meeting the needs of this generation without compromising the ability of future generations to meet their needs. This is a conditional statement that places the responsibility for achieving sustainability squarely in hands of designers and planners....

  19. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  20. Studies of soft x-ray transmission through grid supported CH layers

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Frank, Y.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Recent experiments have shown that it may be possible to use laser-heated high-Z foils to drive new radiation transport (RadTran) experiments in gas fill tubes. These tubes must be pressurized above 1atm and the x-ray source needs to be physically separated from the gas. To achieve this, a grid-supported CH seal is implemented. The grid reduces the total surface area of the gas-seal interaction region lowering the thickness requirements for the CH layer. However, as mesh spacing is reduced, hole closure from wire ablation may reduce the x-ray flux. To optimize the seal design, experiments were performed measuring x-ray transmission through CH layers supported by meshes composed of copper, gold, or stainless steel and using hexagonal or square mesh geometries. The x-ray source was formed by heating a 0.5 μm thick planar gold foil with a 4 ns laser pulse at an intensity of 2 ×1014 W / cm 2. Emission data was collected using an x-ray framing camera and a Dante photodiode array. Experiments show that the CH layers can reach effective temperatures of nearly 100 eV but mesh design significantly affects performance, with a nearly 20 eV difference between the best and worst performing seal targets. This talk will discuss our findings and their impact on future RadTran experiments. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant Number DE-NA0001840, the National LUFP, Grant Number DE-NA0000850, and through NNSA/OICF under Cooperatvie Agreement No. DE-FC52-08NA2830.

  1. A test cassette for x-ray-exposure experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.; Celeste, J.; Rekow, V.

    2010-07-15

    We present the design and operation of a test cassette for exposure of samples to radiation environments at the National Ignition Facility. The cassette provides options for square and round samples and exposure areas; the cassette provides for multiple levels of filtration on a single sample, which allows dynamic range in experiments. The samples had normal lines of sight to the x-ray source in order to have uniform x-ray illumination. The incident x-radiation onto the samples was determined by the choice of filter thicknesses and materials. The samples were held at precise locations, accurate to within a few hundred microns,more » in the target chamber in order to have a known fluence incident. In the cassette, the samples were held in place in such a way that a minimal ''line contact'' allows them to have the maximal mechanical response to the x-ray load. We present postshot images of the debris found on films used for filters, and pre- and postexposure specimens.« less

  2. Status of prototype of SG-III high-power solid-state laser

    NASA Astrophysics Data System (ADS)

    Yu, Haiwu; Jing, Feng; Wei, Xiaofeng; Zheng, Wanguo; Zhang, Xiaomin; Sui, Zhan; Li, Mingzhong; Hu, Dongxia; He, Shaobo; Peng, Zhitao; Feng, Bin; Zhou, Hai; Guo, Liangfu; Li, Xiaoqun; Su, Jingqin; Zhao, Runchang; Yang, Dong; Zheng, Kuixing; Yuan, Xiaodong

    2008-10-01

    We are currently developing a large aperture neodymium-glass based high-power solid state laser, Shenguang-III (SG-III), which will be used to provide extreme conditions for high-energy-density physical experiments in China. As a baseline design, SG-III will be composed of 48 beams arranged in 6 bundles with each beam aperture of 40cm×40cm. A prototype of SG-III (TIL-Technical Integration experimental Line) was developed from 2000, and completed in 2007. TIL is composed of 8 beams (four in vertical and two in horizontal), with each square aperture of 30cm×30cm. After frequency tripling, TIL has delivered about 10kJ in 0.351 μm at 1 ns pulsewidth. As an operational laser facility, TIL has a beam divergence of 70 μrad (focus length of 2.2m, i.e., 30DL) and pointing accuracy of 30 μm (RMS), and meets the requirements of physical experiments.

  3. Segmented Polynomial Models in Quasi-Experimental Research.

    ERIC Educational Resources Information Center

    Wasik, John L.

    1981-01-01

    The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)

  4. There Once Was a 9-Block ...--A Middle-School Design for Probability and Statistics

    ERIC Educational Resources Information Center

    Abrahamson, Dor; Janusz, Ruth M.; Wilensky, Uri

    2006-01-01

    ProbLab is a probability-and-statistics unit developed at the Center for Connected Learning and Computer-Based Modeling, Northwestern University. Students analyze the combinatorial space of the 9-block, a 3-by-3 grid of squares, in which each square can be either green or blue. All 512 possible 9-blocks are constructed and assembled in a "bar…

  5. Experimental investigation of circular, flat, grooved and plain steel diaphragms bursting into a 30.5-centimeter-square section

    NASA Technical Reports Server (NTRS)

    Yamaki, Y.; Rooker, J. R.

    1972-01-01

    Limited data on the bursting of circular, initially flat, grooved and plain steel diaphragms opening into a 30.5-cm-square section are presented in tabular form. In addition, these data were used to determine values of an empirical constant to be used in a design equation for predicting diaphragm bursting pressures and opening times.

  6. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  7. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  8. Test equality in binary data for a 4 × 4 crossover trial under a Latin-square design.

    PubMed

    Lui, Kung-Jong; Chang, Kuang-Chao

    2016-10-15

    When there are four or more treatments under comparison, the use of a crossover design with a complete set of treatment-receipt sequences in binary data is of limited use because of too many treatment-receipt sequences. Thus, we may consider use of a 4 × 4 Latin square to reduce the number of treatment-receipt sequences when comparing three experimental treatments with a control treatment. Under a distribution-free random effects logistic regression model, we develop simple procedures for testing non-equality between any of the three experimental treatments and the control treatment in a crossover trial with dichotomous responses. We further derive interval estimators in closed forms for the relative effect between treatments. To evaluate the performance of these test procedures and interval estimators, we employ Monte Carlo simulation. We use the data taken from a crossover trial using a 4 × 4 Latin-square design for studying four-treatments to illustrate the use of test procedures and interval estimators developed here. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

    PubMed

    Beaton, Derek; Dunlop, Joseph; Abdi, Hervé

    2016-12-01

    For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Emerging Perception of Causality in Action-and-Reaction Sequences from 4 to 6 Months of Age: Is It Domain-Specific?

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Ray, Elizabeth D.; Surian, Luca

    2012-01-01

    Two experiments (N=136) studied how 4- to 6-month-olds perceive a simple schematic event, seen as goal-directed action and reaction from 3 years of age. In our causal reaction event, a red square moved toward a blue square, stopping prior to contact. Blue began to move away before red stopped, so that both briefly moved simultaneously at a…

  11. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  12. Polynomial Method for PLL Controller Optimization†

    PubMed Central

    Wang, Ta-Chung; Lall, Sanjay; Chiou, Tsung-Yu

    2011-01-01

    The Phase-Locked Loop (PLL) is a key component of modern electronic communication and control systems. PLL is designed to extract signals from transmission channels. It plays an important role in systems where it is required to estimate the phase of a received signal, such as carrier tracking from global positioning system satellites. In order to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the instantaneous phase of an incoming signal which is usually buried in random noise or some type of interference. This paper presents an approach that utilizes the recent development in the semi-definite programming and sum-of-squares field. A Lyapunov function will be searched as the certificate of the pull-in range of the PLL system. Moreover, a polynomial design procedure is proposed to further refine the controller parameters for system response away from the equilibrium point. Several simulation results as well as an experiment result are provided to show the effectiveness of this approach. PMID:22163973

  13. Missing-value estimation using linear and non-linear regression with Bayesian gene selection.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Dougherty, Edward R

    2003-11-22

    Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab).

  14. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  15. Fast Resistive Bolometry

    NASA Astrophysics Data System (ADS)

    Graham, Jeffrey

    2005-10-01

    A bolometer with microsecond scale response time is under construction for the Caltech spheromak experiment to measure radiation from a ˜20 μs duration plasma discharge emitting ˜10^2---10^3 kW/m^2. A gold film several micrometers thick absorbs the radiation, heats up, and the consequent change in resistance can be measured. The film itself is vacuum deposited upon a glass slide. Several geometries for the film are under consideration to optimize the amount of radiation absorbed, the response time and the signal-to-noise ratio. We measure the change in voltage across the film for a known current driven through it; a square pulse (3---30A, ˜20 μs) is used to avoid Joule heating. Results from prototypes tested with a UV flashlamp will be presented. After optimizing the bolometer design, the final vacuum-compatible diagnostic would consist of a plasma-facing bolometer and a reference in a camera obscura. This device could provide a design for fast resistive bolometry.

  16. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less

  17. Hydraulics of Iowa DOT slope-tapered pipe culverts

    DOT National Transportation Integrated Search

    2001-06-01

    This report updates the Iowa Department of Transportation design procedures for circular, slope-tapered concrete culverts. The current practice is to use the design coefficients for a square-edged, circular concrete culvert with a headwall that are f...

  18. Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square.

    PubMed

    Wang, Bin; Meyers, Marc André

    2017-03-01

    Only seldom are square/rectangular shapes found in nature. One notable exception is the bird feather rachis, which raises the question: why is the proximal base round but the distal end square? Herein, it is uncovered that, given the same area, square cross sections show higher bending rigidity and are superior in maintaining the original shape, whereas circular sections ovalize upon flexing. This circular-to-square shape change increases the ability of the flight feathers to resist flexure while minimizes the weight along the shaft length. The walls are themselves a heterogeneous composite with the fiber arrangements adjusted to the local stress requirements: the dorsal and ventral regions are composed of longitudinal and circumferential fibers, while lateral walls consist of crossed fibers. This natural avian design is ready to be reproduced, and it is anticipated that the knowledge gained from this work will inspire new materials and structures for, e.g., manned/unmanned aerial vehicles.

  19. Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square

    PubMed Central

    Wang, Bin

    2016-01-01

    Only seldom are square/rectangular shapes found in nature. One notable exception is the bird feather rachis, which raises the question: why is the proximal base round but the distal end square? Herein, it is uncovered that, given the same area, square cross sections show higher bending rigidity and are superior in maintaining the original shape, whereas circular sections ovalize upon flexing. This circular‐to‐square shape change increases the ability of the flight feathers to resist flexure while minimizes the weight along the shaft length. The walls are themselves a heterogeneous composite with the fiber arrangements adjusted to the local stress requirements: the dorsal and ventral regions are composed of longitudinal and circumferential fibers, while lateral walls consist of crossed fibers. This natural avian design is ready to be reproduced, and it is anticipated that the knowledge gained from this work will inspire new materials and structures for, e.g., manned/unmanned aerial vehicles. PMID:28331789

  20. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.

    PubMed

    Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A

    2017-02-07

    A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R 2 > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.

  1. A study of various methods for calculating locations of lightning events

    NASA Technical Reports Server (NTRS)

    Cannon, John R.

    1995-01-01

    This article reports on the results of numerical experiments on finding the location of lightning events using different numerical methods. The methods include linear least squares, nonlinear least squares, statistical estimations, cluster analysis and angular filters and combinations of such techniques. The experiments involved investigations of methods for excluding fake solutions which are solutions that appear to be reasonable but are in fact several kilometers distant from the actual location. Some of the conclusions derived from the study are that bad data produces fakes, that no fool-proof method of excluding fakes was found, that a short base-line interferometer under development at Kennedy Space Center to measure the direction cosines of an event shows promise as a filter for excluding fakes. The experiments generated a number of open questions, some of which are discussed at the end of the report.

  2. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  3. Synthesis and Characterization of Dimethylbis(2-pyridyl)borate Nickel(II) Complexes: Unimolecular Square-Planar to Square-Planar Rotation around Nickel(II)

    PubMed Central

    2015-01-01

    The syntheses of novel dimethylbis(2-pyridyl)borate nickel(II) complexes 4 and 6 are reported. These complexes were unambiguously characterized by X-ray analysis. In dichloromethane solvent, complex 4 undergoes a unique square-planar to square-planar rotation around the nickel(II) center, for which activation parameters of ΔH⧧ = 12.2(1) kcal mol–1 and ΔS⧧ = 0.8(5) eu were measured via NMR inversion recovery experiments. Complex 4 was also observed to isomerize via a relatively slow ring flip: ΔH⧧ = 15.0(2) kcal mol–1; and ΔS⧧ = −4.2(7) eu. DFT studies support the experimentally measured rotation activation energy (cf. calculated ΔH⧧ = 11.1 kcal mol–1) as well as the presence of a high-energy triplet intermediate (ΔH = 8.8 kcal mol–1). PMID:24882919

  4. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.

    PubMed

    Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank

    2017-11-07

    In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.

  5. Flux synthesis of regular Bi4TaO8Cl square nanoplates exhibiting dominant exposure surfaces of {001} crystal facets for photocatalytic reduction of CO2 to methane.

    PubMed

    Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang

    2018-01-25

    Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.

  6. Optical NOR logic gate design on square lattice photonic crystal platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  7. A Comparison of Pictorial and Speech Warning Messages in the Modern Cockpit.

    DTIC Science & Technology

    1984-12-01

    Significance Tests for Video Game Score in Experiment One .................................... 81 5. Significance Tests for Response Time in...91 7. Significance Tests for Video Game Score in Experiment Two ..................................... 96 8. Significance Tests for Response Time in...107 10. Significance Tests for Video Game Score in Experiment Three ................................. 112 Appendix Table 1C. Chi-Square Tests for

  8. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  9. Malocclusion and dental caries experience among 8–9-year-old children in a city of South Indian region: A cross-sectional survey

    PubMed Central

    Disha, Patil; Poornima, P.; Pai, Suryakanth M.; Nagaveni, N. B.; Roshan, N. M.; Manoharan, M.

    2017-01-01

    BACKGROUND: Although numerous studies have documented malocclusion in various age groups in India, the literature on the prevalence of malocclusion in mixed dentition is scanty. Dental caries is another most common condition affecting the general health. However, its association with malocclusion in mixed dentition is not well known. AIM: The purpose of this study was to establish the prevalence of malocclusion and its association with caries experience in 8–9-year-old children of Davangere city, South Indian region. SETTING AND DESIGN: The study design was a cross-sectional survey. MATERIALS AND METHODS: A total of 800 children from 350 schools (both males and females) were randomly selected for the study. t-test and Chi-square test were used for statistical analysis. RESULTS: The overall prevalence of malocclusion among 8–9-year-old children was 40.9%. The most prevalent malocclusion was crowding (11.5%), followed by excessive overjet (9.4%), deep bite (6.8%), spacing (6.5%), crossbite (4.5%), and open bite (3.2%). Class I molar relationship prevailed in 95.5% of children. CONCLUSION: The prevalence of malocclusion in our study was in accordance with the other studies reported in India, which ranged from 19.6% to 90%. Furthermore, correlation of malocclusion and dental caries in the primary dentition, although nonsignificant, presented children with malocclusion to have a higher caries experience than children without malocclusion. PMID:29296599

  10. Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar

    DTIC Science & Technology

    2012-06-01

    Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA

  11. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  12. Junior Primary Greek School Pupils' Perceptions of the City's Public Open Spaces and Especially of the Urban Square: A Case Study

    ERIC Educational Resources Information Center

    Papageorgiou, Nikoletta; Galani, Apostolia; Mavrikaki, Evangelia

    2016-01-01

    This work--part of a wider project aimed at engaging first year primary school pupils in public open-space design--explores the perceptions of junior primary school children as to the urban square. Data collection tools comprised semi-structured interviews, sketches and storytelling via puppet-animation. Our findings have shown that--according to…

  13. Affect of Brush Seals on Wave Rotor Performance Assessed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.

  14. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  15. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  16. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  17. Calibration of resistance factors needed in the LRFD design of driven piles.

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  18. Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  19. Classroom Physical Design Influencing Student Learning and Evaluations of College Instructors: A Review of Literature

    ERIC Educational Resources Information Center

    Lei, Simon A.

    2010-01-01

    The physical design of classrooms, including studios, laboratories, auditoriums, and other indoor environments, can have a profound impact on student learning and subsequent overall ratings (student evaluations) of college instructors. Many college classrooms have been conventionally designed in the shape of a square or a rectangle, with…

  20. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  1. Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.

    PubMed

    Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim

    2009-08-01

    This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.

  2. Effects of pictorially-defined surfaces on visual search.

    PubMed

    Morita, Hiromi; Kumada, Takatsune

    2003-08-01

    Three experiments of visual search for a cube (for a square pillar in Experiment 3) with an odd conjunction of orientation of faces and color (a cube with a red top face and a green right face among cubes with a green top face and a red right face, for example) showed that the search is made more efficient by arranging cubes (or square pillars) so that their top faces lie in a horizontal surface defined by pictorial cues. This effect shows the same asymmetry as that of the surface defined by the disparity cue did [Perception and Psychophysics, 62 (2000) 540], implying that the effect is independent of the three-dimensional cue and the global surface structure influences the control of attention during the search.

  3. Testing Nonclassical Theories of Electromagnetism with Ion Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyenhuis, B.; Christensen, D.; Durfee, D. S.

    2007-11-16

    We discuss using a tabletop ion interferometer to search for deviations from Coulomb's inverse-square law. Such deviations would result from nonclassical effects such as a nonzero photon rest mass. We discuss the theory behind the proposed measurement, explain which fundamental, experimentally controllable parameters are the relevant figures of merit, and calculate the expected performance of such a device in terms of these parameters. The sensitivity to deviations in the exponent of the inverse-square law is predicted to be a few times 10{sup -22}, an improvement by 5 orders of magnitude over current experiments. It could measure a nonzero photon restmore » mass smaller than 9x10{sup -50} grams, nearly 100 times smaller than current laboratory experiments.« less

  4. Investigation into the Use of Normal and Half-Normal Plots for Interpreting Results from Screening Experiments.

    DTIC Science & Technology

    1987-03-25

    by Lloyd (1952) using generalized least squares instead of ordinary least squares, and by Wilk, % 20 Gnanadesikan , and Freeny (1963) using a maximum...plot. The half-normal distribution is a special case of the gamma distribution proposed by Wilk, Gnanadesikan , and Huyett (1962). VARIATIONS ON THE... Gnanadesikan , R. Probability plotting methods for the analysis of data. Biometrika, 1968, 55, 1-17. This paper describes and discusses graphical techniques

  5. Least squares restoration of multi-channel images

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Galatsanos, Nikolas P.

    1989-01-01

    In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.

  6. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest featuresmore » are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.« less

  7. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  8. African-American Female Student Experiences in Community College

    ERIC Educational Resources Information Center

    Dozier, Nedra

    2016-01-01

    This is a mixed method study focusing on African-American Female (AAF) student experiences and success in the community college. This study was focused at a large southeastern, comprehensive community college. A chi-squared analysis of extant data concerning questions from the Community College Survey for Student Engagement (CCSSE) instrument was…

  9. A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, Faezeh; Tsai, Jason Sheng-Hong; Chung, Min-Ching; Liao, Ying Ting; Guo, Shu-Mei; Shieh, Leang-San; Wang, Li

    2017-01-01

    Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feedthrough term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.

  10. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  11. Calculations of a wideband metamaterial absorber using equivalent medium theory

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  12. Evaluation of usefulness of Skylab EREP S-190 and S-192 imagery in multistage forest surveys

    NASA Technical Reports Server (NTRS)

    Langley, P. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A unique digital timber volume estimation system with digital data for two ERTS-1 MSS bands was tested. The system was tested on a 64-square mile area in Northern California's Trinity Alps. The outcome of a systematic experiment in which possible combinations of the two bands (MSS 5 and 7) were tried, showed than an estimated gain in precision of 50% can be obtained in a multistage sampling design. Especially the difference between the two bands proved to be of major importance for the estimation of biomass in the form of timber volume. Identical tests as the one performed will be conducted with various S-192 bands when the digital data become available.

  13. An investigation into the probabilistic combination of quasi-static and random accelerations

    NASA Technical Reports Server (NTRS)

    Schock, R. W.; Tuell, L. P.

    1984-01-01

    The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.

  14. The KLEM High-Energy Cosmic Ray Collector for the Nucleon Satellite Mission

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    The basic objective of the KLEM (Kinematic Lightweight Energy Meter) Project is to directly measure the elemental energy spectra of very high-energy (10(exp 11) - 10(exp 16) eV) cosmic rays by determining the angular distribution of secondaries produced in a target layer. A small-scale version of a KLEM device has been designed for inclusion in the NUCLEON Russian satellite mission. Despite its 3 relatively small size of 36 x 36 x 30 cubic cm, this instrument has an aperture of about 0.12 square m sr and can thus make an important contribution to data concerning the elemental energy spectra of cosmic rays up to 10(exp 15) eV. Details of the experiment and the astrophysical significance of the mission will be presented.

  15. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  16. Weighted least squares techniques for improved received signal strength based localization.

    PubMed

    Tarrío, Paula; Bernardos, Ana M; Casar, José R

    2011-01-01

    The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.

  17. Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.

    PubMed

    Hajizadeh, Iman; Rashid, Mudassir; Samadi, Sediqeh; Feng, Jianyuan; Sevil, Mert; Hobbs, Nicole; Lazaro, Caterina; Maloney, Zacharie; Brandt, Rachel; Yu, Xia; Turksoy, Kamuran; Littlejohn, Elizabeth; Cengiz, Eda; Cinar, Ali

    2018-05-01

    The artificial pancreas (AP) system, a technology that automatically administers exogenous insulin in people with type 1 diabetes mellitus (T1DM) to regulate their blood glucose concentrations, necessitates the estimation of the amount of active insulin already present in the body to avoid overdosing. An adaptive and personalized plasma insulin concentration (PIC) estimator is designed in this work to accurately quantify the insulin present in the bloodstream. The proposed PIC estimation approach incorporates Hovorka's glucose-insulin model with the unscented Kalman filtering algorithm. Methods for the personalized initialization of the time-varying model parameters to individual patients for improved estimator convergence are developed. Data from 20 three-days-long closed-loop clinical experiments conducted involving subjects with T1DM are used to evaluate the proposed PIC estimation approach. The proposed methods are applied to the clinical data containing significant disturbances, such as unannounced meals and exercise, and the results demonstrate the accurate real-time estimation of the PIC with the root mean square error of 7.15 and 9.25 mU/L for the optimization-based fitted parameters and partial least squares regression-based testing parameters, respectively. The accurate real-time estimation of PIC will benefit the AP systems by preventing overdelivery of insulin when significant insulin is present in the bloodstream.

  18. Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization

    PubMed Central

    Tarrío, Paula; Bernardos, Ana M.; Casar, José R.

    2011-01-01

    The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092

  19. nmrfit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-09-01

    Nmrfit reads the output from a nuclear magnetic resonance (NMR) experiment and, through a number of intuitive API calls, produces a least-squares fit of Voigt-function approximations via particle swarm optimization.

  20. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    PubMed

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  1. Design/analysis of the JWST ISIM bonded joints for survivability at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini, Benjamin; Young, Daniel

    2005-08-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite adhesively bonded joints at the cryogenic temperature of 30K (-405°F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to hybrid composite tubes (75mm square) made with M55J/954-6 and T300/954-6 prepregs. Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently, the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  2. A comparison of two experimental design approaches in applying conjoint analysis in patient-centered outcomes research: a randomized trial.

    PubMed

    Kinter, Elizabeth T; Prior, Thomas J; Carswell, Christopher I; Bridges, John F P

    2012-01-01

    While the application of conjoint analysis and discrete-choice experiments in health are now widely accepted, a healthy debate exists around competing approaches to experimental design. There remains, however, a paucity of experimental evidence comparing competing design approaches and their impact on the application of these methods in patient-centered outcomes research. Our objectives were to directly compare the choice-model parameters and predictions of an orthogonal and a D-efficient experimental design using a randomized trial (i.e., an experiment on experiments) within an application of conjoint analysis studying patient-centered outcomes among outpatients diagnosed with schizophrenia in Germany. Outpatients diagnosed with schizophrenia were surveyed and randomized to receive choice tasks developed using either an orthogonal or a D-efficient experimental design. The choice tasks elicited judgments from the respondents as to which of two patient profiles (varying across seven outcomes and process attributes) was preferable from their own perspective. The results from the two survey designs were analyzed using the multinomial logit model, and the resulting parameter estimates and their robust standard errors were compared across the two arms of the study (i.e., the orthogonal and D-efficient designs). The predictive performances of the two resulting models were also compared by computing their percentage of survey responses classified correctly, and the potential for variation in scale between the two designs of the experiments was tested statistically and explored graphically. The results of the two models were statistically identical. No difference was found using an overall chi-squared test of equality for the seven parameters (p = 0.69) or via uncorrected pairwise comparisons of the parameter estimates (p-values ranged from 0.30 to 0.98). The D-efficient design resulted in directionally smaller standard errors for six of the seven parameters, of which only two were statistically significant, and no differences were found in the observed D-efficiencies of their standard errors (p = 0.62). The D-efficient design resulted in poorer predictive performance, but this was not significant (p = 0.73); there was some evidence that the parameters of the D-efficient design were biased marginally towards the null. While no statistical difference in scale was detected between the two designs (p = 0.74), the D-efficient design had a higher relative scale (1.06). This could be observed when the parameters were explored graphically, as the D-efficient parameters were lower. Our results indicate that orthogonal and D-efficient experimental designs have produced results that are statistically equivalent. This said, we have identified several qualitative findings that speak to the potential differences in these results that may have been statistically identified in a larger sample. While more comparative studies focused on the statistical efficiency of competing design strategies are needed, a more pressing research problem is to document the impact the experimental design has on respondent efficiency.

  3. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    PubMed

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log( n )) and is optimal on the probabilistic tile assembly model (PTAM)- n being an upper bound on the dimensions of a rectangle.

  4. Automatic design of optical systems by digital computer

    NASA Technical Reports Server (NTRS)

    Casad, T. A.; Schmidt, L. F.

    1967-01-01

    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.

  5. The causal effect of education on HIV stigma in Uganda: Evidence from a natural experiment.

    PubMed

    Tsai, Alexander C; Venkataramani, Atheendar S

    2015-10-01

    HIV is highly stigmatized in sub-Saharan Africa. This is an important public health problem because HIV stigma has many adverse effects that threaten to undermine efforts to control the HIV epidemic. The implementation of a universal primary education policy in Uganda in 1997 provided us with a natural experiment to test the hypothesis that education is causally related to HIV stigma. For this analysis, we pooled publicly available, population-based data from the 2011 Uganda Demographic and Health Survey and the 2011 Uganda AIDS Indicator Survey. The primary outcomes of interest were negative attitudes toward persons with HIV, elicited using four questions about anticipated stigma and social distance. Standard least squares estimates suggested a statistically significant, negative association between years of schooling and HIV stigma (each P < 0.001, with t-statistics ranging from 4.9 to 14.7). We then used a natural experiment design, exploiting differences in birth cohort exposure to universal primary education as an instrumental variable. Participants who were <13 years old at the time of the policy change had 1.36 additional years of schooling compared to those who were ≥13 years old. Adjusting for linear age trends before and after the discontinuity, two-stage least squares estimates suggested no statistically significant causal effect of education on HIV stigma (P-values ranged from 0.21 to 0.69). Three of the four estimated regression coefficients were positive, and in all cases the lower confidence limits convincingly excluded the possibility of large negative effect sizes. These instrumental variables estimates have a causal interpretation and were not overturned by several robustness checks. We conclude that, for young adults in Uganda, additional years of education in the formal schooling system driven by a universal primary school intervention have not had a causal effect on reducing negative attitudes toward persons with HIV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The causal effect of education on HIV stigma in Uganda: evidence from a natural experiment

    PubMed Central

    Tsai, Alexander C.; Venkataramani, Atheendar S.

    2015-01-01

    Rationale HIV is highly stigmatized in sub-Saharan Africa. This is an important public health problem because HIV stigma has many adverse effects that threaten to undermine efforts to control the HIV epidemic. Objective The implementation of a universal primary education policy in Uganda in 1997 provided us with a natural experiment to test the hypothesis that education is causally related to HIV stigma. Methods For this analysis, we pooled publicly available, population-based data from the 2011 Uganda Demographic and Health Survey and the 2011 Uganda AIDS Indicator Survey. The primary outcomes of interest were negative attitudes toward persons with HIV, elicited using four questions about anticipated stigma and social distance. Results Standard least squares estimates suggested a statistically significant, negative association between years of schooling and HIV stigma (each P<0.001, with t-statistics ranging from 4.9 to 14.7). We then used a natural experiment design, exploiting differences in birth cohort exposure to universal primary education as an instrumental variable. Participants who were <13 years old at the time of the policy change had 1.36 additional years of schooling compared to those who were ≥13 years old. Adjusting for linear age trends before and after the discontinuity, two-stage least squares estimates suggested no statistically significant causal effect of education on HIV stigma (P-values ranged from 0.21 to 0.69). Three of the four estimated regression coefficients were positive, and in all cases the lower confidence limits convincingly excluded the possibility of large negative effect sizes. These instrumental variables estimates have a causal interpretation and were not overturned by several robustness checks. Conclusion We conclude that, for young adults in Uganda, additional years of education in the formal schooling system driven by a universal primary school intervention have not had a causal effect on reducing negative attitudes toward persons with HIV. PMID:26282707

  7. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network.

    PubMed

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  8. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    PubMed

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  9. A simple calculation method for determination of equivalent square field.

    PubMed

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-04-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.

  10. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  11. Benchmark Design and Installation: A synthesis of Existing Information.

    DTIC Science & Technology

    1987-07-01

    casings (15 ft deep) drilled to rock and filled with concrete. Disks - 1 . Set on vertically stable structures (e.g., dam monoliths). 2 . Set in rock ...Structural movement survey 1 . Rock outcrops (first choice) -- chiseled square on high point. 2 . Massive concrete structure (second choice) - cut square on...bolt marker (type 2 ). 58,. % %--"% %I 1 ± 4 -I,.- Table Cl. Recomnded benchmarks. Type of condition or terrain Type of markert Bedrock, rock outcrops

  12. A Least-Squares Transport Equation Compatible with Voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jon; Peterson, Jacob; Morel, Jim

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less

  13. PIC-container for containment and disposal of low and intermediate level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Araki, K.; Shinji, Y.; Maki, Y.; Ishizaki, K.; Minegishi, K.; Sudoh, G.

    1981-03-01

    Steel fiber reinforced polymer impregnated concrete (SFPIC) was investigated for low and intermediate level radioactive waste containers. The 60 L and 200 L containers were designed as pressure container (without equalizer) for 500 kg/square cm and 700 kg/square cm. Polymerization of impregnated methylmethacrylate monomer was performed by 60 Co-gamma ray radiation and thermal catalytic polymerization respectively. Under the loading of 500 kg/square cm and 700 kg/square cm-outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about .001380 and .003950 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. The containers were immersed in deionized water for 400 days, nuclides were not leached from the container. The SFPIC container was suitable for containment and disposal of low and intermediate level radioactive wastes.

  14. Resolving the Impact of Biological Processes on Water Transport in Unsaturated Porous Media Through Nuclear Magnetic Resonance Micro-Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Joseph D.

    2005-06-01

    The magnetic resonance microscopy (MRM) work at Montana State University has extended the imaging of a single biofilm in a 1 mm capillary reactor to correlate T2 magnetic relaxation maps displaying biofilm structure with the corresponding velocity patterns in three dimensions in a Staphylococcus epidermidis biofilm fouled square capillary. A square duct geometry is chosen to provide correlation with existing experiments and simulations, as research bioreactors tend to be of square or rectangular cross section for optical or microelectrode access. The spatially resolved velocity data provide details on the impact of biofilm induced advection on mass transport from the bulkmore » fluid to the biofilm and through the capillary bioreactor.« less

  15. A simple microgravity table for the Orbiter or Space Station

    NASA Technical Reports Server (NTRS)

    Garriott, O. K.; Debra, D. B.

    1985-01-01

    Methods of limiting perturbations in microgravity experiments are proposed. An acceleration level below 10 to the -4th m/s-squared is necessary to maintain an undisturbed microgravity environment. Machinery vibrations, crew motion, and the firing of vernier thrusters produce acceleration levels greate than 10 to the -4th m/s-squared. The use of a weak spring system or simple electromagnets to isolate an experimental table from these factors is described. The manners in which crew motion and vernier firing are countered by the springs are examined. The steady acceleration caused by atmospheric drag, gravity gradient force, and steady rotation can be maintained below 10 to the -th m/s-squared; however, the springs can protect the table from these accelerations if required.

  16. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  17. NREL's Research Support Facility Certified LEED® Platinum | News | NREL

    Science.gov Websites

    to sustainable building design and construction. At 222,000 square-feet, the RSF is a model for sustainable, high performance building design that leverages the best in energy efficiency and environmental energy use in commercial buildings that were incorporated in the design of the RSF. NREL researchers are

  18. Designing the Psychology Laboratories at Nebraska Wesleyan University.

    ERIC Educational Resources Information Center

    Fawl, Clifford L.

    This paper describes the psychology laboratory at Nebraska Wesleyan University and the efforts of the small department which participated in the design and development process. The lab consists of 26 rooms, mostly small cubicles, and covers approximately 3,800 square feet. Each area of the lab is described in terms of its design and function.…

  19. 46 CFR 54.30-5 - Limitations and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pounds per square inch, thickness of shell is not greater than 1 inch, and the design temperature is not greater than 115 °F. (3) It will carry liquids of specific gravity no greater than 1.05. (4) Design... designs involving the following types of welded connections shown in UW-16.1 of section VIII of the ASME...

  20. 46 CFR 54.30-5 - Limitations and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pounds per square inch, thickness of shell is not greater than 1 inch, and the design temperature is not greater than 115 °F. (3) It will carry liquids of specific gravity no greater than 1.05. (4) Design... designs involving the following types of welded connections shown in UW-16.1 of section VIII of the ASME...

Top