Sparse partial least squares regression for simultaneous dimension reduction and variable selection
Chun, Hyonho; Keleş, Sündüz
2010-01-01
Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611
NASA Astrophysics Data System (ADS)
Wang, Yan-Jun; Liu, Qun
1999-03-01
Analysis of stock-recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD-based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.
Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung
2012-07-01
In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be; Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels; Shabbir, A.
Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standardmore » least squares.« less
A Comparison of Mean Phase Difference and Generalized Least Squares for Analyzing Single-Case Data
ERIC Educational Resources Information Center
Manolov, Rumen; Solanas, Antonio
2013-01-01
The present study focuses on single-case data analysis specifically on two procedures for quantifying differences between baseline and treatment measurements. The first technique tested is based on generalized least square regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The…
Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.
2016-08-04
In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.
ERIC Educational Resources Information Center
Rocconi, Louis M.
2013-01-01
This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…
Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology, particularly for determining the associations among multiple constituents of surface water and landscape configuration. Common dat...
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2018-06-01
This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.
Applying Regression Analysis to Problems in Institutional Research.
ERIC Educational Resources Information Center
Bohannon, Tom R.
1988-01-01
Regression analysis is one of the most frequently used statistical techniques in institutional research. Principles of least squares, model building, residual analysis, influence statistics, and multi-collinearity are described and illustrated. (Author/MSE)
Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...
Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models
ERIC Educational Resources Information Center
Shieh, Gwowen
2009-01-01
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.
2015-09-28
Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.
Confidence Intervals for Squared Semipartial Correlation Coefficients: The Effect of Nonnormality
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2010-01-01
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
Determination of suitable drying curve model for bread moisture loss during baking
NASA Astrophysics Data System (ADS)
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu
2017-01-01
The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.
Functional Relationships and Regression Analysis.
ERIC Educational Resources Information Center
Preece, Peter F. W.
1978-01-01
Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…
Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760
Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.
Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds.
Dimauro, Corrado; Cellesi, Massimo; Gaspa, Giustino; Ajmone-Marsan, Paolo; Steri, Roberto; Marras, Gabriele; Macciotta, Nicolò P P
2013-06-05
The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.
Interpreting the Results of Weighted Least-Squares Regression: Caveats for the Statistical Consumer.
ERIC Educational Resources Information Center
Willett, John B.; Singer, Judith D.
In research, data sets often occur in which the variance of the distribution of the dependent variable at given levels of the predictors is a function of the values of the predictors. In this situation, the use of weighted least-squares (WLS) or techniques is required. Weights suitable for use in a WLS regression analysis must be estimated. A…
Spectral distance decay: Assessing species beta-diversity by quantile regression
Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.
2009-01-01
Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.
Analysis of Learning Curve Fitting Techniques.
1987-09-01
1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied
NASA Astrophysics Data System (ADS)
Denli, H. H.; Durmus, B.
2016-12-01
The purpose of this study is to examine the factors which may affect the apartment prices with multiple linear regression analysis models and visualize the results by value maps. The study is focused on a county of Istanbul - Turkey. Totally 390 apartments around the county Umraniye are evaluated due to their physical and locational conditions. The identification of factors affecting the price of apartments in the county with a population of approximately 600k is expected to provide a significant contribution to the apartment market.Physical factors are selected as the age, number of rooms, size, floor numbers of the building and the floor that the apartment is positioned in. Positional factors are selected as the distances to the nearest hospital, school, park and police station. Totally ten physical and locational parameters are examined by regression analysis.After the regression analysis has been performed, value maps are composed from the parameters age, price and price per square meters. The most significant of the composed maps is the price per square meters map. Results show that the location of the apartment has the most influence to the square meter price information of the apartment. A different practice is developed from the composed maps by searching the ability of using price per square meters map in urban transformation practices. By marking the buildings older than 15 years in the price per square meters map, a different and new interpretation has been made to determine the buildings, to which should be given priority during an urban transformation in the county.This county is very close to the North Anatolian Fault zone and is under the threat of earthquakes. By marking the apartments older than 15 years on the price per square meters map, both older and expensive square meters apartments list can be gathered. By the help of this list, the priority could be given to the selected higher valued old apartments to support the economy of the country during an earthquake loss. We may call this urban transformation as earthquake-based urban transformation.
Regression Analysis: Instructional Resource for Cost/Managerial Accounting
ERIC Educational Resources Information Center
Stout, David E.
2015-01-01
This paper describes a classroom-tested instructional resource, grounded in principles of active learning and a constructivism, that embraces two primary objectives: "demystify" for accounting students technical material from statistics regarding ordinary least-squares (OLS) regression analysis--material that students may find obscure or…
Weighted regression analysis and interval estimators
Donald W. Seegrist
1974-01-01
A method for deriving the weighted least squares estimators for the parameters of a multiple regression model. Confidence intervals for expected values, and prediction intervals for the means of future samples are given.
L.R. Grosenbaugh
1967-01-01
Describes an expansible computerized system that provides data needed in regression or covariance analysis of as many as 50 variables, 8 of which may be dependent. Alternatively, it can screen variously generated combinations of independent variables to find the regression with the smallest mean-squared-residual, which will be fitted if desired. The user can easily...
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Comparing least-squares and quantile regression approaches to analyzing median hospital charges.
Olsen, Cody S; Clark, Amy E; Thomas, Andrea M; Cook, Lawrence J
2012-07-01
Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least-squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. The objective was to compare the log-transformation least-squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least-squares and quantile regression methods. Performance of the two methods was evaluated. In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least-squares method assumptions. When the data did not follow the assumed distribution, least-squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Quantile regression analyses of hospital charges provide unbiased estimates even when lognormal and equal variance assumptions are violated. These methods may be particularly useful in describing and analyzing hospital charges from administrative data sets. © 2012 by the Society for Academic Emergency Medicine.
The Variance Normalization Method of Ridge Regression Analysis.
ERIC Educational Resources Information Center
Bulcock, J. W.; And Others
The testing of contemporary sociological theory often calls for the application of structural-equation models to data which are inherently collinear. It is shown that simple ridge regression, which is commonly used for controlling the instability of ordinary least squares regression estimates in ill-conditioned data sets, is not a legitimate…
USDA-ARS?s Scientific Manuscript database
In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly ...
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Linear regression in astronomy. II
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
Methods for Improving Information from ’Undesigned’ Human Factors Experiments.
Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction
NASA Astrophysics Data System (ADS)
Prahutama, Alan; Suparti; Wahyu Utami, Tiani
2018-03-01
Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.
Teaching the Concept of Breakdown Point in Simple Linear Regression.
ERIC Educational Resources Information Center
Chan, Wai-Sum
2001-01-01
Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…
Neither fixed nor random: weighted least squares meta-regression.
Stanley, T D; Doucouliagos, Hristos
2017-03-01
Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A
2016-01-01
Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.
The crux of the method: assumptions in ordinary least squares and logistic regression.
Long, Rebecca G
2008-10-01
Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.
Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam
2014-10-01
The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.
Extension of the Haseman-Elston regression model to longitudinal data.
Won, Sungho; Elston, Robert C; Park, Taesung
2006-01-01
We propose an extension to longitudinal data of the Haseman and Elston regression method for linkage analysis. The proposed model is a mixed model having several random effects. As response variable, we investigate the sibship sample mean corrected cross-product (smHE) and the BLUP-mean corrected cross product (pmHE), comparing them with the original squared difference (oHE), the overall mean corrected cross-product (rHE), and the weighted average of the squared difference and the squared mean-corrected sum (wHE). The proposed model allows for the correlation structure of longitudinal data. Also, the model can test for gene x time interaction to discover genetic variation over time. The model was applied in an analysis of the Genetic Analysis Workshop 13 (GAW13) simulated dataset for a quantitative trait simulating systolic blood pressure. Independence models did not preserve the test sizes, while the mixed models with both family and sibpair random effects tended to preserve size well. Copyright 2006 S. Karger AG, Basel.
An improved partial least-squares regression method for Raman spectroscopy
NASA Astrophysics Data System (ADS)
Momenpour Tehran Monfared, Ali; Anis, Hanan
2017-10-01
It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.
Koch, Cosima; Posch, Andreas E; Goicoechea, Héctor C; Herwig, Christoph; Lendl, Bernhard
2014-01-07
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution - alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L(-1) for Penicillin V and 0.32 g L(-1) for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L(-1) for Penicillin V and 0.15 g L(-1) for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Libiger, Ondrej; Schork, Nicholas J.
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061
NASA Astrophysics Data System (ADS)
Imam, Tasneem
2012-12-01
The study attempts at examining the association of a few selected socio-economic and demographic characteristics on diabetic prevalence. Nationally representative data from BIRDEM 2000 have been used to meet the objectives of the study. Cross tabulation, Chi-square and logistic regression analysis have been used to portray the necessary associations. Chi- square reveals significant relationship between diabetic prevalence and all the selected demographic and socio-economic variables except ìeducationî while logistic regression analysis shows no significant contribution of ìageî and ìeducationî in diabetic prevalence. It has to be noted that, this paper dealt with all the three types of diabetes- Type 1, Type 2 and Gestational.
NASA Astrophysics Data System (ADS)
Haddad, Khaled; Rahman, Ataur; A Zaman, Mohammad; Shrestha, Surendra
2013-03-01
SummaryIn regional hydrologic regression analysis, model selection and validation are regarded as important steps. Here, the model selection is usually based on some measurements of goodness-of-fit between the model prediction and observed data. In Regional Flood Frequency Analysis (RFFA), leave-one-out (LOO) validation or a fixed percentage leave out validation (e.g., 10%) is commonly adopted to assess the predictive ability of regression-based prediction equations. This paper develops a Monte Carlo Cross Validation (MCCV) technique (which has widely been adopted in Chemometrics and Econometrics) in RFFA using Generalised Least Squares Regression (GLSR) and compares it with the most commonly adopted LOO validation approach. The study uses simulated and regional flood data from the state of New South Wales in Australia. It is found that when developing hydrologic regression models, application of the MCCV is likely to result in a more parsimonious model than the LOO. It has also been found that the MCCV can provide a more realistic estimate of a model's predictive ability when compared with the LOO.
Least Squares Moving-Window Spectral Analysis.
Lee, Young Jong
2017-08-01
Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Bader, Jon B.
2009-01-01
Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.
Neither fixed nor random: weighted least squares meta-analysis.
Stanley, T D; Doucouliagos, Hristos
2015-06-15
This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.
2009-07-16
0.25 0.26 -0.85 1 SSR SSE R SSTO SSTO = = − 2 2 ˆ( ) : Regression sum of square, ˆwhere : mean value, : value from the fitted line ˆ...Error sum of square : Total sum of square i i i i SSR Y Y Y Y SSE Y Y SSTO SSE SSR = − = − = + ∑ ∑ Statistical analysis: Coefficient of correlation
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen
2016-02-01
Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.
Enhance-Synergism and Suppression Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, W. Michael
2004-01-01
Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…
Lee, Soo Yee; Mediani, Ahmed; Maulidiani, Maulidiani; Khatib, Alfi; Ismail, Intan Safinar; Zawawi, Norhasnida; Abas, Faridah
2018-01-01
Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis. Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities. Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.
Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra
NASA Astrophysics Data System (ADS)
Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong
2017-08-01
Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
NASA Astrophysics Data System (ADS)
Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.
2008-11-01
We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.
The Impact of School Socioeconomic Status on Student-Generated Teacher Ratings
ERIC Educational Resources Information Center
Agnew, Steve
2011-01-01
This paper uses ordinary least squares, logit and probit regressions, along with chi-square analysis applied to nationwide data from the New Zealand ratemyteacher website to establish if there is any correlation between student ratings of their teachers and the socioeconomic status of the school the students attend. The results show that students…
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2017-06-01
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.
Using Weighted Least Squares Regression for Obtaining Langmuir Sorption Constants
USDA-ARS?s Scientific Manuscript database
One of the most commonly used models for describing phosphorus (P) sorption to soils is the Langmuir model. To obtain model parameters, the Langmuir model is fit to measured sorption data using least squares regression. Least squares regression is based on several assumptions including normally dist...
Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Volden, T.
2017-01-01
A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis
2014-01-01
Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.
Quantile regression applied to spectral distance decay
Rocchini, D.; Cade, B.S.
2008-01-01
Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.
Two Enhancements of the Logarithmic Least-Squares Method for Analyzing Subjective Comparisons
1989-03-25
error term. 1 For this model, the total sum of squares ( SSTO ), defined as n 2 SSTO = E (yi y) i=1 can be partitioned into error and regression sums...of the regression line around the mean value. Mathematically, for the model given by equation A.4, SSTO = SSE + SSR (A.6) A-4 where SSTO is the total...sum of squares (i.e., the variance of the yi’s), SSE is error sum of squares, and SSR is the regression sum of squares. SSTO , SSE, and SSR are given
Early Home Activities and Oral Language Skills in Middle Childhood: A Quantile Analysis
ERIC Educational Resources Information Center
Law, James; Rush, Robert; King, Tom; Westrupp, Elizabeth; Reilly, Sheena
2018-01-01
Oral language development is a key outcome of elementary school, and it is important to identify factors that predict it most effectively. Commonly researchers use ordinary least squares regression with conclusions restricted to average performance conditional on relevant covariates. Quantile regression offers a more sophisticated alternative.…
ERIC Educational Resources Information Center
Helmreich, James E.; Krog, K. Peter
2018-01-01
We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…
Lewis, Jason M.
2010-01-01
Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
Ludbrook, John
2010-07-01
1. There are two reasons for wanting to compare measurers or methods of measurement. One is to calibrate one method or measurer against another; the other is to detect bias. Fixed bias is present when one method gives higher (or lower) values across the whole range of measurement. Proportional bias is present when one method gives values that diverge progressively from those of the other. 2. Linear regression analysis is a popular method for comparing methods of measurement, but the familiar ordinary least squares (OLS) method is rarely acceptable. The OLS method requires that the x values are fixed by the design of the study, whereas it is usual that both y and x values are free to vary and are subject to error. In this case, special regression techniques must be used. 3. Clinical chemists favour techniques such as major axis regression ('Deming's method'), the Passing-Bablok method or the bivariate least median squares method. Other disciplines, such as allometry, astronomy, biology, econometrics, fisheries research, genetics, geology, physics and sports science, have their own preferences. 4. Many Monte Carlo simulations have been performed to try to decide which technique is best, but the results are almost uninterpretable. 5. I suggest that pharmacologists and physiologists should use ordinary least products regression analysis (geometric mean regression, reduced major axis regression): it is versatile, can be used for calibration or to detect bias and can be executed by hand-held calculator or by using the loss function in popular, general-purpose, statistical software.
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.
Alexander, Terry W.; Wilson, Gary L.
1995-01-01
A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271
NASA Astrophysics Data System (ADS)
Reis, D. S.; Stedinger, J. R.; Martins, E. S.
2005-10-01
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
NASA Astrophysics Data System (ADS)
Hart, Brian K.; Griffiths, Peter R.
1998-06-01
Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.
Li, Yankun; Shao, Xueguang; Cai, Wensheng
2007-04-15
Consensus modeling of combining the results of multiple independent models to produce a single prediction avoids the instability of single model. Based on the principle of consensus modeling, a consensus least squares support vector regression (LS-SVR) method for calibrating the near-infrared (NIR) spectra was proposed. In the proposed approach, NIR spectra of plant samples were firstly preprocessed using discrete wavelet transform (DWT) for filtering the spectral background and noise, then, consensus LS-SVR technique was used for building the calibration model. With an optimization of the parameters involved in the modeling, a satisfied model was achieved for predicting the content of reducing sugar in plant samples. The predicted results show that consensus LS-SVR model is more robust and reliable than the conventional partial least squares (PLS) and LS-SVR methods.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
ERIC Educational Resources Information Center
Chen, Sheng-Tung; Kuo, Hsiao-I.; Chen, Chi-Chung
2012-01-01
The two-stage least squares approach together with quantile regression analysis is adopted here to estimate the educational production function. Such a methodology is able to capture the extreme behaviors of the two tails of students' performance and the estimation outcomes have important policy implications. Our empirical study is applied to the…
ERIC Educational Resources Information Center
Rocconi, Louis M.
2011-01-01
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
An Analysis of Advertising Effectiveness for U.S. Navy Recruiting
1997-09-01
This thesis estimates the effect of Navy television advertising on enlistment rates of high quality male recruits (Armed Forces Qualification Test...Joint advertising is for all Armed Forces), Joint journal, and Joint direct mail advertising are explored. Enlistments are modeled as a function of...several factors including advertising , recruiters, and economic. Regression analyses (Ordinary Least Squares and Two Stage Least Squares) explore the
Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O
2016-05-15
The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation required makes this method promising, compelling, and attractive alternative for the rapid determination of estrogen concentrations in biomedical and biological specimens, pharmaceuticals, or environmental samples. Published by Elsevier B.V.
Waltemeyer, Scott D.
2008-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.
Least-squares sequential parameter and state estimation for large space structures
NASA Technical Reports Server (NTRS)
Thau, F. E.; Eliazov, T.; Montgomery, R. C.
1982-01-01
This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.
A simple method for processing data with least square method
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning
2017-08-01
The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.
Radiomorphometric analysis of frontal sinus for sex determination.
Verma, Saumya; Mahima, V G; Patil, Karthikeya
2014-09-01
Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby
2017-01-01
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung
2016-01-01
A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cooley, Richard L.
1983-01-01
This paper investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. First, if the parameters are properly scaled, linearized expressions for the mean square error (MSE) in parameter estimates of a nonlinear model will often behave very nearly as if the model were linear. Second, by using prior information, the MSE in properly scaled parameters can be reduced greatly over the MSE of ordinary least squares estimates of parameters. Third, plots of estimated MSE and the estimated standard deviation of MSE versus an auxiliary parameter (the ridge parameter) specifying the degree of influence of the prior information on regression results can help determine the potential for improvement of parameter estimates. Fourth, proposed criteria can be used to make appropriate choices for the ridge parameter and another parameter expressing degree of overall bias in the prior information. Results of a case study of Truckee Meadows, Reno-Sparks area, Washoe County, Nevada, conform closely to the results of the hypothetical problem. In the Truckee Meadows case, incorporation of prior information did not greatly change the parameter estimates from those obtained by ordinary least squares. However, the analysis showed that both sets of estimates are more reliable than suggested by the standard errors from ordinary least squares.
Fadzillah, Nurrulhidayah Ahmad; Man, Yaakob bin Che; Rohman, Abdul; Rosman, Arieff Salleh; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi
2015-01-01
The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
2006-03-01
identify if an explanatory variable may have been omitted due to model misspecification ( Ramsey , 1979). The RESET test resulted in failure to...Prob > F 0.0094 This model was also regressed using Huber-White estimators. Again, the Ramsey RESET test was done to ensure relevant...Aircraft. Annapolis, MD: Naval Institute Press, 2004. Ramsey , J. B. “ Tests for Specification Errors in Classical Least-Squares Regression Analysis
Balabin, Roman M; Smirnov, Sergey V
2011-04-29
During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.
A Simple Introduction to Moving Least Squares and Local Regression Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Rao Veerabhadra
In this brief note, a highly simpli ed introduction to esimating functions over a set of particles is presented. The note starts from Global Least Squares tting, going on to Moving Least Squares estimation (MLS) and nally, Local Regression Estimation (LRE).
Two biased estimation techniques in linear regression: Application to aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav
1988-01-01
Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.
Partial Least Squares Regression Models for the Analysis of Kinase Signaling.
Bourgeois, Danielle L; Kreeger, Pamela K
2017-01-01
Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.
An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach
NASA Astrophysics Data System (ADS)
Grant, Christina P.
San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.
Vindimian, Éric; Garric, Jeanne; Flammarion, Patrick; Thybaud, Éric; Babut, Marc
1999-10-01
The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average value of the experts' judgements to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species. Copyright © 1999 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vindimian, E.; Garric, J.; Flammarion, P.
1999-10-01
The evaluation of the ecotoxicity of effluents requires a battery of biological tests on several species. In order to derive a summary parameter from such a battery, a single endpoint was calculated for all the tests: the EC10, obtained by nonlinear regression, with bootstrap evaluation of the confidence intervals. Principal component analysis was used to characterize and visualize the correlation between the tests. The table of the toxicity of the effluents was then submitted to a panel of experts, who classified the effluents according to the test results. Partial least squares (PLS) regression was used to fit the average valuemore » of the experts' judgments to the toxicity data, using a simple equation. Furthermore, PLS regression on partial data sets and other considerations resulted in an optimum battery, with two chronic tests and one acute test. The index is intended to be used for the classification of effluents based on their toxicity to aquatic species.« less
ERIC Educational Resources Information Center
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
Kernel analysis of partial least squares (PLS) regression models.
Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro
2011-05-01
An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.
Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming
2016-06-21
Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimizing methods for linking cinematic features to fMRI data.
Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia
2015-04-15
One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.
Quantification of brain lipids by FTIR spectroscopy and partial least squares regression
NASA Astrophysics Data System (ADS)
Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph
2009-01-01
Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.
Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A
2014-08-01
Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...
2016-12-15
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Perez-Guaita, David; Kuligowski, Julia; Quintás, Guillermo; Garrigues, Salvador; Guardia, Miguel de la
2013-03-30
Locally weighted partial least squares regression (LW-PLSR) has been applied to the determination of four clinical parameters in human serum samples (total protein, triglyceride, glucose and urea contents) by Fourier transform infrared (FTIR) spectroscopy. Classical LW-PLSR models were constructed using different spectral regions. For the selection of parameters by LW-PLSR modeling, a multi-parametric study was carried out employing the minimum root-mean square error of cross validation (RMSCV) as objective function. In order to overcome the effect of strong matrix interferences on the predictive accuracy of LW-PLSR models, this work focuses on sample selection. Accordingly, a novel strategy for the development of local models is proposed. It was based on the use of: (i) principal component analysis (PCA) performed on an analyte specific spectral region for identifying most similar sample spectra and (ii) partial least squares regression (PLSR) constructed using the whole spectrum. Results found by using this strategy were compared to those provided by PLSR using the same spectral intervals as for LW-PLSR. Prediction errors found by both, classical and modified LW-PLSR improved those obtained by PLSR. Hence, both proposed approaches were useful for the determination of analytes present in a complex matrix as in the case of human serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Solimun
2017-05-01
The aim of this research is to model survival data from kidney-transplant patients using the partial least squares (PLS)-Cox regression, which can both meet and not meet the no-multicollinearity assumption. The secondary data were obtained from research entitled "Factors affecting the survival of kidney-transplant patients". The research subjects comprised 250 patients. The predictor variables consisted of: age (X1), sex (X2); two categories, prior hemodialysis duration (X3), diabetes (X4); two categories, prior transplantation number (X5), number of blood transfusions (X6), discrepancy score (X7), use of antilymphocyte globulin(ALG) (X8); two categories, while the response variable was patient survival time (in months). Partial least squares regression is a model that connects the predictor variables X and the response variable y and it initially aims to determine the relationship between them. Results of the above analyses suggest that the survival of kidney transplant recipients ranged from 0 to 55 months, with 62% of the patients surviving until they received treatment that lasted for 55 months. The PLS-Cox regression analysis results revealed that patients' age and the use of ALG significantly affected the survival time of patients. The factor of patients' age (X1) in the PLS-Cox regression model merely affected the failure probability by 1.201. This indicates that the probability of dying for elderly patients with a kidney transplant is 1.152 times higher than that for younger patients.
NASA Astrophysics Data System (ADS)
Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise
2017-02-01
A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.
A regression-kriging model for estimation of rainfall in the Laohahe basin
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Li L.; Liu, Gao H.
2009-10-01
This paper presents a multivariate geostatistical algorithm called regression-kriging (RK) for predicting the spatial distribution of rainfall by incorporating five topographic/geographic factors of latitude, longitude, altitude, slope and aspect. The technique is illustrated using rainfall data collected at 52 rain gauges from the Laohahe basis in northeast China during 1986-2005 . Rainfall data from 44 stations were selected for modeling and the remaining 8 stations were used for model validation. To eliminate multicollinearity, the five explanatory factors were first transformed using factor analysis with three Principal Components (PCs) extracted. The rainfall data were then fitted using step-wise regression and residuals interpolated using SK. The regression coefficients were estimated by generalized least squares (GLS), which takes the spatial heteroskedasticity between rainfall and PCs into account. Finally, the rainfall prediction based on RK was compared with that predicted from ordinary kriging (OK) and ordinary least squares (OLS) multiple regression (MR). For correlated topographic factors are taken into account, RK improves the efficiency of predictions. RK achieved a lower relative root mean square error (RMSE) (44.67%) than MR (49.23%) and OK (73.60%) and a lower bias than MR and OK (23.82 versus 30.89 and 32.15 mm) for annual rainfall. It is much more effective for the wet season than for the dry season. RK is suitable for estimation of rainfall in areas where there are no stations nearby and where topography has a major influence on rainfall.
5 CFR 532.241 - Analysis of usable wage survey data.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the straight-line, least squares regression formula: Y=a+bx, where Y is the hourly rate, x is grade, a... least 10 unweighed matches and for each nonappropriated fund job having at least 5 unweighed matches...
5 CFR 532.241 - Analysis of usable wage survey data.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the straight-line, least squares regression formula: Y=a+bx, where Y is the hourly rate, x is grade, a... least 10 unweighed matches and for each nonappropriated fund job having at least 5 unweighed matches...
5 CFR 532.241 - Analysis of usable wage survey data.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the straight-line, least squares regression formula: Y=a+bx, where Y is the hourly rate, x is grade, a... least 10 unweighed matches and for each nonappropriated fund job having at least 5 unweighed matches...
5 CFR 532.241 - Analysis of usable wage survey data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the straight-line, least squares regression formula: Y=a+bx, where Y is the hourly rate, x is grade, a... least 10 unweighed matches and for each nonappropriated fund job having at least 5 unweighed matches...
Dinç, Erdal; Ertekin, Zehra Ceren
2016-01-01
An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Patterns of Library Use by Undergraduate Students in a Chilean University
ERIC Educational Resources Information Center
Jara, Magdalena; Clasing, Paula; Gonzalez, Carlos; Montenegro, Maximiliano; Kelly, Nick; Alarcón, Rosa; Sandoval, Augusto; Saurina, Elvira
2017-01-01
This paper explores the patterns of use of print materials and digital resources in an undergraduate library in a Chilean university, by the students' discipline and year of study. A quantitative analysis was carried out, including descriptive analysis of contingency tables, chi-squared tests, t-tests, and multiple linear regressions. The results…
Barimani, Shirin; Kleinebudde, Peter
2017-10-01
A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.
Acoustic-articulatory mapping in vowels by locally weighted regression
McGowan, Richard S.; Berger, Michael A.
2009-01-01
A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829–836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented. PMID:19813812
[Gaussian process regression and its application in near-infrared spectroscopy analysis].
Feng, Ai-Ming; Fang, Li-Min; Lin, Min
2011-06-01
Gaussian process (GP) is applied in the present paper as a chemometric method to explore the complicated relationship between the near infrared (NIR) spectra and ingredients. After the outliers were detected by Monte Carlo cross validation (MCCV) method and removed from dataset, different preprocessing methods, such as multiplicative scatter correction (MSC), smoothing and derivate, were tried for the best performance of the models. Furthermore, uninformative variable elimination (UVE) was introduced as a variable selection technique and the characteristic wavelengths obtained were further employed as input for modeling. A public dataset with 80 NIR spectra of corn was introduced as an example for evaluating the new algorithm. The optimal models for oil, starch and protein were obtained by the GP regression method. The performance of the final models were evaluated according to the root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (r). The models give good calibration ability with r values above 0.99 and the prediction ability is also satisfactory with r values higher than 0.96. The overall results demonstrate that GP algorithm is an effective chemometric method and is promising for the NIR analysis.
Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.
Jiang, B; Huang, Y D
2008-05-26
The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.
Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams
Stuckey, Marla H.
2006-01-01
Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.
A method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Retargeted Least Squares Regression Algorithm.
Zhang, Xu-Yao; Wang, Lingfeng; Xiang, Shiming; Liu, Cheng-Lin
2015-09-01
This brief presents a framework of retargeted least squares regression (ReLSR) for multicategory classification. The core idea is to directly learn the regression targets from data other than using the traditional zero-one matrix as regression targets. The learned target matrix can guarantee a large margin constraint for the requirement of correct classification for each data point. Compared with the traditional least squares regression (LSR) and a recently proposed discriminative LSR models, ReLSR is much more accurate in measuring the classification error of the regression model. Furthermore, ReLSR is a single and compact model, hence there is no need to train two-class (binary) machines that are independent of each other. The convex optimization problem of ReLSR is solved elegantly and efficiently with an alternating procedure including regression and retargeting as substeps. The experimental evaluation over a range of databases identifies the validity of our method.
Analysis of the low-flow characteristics of streams in Louisiana
Lee, Fred N.
1985-01-01
The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works, used geologic maps, soils maps, precipitation data, and low-flow data to define four hydrographic regions in Louisiana having distinct low-flow characteristics. Equations were derived, using regression analyses, to estimate the 7Q2, 7Q10, and 7Q20 flow rates for basically unaltered stream basins smaller than 525 square miles. Independent variables in the equations include drainage area (square miles), mean annual precipitation index (inches), and main channel slope (feet per mile). Average standard errors of regression ranged from +44 to +61 percent. Graphs are given for estimating the 7Q2, 7Q10, and 7Q20 for stream basins for which the drainage area of the most downstream data-collection site is larger than 525 square miles. Detailed examples are given in this report for the use of the equations and graphs.
Kuriakose, Saji; Joe, I Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC=0.00009% v/v). The lowest root mean square error of prediction (RMSEP=0.00016% v/v) in the test set and the highest coefficient of determination (R(2)=0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuriakose, Saji; Joe, I. Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC = 0.00009% v/v). The lowest root mean square error of prediction (RMSEP = 0.00016% v/v) in the test set and the highest coefficient of determination (R2 = 0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model.
Geodesic least squares regression for scaling studies in magnetic confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdoolaege, Geert
In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority ofmore » the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices.« less
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav
2015-02-01
We propose a framework combining detrended fluctuation analysis with standard regression methodology. The method is built on detrended variances and covariances and it is designed to estimate regression parameters at different scales and under potential nonstationarity and power-law correlations. The former feature allows for distinguishing between effects for a pair of variables from different temporal perspectives. The latter ones make the method a significant improvement over the standard least squares estimation. Theoretical claims are supported by Monte Carlo simulations. The method is then applied on selected examples from physics, finance, environmental science, and epidemiology. For most of the studied cases, the relationship between variables of interest varies strongly across scales.
Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong
2013-01-01
Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729
Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong
2013-01-01
Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.
Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia
Wiley, Jeffrey B.; Atkins, John T.
2010-01-01
Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70.9 years).
A Weighted Least Squares Approach To Robustify Least Squares Estimates.
ERIC Educational Resources Information Center
Lin, Chowhong; Davenport, Ernest C., Jr.
This study developed a robust linear regression technique based on the idea of weighted least squares. In this technique, a subsample of the full data of interest is drawn, based on a measure of distance, and an initial set of regression coefficients is calculated. The rest of the data points are then taken into the subsample, one after another,…
Validation of Core Temperature Estimation Algorithm
2016-01-29
plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case
NASA Astrophysics Data System (ADS)
Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann
2017-04-01
Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei
2016-03-01
We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.
Mager, P P; Rothe, H
1990-10-01
Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.
Asquith, William H.; Slade, R.M.
1999-01-01
The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.
[Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao
2016-03-01
Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.
Sarkodie, Samuel Asumadu; Strezov, Vladimir
2018-10-15
Energy production remains the major emitter of atmospheric emissions, thus, in accordance with Australia's Emissions Projections by 2030, this study analyzed the impact of Australia's energy portfolio on environmental degradation and CO 2 emissions using locally compiled data on disaggregate energy production, energy imports and exports spanning from 1974 to 2013. This study employed the fully modified ordinary least squares, dynamic ordinary least squares, and canonical cointegrating regression estimators; statistically inspired modification of partial least squares regression analysis with a subsequent sustainability sensitivity analysis. The validity of the environmental Kuznets curve hypothesis proposes a paradigm shift from energy-intensive and carbon-intensive industries to less-energy-intensive and green energy industries and its related services, leading to a structural change in the economy. Thus, decoupling energy services provide better interpretation of the role of the energy sector portfolio in environmental degradation and CO 2 emissions assessment. The sensitivity analysis revealed that nonrenewable energy production above 10% and energy imports above 5% will dampen the goals for the 2030 emission reduction target. Increasing the share of renewable energy penetration in the energy portfolio decreases the level of CO 2 emissions, while increasing the share of non-renewable energy sources in the energy mix increases the level of atmospheric emissions, thus increasing climate change and their impacts. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan
2015-06-01
Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.
Fast function-on-scalar regression with penalized basis expansions.
Reiss, Philip T; Huang, Lei; Mennes, Maarten
2010-01-01
Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.
Wiley, J.B.; Atkins, John T.; Tasker, Gary D.
2000-01-01
Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The geometric quality of TM film and digital products is evaluated by making selective photomeasurements and by measuring the coordinates of known features on both the TM products and map products. These paired observations are related using a standard linear least squares regression approach. Using regression equations and coefficients developed from 225 (TM film product) and 20 (TM digital product) control points, map coordinates of test points are predicted. The residual error vectors and analysis of variance (ANOVA) were performed on the east and north residual using nine image segments (blocks) as treatments. Based on the root mean square error of the 223 (TM film product) and 22 (TM digital product) test points, users of TM data expect the planimetric accuracy of mapped points to be within 91 meters and within 117 meters for the film products, and to be within 12 meters and within 14 meters for the digital products.
Quantitative Structure Retention Relationships of Polychlorinated Dibenzodioxins and Dibenzofurans
1991-08-01
be a projection onto the X-Y plane. The algorithm for this calculation can be found in Stouch and Jurs (22), but was further refined by Rohrbaugh and...throughspace distances. WPSA2 (c) Weighted positive charged surface area. MOMH2 (c) Second major moment of inertia with hydrogens attached. CSTR 3 (d) Sum...of the models. The robust regression analysis method calculates a regression model using a least median squares algorithm which is not as susceptible
Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.
2009-01-01
Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943 sites resulted in defining five hydrologic regions for North Carolina, South Carolina, and Georgia. Stations with drainage areas less than 1 square mile were removed from the database, and a procedure to examine for basin redundancy (based on drainage area and periods of record) also resulted in the removal of some stations from the regression database. Flood-frequency estimates and basin characteristics for 828 gaged stations were combined to form the final database that was used in the regional regression analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for rural ungaged, basins in North Carolina, South Carolina, and Georgia. The final predictive equations are all functions of drainage area and the percentage of drainage basin within each of the five hydrologic regions. Average errors of prediction for these regression equations range from 34.0 to 47.7 percent. Discharge estimates determined from the systematic records for the current study are, on average, larger in magnitude than those from a previous study for the highest percent chance exceedances (50 and 20 percent) and tend to be smaller than those from the previous study for the lower percent chance exceedances when all sites are considered as a group. For example, mean differences for sites in the Piedmont hydrologic region range from positive 0.5 percent for the 50-percent chance exceedance flow to negative 4.6 percent for the 0.2-percent chance exceedance flow when stations are grouped by hydrologic region. Similarly for the same hydrologic region, median differences range from positive 0.9 percent for the 50-percent chance exceedance flow to negative 7.1 percent for the 0.2-percent chance exceedance flow. However, mean and median percentage differences between the estimates from the previous and curre
Straub, D.E.
1998-01-01
The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.
NASA Astrophysics Data System (ADS)
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
Determinant of securitization asset pricing in Malaysia
NASA Astrophysics Data System (ADS)
Bakri, M. H.; Ali, R.; Ismail, S.; Sufian, F.; Baharom, A. H.
2014-12-01
Malaysian firms have been reported involve in Asset Back Securities since 1986s where Cagamas is a pioneer. This research aims to examine the factor influencing primary market spread. Least square method and regression analysis are applied for the study period 2004-2012. The result shows one determinants in internal regression model and three determinants in external regression influence or contribute to the primary market spread and are statistically significant in developing the securitization in Malaysia. It can be concluded that transaction size significantly contribute to the determinant primary market spread in internal regression model while liquidity, transaction size and crisis is significant in both regression model. From five hypotheses, three hypotheses support that the determinants have a relationship with primary market spread.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.
NASA Technical Reports Server (NTRS)
Alston, D. W.
1981-01-01
The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.
Wang, L; Qin, X C; Lin, H C; Deng, K F; Luo, Y W; Sun, Q R; Du, Q X; Wang, Z Y; Tuo, Y; Sun, J H
2018-02-01
To analyse the relationship between Fourier transform infrared (FTIR) spectrum of rat's spleen tissue and postmortem interval (PMI) for PMI estimation using FTIR spectroscopy combined with data mining method. Rats were sacrificed by cervical dislocation, and the cadavers were placed at 20 ℃. The FTIR spectrum data of rats' spleen tissues were taken and measured at different time points. After pretreatment, the data was analysed by data mining method. The absorption peak intensity of rat's spleen tissue spectrum changed with the PMI, while the absorption peak position was unchanged. The results of principal component analysis (PCA) showed that the cumulative contribution rate of the first three principal components was 96%. There was an obvious clustering tendency for the spectrum sample at each time point. The methods of partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC) effectively divided the spectrum samples with different PMI into four categories (0-24 h, 48-72 h, 96-120 h and 144-168 h). The determination coefficient ( R ²) of the PMI estimation model established by PLS regression analysis was 0.96, and the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) were 9.90 h and 11.39 h respectively. In prediction set, the R ² was 0.97, and the root mean square error of prediction (RMSEP) was 10.49 h. The FTIR spectrum of the rat's spleen tissue can be effectively analyzed qualitatively and quantitatively by the combination of FTIR spectroscopy and data mining method, and the classification and PLS regression models can be established for PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
NASA Astrophysics Data System (ADS)
Jintao, Xue; Yufei, Liu; Liming, Ye; Chunyan, Li; Quanwei, Yang; Weiying, Wang; Yun, Jing; Minxiang, Zhang; Peng, Li
2018-01-01
Near-Infrared Spectroscopy (NIRS) was first used to develop a method for rapid and simultaneous determination of 5 active alkaloids (berberine, coptisine, palmatine, epiberberine and jatrorrhizine) in 4 parts (rhizome, fibrous root, stem and leaf) of Coptidis Rhizoma. A total of 100 samples from 4 main places of origin were collected and studied. With HPLC analysis values as calibration reference, the quantitative analysis of 5 marker components was performed by two different modeling methods, partial least-squares (PLS) regression as linear regression and artificial neural networks (ANN) as non-linear regression. The results indicated that the 2 types of models established were robust, accurate and repeatable for five active alkaloids, and the ANN models was more suitable for the determination of berberine, coptisine and palmatine while the PLS model was more suitable for the analysis of epiberberine and jatrorrhizine. The performance of the optimal models was achieved as follows: the correlation coefficient (R) for berberine, coptisine, palmatine, epiberberine and jatrorrhizine was 0.9958, 0.9956, 0.9959, 0.9963 and 0.9923, respectively; the root mean square error of validation (RMSEP) was 0.5093, 0.0578, 0.0443, 0.0563 and 0.0090, respectively. Furthermore, for the comprehensive exploitation and utilization of plant resource of Coptidis Rhizoma, the established NIR models were used to analysis the content of 5 active alkaloids in 4 parts of Coptidis Rhizoma and 4 main origin of places. This work demonstrated that NIRS may be a promising method as routine screening for off-line fast analysis or on-line quality assessment of traditional Chinese medicine (TCM).
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
Moderation analysis using a two-level regression model.
Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott
2014-10-01
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
Erkoc, Ali; Emiroglu, Esra
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738
Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.
Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
NASA Astrophysics Data System (ADS)
Hasan, Haliza; Ahmad, Sanizah; Osman, Balkish Mohd; Sapri, Shamsiah; Othman, Nadirah
2017-08-01
In regression analysis, missing covariate data has been a common problem. Many researchers use ad hoc methods to overcome this problem due to the ease of implementation. However, these methods require assumptions about the data that rarely hold in practice. Model-based methods such as Maximum Likelihood (ML) using the expectation maximization (EM) algorithm and Multiple Imputation (MI) are more promising when dealing with difficulties caused by missing data. Then again, inappropriate methods of missing value imputation can lead to serious bias that severely affects the parameter estimates. The main objective of this study is to provide a better understanding regarding missing data concept that can assist the researcher to select the appropriate missing data imputation methods. A simulation study was performed to assess the effects of different missing data techniques on the performance of a regression model. The covariate data were generated using an underlying multivariate normal distribution and the dependent variable was generated as a combination of explanatory variables. Missing values in covariate were simulated using a mechanism called missing at random (MAR). Four levels of missingness (10%, 20%, 30% and 40%) were imposed. ML and MI techniques available within SAS software were investigated. A linear regression analysis was fitted and the model performance measures; MSE, and R-Squared were obtained. Results of the analysis showed that MI is superior in handling missing data with highest R-Squared and lowest MSE when percent of missingness is less than 30%. Both methods are unable to handle larger than 30% level of missingness.
Quality of semen: a 6-year single experience study on 5680 patients.
Cozzolino, Mauro; Coccia, Maria E; Picone, Rita
2018-02-08
The aim of our study was to evaluate the quality of semen of a large sample from general healthy population living in Italy, in order to identify possible variables that could influence several parameters of spermiogram. We conducted a cross-sectional study from February 2010 to March 2015, collecting semen samples from the general population. Semen analysis was performed according to the WHO guidelines. The collected data were inserted in a database and processed using the software Stata 12. The Mann - Whitney test was used to assess the relationship of dichotomus variables with the parameters of the spermiogram; Kruskal-Wallis test for variables with more than two categories. We used also Robust regression and Spearman correlation to analyze the relationship between age and the parameters. We collected 5680 samples of semen. The mean age of our patients was 41.4 years old. Mann-Whitney test showed that the citizenship (codified as "Italian/Foreign") influences some parameters: pH, vitality, number of spermatozoa, sperm concentration, with worse results for the Italian group. Kruskal-Wallis test showed that the single nationality influences pH, volume, Sperm motility A-B-C-D, vitality, morphology, number of spermatozoa, sperm concentration. Robust regression showed a relationship between age and several parameters: volume (p=0.04, R squared= 0.0007 β: - 0.06); sperm motility A (p<0.01; R squared 0.0051 β: 0.02); sperm motility B (p<0.01; R squared 0.02 β: -0.35); sperm motility C (p<0.01; R squared 0.01 β: 0.12); sperm motility D (p<0.01; R squared 0.006 β: 0.2); vitality (p<0.01; R squared 0.01 β: -0.32); sperm concentration (p=0.01; R squared 0.001 β: 0.19). Our patients had spermiogram's results quite better than the standard guidelines. Our study showed that the country of origin could be a factor influencing several parameters of the spermiogram in healthy population and through Robust regression confirmed a strict correlation between age and these parameters.
Roland, Mark A.; Stuckey, Marla H.
2008-01-01
Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.
1981-09-01
corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Using Remote Sensing Data to Evaluate Surface Soil Properties in Alabama Ultisols
NASA Technical Reports Server (NTRS)
Sullivan, Dana G.; Shaw, Joey N.; Rickman, Doug; Mask, Paul L.; Luvall, Jeff
2005-01-01
Evaluation of surface soil properties via remote sensing could facilitate soil survey mapping, erosion prediction and allocation of agrochemicals for precision management. The objective of this study was to evaluate the relationship between soil spectral signature and surface soil properties in conventionally managed row crop systems. High-resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil organic carbon, particle size distribution, and citrate dithionite extractable iron content. Surface roughness, soil water content, and crusting were also measured during sampling. Two methods of analysis were evaluated: 1) multiple linear regression using common spectral band ratios, and 2) partial least squares regression. Our data show that thermal infrared spectra are highly, linearly related to soil organic carbon, sand and clay content. Soil organic carbon content was the most difficult to quantify in these highly weathered systems, where soil organic carbon was generally less than 1.2%. Estimates of sand and clay content were best using partial least squares regression at the Valley site, explaining 42-59% of the variability. In the Coastal Plain, sandy surfaces prone to crusting limited estimates of sand and clay content via partial least squares and regression with common band ratios. Estimates of iron oxide content were a function of mineralogy and best accomplished using specific band ratios, with regression explaining 36-65% of the variability at the Valley and Coastal Plain sites, respectively.
The Effectiveness of Edgenuity When Used for Credit Recovery
ERIC Educational Resources Information Center
Eddy, Carri
2013-01-01
This quantitative study used descriptive statistics, logistic regression, and chi-square analysis to determine the impact of using Edgenuity (formerly Education 2020 Virtual Classroom) to assist students in the recovery of lost credits. The sample included a North Texas school district. The Skyward student management system provided archived…
Individual tree growth models for natural even-aged shortleaf pine
Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin
2006-01-01
Shortleaf pine (Pinus echinata Mill.) measurements were available from permanent plots established in even-aged stands of the Ouachita Mountains for studying growth. Annual basal area growth was modeled with a least-squares nonlinear regression method utilizing three measurements. The analysis showed that the parameter estimates were in agreement...
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong
2008-02-01
Visible and near infrared (Vis/NIR) transmission spectroscopy and chemometric methods were utilized to predict the pH values of cola beverages. Five varieties of cola were prepared and 225 samples (45 samples for each variety) were selected for the calibration set, while 75 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay and standard normal variate (SNV) followed by first-derivative were used as the pre-processing methods. Partial least squares (PLS) analysis was employed to extract the principal components (PCs) which were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. Then LS-SVM with radial basis function (RBF) kernel function and a two-step grid search technique were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias were 0.961, 0.040 and 0.012 for PLS, while 0.975, 0.031 and 4.697x10 -3 for LS-SVM, respectively. Both methods obtained a satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be applied as an alternative way for the prediction of pH of cola beverages.
Orthogonalizing EM: A design-based least squares algorithm.
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.
Agarwal, Parul; Sambamoorthi, Usha
2015-12-01
Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p < 0.001) compared to those without depression. Post-regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
ERIC Educational Resources Information Center
Coskuntuncel, Orkun
2013-01-01
The purpose of this study is two-fold; the first aim being to show the effect of outliers on the widely used least squares regression estimator in social sciences. The second aim is to compare the classical method of least squares with the robust M-estimator using the "determination of coefficient" (R[superscript 2]). For this purpose,…
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii
Wong, Michael F.
1994-01-01
This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.
Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yongni; He Yong; Mao Jingyuan
Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less
NASA Astrophysics Data System (ADS)
Peterson, K. T.; Wulamu, A.
2017-12-01
Water, essential to all living organisms, is one of the Earth's most precious resources. Remote sensing offers an ideal approach to monitor water quality over traditional in-situ techniques that are highly time and resource consuming. Utilizing a multi-scale approach, incorporating data from handheld spectroscopy, UAS based hyperspectal, and satellite multispectral images were collected in coordination with in-situ water quality samples for the two midwestern watersheds. The remote sensing data was modeled and correlated to the in-situ water quality variables including chlorophyll content (Chl), turbidity, and total dissolved solids (TDS) using Normalized Difference Spectral Indices (NDSI) and Partial Least Squares Regression (PLSR). The results of the study supported the original hypothesis that correlating water quality variables with remotely sensed data benefits greatly from the use of more complex modeling and regression techniques such as PLSR. The final results generated from the PLSR analysis resulted in much higher R2 values for all variables when compared to NDSI. The combination of NDSI and PLSR analysis also identified key wavelengths for identification that aligned with previous study's findings. This research displays the advantages and future for complex modeling and machine learning techniques to improve water quality variable estimation from spectral data.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.
Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P
2016-01-01
Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Superquantile Regression: Theory, Algorithms, and Applications
2014-12-01
Example C: Stack loss data scatterplot matrix. 91 Regression α c0 caf cwt cac R̄ 2 α R̄ 2 α,Adj Least Squares NA -39.9197 0.7156 1.2953 -0.1521 0.9136...This is due to a small 92 Model Regression α c0 cwt cwt2 R̄ 2 α R̄ 2 α,Adj f2 Least Squares NA -41.9109 2.8174 — 0.7665 0.7542 Quantile 0.25 -32.0000
Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.
Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il
2016-01-01
This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.
Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages
Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang
2016-01-01
This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668
Messinger, Terence; Wiley, Jeffrey B.
2004-01-01
Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.
Sensitive and selective cocaine electrochemical detection using disposable sensors.
Asturias-Arribas, Laura; Alonso-Lomillo, M Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, M Julia
2014-06-27
This paper describes the voltammetric determination of cocaine in presence of three different interferences that could be found in street samples using disposable sensors. The electrochemical analysis of this alkaloid can be affected by the presence of codeine, paracetamol or caffeine, whose oxidation peaks may overlap and lead to false positives. This work describes two different solutions to this problem. On one hand, the modification of disposable carbon sensors with carbon nanotubes allows the voltammetric quantification of cocaine by using ordinary least squares regressions in the concentration range from 10 to 155 μmol L(-1), with a reproducibility of 5.6% (RSD, n = 7. On the other hand, partial least squares regressions are used for the resolution of the overlapped voltammetric signals when using screen-printed carbon electrodes without any modification. Both procedures have been successfully applied to the evaluation of the purity of cocaine street samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.
2015-10-01
This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.
Multilevel Modeling and Ordinary Least Squares Regression: How Comparable Are They?
ERIC Educational Resources Information Center
Huang, Francis L.
2018-01-01
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
ERIC Educational Resources Information Center
Montoya, Isaac D.
2008-01-01
Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…
The Relationship between Food Insecurity and Obesity in Rural Childbearing Women
ERIC Educational Resources Information Center
Olson, Christine M.; Strawderman, Myla S.
2008-01-01
Context: While food insecurity and obesity have been shown to be positively associated in women, little is known about the direction of the causal relationship between these 2 constructs. Purpose: To clarify the direction of the causal relationship between food insecurity and obesity. Methods: Chi-square and logistic regression analysis of data…
Impact of Depth and Breadth of Student Involvement on Academic Achievement
ERIC Educational Resources Information Center
Ivanova, Albena; Moretti, Anthony
2018-01-01
We investigate the direct and interaction effects of breadth and depth of student involvement in campus activities on student grade point average. Using data from the Student Engagement Transcripts on 475 students and ordinary least squares regression, we provide evidence for both direct and interaction effects. A more detailed analysis of the…
Orthogonalizing EM: A design-based least squares algorithm
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.
2016-01-01
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558
NASA Astrophysics Data System (ADS)
Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong
2018-01-01
Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.
Geodesic regression on orientation distribution functions with its application to an aging study.
Du, Jia; Goh, Alvina; Kushnarev, Sergey; Qiu, Anqi
2014-02-15
In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above. © 2013 Elsevier Inc. All rights reserved.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light. Published by Elsevier B.V.
Weighted linear regression using D2H and D2 as the independent variables
Hans T. Schreuder; Michael S. Williams
1998-01-01
Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...
Liley, Helen; Zhang, Ju; Firth, Elwyn; Fernandez, Justin; Besier, Thor
2017-11-01
Population variance in bone shape is an important consideration when applying the results of subject-specific computational models to a population. In this letter, we demonstrate the ability of partial least squares regression to provide an improved shape prediction of the equine third metacarpal epiphysis, using two easily obtained measurements.
Vasanawala, Shreyas S; Yu, Huanzhou; Shimakawa, Ann; Jeng, Michael; Brittain, Jean H
2012-01-01
MRI imaging of hepatic iron overload can be achieved by estimating T(2) values using multiple-echo sequences. The purpose of this work is to develop and clinically evaluate a weighted least squares algorithm based on T(2) Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL) technique for volumetric estimation of hepatic T(2) in the setting of iron overload. The weighted least squares T(2) IDEAL technique improves T(2) estimation by automatically decreasing the impact of later, noise-dominated echoes. The technique was evaluated in 37 patients with iron overload. Each patient underwent (i) a standard 2D multiple-echo gradient echo sequence for T(2) assessment with nonlinear exponential fitting, and (ii) a 3D T(2) IDEAL technique, with and without a weighted least squares fit. Regression and Bland-Altman analysis demonstrated strong correlation between conventional 2D and T(2) IDEAL estimation. In cases of severe iron overload, T(2) IDEAL without weighted least squares reconstruction resulted in a relative overestimation of T(2) compared with weighted least squares. Copyright © 2011 Wiley-Liss, Inc.
da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F
2016-03-01
An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.
Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.
2013-01-01
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
NASA Astrophysics Data System (ADS)
Wu, W.; Chen, G. Y.; Kang, R.; Xia, J. C.; Huang, Y. P.; Chen, K. J.
2017-07-01
During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice-water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)-multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA , and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA-MLR classifier provided the best detection results when compared with the SPA-partial least squares (PLS) regression classifier and the SPA-least squares supported vector machine (LS-SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA-MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
1984-12-01
total sum of squares at the center points minus the correction factor for the mean at the center points ( SSpe =Y’Y-nlY), where n1 is the number of...SSlac=SSres- SSpe ). The sum of squares due to pure error estimates 0" and the sum of squares due to lack-of-fit estimates 0’" plus a bias term if...Response Surface Methodology Source d.f. SS MS Regression n b’X1 Y b’XVY/n Residual rn-n Y’Y-b’X’ *Y (Y’Y-b’X’Y)/(n-n) Pure Error ni-i Y’Y-nl1Y SSpe / (ni
Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan
2016-08-25
Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Magnitude and Frequency of Floods for Urban and Small Rural Streams in Georgia, 2008
Gotvald, Anthony J.; Knaak, Andrew E.
2011-01-01
A study was conducted that updated methods for estimating the magnitude and frequency of floods in ungaged urban basins in Georgia that are not substantially affected by regulation or tidal fluctuations. Annual peak-flow data for urban streams from September 2008 were analyzed for 50 streamgaging stations (streamgages) in Georgia and 6 streamgages on adjacent urban streams in Florida and South Carolina having 10 or more years of data. Flood-frequency estimates were computed for the 56 urban streamgages by fitting logarithms of annual peak flows for each streamgage to a Pearson Type III distribution. Additionally, basin characteristics for the streamgages were computed by using a geographical information system and computer algorithms. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged urban basins in Georgia. In addition to the 56 urban streamgages, 171 rural streamgages were included in the regression analysis to maintain continuity between flood estimates for urban and rural basins as the basin characteristics pertaining to urbanization approach zero. Because 21 of the rural streamgages have drainage areas less than 1 square mile, the set of equations developed for this study can also be used for estimating small ungaged rural streams in Georgia. Flood-frequency estimates and basin characteristics for 227 streamgages were combined to form the final database used in the regional regression analysis. Four hydrologic regions were developed for Georgia. The final equations are functions of drainage area and percentage of impervious area for three of the regions and drainage area, percentage of developed land, and mean basin slope for the fourth region. Average standard errors of prediction for these regression equations range from 20.0 to 74.5 percent.
ERIC Educational Resources Information Center
Guerra, Jorge
2012-01-01
The purpose of this research was to examine the relationship between teaching readiness and teaching excellence with three variables of preparedness of adjunct professors teaching career technical education courses through student surveys using a correlational design of two statistical techniques; least-squares regression and one-way analysis of…
ERIC Educational Resources Information Center
Lambert, Eric G.; Hogan, Nancy L.; Barton-Bellessa, Shannon M.
2011-01-01
Previous literature exploring the relationship between correctional officer orientations toward treatment and punishment is inconsistent at best. One rarely studied aspect is the influence of distributive and procedural justice on correctional staff support for treatment and punishment. For this study, ordinary least squares regression analysis of…
ERIC Educational Resources Information Center
Albaqshi, Amani Mohammed H.
2017-01-01
Functional Data Analysis (FDA) has attracted substantial attention for the last two decades. Within FDA, classifying curves into two or more categories is consistently of interest to scientists, but multi-class prediction within FDA is challenged in that most classification tools have been limited to binary response applications. The functional…
How Do Schools Affect Ethnic Saliency Levels of Students in Bosnia and Herzegovina?
ERIC Educational Resources Information Center
Becker, Matthew Thomas
2017-01-01
This article measures the role of schools in the ethnic socialization and identity formation processes of high school seniors in Bosnia and Herzegovina (BiH) via ordinary least squares regression analysis and attempts to contribute to a better understanding of educational transitions in the postsocialist space and youth identity formation in a…
Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun
2018-03-01
Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-25
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.
ERIC Educational Resources Information Center
Maggin, Daniel M.; Swaminathan, Hariharan; Rogers, Helen J.; O'Keeffe, Breda V.; Sugai, George; Horner, Robert H.
2011-01-01
A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of…
Use of Thematic Mapper for water quality assessment
NASA Technical Reports Server (NTRS)
Horn, E. M.; Morrissey, L. A.
1984-01-01
The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.
Least Square Regression Method for Estimating Gas Concentration in an Electronic Nose System
Khalaf, Walaa; Pace, Calogero; Gaudioso, Manlio
2009-01-01
We describe an Electronic Nose (ENose) system which is able to identify the type of analyte and to estimate its concentration. The system consists of seven sensors, five of them being gas sensors (supplied with different heater voltage values), the remainder being a temperature and a humidity sensor, respectively. To identify a new analyte sample and then to estimate its concentration, we use both some machine learning techniques and the least square regression principle. In fact, we apply two different training models; the first one is based on the Support Vector Machine (SVM) approach and is aimed at teaching the system how to discriminate among different gases, while the second one uses the least squares regression approach to predict the concentration of each type of analyte. PMID:22573980
Regional regression of flood characteristics employing historical information
Tasker, Gary D.; Stedinger, J.R.
1987-01-01
Streamflow gauging networks provide hydrologic information for use in estimating the parameters of regional regression models. The regional regression models can be used to estimate flood statistics, such as the 100 yr peak, at ungauged sites as functions of drainage basin characteristics. A recent innovation in regional regression is the use of a generalized least squares (GLS) estimator that accounts for unequal station record lengths and sample cross correlation among the flows. However, this technique does not account for historical flood information. A method is proposed here to adjust this generalized least squares estimator to account for possible information about historical floods available at some stations in a region. The historical information is assumed to be in the form of observations of all peaks above a threshold during a long period outside the systematic record period. A Monte Carlo simulation experiment was performed to compare the GLS estimator adjusted for historical floods with the unadjusted GLS estimator and the ordinary least squares estimator. Results indicate that using the GLS estimator adjusted for historical information significantly improves the regression model. ?? 1987.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine
2018-03-07
Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.
Inter-class sparsity based discriminative least square regression.
Wen, Jie; Xu, Yong; Li, Zuoyong; Ma, Zhongli; Xu, Yuanrong
2018-06-01
Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero-one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero-one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
Regression analysis for LED color detection of visual-MIMO system
NASA Astrophysics Data System (ADS)
Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo
2018-04-01
Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.
Soil sail content estimation in the yellow river delta with satellite hyperspectral data
Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang
2008-01-01
Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.
Divya, O; Mishra, Ashok K
2007-05-29
Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.
NASA Astrophysics Data System (ADS)
Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah
2017-08-01
Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
USDA-ARS?s Scientific Manuscript database
Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated in...
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo
2011-01-01
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587
Eash, David A.; Barnes, Kimberlee K.
2017-01-01
A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.
NASA Astrophysics Data System (ADS)
Muller, Sybrand Jacobus; van Niekerk, Adriaan
2016-07-01
Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.
Four Major South Korea's Rivers Using Deep Learning Models.
Lee, Sangmok; Lee, Donghyun
2018-06-24
Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.
Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.
Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa
2016-03-01
In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-01-05
SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less
Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K
2012-04-07
Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.
2007-06-01
other databases such as MySQL , Oracle , and Derby will be added to future versions of the program. Setting a factor requires more than changing a single...Non-Penetrating vs . Penetrating Results.............106 a. Coverage...Interaction Profile for D U-2 and C RQ-4 .......................................................89 Figure 59. R-Squared vs . Number of Regression Tree
Economic benefits of reducing fire-related sediment in southwestern fire-prone ecosystems
John Loomis; Pete Wohlgemuth; Armando González-Cabán; Don English
2003-01-01
A multiple regression analysis of fire interval and resulting sediment yield (controlling for relief ratio, rainfall, etc.) indicates that reducing the fire interval from the current average 22 years to a prescribed fire interval of 5 years would reduce sediment yield by 2 million cubic meters in the 86.2 square kilometer southern California watershed adjacent to and...
Interactive Visual Least Absolutes Method: Comparison with the Least Squares and the Median Methods
ERIC Educational Resources Information Center
Kim, Myung-Hoon; Kim, Michelle S.
2016-01-01
A visual regression analysis using the least absolutes method (LAB) was developed, utilizing an interactive approach of visually minimizing the sum of the absolute deviations (SAB) using a bar graph in Excel; the results agree very well with those obtained from nonvisual LAB using a numerical Solver in Excel. These LAB results were compared with…
NASA Astrophysics Data System (ADS)
Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.
2015-06-01
Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).
Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan
2015-07-01
Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.
Belilovsky, Eugene; Gkirtzou, Katerina; Misyrlis, Michail; Konova, Anna B; Honorio, Jean; Alia-Klein, Nelly; Goldstein, Rita Z; Samaras, Dimitris; Blaschko, Matthew B
2015-12-01
We explore various sparse regularization techniques for analyzing fMRI data, such as the ℓ1 norm (often called LASSO in the context of a squared loss function), elastic net, and the recently introduced k-support norm. Employing sparsity regularization allows us to handle the curse of dimensionality, a problem commonly found in fMRI analysis. In this work we consider sparse regularization in both the regression and classification settings. We perform experiments on fMRI scans from cocaine-addicted as well as healthy control subjects. We show that in many cases, use of the k-support norm leads to better predictive performance, solution stability, and interpretability as compared to other standard approaches. We additionally analyze the advantages of using the absolute loss function versus the standard squared loss which leads to significantly better predictive performance for the regularization methods tested in almost all cases. Our results support the use of the k-support norm for fMRI analysis and on the clinical side, the generalizability of the I-RISA model of cocaine addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland
NASA Astrophysics Data System (ADS)
Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.
2017-02-01
The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.
Baum, A; Hansen, P W; Nørgaard, L; Sørensen, John; Mikkelsen, J D
2016-08-01
In this study, we introduce enzymatic perturbation combined with Fourier transform infrared (FTIR) spectroscopy as a concept for quantifying casein in subcritical heated skim milk using chemometric multiway analysis. Chymosin is a protease that cleaves specifically caseins. As a result of hydrolysis, all casein proteins clot to form a creamy precipitate, and whey proteins remain in the supernatant. We monitored the cheese-clotting reaction in real time using FTIR and analyzed the resulting evolution profiles to establish calibration models using parallel factor analysis and multiway partial least squares regression. Because we observed casein-specific kinetic changes, the retrieved models were independent of the chemical background matrix and were therefore robust against possible covariance effects. We tested the robustness of the models by spiking the milk solutions with whey, calcium, and cream. This method can be used at different stages in the dairy production chain to ensure the quality of the delivered milk. In particular, the cheese-making industry can benefit from such methods to optimize production control. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady
2017-09-01
Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-01
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb’s test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R2 and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data. PMID:26821026
Maggin, Daniel M; Swaminathan, Hariharan; Rogers, Helen J; O'Keeffe, Breda V; Sugai, George; Horner, Robert H
2011-06-01
A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of treatment effect from baseline to treatment phases in standard deviation units. In this paper, the method is applied to two published examples using common single case designs (i.e., withdrawal and multiple-baseline). The results from these studies are described, and the method is compared to ten desirable criteria for single-case effect sizes. Based on the results of this application, we conclude with observations about the use of GLS as a support to visual analysis, provide recommendations for future research, and describe implications for practice. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Medina, K.D.; Tasker, Gary D.
1987-01-01
This report documents the results of an analysis of the surface-water data network in Kansas for its effectiveness in providing regional streamflow information. The network was analyzed using generalized least squares regression. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-, low-, and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow-gaging-station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations, and (or) adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and for discontinued stations for which unregulated flow characteristics, as well as physical and climatic characteristics, were available. The State was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for the three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean-square error for each cost level could be obtained by adding new stations and discontinuing some current network stations. Large reductions in sampling mean-square error for low-flow information could be achieved in all three network areas, the reduction in western Kansas being the most dramatic. The addition of new stations would be most beneficial for mean-flow information in western Kansas. The reduction of sampling mean-square error for high-flow information would benefit most from the addition of new stations in western Kansas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas.
Symplectic geometry spectrum regression for prediction of noisy time series
NASA Astrophysics Data System (ADS)
Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie
2016-05-01
We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Dean, Jamie A; Wong, Kee H; Gay, Hiram; Welsh, Liam C; Jones, Ann-Britt; Schick, Ulrike; Oh, Jung Hun; Apte, Aditya; Newbold, Kate L; Bhide, Shreerang A; Harrington, Kevin J; Deasy, Joseph O; Nutting, Christopher M; Gulliford, Sarah L
2016-11-15
Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E
2016-06-01
The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Rule, David L.
Several regression methods were examined within the framework of weighted structural regression (WSR), comparing their regression weight stability and score estimation accuracy in the presence of outlier contamination. The methods compared are: (1) ordinary least squares; (2) WSR ridge regression; (3) minimum risk regression; (4) minimum risk 2;…
Willard, Scott D; Nguyen, Mike M
2013-01-01
To evaluate the utility of using Internet search trends data to estimate kidney stone occurrence and understand the priorities of patients with kidney stones. Internet search trends data represent a unique resource for monitoring population self-reported illness and health information-seeking behavior. The Google Insights for Search analysis tool was used to study searches related to kidney stones, with each search term returning a search volume index (SVI) according to the search frequency relative to the total search volume. SVIs for the term, "kidney stones," were compiled by location and time parameters and compared with the published weather and stone prevalence data. Linear regression analysis was performed to determine the association of the search interest score with known epidemiologic variations in kidney stone disease, including latitude, temperature, season, and state. The frequency of the related search terms was categorized by theme and qualitatively analyzed. The SVI correlated significantly with established kidney stone epidemiologic predictors. The SVI correlated with the state latitude (R-squared=0.25; P<.001), the state mean annual temperature (R-squared=0.24; P<.001), and state combined sex prevalence (R-squared=0.25; P<.001). Female prevalence correlated more strongly than did male prevalence (R-squared=0.37; P<.001, and R-squared=0.17; P=.003, respectively). The national SVI correlated strongly with the average U.S. temperature by month (R-squared=0.54; P=.007). The search term ranking suggested that Internet users are most interested in the diagnosis, followed by etiology, infections, and treatment. Geographic and temporal variability in kidney stone disease appear to be accurately reflected in Internet search trends data. Internet search trends data might have broader applications for epidemiologic and urologic research. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Regional equations for estimation of peak-streamflow frequency for natural basins in Texas
Asquith, William H.; Slade, Raymond M.
1997-01-01
Peak-streamflow frequency for 559 Texas stations with natural (unregulated and rural or nonurbanized) basins was estimated with annual peak-streamflow data through 1993. The peak-streamflow frequency and drainage-basin characteristics for the Texas stations were used to develop 16 sets of equations to estimate peak-streamflow frequency for ungaged natural stream sites in each of 11 regions in Texas. The relation between peak-streamflow frequency and contributing drainage area for 5 of the 11 regions is curvilinear, requiring that one set of equations be developed for drainage areas less than 32 square miles and another set be developed for drainage areas greater than 32 square miles. These equations, developed through multiple-regression analysis using weighted least squares, are based on the relation between peak-streamflow frequency and basin characteristics for streamflow-gaging stations. The regions represent areas with similar flood characteristics. The use and limitations of the regression equations also are discussed. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent confidence limits for any estimation from the equations. Also, supplemental peak-streamflow frequency and basin characteristics for 105 selected stations bordering Texas are included in the report. This supplemental information will aid in interpretation of flood characteristics for sites near the state borders of Texas.
NASA Astrophysics Data System (ADS)
Wübbeler, Gerd; Bodnar, Olha; Elster, Clemens
2018-02-01
Weighted least-squares estimation is commonly applied in metrology to fit models to measurements that are accompanied with quoted uncertainties. The weights are chosen in dependence on the quoted uncertainties. However, when data and model are inconsistent in view of the quoted uncertainties, this procedure does not yield adequate results. When it can be assumed that all uncertainties ought to be rescaled by a common factor, weighted least-squares estimation may still be used, provided that a simple correction of the uncertainty obtained for the estimated model is applied. We show that these uncertainties and credible intervals are robust, as they do not rely on the assumption of a Gaussian distribution of the data. Hence, common software for weighted least-squares estimation may still safely be employed in such a case, followed by a simple modification of the uncertainties obtained by that software. We also provide means of checking the assumptions of such an approach. The Bayesian regression procedure is applied to analyze the CODATA values for the Planck constant published over the past decades in terms of three different models: a constant model, a straight line model and a spline model. Our results indicate that the CODATA values may not have yet stabilized.
Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.
2017-08-14
A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.
GIS-based spatial statistical analysis of risk areas for liver flukes in Surin Province of Thailand.
Rujirakul, Ratana; Ueng-arporn, Naporn; Kaewpitoon, Soraya; Loyd, Ryan J; Kaewthani, Sarochinee; Kaewpitoon, Natthawut
2015-01-01
It is urgently necessary to be aware of the distribution and risk areas of liver fluke, Opisthorchis viverrini, for proper allocation of prevention and control measures. This study aimed to investigate the human behavior, and environmental factors influencing the distribution in Surin Province of Thailand, and to build a model using stepwise multiple regression analysis with a geographic information system (GIS) on environment and climate data. The relationship between the human behavior, attitudes (<50%; X111), environmental factors like population density (148-169 pop/km2; X73), and land use as wetland (X64), were correlated with the liver fluke disease distribution at 0.000, 0.034, and 0.006 levels, respectively. Multiple regression analysis, by equations OV=-0.599+0.005(population density (148-169 pop/km2); X73)+0.040 (human attitude (<50%); X111)+0.022 (land used (wetland; X64), was used to predict the distribution of liver fluke. OV is the patients of liver fluke infection, R Square=0.878, and, Adjust R Square=0.849. By GIS analysis, we found Si Narong, Sangkha, Phanom Dong Rak, Mueang Surin, Non Narai, Samrong Thap, Chumphon Buri, and Rattanaburi to have the highest distributions in Surin province. In conclusion, the combination of GIS and statistical analysis can help simulate the spatial distribution and risk areas of liver fluke, and thus may be an important tool for future planning of prevention and control measures.
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
Ridge: a computer program for calculating ridge regression estimates
Donald E. Hilt; Donald W. Seegrist
1977-01-01
Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.
Blood proteins analysis by Raman spectroscopy method
NASA Astrophysics Data System (ADS)
Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.
2016-04-01
This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P.; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS.
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B
2016-11-24
Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.
Hazard Function Estimation with Cause-of-Death Data Missing at Random.
Wang, Qihua; Dinse, Gregg E; Liu, Chunling
2012-04-01
Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.
Bias due to two-stage residual-outcome regression analysis in genetic association studies.
Demissie, Serkalem; Cupples, L Adrienne
2011-11-01
Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.
Ma, W; Zhang, T-F; Lu, P; Lu, S H
2014-01-01
Breast cancer is categorized into two broad groups: estrogen receptor positive (ER+) and ER negative (ER-) groups. Previous study proposed that under trastuzumab-based neoadjuvant chemotherapy, tumor initiating cell (TIC) featured ER- tumors response better than ER+ tumors. Exploration of the molecular difference of these two groups may help developing new therapeutic strategies, especially for ER- patients. With gene expression profile from the Gene Expression Omnibus (GEO) database, we performed partial least squares (PLS) based analysis, which is more sensitive than common variance/regression analysis. We acquired 512 differentially expressed genes. Four pathways were found to be enriched with differentially expressed genes, involving immune system, metabolism and genetic information processing process. Network analysis identified five hub genes with degrees higher than 10, including APP, ESR1, SMAD3, HDAC2, and PRKAA1. Our findings provide new understanding for the molecular difference between TIC featured ER- and ER+ breast tumors with the hope offer supports for therapeutic studies.
Partial least squares based identification of Duchenne muscular dystrophy specific genes.
An, Hui-bo; Zheng, Hua-cheng; Zhang, Li; Ma, Lin; Liu, Zheng-yan
2013-11-01
Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.
ERIC Educational Resources Information Center
Feist, Amber M.
2013-01-01
Hispanic women who are deaf constitute a heterogeneous group of individuals with varying vocational needs. To understand the unique needs of this population, it is important to analyze how consumer characteristics, presence of public supports, and type of services provided influence employment outcomes for Hispanic women who are deaf. The purpose…
Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy).
Savo, V; Joy, R; Caneva, G; McClatchey, W C
2015-07-15
Many ethnobotanical studies have investigated selection criteria for medicinal and non-medicinal plants. In this paper we test several statistical methods using different ethnobotanical datasets in order to 1) define to which extent the nature of the datasets can affect the interpretation of results; 2) determine if the selection for different plant uses is based on phylogeny, or other selection criteria. We considered three different ethnobotanical datasets: two datasets of medicinal plants and a dataset of non-medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast. We performed residual analysis from linear regression, the binomial test and the Bayesian approach for calculating under-used and over-used plant families within ethnobotanical datasets. Percentages of agreement were calculated to compare the results of the analyses. We also analyzed the relationship between plant selection and phylogeny, chorology, life form and habitat using the chi-square test. Pearson's residuals for each of the significant chi-square analyses were examined for investigating alternative hypotheses of plant selection criteria. The three statistical analysis methods differed within the same dataset, and between different datasets and floras, but with some similarities. In the two medicinal datasets, only Lamiaceae was identified in both floras as an over-used family by all three statistical methods. All statistical methods in one flora agreed that Malvaceae was over-used and Poaceae under-used, but this was not found to be consistent with results of the second flora in which one statistical result was non-significant. All other families had some discrepancy in significance across methods, or floras. Significant over- or under-use was observed in only a minority of cases. The chi-square analyses were significant for phylogeny, life form and habitat. Pearson's residuals indicated a non-random selection of woody species for non-medicinal uses and an under-use of plants of temperate forests for medicinal uses. Our study showed that selection criteria for plant uses (including medicinal) are not always based on phylogeny. The comparison of different statistical methods (regression, binomial and Bayesian) under different conditions led to the conclusion that the most conservative results are obtained using regression analysis.
Xie, Chuanqi; He, Yong
2016-01-01
This study was carried out to use hyperspectral imaging technique for determining color (L*, a* and b*) and eggshell strength and identifying cracked chicken eggs. Partial least squares (PLS) models based on full and selected wavelengths suggested by regression coefficient (RC) method were established to predict the four parameters, respectively. Partial least squares-discriminant analysis (PLS-DA) and RC-partial least squares-discriminant analysis (RC-PLS-DA) models were applied to identify cracked eggs. PLS models performed well with the correlation coefficient (rp) of 0.788 for L*, 0.810 for a*, 0.766 for b* and 0.835 for eggshell strength. RC-PLS models also obtained the rp of 0.771 for L*, 0.806 for a*, 0.767 for b* and 0.841 for eggshell strength. The classification results were 97.06% in PLS-DA model and 88.24% in RC-PLS-DA model. It demonstrated that hyperspectral imaging technique has the potential to be used to detect color and eggshell strength values and identify cracked chicken eggs. PMID:26882990
Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril
2018-03-01
This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.
Griffiths, Robert I; Gleeson, Michelle L; Danese, Mark D; O'Hagan, Anthony
2012-01-01
To assess the accuracy and precision of inverse probability weighted (IPW) least squares regression analysis for censored cost data. By using Surveillance, Epidemiology, and End Results-Medicare, we identified 1500 breast cancer patients who died and had complete cost information within the database. Patients were followed for up to 48 months (partitions) after diagnosis, and their actual total cost was calculated in each partition. We then simulated patterns of administrative and dropout censoring and also added censoring to patients receiving chemotherapy to simulate comparing a newer to older intervention. For each censoring simulation, we performed 1000 IPW regression analyses (bootstrap, sampling with replacement), calculated the average value of each coefficient in each partition, and summed the coefficients for each regression parameter to obtain the cumulative values from 1 to 48 months. The cumulative, 48-month, average cost was $67,796 (95% confidence interval [CI] $58,454-$78,291) with no censoring, $66,313 (95% CI $54,975-$80,074) with administrative censoring, and $66,765 (95% CI $54,510-$81,843) with administrative plus dropout censoring. In multivariate analysis, chemotherapy was associated with increased cost of $25,325 (95% CI $17,549-$32,827) compared with $28,937 (95% CI $20,510-$37,088) with administrative censoring and $29,593 ($20,564-$39,399) with administrative plus dropout censoring. Adding censoring to the chemotherapy group resulted in less accurate IPW estimates. This was ameliorated, however, by applying IPW within treatment groups. IPW is a consistent estimator of population mean costs if the weight is correctly specified. If the censoring distribution depends on some covariates, a model that accommodates this dependency must be correctly specified in IPW to obtain accurate estimates. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Magnitude and frequency of floods in small drainage basins in Idaho
Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.
1973-01-01
A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.
Robust Variable Selection with Exponential Squared Loss.
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-04-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.
Robust Variable Selection with Exponential Squared Loss
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-01-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods. PMID:23913996
Yoneoka, Daisuke; Henmi, Masayuki
2017-06-01
Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Wu, Sa; Zhang, Xin; Li, Zhi-Ming; Shi, Yan-Xia; Huang, Jia-Jia; Xia, Yi; Yang, Hang; Jiang, Wen-Qi
2013-01-01
Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.
Grandke, Fabian; Singh, Priyanka; Heuven, Henri C M; de Haan, Jorn R; Metzler, Dirk
2016-08-24
Association studies are an essential part of modern plant breeding, but are limited for polyploid crops. The increased number of possible genotype classes complicates the differentiation between them. Available methods are limited with respect to the ploidy level or data producing technologies. While genotype classification is an established noise reduction step in diploids, it gains complexity with increasing ploidy levels. Eventually, the errors produced by misclassifications exceed the benefits of genotype classes. Alternatively, continuous genotype values can be used for association analysis in higher polyploids. We associated continuous genotypes to three different traits and compared the results to the output of the genotype caller SuperMASSA. Linear, Bayesian and partial least squares regression were applied, to determine if the use of continuous genotypes is limited to a specific method. A disease, a flowering and a growth trait with h (2) of 0.51, 0.78 and 0.91 were associated with a hexaploid chrysanthemum genotypes. The data set consisted of 55,825 probes and 228 samples. We were able to detect associating probes using continuous genotypes for multiple traits, using different regression methods. The identified probe sets were overlapping, but not identical between the methods. Baysian regression was the most restrictive method, resulting in ten probes for one trait and none for the others. Linear and partial least squares regression led to numerous associating probes. Association based on genotype classes resulted in similar values, but missed several significant probes. A simulation study was used to successfully validate the number of associating markers. Association of various phenotypic traits with continuous genotypes is successful with both uni- and multivariate regression methods. Genotype calling does not improve the association and shows no advantages in this study. Instead, use of continuous genotypes simplifies the analysis, saves computational time and results more potential markers.
Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong
2018-02-27
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.
Ye, Lanhan; Song, Kunlin; Shen, Tingting
2018-01-01
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445
Recurrence risk model for esophageal cancer after radical surgery.
Lu, Jincheng; Tao, Hua; Song, Dan; Chen, Cheng
2013-10-01
The aim of the present study was to construct a risk assessment model which was tested by disease-free survival (DFS) of esophageal cancer after radical surgery. A total of 164 consecutive esophageal cancer patients who had undergone radical surgery between January 2005 and December 2006 were retrospectively analyzed. The cutpoint of value at risk (VaR) was inferred by stem-and-leaf plot, as well as by independent-samples t-test for recurrence-free time, further confirmed by crosstab chi-square test, univariate analysis and Cox regression analysis for DFS. The cutpoint of VaR was 0.3 on the basis of our model. The rate of recurrence was 30.3% (30/99) and 52.3% (34/65) in VaR <0.3 and VaR ≥0.3 (chi-square test, (χ) (2) =7.984, P=0.005), respectively. The 1-, 3-, and 5-year DFS of esophageal cancer after radical surgery was 70.4%, 48.7%, and 45.3%, respectively in VaR ≥0.3, whereas 91.5%, 75.8%, and 67.3%, respectively in VaR <0.3 (Log-rank test, (χ) (2) =9.59, P=0.0020), and further confirmed by Cox regression analysis [hazard ratio =2.10, 95% confidence interval (CI): 1.2649-3.4751; P=0.0041]. The model could be applied for integrated assessment of recurrence risk after radical surgery for esophageal cancer.
Recurrence risk model for esophageal cancer after radical surgery
Tao, Hua; Song, Dan; Chen, Cheng
2013-01-01
Objective The aim of the present study was to construct a risk assessment model which was tested by disease-free survival (DFS) of esophageal cancer after radical surgery. Methods A total of 164 consecutive esophageal cancer patients who had undergone radical surgery between January 2005 and December 2006 were retrospectively analyzed. The cutpoint of value at risk (VaR) was inferred by stem-and-leaf plot, as well as by independent-samples t-test for recurrence-free time, further confirmed by crosstab chi-square test, univariate analysis and Cox regression analysis for DFS. Results The cutpoint of VaR was 0.3 on the basis of our model. The rate of recurrence was 30.3% (30/99) and 52.3% (34/65) in VaR <0.3 and VaR ≥0.3 (chi-square test, χ2 =7.984, P=0.005), respectively. The 1-, 3-, and 5-year DFS of esophageal cancer after radical surgery was 70.4%, 48.7%, and 45.3%, respectively in VaR ≥0.3, whereas 91.5%, 75.8%, and 67.3%, respectively in VaR <0.3 (Log-rank test, χ2 =9.59, P=0.0020), and further confirmed by Cox regression analysis [hazard ratio =2.10, 95% confidence interval (CI): 1.2649-3.4751; P=0.0041]. Conclusions The model could be applied for integrated assessment of recurrence risk after radical surgery for esophageal cancer. PMID:24255579
Multivariate Regression Analysis of Winter Ozone Events in the Uinta Basin of Eastern Utah, USA
NASA Astrophysics Data System (ADS)
Mansfield, M. L.
2012-12-01
I report on a regression analysis of a number of variables that are involved in the formation of winter ozone in the Uinta Basin of Eastern Utah. One goal of the analysis is to develop a mathematical model capable of predicting the daily maximum ozone concentration from values of a number of independent variables. The dependent variable is the daily maximum ozone concentration at a particular site in the basin. Independent variables are (1) daily lapse rate, (2) daily "basin temperature" (defined below), (3) snow cover, (4) midday solar zenith angle, (5) monthly oil production, (6) monthly gas production, and (7) the number of days since the beginning of a multi-day inversion event. Daily maximum temperature and daily snow cover data are available at ten or fifteen different sites throughout the basin. The daily lapse rate is defined operationally as the slope of the linear least-squares fit to the temperature-altitude plot, and the "basin temperature" is defined as the value assumed by the same least-squares line at an altitude of 1400 m. A multi-day inversion event is defined as a set of consecutive days for which the lapse rate remains positive. The standard deviation in the accuracy of the model is about 10 ppb. The model has been combined with historical climate and oil & gas production data to estimate historical ozone levels.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Burton, Richard F
2010-01-01
It is almost a matter of dogma that human body mass in adults tends to vary roughly in proportion to the square of height (stature), as Quetelet stated in 1835. As he realised, perfect isometry or geometric similarity requires that body mass varies with height cubed, so there seems to be a trend for tall adults to be relatively much lighter than short ones. Much evidence regarding component tissues and organs seems to accord with this idea. However, the hypothesis is presented that the proportions of the body are actually very much less size-dependent. Past evidence has mostly been obtained by least-squares regression analysis, but this cannot generally give a true picture of the allometric relationships. This is because there is considerable scatter in the data (leading to a low correlation between mass and height) and because neither variable causally determines the other. The relevant regression equations, though often formulated in logarithmic terms, effectively treat the masses as proportional to (body height)(b). Values of b estimated by regression must usually underestimate the true functional values, doing so especially when mass and height are poorly correlated. It is therefore telling support for the hypothesis that published estimates of b both for the whole body (which range between 1.0 and 2.5) and for its component tissues and organs (which vary even more) correlate with the corresponding correlation coefficients for mass and height. There is no simple statistical technique for establishing the true functional relationships, but Monte Carlo modelling has shown that the results obtained for total body mass are compatible with a true height exponent of three. Other data, on relationships between body mass and the girths of various body parts such as the thigh and chest, are also more consistent with isometry than regression analysis has suggested. This too is demonstrated by modelling. It thus seems that much of anthropometry needs to be re-evaluated. It is not suggested that all organs and tissues scale equally with whole body size.
Regression analysis on the variation in efficiency frontiers for prevention stage of HIV/AIDS.
Kamae, Maki S; Kamae, Isao; Cohen, Joshua T; Neumann, Peter J
2011-01-01
To investigate how the cost effectiveness of preventing HIV/AIDS varies across possible efficiency frontiers (EFs) by taking into account potentially relevant external factors, such as prevention stage, and how the EFs can be characterized using regression analysis given uncertainty of the QALY-cost estimates. We reviewed cost-effectiveness estimates for the prevention and treatment of HIV/AIDS published from 2002-2007 and catalogued in the Tufts Medical Center Cost-Effectiveness Analysis (CEA) Registry. We constructed efficiency frontier (EF) curves by plotting QALYs against costs, using methods used by the Institute for Quality and Efficiency in Health Care (IQWiG) in Germany. We stratified the QALY-cost ratios by prevention stage, country of study, and payer perspective, and estimated EF equations using log and square-root models. A total of 53 QALY-cost ratios were identified for HIV/AIDS in the Tufts CEA Registry. Plotted ratios stratified by prevention stage were visually grouped into a cluster consisting of primary/secondary prevention measures and a cluster consisting of tertiary measures. Correlation coefficients for each cluster were statistically significant. For each cluster, we derived two EF equations - one based on the log model, and one based on the square-root model. Our findings indicate that stratification of HIV/AIDS interventions by prevention stage can yield distinct EFs, and that the correlation and regression analyses are useful for parametrically characterizing EF equations. Our study has certain limitations, such as the small number of included articles and the potential for study populations to be non-representative of countries of interest. Nonetheless, our approach could help develop a deeper appreciation of cost effectiveness beyond the deterministic approach developed by IQWiG.
Effect of Landscape Pattern on Insect Species Density within Urban Green Spaces in Beijing, China
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality. PMID:25793897
Balabin, Roman M; Smirnov, Sergey V
2011-07-15
Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular-for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76±0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm-partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)-are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of landscape pattern on insect species density within urban green spaces in Beijing, China.
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
Solvency supervision based on a total balance sheet approach
NASA Astrophysics Data System (ADS)
Pitselis, Georgios
2009-11-01
In this paper we investigate the adequacy of the own funds a company requires in order to remain healthy and avoid insolvency. Two methods are applied here; the quantile regression method and the method of mixed effects models. Quantile regression is capable of providing a more complete statistical analysis of the stochastic relationship among random variables than least squares estimation. The estimated mixed effects line can be considered as an internal industry equation (norm), which explains a systematic relation between a dependent variable (such as own funds) with independent variables (e.g. financial characteristics, such as assets, provisions, etc.). The above two methods are implemented with two data sets.
Li, Kaiyue; Wang, Weiying; Liu, Yanping; Jiang, Su; Huang, Guo; Ye, Liming
2017-01-01
The active ingredients and thus pharmacological efficacy of traditional Chinese medicine (TCM) at different degrees of parching process vary greatly. Near-infrared spectroscopy (NIR) was used to develop a new method for rapid online analysis of TCM parching process, using two kinds of chemical indicators (5-(hydroxymethyl) furfural [5-HMF] content and 420 nm absorbance) as reference values which were obviously observed and changed in most TCM parching process. Three representative TCMs, Areca ( Areca catechu L.), Malt ( Hordeum Vulgare L.), and Hawthorn ( Crataegus pinnatifida Bge.), were used in this study. With partial least squares regression, calibration models of NIR were generated based on two kinds of reference values, i.e. 5-HMF contents measured by high-performance liquid chromatography (HPLC) and 420 nm absorbance measured by ultraviolet-visible spectroscopy (UV/Vis), respectively. In the optimized models for 5-HMF, the root mean square errors of prediction (RMSEP) for Areca, Malt, and Hawthorn was 0.0192, 0.0301, and 0.2600 and correlation coefficients ( R cal ) were 99.86%, 99.88%, and 99.88%, respectively. Moreover, in the optimized models using 420 nm absorbance as reference values, the RMSEP for Areca, Malt, and Hawthorn was 0.0229, 0.0096, and 0.0409 and R cal were 99.69%, 99.81%, and 99.62%, respectively. NIR models with 5-HMF content and 420 nm absorbance as reference values can rapidly and effectively identify three kinds of TCM in different parching processes. This method has great promise to replace current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online analysis and quality control in TCM industrial manufacturing process. Near-infrared spectroscopy.(NIR) was used to develop a new method for online analysis of traditional Chinese medicine.(TCM) parching processCalibration and validation models of Areca, Malt, and Hawthorn were generated by partial least squares regression using 5.(hydroxymethyl) furfural contents and 420.nm absorbance as reference values, respectively, which were main indicator components during parching process of most TCMThe established NIR models of three TCMs had low root mean square errors of prediction and high correlation coefficientsThe NIR method has great promise for use in TCM industrial manufacturing processes for rapid online analysis and quality control. Abbreviations used: NIR: Near-infrared Spectroscopy; TCM: Traditional Chinese medicine; Areca: Areca catechu L.; Hawthorn: Crataegus pinnatifida Bge.; Malt: Hordeum vulgare L.; 5-HMF: 5-(hydroxymethyl) furfural; PLS: Partial least squares; D: Dimension faction; SLS: Straight line subtraction, MSC: Multiplicative scatter correction; VN: Vector normalization; RMSECV: Root mean square errors of cross-validation; RMSEP: Root mean square errors of validation; R cal : Correlation coefficients; RPD: Residual predictive deviation; PAT: Process analytical technology; FDA: Food and Drug Administration; ICH: International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression.
Momenyan, Somayeh; Sadeghifar, Majid; Sarvi, Fatemeh; Khodadost, Mahmoud; Mosavi-Jarrahi, Alireza; Ghaffari, Mohammad Ebrahim; Sekhavati, Eghbal
2016-01-01
Quantile regression is an efficient method for predicting and estimating the relationship between explanatory variables and percentile points of the response distribution, particularly for extreme percentiles of the distribution. To study the relationship between urbanization and cancer morbidity, we here applied quantile regression. This cross-sectional study was conducted for 9 cancers in 345 cities in 2007 in Iran. Data were obtained from the Ministry of Health and Medical Education and the relationship between urbanization and cancer morbidity was investigated using quantile regression and least square regression. Fitting models were compared using AIC criteria. R (3.0.1) software and the Quantreg package were used for statistical analysis. With the quantile regression model all percentiles for breast, colorectal, prostate, lung and pancreas cancers demonstrated increasing incidence rate with urbanization. The maximum increase for breast cancer was in the 90th percentile (β=0.13, p-value<0.001), for colorectal cancer was in the 75th percentile (β=0.048, p-value<0.001), for prostate cancer the 95th percentile (β=0.55, p-value<0.001), for lung cancer was in 95th percentile (β=0.52, p-value=0.006), for pancreas cancer was in 10th percentile (β=0.011, p-value<0.001). For gastric, esophageal and skin cancers, with increasing urbanization, the incidence rate was decreased. The maximum decrease for gastric cancer was in the 90th percentile(β=0.003, p-value<0.001), for esophageal cancer the 95th (β=0.04, p-value=0.4) and for skin cancer also the 95th (β=0.145, p-value=0.071). The AIC showed that for upper percentiles, the fitting of quantile regression was better than least square regression. According to the results of this study, the significant impact of urbanization on cancer morbidity requirs more effort and planning by policymakers and administrators in order to reduce risk factors such as pollution in urban areas and ensure proper nutrition recommendations are made.
ERIC Educational Resources Information Center
Liou, Pey-Yan
2009-01-01
The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…
Nonparametric methods for drought severity estimation at ungauged sites
NASA Astrophysics Data System (ADS)
Sadri, S.; Burn, D. H.
2012-12-01
The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.
Rapid Isolation and Detection for RNA Biomarkers for TBI Diagnostics
2015-10-01
V., Grape and wine sensory attributes correlate with pattern- based discrimination of Cabernet Sauvignon wines by a peptidic sensor array, Tetrahedron... wine samples. Partial Least Squares Regression (PLSR) was used for the correlation of wine sensory attributes to the peptide-based receptor...responses. Data analysis was done using the software XLSTAT Addinsoft, NewYork) and R.Absorbance values due to wine without the sensing ensembles were
ERIC Educational Resources Information Center
Brown, Ben
2009-01-01
This article provides an analysis of survey data on perceptions of student misconduct, perceived respect for teachers, and support for corporal punishment among school teachers in South Korea. The data were gathered from a survey of 110 middle and high school teachers in Gyeonggi Province, South Korea. Descriptive, chi square, logistic regression,…
Ghanem, Eman; Hopfer, Helene; Navarro, Andrea; Ritzer, Maxwell S; Mahmood, Lina; Fredell, Morgan; Cubley, Ashley; Bolen, Jessica; Fattah, Rabia; Teasdale, Katherine; Lieu, Linh; Chua, Tedmund; Marini, Federico; Heymann, Hildegarde; Anslyn, Eric V
2015-05-20
Differential sensing using synthetic receptors as mimics of the mammalian senses of taste and smell is a powerful approach for the analysis of complex mixtures. Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based sensing array in differentiating and predicting the composition of red wine blends. Fifteen blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, were used in this investigation. Linear Discriminant Analysis (LDA) showed a clear differentiation of blends based on tannin concentration and composition where certain mono varietals like Cabernet Sauvignon seemed to contribute less to the overall characteristics of the blend. Partial Least Squares (PLS) Regression and cross validation were used to build a predictive model for the responses of the receptors to eleven binary blends and the three mono varietals. The optimized model was later used to predict the percentage of each mono varietal in an independent test set composted of four tri-blends with a 15% average error. A partial least square regression model using the mouth-feel and taste descriptive sensory attributes of the wine blends revealed a strong correlation of the receptors to perceived astringency, which is indicative of selective binding to polyphenols in wine.
Chowdhury, Md Rocky Khan; Rahman, Md Shafiur; Mondal, Md Nazrul Islam; Sayem, Abu; Billah, Baki
2015-01-01
Stigma, considered a social disease, is more apparent in developing societies which are driven by various social affairs, and influences adherence to treatment. The aim of the present study was to examine levels of social stigma related to tuberculosis (TB) in sociodemographic context and identify the effects of sociodemographic factors on stigma. The study sample consisted of 372 TB patients. Data were collected using stratified sampling with simple random sampling techniques. T tests, chi-square tests, and binary logistic regression analysis were performed to examine correlations between stigma and sociodemographic variables. Approximately 85.9% of patients had experienced stigma. The most frequent indicator of the stigma experienced by patients involved problems taking part in social programs (79.5%). Mean levels of stigma were significantly higher in women (55.5%), illiterate individuals (60.8%), and villagers (60.8%) relative to those of other groups. Chi-square tests revealed that education, monthly family income, and type of patient (pulmonary and extrapulmonary) were significantly associated with stigma. Binary logistic regression analysis demonstrated that stigma was influenced by sex, education, and type of patient. Stigma is one of the most important barriers to treatment adherence. Therefore, in interventions that aim to reduce stigma, strong collaboration between various institutions is essential.
Neden, Catherine A; Parkin, Claire; Blow, Carol; Siriwardena, Aloysius Niroshan
2018-05-08
The aim of this study was to assess whether the absolute standard of candidates sitting the MRCGP Applied Knowledge Test (AKT) between 2011 and 2016 had changed. It is a descriptive study comparing the performance on marker questions of a reference group of UK graduates taking the AKT for the first time between 2011 and 2016. Using aggregated examination data, the performance of individual 'marker' questions was compared using Pearson's chi-squared tests and trend-line analysis. Binary logistic regression was used to analyse changes in performance over the study period. Changes in performance of individual marker questions using Pearson's chi-squared test showed statistically significant differences in 32 of the 49 questions included in the study. Trend line analysis showed a positive trend in 29 questions and a negative trend in the remaining 23. The magnitude of change was small. Logistic regression did not demonstrate any evidence for a change in the performance of the question set over the study period. However, candidates were more likely to get items on administration wrong compared with clinical medicine or research. There was no evidence of a change in performance of the question set as a whole.
Using Quantile and Asymmetric Least Squares Regression for Optimal Risk Adjustment.
Lorenz, Normann
2017-06-01
In this paper, we analyze optimal risk adjustment for direct risk selection (DRS). Integrating insurers' activities for risk selection into a discrete choice model of individuals' health insurance choice shows that DRS has the structure of a contest. For the contest success function (csf) used in most of the contest literature (the Tullock-csf), optimal transfers for a risk adjustment scheme have to be determined by means of a restricted quantile regression, irrespective of whether insurers are primarily engaged in positive DRS (attracting low risks) or negative DRS (repelling high risks). This is at odds with the common practice of determining transfers by means of a least squares regression. However, this common practice can be rationalized for a new csf, but only if positive and negative DRSs are equally important; if they are not, optimal transfers have to be calculated by means of a restricted asymmetric least squares regression. Using data from German and Swiss health insurers, we find considerable differences between the three types of regressions. Optimal transfers therefore critically depend on which csf represents insurers' incentives for DRS and, if it is not the Tullock-csf, whether insurers are primarily engaged in positive or negative DRS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Discrimination of serum Raman spectroscopy between normal and colorectal cancer
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi
2011-07-01
Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region
NASA Astrophysics Data System (ADS)
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Hazard Function Estimation with Cause-of-Death Data Missing at Random
Wang, Qihua; Dinse, Gregg E.; Liu, Chunling
2010-01-01
Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data. PMID:22267874
Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita
2018-03-01
The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.
Goicoechea, H C; Olivieri, A C
1999-08-01
The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.
SUPPLEMENTARY COMPARISON: EUROMET.L-S10 Comparison of squareness measurements
NASA Astrophysics Data System (ADS)
Mokros, Jiri
2005-01-01
The idea of performing a comparison of squareness resulted from the need to review the MRA Appendix C, Category 90° square. At its meeting in October 1999 (in Prague) it was decided upon a first comparison of squareness measurements in the framework of EUROMET, numbered #570, starting in 2000, with the Slovak Institute of Metrology (SMU) as the pilot laboratory. During the preparation stage of the project, it was agreed that it should be submitted as a EUROMET supplementary comparison in the framework of the Mutual Recognition Arrangement (MRA) of the Metre Convention and would boost confidence in calibration and measurement certificates issued by the participating national metrology institutes. The aim of the comparison of squareness measurement was to compare and verify the declared calibration measurement capabilities of participating laboratories and to investigate the effect of systematic influences in the measurement process and their elimination. Eleven NMIs from the EUROMET region carried out this project. Two standards were calibrated: granite squareness standard of rectangular shape, cylindrical squareness standard of steel with marked positions for the profile lines. The following parameters had to be calibrated: granite squareness standard: interior angle γB between two lines AB and AC (envelope - LS regression) fitted through the measured profiles, and/or granite squareness standard: interior angle γLS between two LS regression lines AB and AC fitted through the measured profiles, cylindrical squareness standard: interior angles γ0°, γ90°, γ180°, γ270° between the LS regression line fitted through the measurement profiles at 0°, 90°, 180°, 270° and the envelope plane of the basis (resting on a surface plate), local LS straightness deviation for all measured profiles (2 and 4) of both standards. The results of the comparison are the deviations of profiles and angles measured by the individual NMIs from the reference values. These resulted from the weighted mean of data from participating laboratories, while some of them were excluded on the basis of statistical evaluation. Graphical interpretations of all deviations are contained in the Final Report. In order to compare the individual deviations mutually (25 profiles for the granite square and 44 profiles for the cylinder), graphical illustrations of 'standard deviations' and both extreme values (max. and min.) of deviations were created. This regional supplementary comparison has provided independent information about the metrological properties of the measuring equipment and method used by the participating NMIs. The Final Report does not contain the En values. Participants could not estimate some contributions in the uncertainty budget on the basis of previous comparisons, since no comparison of this kind had ever been organized. Therefore the En value cannot reflect the actual state of the given NMI. Instead of En, an analysis has been performed by means of the Grubbs test according to ISO 5725-2. This comparison provided information about the state of provision of metrological services in the field of big squares measurement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EUROMET, according to the provisions of the Mutual Recognition Arrangement (MRA).
Robust scoring functions for protein-ligand interactions with quantum chemical charge models.
Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J
2011-10-24
Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Gaspardo, B; Del Zotto, S; Torelli, E; Cividino, S R; Firrao, G; Della Riccia, G; Stefanon, B
2012-12-01
Fourier transform near infrared (FT-NIR) spectroscopy is an analytical procedure generally used to detect organic compounds in food. In this work the ability to predict fumonisin B(1)+B(2) contents in corn meal using an FT-NIR spectrophotometer, equipped with an integration sphere, was assessed. A total of 143 corn meal samples were collected in Friuli Venezia Giulia Region (Italy) and used to define a 15 principal components regression model, applying partial least square regression algorithm with full cross validation as internal validation. External validation was performed to 25 unknown samples. Coefficients of correlation, root mean square error and standard error of calibration were 0.964, 0.630 and 0.632, respectively and the external validation confirmed a fair potential of the model in predicting FB(1)+FB(2) concentration. Results suggest that FT-NIR analysis is a suitable method to detect FB(1)+FB(2) in corn meal and to discriminate safe meals from those contaminated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Racial/ethnic variation in mental health correlates of substance use among college students.
Sumstine, Stephanie; Cruz, Sheena; Schroeder, Cassandra; Takeda, Summer; Bavarian, Niloofar
2018-01-01
This study investigated mental health indicators, substance use, and their relationships, by race/ethnicity. A probability sample of 1,053 students at two California universities self-reported their frequency of substance use and rated their experience with indicators of mental health. One-way analysis of variance (ANOVA), chi-square tests, and multivariate censored regression models were estimated to examine which indicators of mental health were associated with each substance use form by race/ethnicity. Results from the one-way ANOVA and chi-square tests showed differences in substance use prevalence and mental health by race/ethnicity. For example, students who identified as White demonstrate a higher prevalence for every form of substance use in comparison to the Asian, Latino, and "All other" categories. Results from the regression showed, among Whites, inattention was associated with prescription stimulant misuse, and psychological distress was associated with marijuana use. Among Latinos, inattention was associated with cocaine and prescription stimulant use. Among Asians, psychological distress was associated with tobacco use and the misuse of prescription painkillers. Findings highlight the need to ensure subpopulations receive needed services.
NASA Astrophysics Data System (ADS)
Takahashi, Tomoko; Thornton, Blair
2017-12-01
This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.
NASA Astrophysics Data System (ADS)
Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd
2017-08-01
The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.
Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma
2018-08-30
The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takayama, T.; Iwasaki, A.
2016-06-01
Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.
ERIC Educational Resources Information Center
Lee, Wan-Fung; Bulcock, Jeffrey Wilson
The purposes of this study are: (1) to demonstrate the superiority of simple ridge regression over ordinary least squares regression through theoretical argument and empirical example; (2) to modify ridge regression through use of the variance normalization criterion; and (3) to demonstrate the superiority of simple ridge regression based on the…
Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.
ERIC Educational Resources Information Center
Algina, James; Olejnik, Stephen
2000-01-01
Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)
Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C
2014-12-01
It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.
Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A
2006-01-23
A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.
NASA Astrophysics Data System (ADS)
Tan, C. H.; Matjafri, M. Z.; Lim, H. S.
2015-10-01
This paper presents the prediction models which analyze and compute the CO2 emission in Malaysia. Each prediction model for CO2 emission will be analyzed based on three main groups which is transportation, electricity and heat production as well as residential buildings and commercial and public services. The prediction models were generated using data obtained from World Bank Open Data. Best subset method will be used to remove irrelevant data and followed by multi linear regression to produce the prediction models. From the results, high R-square (prediction) value was obtained and this implies that the models are reliable to predict the CO2 emission by using specific data. In addition, the CO2 emissions from these three groups are forecasted using trend analysis plots for observation purpose.
Spreadsheet for designing valid least-squares calibrations: A tutorial.
Bettencourt da Silva, Ricardo J N
2016-02-01
Instrumental methods of analysis are used to define the price of goods, the compliance of products with a regulation, or the outcome of fundamental or applied research. These methods can only play their role properly if reported information is objective and their quality is fit for the intended use. If measurement results are reported with an adequately small measurement uncertainty both of these goals are achieved. The evaluation of the measurement uncertainty can be performed by the bottom-up approach, that involves a detailed description of the measurement process, or using a pragmatic top-down approach that quantify major uncertainty components from global performance data. The bottom-up approach is not so frequently used due to the need to master the quantification of individual components responsible for random and systematic effects that affect measurement results. This work presents a tutorial that can be easily used by non-experts in the accurate evaluation of the measurement uncertainty of instrumental methods of analysis calibrated using least-squares regressions. The tutorial includes the definition of the calibration interval, the assessments of instrumental response homoscedasticity, the definition of calibrators preparation procedure required for least-squares regression model application, the assessment of instrumental response linearity and the evaluation of measurement uncertainty. The developed measurement model is only applicable in calibration ranges where signal precision is constant. A MS-Excel file is made available to allow the easy application of the tutorial. This tool can be useful for cases where top-down approaches cannot produce results with adequately low measurement uncertainty. An example of the application of this tool to the determination of nitrate in water by ion chromatography is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
Evaluating and Improving the SAMA (Segmentation Analysis and Market Assessment) Recruiting Model
2015-06-01
and rewarding me with your love every day. xx THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. THE UNITED STATES ARMY RECRUITING...the relationship between the calculated SAMA potential and the actual 2014 performance. The scatterplot in Figure 8 shows a strong linear... relationship between the SAMA calculated potential and the contracting achievement for 2014, with an R-squared value of 0.871. Simple Linear Regression of
Analysis of carbon dioxide bands near 2.2 micrometers
NASA Technical Reports Server (NTRS)
Abubaker, M. S.; Shaw, J. H.
1984-01-01
Carbon dioxide is one of the more important atmospheric infrared-absorbing gases due to its relatively high, and increasing, concentration. The spectral parameters of its bands are required for understanding radiative heat transfer in the atmosphere. The line intensities, positions, line half-widths, rotational constants, and band centers of three overlapping bands of CO2 near 2.2 microns are presented. Non-linear least squares (NLLS) regression procedures were employed to determine these parameters.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-01-01
Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-05-20
In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Robeson, S. M.
2015-12-01
Empirical models have been widely used to estimate global chlorophyll content from remotely sensed data. Here, we focus on the standard NASA empirical models that use blue-green band ratios. These band ratio ocean color (OC) algorithms are in the form of fourth-order polynomials and the parameters of these polynomials (i.e. coefficients) are estimated from the NASA bio-Optical Marine Algorithm Data set (NOMAD). Most of the points in this data set have been sampled from tropical and temperate regions. However, polynomial coefficients obtained from this data set are used to estimate chlorophyll content in all ocean regions with different properties such as sea-surface temperature, salinity, and downwelling/upwelling patterns. Further, the polynomial terms in these models are highly correlated. In sum, the limitations of these empirical models are as follows: 1) the independent variables within the empirical models, in their current form, are correlated (multicollinear), and 2) current algorithms are global approaches and are based on the spatial stationarity assumption, so they are independent of location. Multicollinearity problem is resolved by using partial least squares (PLS). PLS, which transforms the data into a set of independent components, can be considered as a combined form of principal component regression (PCR) and multiple regression. Geographically weighted regression (GWR) is also used to investigate the validity of spatial stationarity assumption. GWR solves a regression model over each sample point by using the observations within its neighbourhood. PLS results show that the empirical method underestimates chlorophyll content in high latitudes, including the Southern Ocean region, when compared to PLS (see Figure 1). Cluster analysis of GWR coefficients also shows that the spatial stationarity assumption in empirical models is not likely a valid assumption.
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
Brambilla, Giovanni; Maffei, Luigi; Di Gabriele, Maria; Gallo, Veronica
2013-07-01
An experimental study was carried out in 20 squares in the center of Rome, covering a wide range of different uses, sonic environments, geometry, and architectural styles. Soundwalks along the perimeter of each square were performed during daylight and weekdays taking binaural and video recordings, as well as spot measurements of illuminance. The cluster analysis performed on the physical parameters, not only acoustic, provided two clusters that are in satisfactory agreement with the "a priori" classification. Applying the principal component analysis (PCA) to five physical parameters, two main components were obtained which might be associated to two environmental features, namely, "chaotic/calm" and "open/enclosed." On the basis of these two features, six squares were selected for the laboratory audio-video tests where 32 subjects took part filling in a questionnaire. The PCA performed on the subjective ratings on the sonic environment showed two main components which might be associated to two emotional meanings, namely, "calmness" and "vibrancy." The linear regression modeling between five objective parameters and the mean value of subjective ratings on chaotic/calm and enclosed/open attributes showed a good correlation. Notwithstanding these interesting results being limited to the specific data set, it is worth pointing out that the complexity of the soundscape quality assessment can be more comprehensively examined merging the field measurements of physical parameters with the subjective ratings provided by field and/or laboratory tests.
Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine
Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander
2007-01-01
Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.; Chen, J.
2017-11-01
The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.
a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters
NASA Astrophysics Data System (ADS)
Huang, Lin-Shan; Chen, Yan-Guang
Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
Magnitude and frequency of floods in Arkansas
Hodge, Scott A.; Tasker, Gary D.
1995-01-01
Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and Ouachita Rivers have floodflow characteristics that differ from those of smaller tributary streams and were treated individually. Regional regression equations are not applicable to these large rivers. The magnitude and frequency of floods along these rivers are based on specific station data. This section is provided in the Appendix and has not been updated since the last Arkansas flood frequency report (1987b), but is included at the request of the cooperator.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Lombard, Pamela J.; Hodgkins, Glenn A.
2015-01-01
Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.
Online measurement of urea concentration in spent dialysate during hemodialysis.
Olesberg, Jonathon T; Arnold, Mark A; Flanigan, Michael J
2004-01-01
We describe online optical measurements of urea in the effluent dialysate line during regular hemodialysis treatment of several patients. Monitoring urea removal can provide valuable information about dialysis efficiency. Spectral measurements were performed with a Fourier-transform infrared spectrometer equipped with a flow-through cell. Spectra were recorded across the 5000-4000 cm(-1) (2.0-2.5 microm) wavelength range at 1-min intervals. Savitzky-Golay filtering was used to remove baseline variations attributable to the temperature dependence of the water absorption spectrum. Urea concentrations were extracted from the filtered spectra by use of partial least-squares regression and the net analyte signal of urea. Urea concentrations predicted by partial least-squares regression matched concentrations obtained from standard chemical assays with a root mean square error of 0.30 mmol/L (0.84 mg/dL urea nitrogen) over an observed concentration range of 0-11 mmol/L. The root mean square error obtained with the net analyte signal of urea was 0.43 mmol/L with a calibration based only on a set of pure-component spectra. The error decreased to 0.23 mmol/L when a slope and offset correction were used. Urea concentrations can be continuously monitored during hemodialysis by near-infrared spectroscopy. Calibrations based on the net analyte signal of urea are particularly appealing because they do not require a training step, as do statistical multivariate calibration procedures such as partial least-squares regression.
Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu
2015-04-01
An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Argentiero, P.; Lowrey, B.
1977-01-01
The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described.
Analysis of Radiation Effects in Digital Subtraction Angiography of Intracranial Artery Stenosis.
Guo, Chaoqun; Shi, Xiaolei; Ding, Xianhui; Zhou, Zhiming
2018-04-21
Intracranial artery stenosis (IAS) is the most common cause for acute cerebral accidents. Digital subtraction angiography (DSA) is the gold standard to detect IAS and usually brings excess radiation exposure to examinees and examiners. The artery pathology might influence the interventional procedure, causing prolonged radiation effects. However, no studies on the association between IAS pathology and operational parameters are available. A retrospective analysis was conducted on 93 patients with first-ever stroke/transient ischemic attack, who received DSA examination within 3 months from onset in this single center. Comparison of baseline characteristics was determined by 2-tailed Student's t-test or the chi-square test between subjects with and without IAS. A binary logistic regression analysis was performed to determine the association between IAS pathology and the items with a P value <0.05 in Student's t-test or chi-square test. There were 93 candidates (42 with IAS and 51 without IAS) in this study. The 2 groups shared no significance of the baseline characteristics (P > 0.05). We found a significantly higher total time, higher kerma area product, greater total dose, and greater DSA dose in the IAS group than in those without IAS (P < 0.05). A binary logistic regression analysis indicated the significant association between total time and IAS pathology (P < 0.05) but no significance in kerma area product, radiation dose, and DSA dose (P > 0.05). IAS pathology would indicate a prolonged total time of DSA procedure in clinical practice. However, the radiation effects would not change with pathologic changes. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua
2017-10-01
Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.
Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique
NASA Astrophysics Data System (ADS)
Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida
2018-04-01
The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.
Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena
2015-04-15
It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M
2014-08-01
Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.
Walker, Mary Ellen; Anonson, June; Szafron, Michael
2015-01-01
The relationship between political environment and health services accessibility (HSA) has not been the focus of any specific studies. The purpose of this study was to address this gap in the literature by examining the relationship between political environment and HSA. This relationship that HSA indicators (physicians, nurses and hospital beds per 10 000 people) has with political environment was analyzed with multiple least-squares regression using the components of democracy (electoral processes and pluralism, functioning of government, political participation, political culture, and civil liberties). The components of democracy were represented by the 2011 Economist Intelligence Unit Democracy Index (EIUDI) sub-scores. The EIUDI sub-scores and the HSA indicators were evaluated for significant relationships with multiple least-squares regression. While controlling for a country's geographic location and level of democracy, we found that two components of a nation's political environment: functioning of government and political participation, and their interaction had significant relationships with the three HSA indicators. These study findings are of significance to health professionals because they examine the political contexts in which citizens access health services, they come from research that is the first of its kind, and they help explain the effect political environment has on health. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Radon-222 concentrations in ground water and soil gas on Indian reservations in Wisconsin
DeWild, John F.; Krohelski, James T.
1995-01-01
For sites with wells finished in the sand and gravel aquifer, the coefficient of determination (R2) of the regression of concentration of radon-222 in ground water as a function of well depth is 0.003 and the significance level is 0.32, which indicates that there is not a statistically significant relation between radon-222 concentrations in ground water and well depth. The coefficient of determination of the regression of radon-222 in ground water and soil gas is 0.19 and the root mean square error of the regression line is 271 picocuries per liter. Even though the significance level (0.036) indicates a statistical relation, the root mean square error of the regression is so large that the regression equation would not give reliable predictions. Because of an inadequate number of samples, similar statistical analyses could not be performed for sites with wells finished in the crystalline and sedimentary bedrock aquifers.
Medina, K.D.; Tasker, Gary D.
1985-01-01
The surface water data network in Kansas was analyzed using generalized least squares regression for its effectiveness in providing regional streamflow information. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-flow, low-flow and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow gaging station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations; and/or adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and discontinued stations for which unregulated flow characteristics , as well as physical and climatic characteristics, were available. The state was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean square error for each cost level could be obtained by adding new stations and discontinuing some of the present network stations. Large reductions in sampling mean square error for low-flow information could be accomplished in all three network areas, with western Kansas having the most dramatic reduction. The addition of new stations would be most beneficial for man- flow information in western Kansas, and to lesser degrees in the other two areas. The reduction of sampling mean square error for high-flow information would benefit most from the addition of new stations in western Kansas, and the effect diminishes to lesser degrees in the other two areas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas. (Author 's abstract)
Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Batista, G. T.
1984-01-01
A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation.
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.
2010-01-01
In evaluating the relationship between two measures across different groups (i.e., in evaluating "differential validity") it is necessary to examine differences in correlation coefficients and in regression lines. Ordinary least squares (OLS) regression is the standard method for fitting lines to data, but its criterion for optimal fit…
Tutorial on Using Regression Models with Count Outcomes Using R
ERIC Educational Resources Information Center
Beaujean, A. Alexander; Morgan, Grant B.
2016-01-01
Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either case, using typical regression for count data can…
Principles of Quantile Regression and an Application
ERIC Educational Resources Information Center
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
The concept of psychological regression: metaphors, mapping, Queen Square, and Tavistock Square.
Mercer, Jean
2011-05-01
The term "regression" refers to events in which an individual changes from his or her present level of maturity and regains mental and behavioral characteristics shown at an earlier point in development. This definition has remained constant for over a century, but the implications of the concept have changed systematically from a perspective in which regression was considered pathological, to a current view in which regression may be seen as a positive step in psychotherapy or as a part of normal development. The concept of regression, famously employed by Sigmund Freud and others in his circle, derived from ideas suggested by Herbert Spencer and by John Hughlings Jackson. By the 1940s and '50s, the regression concept was applied by Winnicott and others in treatment of disturbed children and in adult psychotherapy. In addition, behavioral regression came to be seen as a part of a normal developmental trajectory, with a focus on expectable variability. The present article examines historical changes in the regression concept in terms of mapping to biomedical or other metaphors, in terms of a movement from earlier nativism toward an increased environmentalism in psychology, and with respect to other historical factors such as wartime events. The role of dominant metaphors in shifting perspectives on regression is described.
NASA Astrophysics Data System (ADS)
Borodachev, S. M.
2016-06-01
The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.
Random forest models to predict aqueous solubility.
Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O
2007-01-01
Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.
An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin
Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less
An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology
Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin; ...
2017-05-15
Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
NASA Astrophysics Data System (ADS)
Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari
2018-01-01
Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.
NASA Technical Reports Server (NTRS)
Argentiero, P.; Lowrey, B.
1976-01-01
The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described, and its numerical properties are compared with the numerical properties of the conventional least squares estimator.
Critical configurations (determinantal loci) for range and range difference satellite networks
NASA Technical Reports Server (NTRS)
Tsimis, E.
1973-01-01
The observational modes of Geometric Satellite Geodesy are discussed. The geometrical analysis of the problem yielded a regression model for the adjustment of the observations along with a suitable and convenient metric for the least-squares criterion. The determinantal loci (critical configurations) for range networks are analyzed. An attempt is made to apply elements of the theory of variants for this purpose. The use of continuously measured range differences for loci determination is proposed.
ASR4. Anelastic Strain Recovery Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton`s approach, assuming sufficient input data are available.
Anelastic Strain Recovery Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
Ermolina, I; Darkwah, J; Smith, G
2014-04-01
The control of the amorphous and crystalline states of drugs and excipients is important in many instances of product formulation, manufacture, and packaging, such as the formulation of certain (freeze-dried) fast melt tablets. This study examines the use of terahertz-pulsed spectroscopy (TPS) coupled with two different data analytical methods as an off-line tool (in the first instance) for assessing the degree of crystallinity in a binary mixture of amorphous and polycrystalline sucrose. The terahertz spectrum of sucrose was recorded in the wave number range between 3 and 100 cm(-1) for both the pure crystalline form and for a mixture of the crystalline and amorphous (freeze-dried) form. The THz spectra of crystalline sucrose showed distinct absorption bands at ∼48, ∼55, and ∼60 cm(-1) while all these features were absent in the amorphous sucrose. Calibration models were constructed based on (1) peak area analysis and (2) partial least square regression analysis, with the latter giving the best LOD and LOQ of 0.76% and 2.3%, respectively. The potential for using THz spectroscopy, as a quantitative in-line tool for percent crystallinity in a range of complex systems such as conventional tablets and freeze-dried formulations, is suggested in this study.
NASA Astrophysics Data System (ADS)
Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.
2014-12-01
Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.
Geographic Distribution of Urologists in Korea, 2007 to 2012
Song, Yun Seob; Shim, Sung Ryul; Jung, Insoo; Sun, Hwa Yeon; Song, Soo Hyun; Kwon, Soon-Sun; Ko, Young Myoung
2015-01-01
The adequacy of the urologist work force in Korea has never been investigated. This study investigated the geographic distribution of urologists in Korea. County level data from the National Health Insurance Service and National Statistical Office was analyzed in this ecological study. Urologist density was defined by the number of urologists per 100,000 individuals. National patterns of urologist density were mapped graphically at the county level using GIS software. To control the time sequence, regression analysis with fitted line plot was conducted. The difference of distribution of urologist density was analyzed by ANCOVA. Urologists density showed an uneven distribution according to county characteristics (metropolitan cities vs. nonmetropolitan cities vs. rural areas; mean square=102.329, P<0.001) and also according to year (mean square=9.747, P=0.048). Regression analysis between metropolitan and non-metropolitan cities showed significant difference in the change of urologists per year (P=0.019). Metropolitan cities vs. rural areas and non-metropolitan cities vs. rural areas showed no differences. Among the factors, the presence of training hospitals was the affecting factor for the uneven distribution of urologist density (P<0.001).Uneven distribution of urologists in Korea likely originated from the relatively low urologist density in rural areas. However, considering the time sequencing data from 2007 to 2012, there was a difference between the increase of urologist density in metropolitan and non-metropolitan cities. PMID:26539009
NASA Astrophysics Data System (ADS)
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
Geographic Distribution of Urologists in Korea, 2007 to 2012.
Song, Yun Seob; Shim, Sung Ryul; Jung, Insoo; Sun, Hwa Yeon; Song, Soo Hyun; Kwon, Soon-Sun; Ko, Young Myoung; Kim, Jae Heon
2015-11-01
The adequacy of the urologist work force in Korea has never been investigated. This study investigated the geographic distribution of urologists in Korea. County level data from the National Health Insurance Service and National Statistical Office was analyzed in this ecological study. Urologist density was defined by the number of urologists per 100,000 individuals. National patterns of urologist density were mapped graphically at the county level using GIS software. To control the time sequence, regression analysis with fitted line plot was conducted. The difference of distribution of urologist density was analyzed by ANCOVA. Urologists density showed an uneven distribution according to county characteristics (metropolitan cities vs. nonmetropolitan cities vs. rural areas; mean square=102.329, P<0.001) and also according to year (mean square=9.747, P=0.048). Regression analysis between metropolitan and non-metropolitan cities showed significant difference in the change of urologists per year (P=0.019). Metropolitan cities vs. rural areas and non-metropolitan cities vs. rural areas showed no differences. Among the factors, the presence of training hospitals was the affecting factor for the uneven distribution of urologist density (P<0.001). Uneven distribution of urologists in Korea likely originated from the relatively low urologist density in rural areas. However, considering the time sequencing data from 2007 to 2012, there was a difference between the increase of urologist density in metropolitan and non-metropolitan cities.
A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.
Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem
2018-06-12
Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.
Meta-regression approximations to reduce publication selection bias.
Stanley, T D; Doucouliagos, Hristos
2014-03-01
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Li, Xiaomeng; Fang, Dansi; Cong, Xiaodong; Cao, Gang; Cai, Hao; Cai, Baochang
2012-12-01
A method is described using rapid and sensitive Fourier transform near-infrared spectroscopy combined with high-performance liquid chromatography-diode array detection for the simultaneous identification and determination of four bioactive compounds in crude Radix Scrophulariae samples. Partial least squares regression is selected as the analysis type and multiplicative scatter correction, second derivative, and Savitzky-Golay filter were adopted for the spectral pretreatment. The correlation coefficients (R) of the calibration models were above 0.96 and the root mean square error of predictions were under 0.028. The developed models were applied to unknown samples with satisfactory results. The established method was validated and can be applied to the intrinsic quality control of crude Radix Scrophulariae.
Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.
Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen
2017-01-01
Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
Comparison of methods for the analysis of relatively simple mediation models.
Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W
2017-09-01
Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.
Kamruzzaman, Mohammed; Sun, Da-Wen; ElMasry, Gamal; Allen, Paul
2013-01-15
Many studies have been carried out in developing non-destructive technologies for predicting meat adulteration, but there is still no endeavor for non-destructive detection and quantification of adulteration in minced lamb meat. The main goal of this study was to develop and optimize a rapid analytical technique based on near-infrared (NIR) hyperspectral imaging to detect the level of adulteration in minced lamb. Initial investigation was carried out using principal component analysis (PCA) to identify the most potential adulterate in minced lamb. Minced lamb meat samples were then adulterated with minced pork in the range 2-40% (w/w) at approximately 2% increments. Spectral data were used to develop a partial least squares regression (PLSR) model to predict the level of adulteration in minced lamb. Good prediction model was obtained using the whole spectral range (910-1700 nm) with a coefficient of determination (R(2)(cv)) of 0.99 and root-mean-square errors estimated by cross validation (RMSECV) of 1.37%. Four important wavelengths (940, 1067, 1144 and 1217 nm) were selected using weighted regression coefficients (Bw) and a multiple linear regression (MLR) model was then established using these important wavelengths to predict adulteration. The MLR model resulted in a coefficient of determination (R(2)(cv)) of 0.98 and RMSECV of 1.45%. The developed MLR model was then applied to each pixel in the image to obtain prediction maps to visualize the distribution of adulteration of the tested samples. The results demonstrated that the laborious and time-consuming tradition analytical techniques could be replaced by spectral data in order to provide rapid, low cost and non-destructive testing technique for adulterate detection in minced lamb meat. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl
2017-09-01
Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.
SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients.
Weaver, Bruce; Wuensch, Karl L
2013-09-01
Several procedures that use summary data to test hypotheses about Pearson correlations and ordinary least squares regression coefficients have been described in various books and articles. To our knowledge, however, no single resource describes all of the most common tests. Furthermore, many of these tests have not yet been implemented in popular statistical software packages such as SPSS and SAS. In this article, we describe all of the most common tests and provide SPSS and SAS programs to perform them. When they are applicable, our code also computes 100 × (1 - α)% confidence intervals corresponding to the tests. For testing hypotheses about independent regression coefficients, we demonstrate one method that uses summary data and another that uses raw data (i.e., Potthoff analysis). When the raw data are available, the latter method is preferred, because use of summary data entails some loss of precision due to rounding.
Williams-Sether, Tara
2015-08-06
Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.
Zhang, Ni; Liu, Xu; Jin, Xiaoduo; Li, Chen; Wu, Xuan; Yang, Shuqin; Ning, Jifeng; Yanne, Paul
2017-12-15
Phenolics contents in wine grapes are key indicators for assessing ripeness. Near-infrared hyperspectral images during ripening have been explored to achieve an effective method for predicting phenolics contents. Principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) models were built, respectively. The results show that SVR behaves globally better than PLSR and PCR, except in predicting tannins content of seeds. For the best prediction results, the squared correlation coefficient and root mean square error reached 0.8960 and 0.1069g/L (+)-catechin equivalents (CE), respectively, for tannins in skins, 0.9065 and 0.1776 (g/L CE) for total iron-reactive phenolics (TIRP) in skins, 0.8789 and 0.1442 (g/L M3G) for anthocyanins in skins, 0.9243 and 0.2401 (g/L CE) for tannins in seeds, and 0.8790 and 0.5190 (g/L CE) for TIRP in seeds. Our results indicated that NIR hyperspectral imaging has good prospects for evaluation of phenolics in wine grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong
2008-03-01
Three different chemometric methods were performed for the determination of sugar content of cola soft drinks using visible and near infrared spectroscopy (Vis/NIRS). Four varieties of colas were prepared and 180 samples (45 samples for each variety) were selected for the calibration set, while 60 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay, standard normal variate (SNV) and Savitzky-Golay first derivative transformation were applied for the pre-processing of spectral data. The first eleven principal components (PCs) extracted by partial least squares (PLS) analysis were employed as the inputs of BP neural network (BPNN) and least squares-support vector machine (LS-SVM) model. Then the BPNN model with the optimal structural parameters and LS-SVM model with radial basis function (RBF) kernel were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for prediction were 0.971, 1.259 and -0.335 for PLS, 0.986, 0.763, and -0.042 for BPNN, while 0.978, 0.995 and -0.227 for LS-SVM, respectively. All the three methods supplied a high and satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be utilized as a high precision way for the determination of sugar content of cola soft drinks.
Qiu, Shanshan; Wang, Jun; Gao, Liping
2014-07-09
An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.
Worku, Yohannes; Muchie, Mammo
2012-01-01
Objective. The objective was to investigate factors that affect the efficient management of solid waste produced by commercial businesses operating in the city of Pretoria, South Africa. Methods. Data was gathered from 1,034 businesses. Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Data analysis was performed using statistical procedures such as frequency tables, Pearson's chi-square tests of association, and binary logistic regression analysis. Odds ratios estimated from logistic regression analysis were used for identifying key factors that affect efficiency in the proper disposal of waste. Results. The study showed that 857 of the 1,034 businesses selected for the study (83%) were found to be efficient enough with regards to the proper collection and disposal of solid waste. Based on odds ratios estimated from binary logistic regression analysis, efficiency in the proper management of solid waste was significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to waste management regulations, wrong perception, failure to provide customers with enough trash cans, and operation of businesses by employed managers, in a decreasing order of importance. PMID:23209483
Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A
2015-01-01
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.
An analysis of the magnitude and frequency of floods on Oahu, Hawaii
Nakahara, R.H.
1980-01-01
An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)
Analysis of an experiment aimed at improving the reliability of transmission centre shafts.
Davis, T P
1995-01-01
Smith (1991) presents a paper proposing the use of Weibull regression models to establish dependence of failure data (usually times) on covariates related to the design of the test specimens and test procedures. In his article Smith made the point that good experimental design was as important in reliability applications as elsewhere, and in view of the current interest in design inspired by Taguchi and others, we pay some attention in this article to that topic. A real case study from the Ford Motor Company is presented. Our main approach is to utilize suggestions in the literature for applying standard least squares techniques of experimental analysis even when there is likely to be nonnormal error, and censoring. This approach lacks theoretical justification, but its appeal is its simplicity and flexibility. For completeness we also include some analysis based on the proportional hazards model, and in an attempt to link back to Smith (1991), look at a Weibull regression model.
A New Test of Linear Hypotheses in OLS Regression under Heteroscedasticity of Unknown Form
ERIC Educational Resources Information Center
Cai, Li; Hayes, Andrew F.
2008-01-01
When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM)…
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
ERIC Educational Resources Information Center
Bulcock, J. W.; And Others
Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…
Rebelo, Ana Cristina; Verlengia, Rozangela; Kunz, Vandeni; Tamburus, Nayara; Cerda, Alvaro; Hirata, Rosario; Hirata, Mario; Silva, Ester
2012-01-01
This study examined the association of estrogen receptor alpha gene (ESR1) polymorphisms with cardiorespiratory and metabolic parameters in young women. In total, 354 healthy women were selected for cardiopulmonary exercise testing and short-term heart rate (HR) variability (HRV) evaluation. The HRV analysis was determined by the temporal indices rMSSD (square root of the mean squared differences of successive R–R intervals (RRi) divided by the number of RRi minus one), SDNN (root mean square of differences from mean RRi, divided by the number of RRi) and power spectrum components by low frequency (LF), high frequency (HF) and LF/HF ratio. Blood samples were obtained for serum lipids, estradiol and DNA extraction. ESR1 rs2234693 and rs9340799 polymorphisms were analyzed by PCR and fragment restriction analysis. HR and oxygen uptake (VO2) values did not differ between the ESR1 polymorphisms with respect to autonomic modulation. We not find a relationship between ESR1 T–A, T–G, C–A and C–G haplotypes and cardiorespiratory and metabolic variables. Multiple linear regression analysis demonstrated that VO2, total cholesterol and triglycerides influence HRV (p < 0.05). The results suggest that ESR1 variants have no effect on cardiorespiratory and metabolic variables, while HRV indices are influenced by aerobic capacity and lipids in healthy women. PMID:23202974
Friesz, Paul J.
2010-01-01
Areas contributing recharge to four well fields in two study sites in southern Rhode Island were delineated on the basis of steady-state groundwater-flow models representing average hydrologic conditions. The wells are screened in sand and gravel deposits in wetland and coastal settings. The groundwater-flow models were calibrated by inverse modeling using nonlinear regression. Summary statistics from nonlinear regression were used to evaluate the uncertainty associated with the predicted areas contributing recharge to the well fields. In South Kingstown, two United Water Rhode Island well fields are in Mink Brook watershed and near Worden Pond and extensive wetlands. Wetland deposits of peat near the well fields generally range in thickness from 5 to 8 feet. Analysis of water-level drawdowns in a piezometer screened beneath the peat during a 20-day pumping period indicated vertical leakage and a vertical hydraulic conductivity for the peat of roughly 0.01 ft/d. The simulated area contributing recharge for average withdrawals of 2,138 gallons per minute during 2003-07 extended to groundwater divides in mostly till and morainal deposits, and it encompassed 2.30 square miles. Most of a sand and gravel mining operation between the well fields was in the simulated contributing area. For the maximum pumping capacity (5,100 gallons per minute), the simulated area contributing recharge expanded to 5.54 square miles. The well fields intercepted most of the precipitation recharge in Mink Brook watershed and in an adjacent small watershed, and simulated streams ceased to flow. The simulated contributing area to the well fields included an area beneath Worden Pond and a remote, isolated area in upland till on the opposite side of Worden Pond from the well fields. About 12 percent of the pumped water was derived from Worden Pond. In Charlestown, the Central Beach Fire District and the East Beach Water Association well fields are on a small (0.85 square mile) peninsula in a coastal setting. The wells are screened in a coarse-grained, ice-proximal part of a morphosequence with saturated thicknesses generally less than 30 feet on the peninsula. The simulated area contributing recharge for the average withdrawal (16 gallons per minute) during 2003-07 was 0.018 square mile. The contributing area extended southwestward from the well fields to a simulated groundwater mound; it underlay part of a small nearby wetland, and it included isolated areas on the side of the wetland opposite the well fields. For the maximum pumping rate (230 gallons per minute), the simulated area contributing recharge (0.26 square mile) expanded in all directions; it included a till area on the peninsula, and it underlay part of a nearby pond. Because the well fields are screened in a thin aquifer, simulated groundwater traveltimes from recharge locations to the discharging wells were short: 94 percent of the traveltimes were 10 years or less, and the median traveltime was 1.3 years. Model-prediction uncertainty was evaluated using a Monte Carlo analysis; the parameter variance-covariance matrix from nonlinear regression was used to create parameter sets for the analysis. Important parameters for model prediction that could not be estimated by nonlinear regression were incorporated into the variance-covariance matrix. For the South Kingstown study site, observations provided enough information to constrain the uncertainty of these parameters within realistic ranges, but for the Charlestown study site, prior information on parameters was required. Thus, the uncertainty analysis for the South Kingstown study site was an outcome of calibrating the model to available observations, but the Charlestown study site was also dependent on information provided by the modeler. A water budget and model-fit statistical criteria were used to assess parameter sets so that prediction uncertainty was not overestimated. For the scenarios using maximum pumping rates at both study
Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.
Socioeconomic factors affecting infant sleep-related deaths in St. Louis.
Hogan, Cathy
2014-01-01
Though the Back to Sleep Campaign that began in 1994 caused an overall decrease in sudden infant death syndrome (SIDS) rates, racial disparity has continued to increase in St. Louis. Though researchers have analyzed and described various sociodemographic characteristics of SIDS and infant deaths by unintentional suffocation in St. Louis, they have not simultaneously controlled for contributory risk factors to racial disparity such as race, poverty, maternal education, and number of children born to each mother (parity). To determine whether there is a relationship between maternal socioeconomic factors and sleep-related infant death. This quantitative case-control study used secondary data collected by the Missouri Department of Health and Senior Services between 2005 and 2009. The sample includes matched birth/death certificates and living birth certificates of infants who were born/died within time frame. Descriptive analysis, Chi-square, and logistic regression. The controls were birth records of infants who lived more than 1 year. Chi-square and logistic regression analyses confirmed that race and poverty have significant relationships with infant sleep-related deaths. The social significance of this study is that the results may lead to population-specific modifications of prevention messages that will reduce infant sleep-related deaths. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei
2018-01-01
The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.
A non-linear data mining parameter selection algorithm for continuous variables
Razavi, Marianne; Brady, Sean
2017-01-01
In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829
Hattori, Yusuke; Otsuka, Makoto
2017-05-30
In the pharmaceutical industry, the implementation of continuous manufacturing has been widely promoted in lieu of the traditional batch manufacturing approach. More specially, in recent years, the innovative concept of feed-forward control has been introduced in relation to process analytical technology. In the present study, we successfully developed a feed-forward control model for the tablet compression process by integrating data obtained from near-infrared (NIR) spectra and the physical properties of granules. In the pharmaceutical industry, batch manufacturing routinely allows for the preparation of granules with the desired properties through the manual control of process parameters. On the other hand, continuous manufacturing demands the automatic determination of these process parameters. Here, we proposed the development of a control model using the partial least squares regression (PLSR) method. The most significant feature of this method is the use of dataset integrating both the NIR spectra and the physical properties of the granules. Using our model, we determined that the properties of products, such as tablet weight and thickness, need to be included as independent variables in the PLSR analysis in order to predict unknown process parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia
Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.
2009-01-01
Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
NASA Astrophysics Data System (ADS)
Shao, Yongni; Jiang, Linjun; Zhou, Hong; Pan, Jian; He, Yong
2016-04-01
In our study, the feasibility of using visible/near infrared hyperspectral imaging technology to detect the changes of the internal components of Chlorella pyrenoidosa so as to determine the varieties of pesticides (such as butachlor, atrazine and glyphosate) at three concentrations (0.6 mg/L, 3 mg/L, 15 mg/L) was investigated. Three models (partial least squares discriminant analysis combined with full wavelengths, FW-PLSDA; partial least squares discriminant analysis combined with competitive adaptive reweighted sampling algorithm, CARS-PLSDA; linear discrimination analysis combined with regression coefficients, RC-LDA) were built by the hyperspectral data of Chlorella pyrenoidosa to find which model can produce the most optimal result. The RC-LDA model, which achieved an average correct classification rate of 97.0% was more superior than FW-PLSDA (72.2%) and CARS-PLSDA (84.0%), and it proved that visible/near infrared hyperspectral imaging could be a rapid and reliable technique to identify pesticide varieties. It also proved that microalgae can be a very promising medium to indicate characteristics of pesticides.
Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II
Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.
2009-01-01
We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512
Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.
Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714
Ding, A Adam; Wu, Hulin
2014-10-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.
Ding, A. Adam; Wu, Hulin
2015-01-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093
NASA Technical Reports Server (NTRS)
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.
Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu
2016-08-01
The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.
Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sanghapi, Hervé K.; Jain, Jinesh; Bol'shakov, Alexander; Lopano, Christina; McIntyre, Dustin; Russo, Richard
2016-08-01
In this study laser induced breakdown spectroscopy (LIBS) is used for elemental characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed to form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and univariate calibration curves were used for quantification of analytes. The matrix effect is substantially reduced using the partial least squares calibration method. Predicted results with LIBS are compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are compared to those obtained by a carbon analyzer. Relative errors of the LIBS measurements are in the range of 1.7 to 12.6%. The limits of detection (LODs) obtained for Si, Al, Ti, Mg and Ca are 60.9, 33.0, 15.6, 4.2 and 0.03 ppm, respectively. An LOD of 0.4 wt.% was obtained for carbon. This study shows that the LIBS method can provide a rapid analysis of shale samples and can potentially benefit depleted gas shale carbon storage research.
Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh
2014-01-01
The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05).
Arjunan, Sridhar P.; Kumar, Dinesh K.; Naik, Ganesh
2014-01-01
The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05). PMID:24995275
de Vries, Durk R; van Herwaarden, Margot A; Smout, André J P M; Samsom, Melvin
2008-06-01
The roles of intragastric pressure (IGP), intraesophageal pressure (IEP), gastroesophageal pressure gradient (GEPG), and body mass index (BMI) in the pathophysiology of gastroesophageal reflux disease (GERD) and hiatal hernia (HH) are only partly understood. In total, 149 GERD patients underwent stationary esophageal manometry, 24-h pH-metry, and endoscopy. One hundred three patients had HH. Linear regression analysis showed that each kilogram per square meter of BMI caused a 0.047-kPa increase in inspiratory IGP (95% confidence interval [CI] 0.026-0.067) and a 0.031-kPa increase in inspiratory GEPG (95% CI 0.007-0.055). Each kilogram per square meter of BMI caused expiratory IGP to increase with 0.043 kPa (95% CI 0.025-0.060) and expiratory IEP with 0.052 kPa (95% CI 0.027-0.077). Each added year of age caused inspiratory IEP to decrease by 0.008 kPa (95% CI -0.015-0.001) and inspiratory GEPG to increase by 0.008 kPa (95% CI 0.000-0.015). In binary logistic regression analysis, HH was predicted by inspiratory and expiratory IGP (odds ratio [OR] 2.93 and 2.62, respectively), inspiratory and expiratory GEPG (OR 3.19 and 2.68, respectively), and BMI (OR 1.72/5 kg/m(2)). In linear regression analysis, HH caused an average 5.09% increase in supine acid exposure (95% CI 0.96-9.22) and an average 3.46% increase in total acid exposure (95% CI 0.82-6.09). Each added year of age caused an average 0.10% increase in upright acid exposure and a 0.09% increase in total acid exposure (95% CI 0.00-0.20 and 0.00-0.18). BMI predicts IGP, inspiratory GEPG, and expiratory IEP. Age predicts inspiratory IEP and GEPG. Presence of HH is predicted by IGP, GEPG, and BMI. GEPG is not associated with acid exposure.
Sheehan, Kenneth R.; Strager, Michael P.; Welsh, Stuart A.
2013-01-01
Stream habitat assessments are commonplace in fish management, and often involve nonspatial analysis methods for quantifying or predicting habitat, such as ordinary least squares regression (OLS). Spatial relationships, however, often exist among stream habitat variables. For example, water depth, water velocity, and benthic substrate sizes within streams are often spatially correlated and may exhibit spatial nonstationarity or inconsistency in geographic space. Thus, analysis methods should address spatial relationships within habitat datasets. In this study, OLS and a recently developed method, geographically weighted regression (GWR), were used to model benthic substrate from water depth and water velocity data at two stream sites within the Greater Yellowstone Ecosystem. For data collection, each site was represented by a grid of 0.1 m2 cells, where actual values of water depth, water velocity, and benthic substrate class were measured for each cell. Accuracies of regressed substrate class data by OLS and GWR methods were calculated by comparing maps, parameter estimates, and determination coefficient r 2. For analysis of data from both sites, Akaike’s Information Criterion corrected for sample size indicated the best approximating model for the data resulted from GWR and not from OLS. Adjusted r 2 values also supported GWR as a better approach than OLS for prediction of substrate. This study supports GWR (a spatial analysis approach) over nonspatial OLS methods for prediction of habitat for stream habitat assessments.
Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.
2016-03-16
Estimates of the magnitude and frequency of floods are needed across Alaska for engineering design of transportation and water-conveyance structures, flood-insurance studies, flood-plain management, and other water-resource purposes. This report updates methods for estimating flood magnitude and frequency in Alaska and conterminous basins in Canada. Annual peak-flow data through water year 2012 were compiled from 387 streamgages on unregulated streams with at least 10 years of record. Flood-frequency estimates were computed for each streamgage using the Expected Moments Algorithm to fit a Pearson Type III distribution to the logarithms of annual peak flows. A multiple Grubbs-Beck test was used to identify potentially influential low floods in the time series of peak flows for censoring in the flood frequency analysis.For two new regional skew areas, flood-frequency estimates using station skew were computed for stations with at least 25 years of record for use in a Bayesian least-squares regression analysis to determine a regional skew value. The consideration of basin characteristics as explanatory variables for regional skew resulted in improvements in precision too small to warrant the additional model complexity, and a constant model was adopted. Regional Skew Area 1 in eastern-central Alaska had a regional skew of 0.54 and an average variance of prediction of 0.45, corresponding to an effective record length of 22 years. Regional Skew Area 2, encompassing coastal areas bordering the Gulf of Alaska, had a regional skew of 0.18 and an average variance of prediction of 0.12, corresponding to an effective record length of 59 years. Station flood-frequency estimates for study sites in regional skew areas were then recomputed using a weighted skew incorporating the station skew and regional skew. In a new regional skew exclusion area outside the regional skew areas, the density of long-record streamgages was too sparse for regional analysis and station skew was used for all estimates. Final station flood frequency estimates for all study streamgages are presented for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities.Regional multiple-regression analysis was used to produce equations for estimating flood frequency statistics from explanatory basin characteristics. Basin characteristics, including physical and climatic variables, were updated for all study streamgages using a geographical information system and geospatial source data. Screening for similar-sized nested basins eliminated hydrologically redundant sites, and screening for eligibility for analysis of explanatory variables eliminated regulated peaks, outburst peaks, and sites with indeterminate basin characteristics. An ordinary least‑squares regression used flood-frequency statistics and basin characteristics for 341 streamgages (284 in Alaska and 57 in Canada) to determine the most suitable combination of basin characteristics for a flood-frequency regression model and to explore regional grouping of streamgages for explaining variability in flood-frequency statistics across the study area. The most suitable model for explaining flood frequency used drainage area and mean annual precipitation as explanatory variables for the entire study area as a region. Final regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability discharge in Alaska and conterminous basins in Canada were developed using a generalized least-squares regression. The average standard error of prediction for the regression equations for the various annual exceedance probabilities ranged from 69 to 82 percent, and the pseudo-coefficient of determination (pseudo-R2) ranged from 85 to 91 percent.The regional regression equations from this study were incorporated into the U.S. Geological Survey StreamStats program for a limited area of the State—the Cook Inlet Basin. StreamStats is a national web-based geographic information system application that facilitates retrieval of streamflow statistics and associated information. StreamStats retrieves published data for gaged sites and, for user-selected ungaged sites, delineates drainage areas from topographic and hydrographic data, computes basin characteristics, and computes flood frequency estimates using the regional regression equations.
Olson, Scott A.
2003-01-01
The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.
NASA Astrophysics Data System (ADS)
Karami, K.; Mohebi, R.
2007-08-01
We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.
Psychosocial factors and financial literacy.
Murphy, John L
2013-01-01
This study uses data from the Health and Retirement Study (HRS) to analyze the psychological and social variables associated with financial literacy. The HRS is a nationally representative longitudinal survey of individuals older than age 50 and their spouses. An ordinary least squares linear regression analysis explores the relationship between financial literacy and several economic and psychosocial variables. After controlling for earnings, level of education, and other socioeconomic variables in this exploratory study, I find that financial satisfaction and religiosity are correlated with financial literacy.
Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald
2011-06-01
Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.
2011-01-01
Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852
Basatnia, Nabee; Hossein, Seyed Abbas; Rodrigo-Comino, Jesús; Khaledian, Yones; Brevik, Eric C; Aitkenhead-Peterson, Jacqueline; Natesan, Usha
2018-04-29
Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO 2 ), nitrate (NO 3 ), biological oxygen demand (BOD), phosphate (PO 4 ), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R 2 , RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.
Shahlaei, M.; Saghaie, L.
2014-01-01
A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262
NASA Astrophysics Data System (ADS)
Samadi-Maybodi, Abdolraouf; Darzi, S. K. Hassani Nejad
2008-10-01
Resolution of binary mixtures of vitamin B12, methylcobalamin and B12 coenzyme with minimum sample pre-treatment and without analyte separation has been successfully achieved by methods of partial least squares algorithm with one dependent variable (PLS1), orthogonal signal correction/partial least squares (OSC/PLS), principal component regression (PCR) and hybrid linear analysis (HLA). Data of analysis were obtained from UV-vis spectra. The UV-vis spectra of the vitamin B12, methylcobalamin and B12 coenzyme were recorded in the same spectral conditions. The method of central composite design was used in the ranges of 10-80 mg L -1 for vitamin B12 and methylcobalamin and 20-130 mg L -1 for B12 coenzyme. The models refinement procedure and validation were performed by cross-validation. The minimum root mean square error of prediction (RMSEP) was 2.26 mg L -1 for vitamin B12 with PLS1, 1.33 mg L -1 for methylcobalamin with OSC/PLS and 3.24 mg L -1 for B12 coenzyme with HLA techniques. Figures of merit such as selectivity, sensitivity, analytical sensitivity and LOD were determined for three compounds. The procedure was successfully applied to simultaneous determination of three compounds in synthetic mixtures and in a pharmaceutical formulation.
Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston
2016-10-28
Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.
Least squares regression methods for clustered ROC data with discrete covariates.
Tang, Liansheng Larry; Zhang, Wei; Li, Qizhai; Ye, Xuan; Chan, Leighton
2016-07-01
The receiver operating characteristic (ROC) curve is a popular tool to evaluate and compare the accuracy of diagnostic tests to distinguish the diseased group from the nondiseased group when test results from tests are continuous or ordinal. A complicated data setting occurs when multiple tests are measured on abnormal and normal locations from the same subject and the measurements are clustered within the subject. Although least squares regression methods can be used for the estimation of ROC curve from correlated data, how to develop the least squares methods to estimate the ROC curve from the clustered data has not been studied. Also, the statistical properties of the least squares methods under the clustering setting are unknown. In this article, we develop the least squares ROC methods to allow the baseline and link functions to differ, and more importantly, to accommodate clustered data with discrete covariates. The methods can generate smooth ROC curves that satisfy the inherent continuous property of the true underlying curve. The least squares methods are shown to be more efficient than the existing nonparametric ROC methods under appropriate model assumptions in simulation studies. We apply the methods to a real example in the detection of glaucomatous deterioration. We also derive the asymptotic properties of the proposed methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smeers, Inge; Decorte, Ronny; Van de Voorde, Wim; Bekaert, Bram
2018-05-01
DNA methylation is a promising biomarker for forensic age prediction. A challenge that has emerged in recent studies is the fact that prediction errors become larger with increasing age due to interindividual differences in epigenetic ageing rates. This phenomenon of non-constant variance or heteroscedasticity violates an assumption of the often used method of ordinary least squares (OLS) regression. The aim of this study was to evaluate alternative statistical methods that do take heteroscedasticity into account in order to provide more accurate, age-dependent prediction intervals. A weighted least squares (WLS) regression is proposed as well as a quantile regression model. Their performances were compared against an OLS regression model based on the same dataset. Both models provided age-dependent prediction intervals which account for the increasing variance with age, but WLS regression performed better in terms of success rate in the current dataset. However, quantile regression might be a preferred method when dealing with a variance that is not only non-constant, but also not normally distributed. Ultimately the choice of which model to use should depend on the observed characteristics of the data. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of multi-criteria decision-making to risk prioritisation in tidal energy developments
NASA Astrophysics Data System (ADS)
Kolios, Athanasios; Read, George; Ioannou, Anastasia
2016-01-01
This paper presents an analytical multi-criterion analysis for the prioritisation of risks for the development of tidal energy projects. After a basic identification of risks throughout the project and relevant stakeholders in the UK, classified through a political, economic, social, technological, legal and environmental analysis, relevant questionnaires provided scores to each risk and corresponding weights for each of the different sectors. Employing an extended technique for order of preference by similarity to ideal solution as well as the weighted sum method based on the data obtained, the risks identified are ranked based on their criticality, drawing attention of the industry in mitigating the ones scoring higher. Both methods were modified to take averages at different stages of the analysis in order to observe the effects on the final risk ranking. A sensitivity analysis of the results was also carried out with regard to the weighting factors given to the perceived expertise of participants, with different results being obtained whether a linear, squared or square root regression is used. Results of the study show that academics and industry have conflicting opinions with regard to the perception of the most critical risks.
Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison
2017-11-13
Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
Diagnosing and dealing with multicollinearity.
Schroeder, M A
1990-04-01
The purpose of this article was to increase nurse researchers' awareness of the effects of collinear data in developing theoretical models for nursing practice. Collinear data distort the true value of the estimates generated from ordinary least-squares analysis. Theoretical models developed to provide the underpinnings of nursing practice need not be abandoned, however, because they fail to produce consistent estimates over repeated applications. It is also important to realize that multicollinearity is a data problem, not a problem associated with misspecification of a theorectical model. An investigator must first be aware of the problem, and then it is possible to develop an educated solution based on the degree of multicollinearity, theoretical considerations, and sources of error associated with alternative, biased, least-square regression techniques. Decisions based on theoretical and statistical considerations will further the development of theory-based nursing practice.
Kataoka, Yu; Andrews, Jordan; Duong, MyNgan; Nguyen, Tracy; Schwarz, Nisha; Fendler, Jessica; Puri, Rishi; Butters, Julie; Keyserling, Constance; Paolini, John F; Dasseux, Jean-Louis; Nicholls, Stephen J
2017-06-01
CER-001 is an engineered pre-beta high-density lipoprotein (HDL) mimetic, which rapidly mobilizes cholesterol. Infusion of CER-001 3 mg/kg exhibited a potentially favorable effect on plaque burden in the CHI-SQUARE (Can HDL Infusions Significantly Quicken Atherosclerosis Regression) study. Since baseline atheroma burden has been shown as a determinant for the efficacy of HDL infusions, the degree of baseline atheroma burden might influence the effect of CER-001. CHI-SQUARE compared the effect of 6 weekly infusions of CER-001 (3, 6 and 12 mg/kg) vs. placebo on coronary atherosclerosis in 369 patients with acute coronary syndrome (ACS) using serial intravascular ultrasound (IVUS). Baseline percent atheroma volume (B-PAV) cutoff associated with atheroma regression following CER-001 infusions was determined by receiver-operating characteristics curve analysis. 369 subjects were stratified according to the cutoff. The effect of CER-001 at different doses was compared to placebo in each group. A B-PAV ≥30% was the optimal cutoff associated with PAV regression following CER-001 infusions. CER-001 induced PAV regression in patients with B-PAV ≥30% but not in those with B-PAV <30% (-0.45%±2.65% vs. +0.34%±1.69%, P=0.01). Compared to placebo, the greatest PAV regression was observed with CER-001 3mg/kg in patients with B-PAV ≥30% (-0.96%±0.34% vs. -0.25%±0.31%, P=0.01), whereas there were no differences between placebo (+0.09%±0.36%) versus CER-001 in patients with B-PAV <30% (3 mg/kg; +0.41%±0.32%, P=0.39; 6 mg/kg; +0.27%±0.36%, P=0.76; 12 mg/kg; +0.32%±0.37%, P=0.97). Infusions of CER-001 3 mg/kg induced the greatest atheroma regression in ACS patients with higher B-PAV. These findings identify ACS patients with more extensive disease as most likely to benefit from HDL mimetic therapy.
Kataoka, Yu; Andrews, Jordan; Duong, MyNgan; Nguyen, Tracy; Schwarz, Nisha; Fendler, Jessica; Puri, Rishi; Butters, Julie; Keyserling, Constance; Paolini, John F.; Dasseux, Jean-Louis
2017-01-01
Background CER-001 is an engineered pre-beta high-density lipoprotein (HDL) mimetic, which rapidly mobilizes cholesterol. Infusion of CER-001 3 mg/kg exhibited a potentially favorable effect on plaque burden in the CHI-SQUARE (Can HDL Infusions Significantly Quicken Atherosclerosis Regression) study. Since baseline atheroma burden has been shown as a determinant for the efficacy of HDL infusions, the degree of baseline atheroma burden might influence the effect of CER-001. Methods CHI-SQUARE compared the effect of 6 weekly infusions of CER-001 (3, 6 and 12 mg/kg) vs. placebo on coronary atherosclerosis in 369 patients with acute coronary syndrome (ACS) using serial intravascular ultrasound (IVUS). Baseline percent atheroma volume (B-PAV) cutoff associated with atheroma regression following CER-001 infusions was determined by receiver-operating characteristics curve analysis. 369 subjects were stratified according to the cutoff. The effect of CER-001 at different doses was compared to placebo in each group. Results A B-PAV ≥30% was the optimal cutoff associated with PAV regression following CER-001 infusions. CER-001 induced PAV regression in patients with B-PAV ≥30% but not in those with B-PAV <30% (−0.45%±2.65% vs. +0.34%±1.69%, P=0.01). Compared to placebo, the greatest PAV regression was observed with CER-001 3mg/kg in patients with B-PAV ≥30% (−0.96%±0.34% vs. −0.25%±0.31%, P=0.01), whereas there were no differences between placebo (+0.09%±0.36%) versus CER-001 in patients with B-PAV <30% (3 mg/kg; +0.41%±0.32%, P=0.39; 6 mg/kg; +0.27%±0.36%, P=0.76; 12 mg/kg; +0.32%±0.37%, P=0.97). Conclusions Infusions of CER-001 3 mg/kg induced the greatest atheroma regression in ACS patients with higher B-PAV. These findings identify ACS patients with more extensive disease as most likely to benefit from HDL mimetic therapy. PMID:28567351
Production of deerbrush and mountain whitethorn related to shrub volume and overstory crown closure
John G. Kie
1985-01-01
Annual production by deerbrush (Ceanothus integerrimus) and mountain whitethorn shrubs (C. cordulatus) in the south-central Sierra Nevada of California was related to shrub volume, volume squared, and overstory crown closure by regression models. production increased as shrub volume and volume squared increased, and decreased as...
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
Hao, Yong; Sun, Xu-Dong; Yang, Qiang
2012-12-01
Variables selection strategy combined with local linear embedding (LLE) was introduced for the analysis of complex samples by using near infrared spectroscopy (NIRS). Three methods include Monte Carlo uninformation variable elimination (MCUVE), successive projections algorithm (SPA) and MCUVE connected with SPA were used for eliminating redundancy spectral variables. Partial least squares regression (PLSR) and LLE-PLSR were used for modeling complex samples. The results shown that MCUVE can both extract effective informative variables and improve the precision of models. Compared with PLSR models, LLE-PLSR models can achieve more accurate analysis results. MCUVE combined with LLE-PLSR is an effective modeling method for NIRS quantitative analysis.
NASA Astrophysics Data System (ADS)
Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.
2017-11-01
To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.
Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.
Food and Drug Administration tobacco regulation and product judgments.
Kaufman, Annette R; Finney Rutten, Lila J; Parascandola, Mark; Blake, Kelly D; Augustson, Erik M
2015-04-01
The Family Smoking Prevention and Tobacco Control Act granted the Food and Drug Administration (FDA) the authority to regulate tobacco products in the U.S. However, little is known about how regulation may be related to judgments about tobacco product-related risks. To understand how FDA tobacco regulation beliefs are associated with judgments about tobacco product-related risks. The Health Information National Trends Survey is a national survey of the U.S. adult population. Data used in this analysis were collected from October 2012 through January 2013 (N=3,630) by mailed questionnaire and analyzed in 2013. Weighted bivariate chi-square analyses were used to assess associations among FDA regulation belief, tobacco harm judgments, sociodemographics, and smoking status. A weighted multinomial logistic regression was conducted where FDA regulation belief was regressed on tobacco product judgments, controlling for sociodemographic variables and smoking status. About 41% believed that the FDA regulates tobacco products in the U.S., 23.6% reported the FDA does not, and 35.3% did not know. Chi-square analyses showed that smoking status was significantly related to harm judgments about electronic cigarettes (p<0.0001). The multinomial logistic regression revealed that uncertainty about FDA regulation was associated with tobacco product harm judgment uncertainty. Tobacco product harm perceptions are associated with beliefs about tobacco product regulation by the FDA. These findings suggest the need for increased public awareness and understanding of the role of tobacco product regulation in protecting public health. Copyright © 2015. Published by Elsevier Inc.
Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry
This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003more » and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.« less
Post-processing through linear regression
NASA Astrophysics Data System (ADS)
van Schaeybroeck, B.; Vannitsem, S.
2011-03-01
Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
An open-access CMIP5 pattern library for temperature and precipitation: description and methodology
NASA Astrophysics Data System (ADS)
Lynch, Cary; Hartin, Corinne; Bond-Lamberty, Ben; Kravitz, Ben
2017-05-01
Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares regression methods. We explore the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors between modeled and pattern-predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5 °C, but the choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation code are available at doi:10.5281/zenodo.495632.
Bent, Gardner C.; Archfield, Stacey A.
2002-01-01
A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of (1) drainage area (cube root), (2) drainage density, (3) areal percentage of stratified-drift deposits (square root), (4) mean basin slope, and (5) location in the South Coastal Basin or the remainder of the State. Although the equation developed provides an objective means for estimating the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used to develop the equation. The equation may not be reliable for (1) drainage areas less than 0.14 square mile in the State or less than 0.02 square mile in the South Coastal Basin, (2) streams with losing reaches, or (3) streams draining the southern part of the South Coastal Basin and the eastern part of the Buzzards Bay Basin and the entire area of Cape Cod and the Islands Basins.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
An Airline-Based Multilevel Analysis of Airfare Elasticity for Passenger Demand
NASA Technical Reports Server (NTRS)
Castelli, Lorenzo; Ukovich, Walter; Pesenti, Raffaele
2003-01-01
Price elasticity of passenger demand for a specific airline is estimated. The main drivers affecting passenger demand for air transportation are identified. First, an Ordinary Least Squares regression analysis is performed. Then, a multilevel analysis-based methodology to investigate the pattern of variation of price elasticity of demand among the various routes of the airline under study is proposed. The experienced daily passenger demands on each fare-class are grouped for each considered route. 9 routes were studied for the months of February and May in years from 1999 to 2002, and two fare-classes were defined (business and economy). The analysis has revealed that the airfare elasticity of passenger demand significantly varies among the different routes of the airline.
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
On Quantile Regression in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint
Zhang, Chong; Liu, Yufeng; Wu, Yichao
2015-01-01
For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection. We propose a data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse kernel function representation. We demonstrate that the proposed data sparsity method can have competitive prediction performance for certain situations, and have comparable performance in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity method can serve as a competitive alternative to the squared norm penalty method. Some theoretical properties of our proposed method using the data sparsity constraint are obtained. Both simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint. PMID:27134575
NASA Astrophysics Data System (ADS)
Astuti, H. N.; Saputro, D. R. S.; Susanti, Y.
2017-06-01
MGWR model is combination of linear regression model and geographically weighted regression (GWR) model, therefore, MGWR model could produce parameter estimation that had global parameter estimation, and other parameter that had local parameter in accordance with its observation location. The linkage between locations of the observations expressed in specific weighting that is adaptive bi-square. In this research, we applied MGWR model with weighted adaptive bi-square for case of DHF in Surakarta based on 10 factors (variables) that is supposed to influence the number of people with DHF. The observation unit in the research is 51 urban villages and the variables are number of inhabitants, number of houses, house index, many public places, number of healthy homes, number of Posyandu, area width, level population density, welfare of the family, and high-region. Based on this research, we obtained 51 MGWR models. The MGWR model were divided into 4 groups with significant variable is house index as a global variable, an area width as a local variable and the remaining variables vary in each. Global variables are variables that significantly affect all locations, while local variables are variables that significantly affect a specific location.
Ordinary least squares regression is indicated for studies of allometry.
Kilmer, J T; Rodríguez, R L
2017-01-01
When it comes to fitting simple allometric slopes through measurement data, evolutionary biologists have been torn between regression methods. On the one hand, there is the ordinary least squares (OLS) regression, which is commonly used across many disciplines of biology to fit lines through data, but which has a reputation for underestimating slopes when measurement error is present. On the other hand, there is the reduced major axis (RMA) regression, which is often recommended as a substitute for OLS regression in studies of allometry, but which has several weaknesses of its own. Here, we review statistical theory as it applies to evolutionary biology and studies of allometry. We point out that the concerns that arise from measurement error for OLS regression are small and straightforward to deal with, whereas RMA has several key properties that make it unfit for use in the field of allometry. The recommended approach for researchers interested in allometry is to use OLS regression on measurements taken with low (but realistically achievable) measurement error. If measurement error is unavoidable and relatively large, it is preferable to correct for slope attenuation rather than to turn to RMA regression, or to take the expected amount of attenuation into account when interpreting the data. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Radioecological modelling of Polonium-210 and Caesium-137 in lichen-reindeer-man and top predators.
Persson, Bertil R R; Gjelsvik, Runhild; Holm, Elis
2018-06-01
This work deals with analysis and modelling of the radionuclides 210 Pb and 210 Po in the food-chain lichen-reindeer-man in addition to 210 Po and 137 Cs in top predators. By using the methods of Partial Least Square Regression (PLSR) the atmospheric deposition of 210 Pb and 210 Po is predicted at the sample locations. Dynamic modelling of the activity concentration with differential equations is fitted to the sample data. Reindeer lichen consumption, gastrointestinal absorption, organ distribution and elimination is derived from information in the literature. Dynamic modelling of transfer of 210 Pb and 210 Po to reindeer meat, liver and bone from lichen consumption, fitted well with data from Sweden and Finland from 1966 to 1971. The activity concentration of 210 Pb in the skeleton in man is modelled by using the results of studying the kinetics of lead in skeleton and blood in lead-workers after end of occupational exposure. The result of modelling 210 Pb and 210 Po activity in skeleton matched well with concentrations of 210 Pb and 210 Po in teeth from reindeer-breeders and autopsy bone samples in Finland. The results of 210 Po and 137 Cs in different tissues of wolf, wolverine and lynx previously published, are analysed with multivariate data processing methods such as Principal Component Analysis PCA, and modelled with the method of Projection to Latent Structures, PLS, or Partial Least Square Regression PLSR. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lespinats, S.; Meyer-Bäse, Anke; He, Huan; Marshall, Alan G.; Conrad, Charles A.; Emmett, Mark R.
2009-05-01
Partial Least Square Regression (PLSR) and Data-Driven High Dimensional Scaling (DD-HDS) are employed for the prediction and the visualization of changes in polar lipid expression induced by different combinations of wild-type (wt) p53 gene therapy and SN38 chemotherapy of U87 MG glioblastoma cells. A very detailed analysis of the gangliosides reveals that certain gangliosides of GM3 or GD1-type have unique properties not shared by the others. In summary, this preliminary work shows that data mining techniques are able to determine the modulation of gangliosides by different treatment combinations.
BrightStat.com: free statistics online.
Stricker, Daniel
2008-10-01
Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.
Optimization of binary thermodynamic and phase diagram data
NASA Astrophysics Data System (ADS)
Bale, Christopher W.; Pelton, A. D.
1983-03-01
An optimization technique based upon least squares regression is presented to permit the simultaneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an interactive computer-assisted analysis employing this technique, one can critically analyze a large number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermodynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl2-KCl, LiCl-FeCl2, and Au-Ni binary systems are given.
Duerinck, Tim; Couck, Sarah; Vermoortele, Frederik; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M
2012-10-02
The low coverage adsorptive properties of the MIL-47 metal organic framework toward aromatic and heterocyclic molecules are reported in this paper. The effect of molecular functionality and size on Henry adsorption constants and adsorption enthalpies of alkyl and heteroatom functionalized benzene derivates and heterocyclic molecules was studied using pulse gas chromatography. By means of statistical analysis, experimental data was analyzed and modeled using principal component analysis and partial least-squares regression. Structure-property relationships were established, revealing and confirming several trends. Among the molecular properties governing the adsorption process, vapor pressure, mean polarizability, and dipole moment play a determining role.
Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; Hines, Constance V.
1995-01-01
The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…
Azimian, Jalil; Piran, Pegah; Jahanihashemi, Hassan; Dehghankar, Leila
2017-04-01
Pressures in nursing can affect family life and marital problems, disrupt common social problems, increase work-family conflicts and endanger people's general health. To determine marital satisfaction and its relationship with job stress and general health of nurses. This descriptive and cross-sectional study was done in 2015 in medical educational centers of Qazvin by using an ENRICH marital satisfaction scale and General Health and Job Stress questionnaires completed by 123 nurses. Analysis was done by SPSS version 19 using descriptive and analytical statistics (Pearson correlation, t-test, ANOVA, Chi-square, regression line, multiple regression analysis). The findings showed that 64.4% of nurses had marital satisfaction. There was significant relationship between age (p=0.03), job experience (p=0.01), age of spouse (p=0.01) and marital satisfaction. The results showed that there was a significant relationship between marital satisfaction and general health (p<0.0001). Multiple regression analysis showed that there was a significant relationship between depression (p=0.012) and anxiety (p=0.001) with marital satisfaction. Due to high levels of job stress and disorder in general health of nurses and low marital satisfaction by running health promotion programs and paying attention to its dimensions can help work and family health of nurses.
Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md
2015-05-01
Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.
Hyperspectral imaging using a color camera and its application for pathogen detection
NASA Astrophysics Data System (ADS)
Yoon, Seung-Chul; Shin, Tae-Sung; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Gamble, Gary
2015-02-01
This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown in Petri dishes of Rainbow agar. The purpose of the feasibility study was to evaluate whether a DSLR camera (Nikon D700) could be used to predict hyperspectral images in the wavelength range from 400 to 1,000 nm and even to predict the types of pathogens using a hyperspectral STEC classification algorithm that was previously developed. Unlike many other studies using color charts with known and noise-free spectra for training reconstruction models, this work used hyperspectral and color images, separately measured by a hyperspectral imaging spectrometer and the DSLR color camera. The color images were calibrated (i.e. normalized) to relative reflectance, subsampled and spatially registered to match with counterpart pixels in hyperspectral images that were also calibrated to relative reflectance. Polynomial multivariate least-squares regression (PMLR) was previously developed with simulated color images. In this study, partial least squares regression (PLSR) was also evaluated as a spectral recovery technique to minimize multicollinearity and overfitting. The two spectral recovery models (PMLR and PLSR) and their parameters were evaluated by cross-validation. The QR decomposition was used to find a numerically more stable solution of the regression equation. The preliminary results showed that PLSR was more effective especially with higher order polynomial regressions than PMLR. The best classification accuracy measured with an independent test set was about 90%. The results suggest the potential of cost-effective color imaging using hyperspectral image classification algorithms for rapidly differentiating pathogens in agar plates.
Delwiche, Stephen R; Reeves, James B
2010-01-01
In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.
Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N
2017-07-01
Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant role in the calibration while wavelength selection plays a marginal role and the combination of certain pre-processing, wavelength selection, and nonlinear regression methods can achieve superior performance over traditional linear regression-based calibration.
Structured functional additive regression in reproducing kernel Hilbert spaces.
Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen
2014-06-01
Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application.
Inverse models: A necessary next step in ground-water modeling
Poeter, E.P.; Hill, M.C.
1997-01-01
Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
Parastar, Hadi; Mostafapour, Sara; Azimi, Gholamhasan
2016-01-01
Comprehensive two-dimensional gas chromatography and flame ionization detection combined with unfolded-partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two-dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root-mean square error of leave-one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996-0.998, root-mean square error of prediction of 0.005-0.010 and relative error of prediction of 1.54-3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70-85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abreu, Patrícia B de; Cogo-Moreira, Hugo; Pose, Regina A; Laranjeira, Ronaldo; Caetano, Raul; Gaya, Carolina M; Madruga, Clarice S
2017-01-01
To perform a construct validation of the List of Threatening Events Questionnaire (LTE-Q), as well as convergence validation by identifying its association with drug use in a sample of the Brazilian population. This is a secondary analysis of the Second Brazilian National Alcohol and Drugs Survey (II BNADS), which used a cross-cultural adaptation of the LTE-Q in a probabilistic sample of 4,607 participants aged 14 years and older. Latent class analysis was used to validate the latent trait adversity (which considered the number of events from the list of 12 item in the LTE experienced by the respondent in the previous year) and logistic regression was performed to find its association with binge drinking and cocaine use. The confirmatory factor analysis returned a chi-square of 108.341, weighted root mean square residual (WRMR) of 1.240, confirmatory fit indices (CFI) of 0.970, Tucker-Lewis index (TLI) of 0.962, and root mean square error approximation (RMSEA) score of 1.000. LTE-Q convergence validation showed that the adversity latent trait increased the chances of binge drinking by 1.31 time and doubled the chances of previous year cocaine use (adjusted by sociodemographic variables). The use of the LTE-Q in Brazil should be encouraged in different research fields, including large epidemiological surveys, as it is also appropriate when time and budget are limited. The LTE-Q can be a useful tool in the development of targeted and more efficient prevention strategies.
Bertrand-Krajewski, J L
2004-01-01
In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity Tvalues with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.
NASA Astrophysics Data System (ADS)
Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.
2009-09-01
The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
Ahmed, Sharmina; Makrides, Maria; Sim, Nicholas; McPhee, Andy; Quinlivan, Julie; Gibson, Robert; Umberger, Wendy
2015-12-01
Recent research emphasized the nutritional benefits of omega-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy. Based on a double-blind randomised controlled trial named "DHA to Optimize Mother and Infant Outcome" (DOMInO), we examined how omega 3 DHA supplementation during pregnancy may affect pregnancy related in-patient hospital costs. We conducted an econometric analysis based on ordinary least square and quantile regressions with bootstrapped standard errors. Using these approaches, we also examined whether smoking, drinking, maternal age and BMI could influence the effect of DHA supplementation during pregnancy on hospital costs. Our regressions showed that in-patient hospital costs could decrease by AUD92 (P<0.05) on average per singleton pregnancy when DHA supplements were consumed during pregnancy. Our regression results also showed that the cost savings to the Australian public hospital system could be between AUD15 - AUD51 million / year. Given that a simple intervention like DHA-rich fish-oil supplementation could generate savings to the public, it may be worthwhile from a policy perspective to encourage DHA supplementation among pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P
2010-10-22
A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang
2006-01-01
Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
Fowler, Stephanie M; Schmidt, Heinar; van de Ven, Remy; Wynn, Peter; Hopkins, David L
2014-12-01
A Raman spectroscopic hand held device was used to predict shear force (SF) of 80 fresh lamb m. longissimus lumborum (LL) at 1 and 5days post mortem (PM). Traditional predictors of SF including sarcomere length (SL), particle size (PS), cooking loss (CL), percentage myofibrillar breaks and pH were also measured. SF values were regressed against Raman spectra using partial least squares regression and against the traditional predictors using linear regression. The best prediction of shear force values used spectra at 1day PM to predict shear force at 1day which gave a root mean square error of prediction (RMSEP) of 13.6 (Null=14.0) and the R(2) between observed and cross validated predicted values was 0.06 (R(2)cv). Overall, for fresh LL, the predictability SF, by either the Raman hand held probe or traditional predictors was low. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust regression on noisy data for fusion scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdoolaege, Geert, E-mail: geert.verdoolaege@ugent.be; Laboratoire de Physique des Plasmas de l'ERM - Laboratorium voor Plasmafysica van de KMS
2014-11-15
We introduce the method of geodesic least squares (GLS) regression for estimating fusion scaling laws. Based on straightforward principles, the method is easily implemented, yet it clearly outperforms established regression techniques, particularly in cases of significant uncertainty on both the response and predictor variables. We apply GLS for estimating the scaling of the L-H power threshold, resulting in estimates for ITER that are somewhat higher than predicted earlier.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
The arcsine is asinine: the analysis of proportions in ecology.
Warton, David I; Hui, Francis K C
2011-01-01
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
Liu, Yang; Chiaromonte, Francesca; Li, Bing
2017-06-01
In many scientific and engineering fields, advanced experimental and computing technologies are producing data that are not just high dimensional, but also internally structured. For instance, statistical units may have heterogeneous origins from distinct studies or subpopulations, and features may be naturally partitioned based on experimental platforms generating them, or on information available about their roles in a given phenomenon. In a regression analysis, exploiting this known structure in the predictor dimension reduction stage that precedes modeling can be an effective way to integrate diverse data. To pursue this, we propose a novel Sufficient Dimension Reduction (SDR) approach that we call structured Ordinary Least Squares (sOLS). This combines ideas from existing SDR literature to merge reductions performed within groups of samples and/or predictors. In particular, it leads to a version of OLS for grouped predictors that requires far less computation than recently proposed groupwise SDR procedures, and provides an informal yet effective variable selection tool in these settings. We demonstrate the performance of sOLS by simulation and present a first application to genomic data. The R package "sSDR," publicly available on CRAN, includes all procedures necessary to implement the sOLS approach. © 2016, The International Biometric Society.
Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo
2016-06-01
We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.
Wang, Bingqian; Peng, Bangzhu
2017-02-01
This work aims to investigate the potential of fiber-optic Fourier transform-near-infrared (FT-NIR) spectrometry associated with chemometric analysis, which will be applied to monitor time-related changes in residual sugar and alcohol strength during kiwi wine fermentation. NIR calibration models for residual sugar and alcohol strength during kiwi wine fermentation were established on the FT-NIR spectra of 98 samples scanned in a fiber-optic FT-NIR spectrometer, and partial least squares regression method. The results showed that R 2 and root mean square error of cross-validation could achieve 0.982 and 3.81 g/L for residual sugar, and 0.984 and 0.34% for alcohol strength, respectively. Furthermore, crucial process information on kiwi must and wine fermentations provided by fiber-optic FT-NIR spectrometry was found to agree with those obtained from traditional chemical methods, and therefore this fiber-optic FT-NIR spectrometry can be applied as an effective and suitable alternative for analyses and monitoring of those processes. The overall results suggested that fiber-optic FT-NIR spectrometry is a promising tool for monitoring and controlling the kiwi wine fermentation process. © 2017 Institute of Food Technologists®.
The effects of RN staffing hours on nursing home quality: a two-stage model.
Lee, Hyang Yuol; Blegen, Mary A; Harrington, Charlene
2014-03-01
Based on structure-process-outcome approach, this study examined the association of registered nurse (RN) staffing hours and five quality indicators, including two process measures (catheter use and antipsychotic drug use) and three outcome measures (pressure ulcers, urinary tract infections, and weight loss). We used data on resident assessments, RN staffing, organizational characteristics, and market factors to examine the quality of 195 nursing homes operating in a rural state of United States - Colorado. Two-stage least squares regression models were performed to address the endogenous relationships between RN staffing and the outcome-related quality indicators, and ordinary least squares regression was used for the process-related ones. This analysis focused on the relationship of RN staffing to nursing home quality indicators, controlling for organizational characteristics, resources, resident casemix, and market factors with clustering to control for geographical differences. Higher RN hours were associated with fewer pressure ulcers, but RN hours were not related to the other quality indicators. The study finding shows the importance of understanding the role of 'nurse staffing' under nursing home care, as well as the significance of associated/contextual factors with nursing home quality even in a small rural state. Copyright © 2013 Elsevier Ltd. All rights reserved.