Alber, S A; Schaffner, D W
1992-01-01
A comparison was made between mathematical variations of the square root and Schoolfield models for predicting growth rate as a function of temperature. The statistical consequences of square root and natural logarithm transformations of growth rate use in several variations of the Schoolfield and square root models were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a function of temperature. The ability of the two data transformations to correct for the heterogeneity of variance was evaluated. A natural logarithm transformation of growth rate was more effective than a square root transformation at correcting for the heterogeneity of variance. The square root model was more accurate than the Schoolfield model when both models used natural logarithm transformation. PMID:1444367
Performance of statistical models to predict mental health and substance abuse cost.
Montez-Rath, Maria; Christiansen, Cindy L; Ettner, Susan L; Loveland, Susan; Rosen, Amy K
2006-10-26
Providers use risk-adjustment systems to help manage healthcare costs. Typically, ordinary least squares (OLS) models on either untransformed or log-transformed cost are used. We examine the predictive ability of several statistical models, demonstrate how model choice depends on the goal for the predictive model, and examine whether building models on samples of the data affects model choice. Our sample consisted of 525,620 Veterans Health Administration patients with mental health (MH) or substance abuse (SA) diagnoses who incurred costs during fiscal year 1999. We tested two models on a transformation of cost: a Log Normal model and a Square-root Normal model, and three generalized linear models on untransformed cost, defined by distributional assumption and link function: Normal with identity link (OLS); Gamma with log link; and Gamma with square-root link. Risk-adjusters included age, sex, and 12 MH/SA categories. To determine the best model among the entire dataset, predictive ability was evaluated using root mean square error (RMSE), mean absolute prediction error (MAPE), and predictive ratios of predicted to observed cost (PR) among deciles of predicted cost, by comparing point estimates and 95% bias-corrected bootstrap confidence intervals. To study the effect of analyzing a random sample of the population on model choice, we re-computed these statistics using random samples beginning with 5,000 patients and ending with the entire sample. The Square-root Normal model had the lowest estimates of the RMSE and MAPE, with bootstrap confidence intervals that were always lower than those for the other models. The Gamma with square-root link was best as measured by the PRs. The choice of best model could vary if smaller samples were used and the Gamma with square-root link model had convergence problems with small samples. Models with square-root transformation or link fit the data best. This function (whether used as transformation or as a link) seems to help deal with the high comorbidity of this population by introducing a form of interaction. The Gamma distribution helps with the long tail of the distribution. However, the Normal distribution is suitable if the correct transformation of the outcome is used.
The Influence of Dimensionality on Estimation in the Partial Credit Model.
ERIC Educational Resources Information Center
De Ayala, R. J.
1995-01-01
The effect of multidimensionality on partial credit model parameter estimation was studied with noncompensatory and compensatory data. Analysis results, consisting of root mean square error bias, Pearson product-moment corrections, standardized root mean squared differences, standardized differences between means, and descriptive statistics…
NASA Astrophysics Data System (ADS)
Yuvan, Steven; Bier, Martin
2018-02-01
Two decades ago Bak et al. (1997) [3] proposed a reaction-diffusion model to describe market fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that the model well reproduces the square-root relation between traded volumes and price changes that is observed in real-life markets. The result is remarkable as this relation has commonly been explained in terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust under model modifications and we show how real-life bond market data exhibit the square-root relation.
ERIC Educational Resources Information Center
Savalei, Victoria
2012-01-01
The fit index root mean square error of approximation (RMSEA) is extremely popular in structural equation modeling. However, its behavior under different scenarios remains poorly understood. The present study generates continuous curves where possible to capture the full relationship between RMSEA and various "incidental parameters," such as…
Determination of suitable drying curve model for bread moisture loss during baking
NASA Astrophysics Data System (ADS)
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
NASA Astrophysics Data System (ADS)
Sinkala, W.
2011-01-01
Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.
ERIC Educational Resources Information Center
Li, Libo; Bentler, Peter M.
2011-01-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…
Anomalous Impact in Reaction-Diffusion Financial Models
NASA Astrophysics Data System (ADS)
Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P.
2014-12-01
We generalize the reaction-diffusion model A +B → /0 in order to study the impact of an excess of A (or B ) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
Simple Forest Canopy Thermal Exitance Model
NASA Technical Reports Server (NTRS)
Smith J. A.; Goltz, S. M.
1999-01-01
We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.
Discrete square root smoothing.
NASA Technical Reports Server (NTRS)
Kaminski, P. G.; Bryson, A. E., Jr.
1972-01-01
The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G
2010-02-12
A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in pp collisions at square root(s) = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV.
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
A root-mean-square pressure fluctuations model for internal flow applications
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1985-01-01
A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.
Symmetric factorization of the conformation tensor in viscoelastic fluid models
NASA Astrophysics Data System (ADS)
Thomases, Becca; Balci, Nusret; Renardy, Michael; Doering, Charles
2010-11-01
The positive definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity field and the symmetric square root of the conformation tensor, these models' equations of motion formally constitute an evolution in a Hilbert space with a total energy functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical simulations resulting in significant practical advantages in terms of both accuracy and stability.
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
Lin, Ying-Tsong; Duda, Timothy F
2012-08-01
A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.
Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.
Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen
2017-01-01
Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.
Soil moisture retrieval by active/passive microwave remote sensing data
NASA Astrophysics Data System (ADS)
Wu, Shengli; Yang, Lijuan
2012-09-01
This study develops a new algorithm for estimating bare surface soil moisture using combined active / passive microwave remote sensing on the basis of TRMM (Tropical Rainfall Measuring Mission). Tropical Rainfall Measurement Mission was jointly launched by NASA and NASDA in 1997, whose main task was to observe the precipitation of the area in 40 ° N-40 ° S. It was equipped with active microwave radar sensors (PR) and passive sensor microwave imager (TMI). To accurately estimate bare surface soil moisture, precipitation radar (PR) and microwave imager (TMI) are simultaneously used for observation. According to the frequency and incident angle setting of PR and TMI, we first need to establish a database which includes a large range of surface conditions; and then we use Advanced Integral Equation Model (AIEM) to calculate the backscattering coefficient and emissivity. Meanwhile, under the accuracy of resolution, we use a simplified theoretical model (GO model) and the semi-empirical physical model (Qp Model) to redescribe the process of scattering and radiation. There are quite a lot of parameters effecting backscattering coefficient and emissivity, including soil moisture, surface root mean square height, correlation length, and the correlation function etc. Radar backscattering is strongly affected by the surface roughness, which includes the surface root mean square roughness height, surface correlation length and the correlation function we use. And emissivity is differently affected by the root mean square slope under different polarizations. In general, emissivity decreases with the root mean square slope increases in V polarization, and increases with the root mean square slope increases in H polarization. For the GO model, we found that the backscattering coefficient is only related to the root mean square slope and soil moisture when the incident angle is fixed. And for Qp Model, through the analysis, we found that there is a quite good relationship between Qpparameter and root mean square slope. So here, root mean square slope is a parameter that both models shared. Because of its big influence to backscattering and emissivity, we need to throw it out during the process of the combination of GO model and Qp model. The result we obtain from the combined model is the Fresnel reflection coefficient in the normal direction gama(0). It has a good relationship with the soil dielectric constant. In Dobson Model, there is a detailed description about Fresnel reflection coefficient and soil moisture. With the help of Dobson model and gama(0) that we have obtained, we can get the soil moisture that we want. The backscattering coefficient and emissivity data used in combined model is from TRMM/PR, TMI; with this data, we can obtain gama(0); further, we get the soil moisture by the relationship of the two parameters-- gama(0) and soil moisture. To validate the accuracy of the retrieval soil moisture, there is an experiment conducted in Tibet. The soil moisture data which is used to validate the retrieval algorithm is from GAME-Tibet IOP98 Soil Moisture and Temperature Measuring System (SMTMS). There are 9 observing sites in SMTMS to validate soil moisture. Meanwhile, we use the SMTMS soil moisture data obtained by Time Domain Reflectometer (TDR) to do the validation. And the result shows the comparison of retrieval and measured results is very good. Through the analysis, we can see that the retrieval and measured results in D66 is nearly close; and in MS3608, the measured result is a little higher than retrieval result; in MS3637, the retrieval result is a little higher than measured result. According to the analysis of the simulation results, we found that this combined active and passive approach to retrieve the soil moisture improves the retrieval accuracy.
Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yao, W; Yagil, A; Yeh, G P; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S
2002-01-28
We have performed a search for gluinos (g) and scalar quarks (q) in a data sample of 84 pb(-1) of pp collisions at square root[s] = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and three or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed "blind," in that the inspection of the signal region is made only after the predictions from standard model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 GeV/c2 (95% C.L.), independent of the squark mass. For the case m(q) approximately m(g), gluino masses below 300 GeV/c2 are excluded.
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
Dem Generation with WORLDVIEW-2 Images
NASA Astrophysics Data System (ADS)
Büyüksalih, G.; Baz, I.; Alkan, M.; Jacobsen, K.
2012-07-01
For planning purposes 42 km coast line of the Black Sea, starting at the Bosporus going in West direction, with a width of approximately 5 km, was imaged by WorldView-2. Three stereo scenes have been oriented at first by 3D-affine transformation and later by bias corrected RPC solution. The result is nearly the same, but it is limited by identification of the control points in the images. Nevertheless after blunder elimination by data snooping root mean square discrepancies below 1 pixel have been reached. The root mean square discrepancy at control point height reached 0.5 m up to 1.3 m with a base to height relation between 1:1.26 and 1:1.80. Digital Surface models (DSM) with 4 m spacing have been generated by least squares matching with region growing, supported by image pyramids. A higher percentage of the mountainous area is covered by forest, requiring the approximation based on image pyramids. In the forest area the approximation just by region growing leads to larger gaps in the DSM. Caused by the good image quality of WorldView-2 the correlation coefficients reached by least squares matching are high and even in most forest areas a satisfying density of accepted points was reached. Two stereo models have an overlapping area of 1.6 km times 6.7 km allowing an accuracy evaluation. Small, but nevertheless significant differences in scene orientation have been eliminated by least squares shift of both overlapping height models to each other. The root mean square differences of both independent DSM are 1.06m or as a function of terrain inclination 0.74 m + 0.55 m tangent (slope). The terrain inclination in the average is 7° with 12% exceeding 17°. The frequency distribution of height discrepancies is not far away from normal distribution, but as usual, larger discrepancies are more often available as corresponding to normal distribution. This also can be seen by the normalized medium absolute deviation (NMAS) related to 68% probability level of 0.83m being significant smaller as the root mean square differences. Nevertheless the results indicate a standard deviation of the single height models of 0.75 m or 0.52 m + 0.39* tangent (slope), corresponding to approximately 0.6 pixels for the x-parallax in flat terrain, being very satisfying for the available land cover. An interpolation over 10 m enlarged the root mean square differences of both height models nearly by 50%.
Using Least Squares for Error Propagation
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2015-01-01
The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…
Delayed ripple counter simplifies square-root computation
NASA Technical Reports Server (NTRS)
Cliff, R.
1965-01-01
Ripple subtract technique simplifies the logic circuitry required in a binary computing device to derive the square root of a number. Successively higher numbers are subtracted from a register containing the number out of which the square root is to be extracted. The last number subtracted will be the closest integer to the square root of the number.
Discrete square root filtering - A survey of current techniques.
NASA Technical Reports Server (NTRS)
Kaminskii, P. G.; Bryson, A. E., Jr.; Schmidt, S. F.
1971-01-01
Current techniques in square root filtering are surveyed and related by applying a duality association. Four efficient square root implementations are suggested, and compared with three common conventional implementations in terms of computational complexity and precision. It is shown that the square root computational burden should not exceed the conventional by more than 50% in most practical problems. An examination of numerical conditioning predicts that the square root approach can yield twice the effective precision of the conventional filter in ill-conditioned problems. This prediction is verified in two examples.
Koláčková, Pavla; Růžičková, Gabriela; Gregor, Tomáš; Šišperová, Eliška
2015-08-30
Calibration models for the Fourier transform-near infrared (FT-NIR) instrument were developed for quick and non-destructive determination of oil and fatty acids in whole achenes of milk thistle. Samples with a range of oil and fatty acid levels were collected and their transmittance spectra were obtained by the FT-NIR instrument. Based on these spectra and data gained by the means of the reference method - Soxhlet extraction and gas chromatography (GC) - calibration models were created by means of partial least square (PLS) regression analysis. Precision and accuracy of the calibration models was verified via the cross-validation of validation samples whose spectra were not part of the calibration model and also according to the root mean square error of prediction (RMSEP), root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV) and the validation coefficient of determination (R(2) ). R(2) for whole seeds were 0.96, 0.96, 0.83 and 0.67 and the RMSEP values were 0.76, 1.68, 1.24, 0.54 for oil, linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) acids, respectively. The calibration models are appropriate for the non-destructive determination of oil and fatty acids levels in whole seeds of milk thistle. © 2014 Society of Chemical Industry.
[Gaussian process regression and its application in near-infrared spectroscopy analysis].
Feng, Ai-Ming; Fang, Li-Min; Lin, Min
2011-06-01
Gaussian process (GP) is applied in the present paper as a chemometric method to explore the complicated relationship between the near infrared (NIR) spectra and ingredients. After the outliers were detected by Monte Carlo cross validation (MCCV) method and removed from dataset, different preprocessing methods, such as multiplicative scatter correction (MSC), smoothing and derivate, were tried for the best performance of the models. Furthermore, uninformative variable elimination (UVE) was introduced as a variable selection technique and the characteristic wavelengths obtained were further employed as input for modeling. A public dataset with 80 NIR spectra of corn was introduced as an example for evaluating the new algorithm. The optimal models for oil, starch and protein were obtained by the GP regression method. The performance of the final models were evaluated according to the root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and correlation coefficient (r). The models give good calibration ability with r values above 0.99 and the prediction ability is also satisfactory with r values higher than 0.96. The overall results demonstrate that GP algorithm is an effective chemometric method and is promising for the NIR analysis.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backus Mayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M S; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhou, N; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2010-06-18
Using 5.4 fb(-1) of integrated luminosity from pp collisions at square root(s)=1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider, we search for decays of the lightest Kaluza-Klein mode of the graviton in the Randall-Sundrum model to ee and γγ. We set 95% C.L. lower limits on the mass of the lightest graviton between 560 and 1050 GeV for values of the coupling k/M(Pl) between 0.01 and 0.1.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Cheevatanarak, Suchittra
Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…
Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas
Lindgren, R.J.
2006-01-01
A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.
Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderónde la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Corral, M M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Guertin, S M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2003-05-02
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at the square root of SNN = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
[NIR Assignment of Magnolol by 2D-COS Technology and Model Application Huoxiangzhengqi Oral Liduid].
Pei, Yan-ling; Wu, Zhi-sheng; Shi, Xin-yuan; Pan, Xiao-ning; Peng, Yan-fang; Qiao, Yan-jiang
2015-08-01
Near infrared (NIR) spectroscopy assignment of Magnolol was performed using deuterated chloroform solvent and two-dimensional correlation spectroscopy (2D-COS) technology. According to the synchronous spectra of deuterated chloroform solvent and Magnolol, 1365~1455, 1600~1720, 2000~2181 and 2275~2465 nm were the characteristic absorption of Magnolol. Connected with the structure of Magnolol, 1440 nm was the stretching vibration of phenolic group O-H, 1679 nm was the stretching vibration of aryl and methyl which connected with aryl, 2117, 2304, 2339 and 2370 nm were the combination of the stretching vibration, bending vibration and deformation vibration for aryl C-H, 2445 nm were the bending vibration of methyl which linked with aryl group, these bands attribut to the characteristics of Magnolol. Huoxiangzhengqi Oral Liduid was adopted to study the Magnolol, the characteristic band by spectral assignment and the band by interval Partial Least Squares (iPLS) and Synergy interval Partial Least Squares (SiPLS) were used to establish Partial Least Squares (PLS) quantitative model, the coefficient of determination Rcal(2) and Rpre(2) were greater than 0.99, the Root Mean of Square Error of Calibration (RM-SEC), Root Mean of Square Error of Cross Validation (RMSECV) and Root Mean of Square Error of Prediction (RMSEP) were very small. It indicated that the characteristic band by spectral assignment has the same results with the Chemometrics in PLS model. It provided a reference for NIR spectral assignment of chemical compositions in Chinese Materia Medica, and the band filters of NIR were interpreted.
Identified particle distributions in pp and Au+Au collisions at square root of (sNN)=200 GeV.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gutierrez, T D; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-03-19
Transverse mass and rapidity distributions for charged pions, charged kaons, protons, and antiprotons are reported for square root of [sNN]=200 GeV pp and Au+Au collisions at Relativistic Heary Ion Collider (RHIC). Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.
2009-07-01
produce a configuration parallel to, and longitudinally aligned with, the north jetty, but the rebuilt structure essentially cuts off the inner south...Normalized Root Mean Square Deviation PMAB Prototype Measurement and Analysis Branch RGB Red, Green, Blue RMSD Root Mean Square Deviation SHOALS...intended height of the rubble mound off the seafloor (submergent). The latter method is used for a variety of structural assignments besides a
Search for a standard model Higgs boson in WH --> lvbb in pp collisions at square root s = 1.96 TeV.
Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-09-04
We present a search for a standard model Higgs boson produced in association with a W boson using 2.7 fb(-1) of integrated luminosity of pp collision data taken at square root s = 1.96 TeV. Limits on the Higgs boson production rate are obtained for masses between 100 and 150 GeV/c(2). Through the use of multivariate techniques, the analysis achieves an observed (expected) 95% confidence level upper limit of 5.6 (4.8) times the theoretically expected production cross section for a standard model Higgs boson with a mass of 115 GeV/c(2).
Constraining f(T) teleparallel gravity by big bang nucleosynthesis: f(T) cosmology and BBN.
Capozziello, S; Lambiase, G; Saridakis, E N
2017-01-01
We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f ( T ) gravity. The three most studied viable f ( T ) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f ( T ) models can successfully satisfy the BBN constraints.
A Continuous Square Root in Formation Filter-Swoother with Discrete Data Update
NASA Technical Reports Server (NTRS)
Miller, J. K.
1994-01-01
A differential equation for the square root information matrix is derived and adapted to the problems of filtering and smoothing. The resulting continuous square root information filter (SRIF) performs the mapping of state and process noise by numerical integration of the SRIF matrix and admits data via a discrete least square update.
Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.
Lim, Sa Rang; Huang, Linfang
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369
Bååth, Erland
2018-07-01
Numerous models have been used to express the temperature sensitivity of microbial growth and activity in soil making it difficult to compare results from different habitats. Q10 still is one of the most common ways to express temperature relationships. However, Q10 is not constant with temperature and will differ depending on the temperature interval used for the calculation. The use of the square root (Ratkowsky) relationship between microbial activity (A) and temperature below optimum temperature, √A = a × (T-T min ), is proposed as a simple and adequate model that allow for one descriptor, T min (a theoretical minimum temperature for growth and activity), to estimate correct Q10-values over the entire in situ temperature interval. The square root model can adequately describe both microbial growth and respiration, allowing for an easy determination of T min . Q10 for any temperature interval can then be calculated by Q10 = [(T + 10 - T min )/(T-T min )] 2 , where T is the lowest temperature in the Q10 comparison. T min also describes the temperature adaptation of the microbial community. An envelope of T min covering most natural soil habitats varying between -15°C (cold habitats like Antarctica/Arctic) to 0°C (tropical habitats like rain forests and deserts) is suggested, with an 0.3°C increase in T min per 1°C increase in mean annual temperature. It is shown that the main difference between common temperature relationships used in global models is differences in the assumed temperature adaptation of the soil microbial community. The use of the square root equation will allow for one descriptor, T min , determining the temperature response of soil microorganisms, and at the same time allow for comparing temperature sensitivity of microbial activity between habitats, including future projections. © 2018 John Wiley & Sons Ltd.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-05-30
We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use approximately 1 fb(-1) integrated luminosity of pp collisions at square root(s)=1.96 TeV recorded by the Collider Detector at Fermilab II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248+/-43 (14.4+/-2.7) are expected from standard model background processes. We observe no significant excess over the expected background and thus set 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 to 140 GeV/c(2). For a mass of 115 GeV/c(2), the observed (expected) limit is 20.4 (14.2) times the standard model prediction.
NASA Astrophysics Data System (ADS)
Ying, Yibin; Liu, Yande; Tao, Yang
2005-09-01
This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r) 0.940 for the SSC and a moderate r of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.
Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S
2010-04-09
We report on a search for the standard model Higgs boson produced in association with a W or Z boson in pp collisions at square root(s)=1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb(-1). We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a b hadron. We find good agreement between data and background predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110 GeV/c(2) to 150 GeV/c(2). For a mass of 115 GeV/c(2) the observed (expected) limit is 6.9 (5.6) times the standard model prediction.
ERIC Educational Resources Information Center
Misiurewicz, Michal
2013-01-01
If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?
NASA Technical Reports Server (NTRS)
Choe, C. Y.; Tapley, B. D.
1975-01-01
A method proposed by Potter of applying the Kalman-Bucy filter to the problem of estimating the state of a dynamic system is described, in which the square root of the state error covariance matrix is used to process the observations. A new technique which propagates the covariance square root matrix in lower triangular form is given for the discrete observation case. The technique is faster than previously proposed algorithms and is well-adapted for use with the Carlson square root measurement algorithm.
Fadzillah, Nurrulhidayah Ahmad; Man, Yaakob bin Che; Rohman, Abdul; Rosman, Arieff Salleh; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi
2015-01-01
The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying Yibin; Liu Yande; Tao Yang
2005-09-01
This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r{sup 2}) 0.940 for the SSC and a moderate r{sup 2} of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSCmore » and also showed the feasibility of using it to predict the VA of apples.« less
On the Denesting of Nested Square Roots
ERIC Educational Resources Information Center
Gkioulekas, Eleftherios
2017-01-01
We present the basic theory of denesting nested square roots, from an elementary point of view, suitable for lower level coursework. Necessary and sufficient conditions are given for direct denesting, where the nested expression is rewritten as a sum of square roots of rational numbers, and for indirect denesting, where the nested expression is…
Koch, Cosima; Posch, Andreas E; Goicoechea, Héctor C; Herwig, Christoph; Lendl, Bernhard
2014-01-07
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution - alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L(-1) for Penicillin V and 0.32 g L(-1) for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L(-1) for Penicillin V and 0.15 g L(-1) for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties.
Sila, Andrew M; Shepherd, Keith D; Pokhariyal, Ganesh P
2016-04-15
We propose four methods for finding local subspaces in large spectral libraries. The proposed four methods include (a) cosine angle spectral matching; (b) hit quality index spectral matching; (c) self-organizing maps and (d) archetypal analysis methods. Then evaluate prediction accuracies for global and subspaces calibration models. These methods were tested on a mid-infrared spectral library containing 1907 soil samples collected from 19 different countries under the Africa Soil Information Service project. Calibration models for pH, Mehlich-3 Ca, Mehlich-3 Al, total carbon and clay soil properties were developed for the whole library and for the subspace. Root mean square error of prediction was used to evaluate predictive performance of subspace and global models. The root mean square error of prediction was computed using a one-third-holdout validation set. Effect of pretreating spectra with different methods was tested for 1st and 2nd derivative Savitzky-Golay algorithm, multiplicative scatter correction, standard normal variate and standard normal variate followed by detrending methods. In summary, the results show that global models outperformed the subspace models. We, therefore, conclude that global models are more accurate than the local models except in few cases. For instance, sand and clay root mean square error values from local models from archetypal analysis method were 50% poorer than the global models except for subspace models obtained using multiplicative scatter corrected spectra with which were 12% better. However, the subspace approach provides novel methods for discovering data pattern that may exist in large spectral libraries.
Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng
2018-05-31
For a nonlinear system, the cubature Kalman filter (CKF) and its square-root version are useful methods to solve the state estimation problems, and both can obtain good performance in Gaussian noises. However, their performances often degrade significantly in the face of non-Gaussian noises, particularly when the measurements are contaminated by some heavy-tailed impulsive noises. By utilizing the maximum correntropy criterion (MCC) to improve the robust performance instead of traditional minimum mean square error (MMSE) criterion, a new square-root nonlinear filter is proposed in this study, named as the maximum correntropy square-root cubature Kalman filter (MCSCKF). The new filter not only retains the advantage of square-root cubature Kalman filter (SCKF), but also exhibits robust performance against heavy-tailed non-Gaussian noises. A judgment condition that avoids numerical problem is also given. The results of two illustrative examples, especially the SINS/GPS integrated systems, demonstrate the desirable performance of the proposed filter. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Enhancing Students' Understanding of Square Roots
ERIC Educational Resources Information Center
Wiesman, Jeff L.
2015-01-01
Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…
Quantitative Modelling of Trace Elements in Hard Coal.
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.
Quantitative Modelling of Trace Elements in Hard Coal
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794
New Theoretical Model of Nerve Conduction in Unmyelinated Nerves
Akaishi, Tetsuya
2017-01-01
Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751
On roots and squares - estimation, intuition and creativity
NASA Astrophysics Data System (ADS)
Patkin, Dorit; Gazit, Avikam
2013-12-01
The paper presents findings of a small scale study of a few items related to problem solving with squares and roots, for different teacher groups (pre-service and in-service mathematics teachers: elementary and junior high school). The research participants were asked to explain what would be the units digit of a natural number to be squared in order to obtain a certain units digit as a result. They were also asked to formulate a rule - an algorithm for calculating the square of a 2-digit number which is a multiple of 5. Based on this knowledge and estimation capability, they were required to find, without using calculators, the square roots of given natural numbers. The findings show that most of the participants had only partial intuition regarding the units' digit of a number which is squared when the units' digit of the square is known. At the same time, the participants manifested some evidence of creativity and flow of ideas in identifying the rule for calculating the square of a natural number whose units digit is 5. However, when asked to identify, by means of estimation and based on knowledge from previous items, the square roots of three natural numbers, only few of them managed to find the three roots by estimation.
Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra
NASA Astrophysics Data System (ADS)
Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong
2017-08-01
Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.
Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Colijn, A P; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Dunietz, I; Eddy, N; Einsweiler, K; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Fang, H-C; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giannetti, P; Giolo, K; Giordani, M; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gomez, G; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Ivanov, A; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karagoz Unel, M; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Le, Y; Lee, K; Lee, S W; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Onyisi, P U E; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Renton, P; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Spezziga, M; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R J; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thomson, E; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Tonnesmann, M; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Tsybychev, D; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Wang, S M; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Weber, M; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yang, U K; Yao, W; Yeh, G P; Yeh, P; Yi, K; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanetti, A; Zetti, F; Zucchelli, S
2002-12-31
The exclusive gammaE(T) signal has a small standard model cross section and is thus a channel sensitive to new physics. This signature is predicted by models with a superlight gravitino or with large extra spatial dimensions. We search for such signals at the Collider Detector at Fermilab, using 87 pb(-1) of data at square root [s]=1.8 TeV, and extract 95% C.L. limits on these processes. A limit of 221 GeV is set on the scale |F|(1/2) in supersymmetric models. For 4, 6, and 8 extra dimensions, model-dependent limits on the fundamental mass scale M(D) of 0.55, 0.58, and 0.60 TeV, respectively, are found. We also specify a "pseudo-model-independent" method of comparing the results to theoretical predictions.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Ceard, L; De Wolf, E A; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; Devroede, O; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Marage, P E; Vander Velde, C; Vanlaer, P; Wickens, J; Costantini, S; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Cabrera, A; Carrillo Montoya, C A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Fereos, R; Galanti, M; Mousa, J; Nicolaou, C; Papadakis, A; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Zinonos, Z; Mahmoud, M; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Kalinowski, A; Miné, P; Paganini, P; Sabes, D; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J-L; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Speck, J; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Roinishvili, V; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Actis, O; Ata, M; Bender, W; Biallass, P; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Parenti, A; Raspereza, A; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Stein, M; Tomaszewska, J; Volyanskyy, D; Wissing, C; Autermann, C; Draeger, J; Eckstein, D; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Buege, V; Cakir, A; Chwalek, T; Daeuwel, D; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Renz, M; Sabellek, A; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Horvath, D; Kapusi, A; Krajczar, K; Laszlo, A; Sikler, F; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Sharma, R; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Suggisetti, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Dimitrov, A; Fedele, F; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Castro, A; Cavallo, F R; Codispoti, G; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; Cerati, G B; De Guio, F; Di Matteo, L; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cimmino, A; De Cosa, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Noli, P; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bellato, M; Biasotto, M; Bisello, D; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Fanzago, F; Gasparini, F; Giubilato, P; Gresele, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Zumerle, G; Baesso, P; Berzano, U; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Santocchia, A; Servoli, L; Valdata, M; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Dagnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trocino, D; Vilela Pereira, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Son, D C; Kim, Zero; Kim, J Y; Song, S; Hong, B; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Choi, S; Choi, Y; Choi, Y K; Goh, J; Lee, J; Lee, S; Seo, H; Yu, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; De La Cruz Burelo, E; Lopez-Fernandez, R; Sánchez Hernández, A; Villaseñor-Cendejas, L M; Carrillo Moreno, S; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Allfrey, P; Krofcheck, D; Tam, J; Aumeyr, T; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Cwiok, M; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Mini, G; Musella, P; Nayak, A; Raposo, L; Ribeiro, P Q; Seixas, J; Silva, P; Soares, D; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Finger, M; Finger, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Bondar, N; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Dremin, I; Kirakosyan, M; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Datsko, K; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Maletic, D; Milosevic, J; Puzovic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Willmott, C; Albajar, C; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Baillon, P; Ball, A H; Barney, D; Beaudette, F; Bell, A J; Bellan, R; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Breuker, H; Brona, G; Bunkowski, K; Camporesi, T; Cano, E; Cattai, A; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Covarelli, R; Curé, B; Dahms, T; De Roeck, A; Elliott-Peisert, A; Funk, W; Gaddi, A; Gennai, S; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Henderson, C; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Lecoq, P; Leonidopoulos, C; Lourenço, C; Macpherson, A; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Racz, A; Rolandi, G; Rovelli, C; Rovere, M; Ryjov, V; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Tsirou, A; Veres, G I; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Caminada, L; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Meridiani, P; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M-C; Schinzel, D; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Weber, M; Wehrli, L; Weng, J; Amsler, C; Chiochia, V; De Visscher, S; Ivova Rikova, M; Millan Mejias, B; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, K H; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Liu, M H; Lu, Y J; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lin, S W; Lu, R-S; Shiu, J G; Tzeng, Y M; Ueno, K; Wang, C C; Wang, M; Wei, J T; Adiguzel, A; Ayhan, A; Bakirci, M N; Cerci, S; Demir, Z; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gökbulut, G; Güler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Kayis Topaksu, A; Nart, A; Onengüt, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sahin, O; Sengul, O; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bell, P; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Kreczko, L; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Teodorescu, L; Bose, T; Clough, A; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sulak, L; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Borgia, M A; Breedon, R; Calderon De La Barca Sanchez, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Erhan, S; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Muelmenstaedt, J; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Würthwein, F; Yagil, A; Barge, D; Blume, M; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Bornheim, A; Bunn, J; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Chatterjee, A; Das, S; Eggert, N; Fields, L J; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Riley, D; Ryd, A; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Demarteau, M; Eartly, D P; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; James, E; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Kilminster, B; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Limon, P; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; McCauley, T; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Popescu, S; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Lacroix, F; Shabalina, E; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Cankocak, K; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Chakaberia, I; Ivanov, A; Kaadze, K; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, D; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Mignerey, A; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Sumorok, K; Sung, K; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Zanetti, M; Cole, P; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Petyt, D; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Zennamo, J; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Reucroft, S; Swain, J; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Valls, N; Warchol, J; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatzerklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Potamianos, K; Shipsey, I; Silvers, D; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Morales, J; Padley, B P; Redjimi, R; Roberts, J; Betchart, B; Bodek, A; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Garcia-Bellido, A; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Velkovska, J; Arenton, M W; Balazs, M; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Dutta, S; Efron, J; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Lomidze, D; Loveless, R; Mohapatra, A; Polese, G; Reeder, D; Savin, A; Smith, W H; Swanson, J; Weinberg, M
2010-07-09
Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at square root of s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/dη|(|η|<0.5) = 5.78 ± 0.01(stat) ± 0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from square root of s = 0.9 to 7 TeV is [66.1 ± 1.0(stat) ± 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 ± 0.005(stat) ± 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies.
47 CFR 15.115 - TV interface devices, including cable system terminal devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... times the square root of (R) for the video signal and 155 times the square root of (R) for the audio... and 77.5 times the square root of (R) for the audio signal. (2) At any RF output terminal, the maximum... video cassette recorders continue to be subject to the provisions for general TV interface devices. (c...
47 CFR 15.115 - TV interface devices, including cable system terminal devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... times the square root of (R) for the video signal and 155 times the square root of (R) for the audio... and 77.5 times the square root of (R) for the audio signal. (2) At any RF output terminal, the maximum... video cassette recorders continue to be subject to the provisions for general TV interface devices. (c...
47 CFR 15.115 - TV interface devices, including cable system terminal devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... times the square root of (R) for the video signal and 155 times the square root of (R) for the audio... and 77.5 times the square root of (R) for the audio signal. (2) At any RF output terminal, the maximum... video cassette recorders continue to be subject to the provisions for general TV interface devices. (c...
Three filters for visualization of phase objects with large variations of phase gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagan, Arkadiusz; Antosiewicz, Tomasz J.; Szoplik, Tomasz
2009-02-20
We propose three amplitude filters for visualization of phase objects. They interact with the spectra of pure-phase objects in the frequency plane and are based on tangent and error functions as well as antisymmetric combination of square roots. The error function is a normalized form of the Gaussian function. The antisymmetric square-root filter is composed of two square-root filters to widen its spatial frequency spectral range. Their advantage over other known amplitude frequency-domain filters, such as linear or square-root graded ones, is that they allow high-contrast visualization of objects with large variations of phase gradients.
Visualizing the Sample Standard Deviation
ERIC Educational Resources Information Center
Sarkar, Jyotirmoy; Rashid, Mamunur
2017-01-01
The standard deviation (SD) of a random sample is defined as the square-root of the sample variance, which is the "mean" squared deviation of the sample observations from the sample mean. Here, we interpret the sample SD as the square-root of twice the mean square of all pairwise half deviations between any two sample observations. This…
Zeng, Chengbo; Li, Linghua; Hong, Yan Alicia; Zhang, Hanxi; Babbitt, Andrew Walker; Liu, Cong; Li, Lixia; Qiao, Jiaying; Guo, Yan; Cai, Weiping
2018-01-15
Previous studies have shown positive association between HIV-related stigma and depression, suicidal ideation, and suicidal attempt among people living with HIV/AIDS (PLWH). But few studies have examined the mechanisms among HIV-related stigma, depression, and suicidal status (suicidal ideation and/or suicidal attempt) in PLWH. The current study examined the relationships among perceived and internalized stigma (PIS), depression, and suicidal status among PLWH in Guangzhou, China using structural equation modeling. Cross-sectional study by convenience sampling was conducted and 411 PLWH were recruited from the Number Eight People's Hospital from March to June, 2013 in Guangzhou, China. Participants were interviewed on their PIS, depressive symptoms, suicidal status, and socio-demographic characteristics. PLWH who had had suicidal ideation and suicidal attempts since HIV diagnosis were considered to be suicidal. Structural equation model was performed to examine the direct and indirect associations of PIS and suicidal status. Indicators to evaluate goodness of fit of the structural equation model included Chi-square Statistic, Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), Standardized Root Mean Square Residual (SRMR), and Weighted Root Mean Square Residual (WRMR). More than one-third (38.4%) of the PLWH had depressive symptoms and 32.4% reported suicidal ideation and/or attempt since HIV diagnosis. The global model showed good model fit (Chi-square value = 34.42, CFI = 0.98, RMSEA = 0.03, WRMR = 0.73). Structural equation model revealed that direct pathway of PIS on suicidal status was significant (standardized pathway coefficient = 0.21), and indirect pathway of PIS on suicidal status via depression was also significant (standardized pathway coefficient = 0.24). There was a partial mediating effect of depression in the association between PIS and suicidal status. Our findings suggest that PIS is associated with increased depression and the likelihood of suicidal status. Depression is in turn positively associated with suicidal status and plays a mediating role between PIS and suicidal status. Therefore, to reduce suicidal ideation and attempt in PLWH, targeted interventions to reduce PIS and improve mental health status of PLWH are warranted.
Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel
2017-04-01
Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+ = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.
An investigation of empennage buffeting
NASA Technical Reports Server (NTRS)
Lan, C. E.; Lee, I. G.
1986-01-01
Progress in the investigation of empennage buffeting in reviewed. In summary, the following tasks were accomplished: relevant literatures was reviewed; equations for calculating structural response were formulated; root-mean-square values of root bending moment for a 65-degree rigid delta wing were calculated and compared with data; and a water-tunnel test program for an F-18 model was completed.
Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui
2015-05-01
Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.
Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
NASA Astrophysics Data System (ADS)
Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini
2014-12-01
The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.
Kuriakose, Saji; Joe, I Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC=0.00009% v/v). The lowest root mean square error of prediction (RMSEP=0.00016% v/v) in the test set and the highest coefficient of determination (R(2)=0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model. Copyright © 2013 Elsevier B.V. All rights reserved.
Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena
2015-04-15
It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuriakose, Saji; Joe, I. Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC = 0.00009% v/v). The lowest root mean square error of prediction (RMSEP = 0.00016% v/v) in the test set and the highest coefficient of determination (R2 = 0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model.
NASA Astrophysics Data System (ADS)
Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan
2012-11-01
The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.
McHugh Power, Joanna; Carney, Sile; Hannigan, Caoimhe; Brennan, Sabina; Wolfe, Hannah; Lynch, Marina; Kee, Frank; Lawlor, Brian
2016-11-01
Potential associations between systemic inflammation and social support received by a sample of 120 older adults were examined here. Inflammatory markers, cognitive function, social support and psychosocial wellbeing were evaluated. A structural equation modelling approach was used to analyse the data. The model was a good fit [Formula: see text], p < 0.001; comparative fit index = 0.973; Tucker-Lewis Index = 0.962; root mean square error of approximation = 0.021; standardised root mean-square residual = 0.074). Chemokine levels were associated with increased age ( β = 0.276), receipt of less social support from friends ( β = -0.256) and body mass index ( β = -0.256). Results are discussed in relation to social signal transduction theory.
Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X
2007-06-08
We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.
Unusual square roots in the ghost-free theory of massive gravity
NASA Astrophysics Data System (ADS)
Golovnev, Alexey; Smirnov, Fedor
2017-06-01
A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.
Li, Kaiyue; Wang, Weiying; Liu, Yanping; Jiang, Su; Huang, Guo; Ye, Liming
2017-01-01
The active ingredients and thus pharmacological efficacy of traditional Chinese medicine (TCM) at different degrees of parching process vary greatly. Near-infrared spectroscopy (NIR) was used to develop a new method for rapid online analysis of TCM parching process, using two kinds of chemical indicators (5-(hydroxymethyl) furfural [5-HMF] content and 420 nm absorbance) as reference values which were obviously observed and changed in most TCM parching process. Three representative TCMs, Areca ( Areca catechu L.), Malt ( Hordeum Vulgare L.), and Hawthorn ( Crataegus pinnatifida Bge.), were used in this study. With partial least squares regression, calibration models of NIR were generated based on two kinds of reference values, i.e. 5-HMF contents measured by high-performance liquid chromatography (HPLC) and 420 nm absorbance measured by ultraviolet-visible spectroscopy (UV/Vis), respectively. In the optimized models for 5-HMF, the root mean square errors of prediction (RMSEP) for Areca, Malt, and Hawthorn was 0.0192, 0.0301, and 0.2600 and correlation coefficients ( R cal ) were 99.86%, 99.88%, and 99.88%, respectively. Moreover, in the optimized models using 420 nm absorbance as reference values, the RMSEP for Areca, Malt, and Hawthorn was 0.0229, 0.0096, and 0.0409 and R cal were 99.69%, 99.81%, and 99.62%, respectively. NIR models with 5-HMF content and 420 nm absorbance as reference values can rapidly and effectively identify three kinds of TCM in different parching processes. This method has great promise to replace current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online analysis and quality control in TCM industrial manufacturing process. Near-infrared spectroscopy.(NIR) was used to develop a new method for online analysis of traditional Chinese medicine.(TCM) parching processCalibration and validation models of Areca, Malt, and Hawthorn were generated by partial least squares regression using 5.(hydroxymethyl) furfural contents and 420.nm absorbance as reference values, respectively, which were main indicator components during parching process of most TCMThe established NIR models of three TCMs had low root mean square errors of prediction and high correlation coefficientsThe NIR method has great promise for use in TCM industrial manufacturing processes for rapid online analysis and quality control. Abbreviations used: NIR: Near-infrared Spectroscopy; TCM: Traditional Chinese medicine; Areca: Areca catechu L.; Hawthorn: Crataegus pinnatifida Bge.; Malt: Hordeum vulgare L.; 5-HMF: 5-(hydroxymethyl) furfural; PLS: Partial least squares; D: Dimension faction; SLS: Straight line subtraction, MSC: Multiplicative scatter correction; VN: Vector normalization; RMSECV: Root mean square errors of cross-validation; RMSEP: Root mean square errors of validation; R cal : Correlation coefficients; RPD: Residual predictive deviation; PAT: Process analytical technology; FDA: Food and Drug Administration; ICH: International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Search for the production of scalar bottom quarks in pp collisions at square root(s) = 1.96 TeV.
Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S
2010-08-20
We report on a search for direct scalar bottom quark (sbottom) pair production in pp collisions at square root(s) = 1.96 TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a b quark. The study uses a collider detector at Fermilab Run II data sample corresponding to 2.65 fb(-1) of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits on the sbottom pair production cross section of 0.1 pb are obtained. For neutralino masses below 70 GeV/c2, sbottom masses up to 230 GeV/c2 are excluded at 95% confidence level.
Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses.
Lee, Heeyoung; Kim, Kyungmi; Lee, Soomin; Han, Minkyung; Yoon, Yohan
2014-05-01
In this study, we developed mathematical models to describe the growth kinetics of Staphylococcus aureus on natural cheeses. A five-strain mixture of Staph. aureus was inoculated onto 15 g of Brie and Camembert cheeses at 4 log CFU/g. The samples were then stored at 4, 10, 15, 25, and 30 °C for 2-60 d, with a different storage time being used for each temperature. Total bacterial and Staph. aureus cells were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of Staph. aureus to calculate kinetic parameters such as the maximum growth rate in log CFU units (r max; log CFU/g/h) and the lag phase duration (λ; h). The effects of temperature on the square root of r max and on the natural logarithm of λ were modelled in the second stage (secondary model). Independent experimental data (observed data) were compared with prediction and the respective root mean square error compared with the RMSE of the fit on the original data, as a measure of model performance. The total growth of bacteria was observed at 10, 15, 25, and 30 °C on both cheeses. The r max values increased with storage temperature (P<0·05), but a significant effect of storage temperature on λ values was only observed between 4 and 15 °C (P<0·05). The square root model and linear equation were found to be appropriate for description of the effect of storage temperature on growth kinetics (R 2=0·894-0·983). Our results indicate that the models developed in this study should be useful for describing the growth kinetics of Staph. aureus on Brie and Camembert cheeses.
Li, Libo; Bentler, Peter M
2011-06-01
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of approximation (RMSEA) pairs. In this article, we develop a new method that quantifies those chosen RMSEA pairs and allows a quantitative comparison of them. Our method proposes the use of single RMSEA values to replace the choice of RMSEA pairs for model comparison and power analysis, thus avoiding the differential meaning of the chosen RMSEA pairs inherent in the approach of MacCallum et al. (2006). With this choice, the conventional cutoff values in model overall evaluation can directly be transferred and applied to the evaluation and power analysis of model differences. © 2011 American Psychological Association
Wang, L; Qin, X C; Lin, H C; Deng, K F; Luo, Y W; Sun, Q R; Du, Q X; Wang, Z Y; Tuo, Y; Sun, J H
2018-02-01
To analyse the relationship between Fourier transform infrared (FTIR) spectrum of rat's spleen tissue and postmortem interval (PMI) for PMI estimation using FTIR spectroscopy combined with data mining method. Rats were sacrificed by cervical dislocation, and the cadavers were placed at 20 ℃. The FTIR spectrum data of rats' spleen tissues were taken and measured at different time points. After pretreatment, the data was analysed by data mining method. The absorption peak intensity of rat's spleen tissue spectrum changed with the PMI, while the absorption peak position was unchanged. The results of principal component analysis (PCA) showed that the cumulative contribution rate of the first three principal components was 96%. There was an obvious clustering tendency for the spectrum sample at each time point. The methods of partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC) effectively divided the spectrum samples with different PMI into four categories (0-24 h, 48-72 h, 96-120 h and 144-168 h). The determination coefficient ( R ²) of the PMI estimation model established by PLS regression analysis was 0.96, and the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) were 9.90 h and 11.39 h respectively. In prediction set, the R ² was 0.97, and the root mean square error of prediction (RMSEP) was 10.49 h. The FTIR spectrum of the rat's spleen tissue can be effectively analyzed qualitatively and quantitatively by the combination of FTIR spectroscopy and data mining method, and the classification and PLS regression models can be established for PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Sensitivity of Fit Indices to Misspecification in Growth Curve Models
ERIC Educational Resources Information Center
Wu, Wei; West, Stephen G.
2010-01-01
This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…
Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing
2017-12-01
The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.
Modeling of surface dust concentrations using neural networks and kriging
NASA Astrophysics Data System (ADS)
Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.
2016-12-01
Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.
Kamrunnahar, M; Schiff, S J
2011-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.
A Collection of Numbers Whose Proof of Irrationality Is Like that of the Number "e"
ERIC Educational Resources Information Center
Osler, Thomas J.; Stugard, Nicholas
2006-01-01
In some elementary courses, it is shown that square root of 2 is irrational. It is also shown that the roots like square root of 3, cube root of 2, etc., are irrational. Much less often, it is shown that the number "e," the base of the natural logarithm, is irrational, even though a proof is available that uses only elementary calculus. In this…
NASA Astrophysics Data System (ADS)
Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.
2017-03-01
Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.
Jones, Andrew M; Lomas, James; Moore, Peter T; Rice, Nigel
2016-10-01
We conduct a quasi-Monte-Carlo comparison of the recent developments in parametric and semiparametric regression methods for healthcare costs, both against each other and against standard practice. The population of English National Health Service hospital in-patient episodes for the financial year 2007-2008 (summed for each patient) is randomly divided into two equally sized subpopulations to form an estimation set and a validation set. Evaluating out-of-sample using the validation set, a conditional density approximation estimator shows considerable promise in forecasting conditional means, performing best for accuracy of forecasting and among the best four for bias and goodness of fit. The best performing model for bias is linear regression with square-root-transformed dependent variables, whereas a generalized linear model with square-root link function and Poisson distribution performs best in terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly relative to other models considered in our comparison.
[Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].
Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na
2015-04-01
Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.
NASA Technical Reports Server (NTRS)
Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak
2012-01-01
A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha
Li, Min; Zhang, John Z H
2017-02-14
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Protein simulation using coarse-grained two-bead multipole force field with polarizable water models
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, John Z. H.
2017-02-01
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan
2012-11-01
The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV=0.0776, R(c)=0.9777, RMSEP=0.0963, and R(p)=0.9686 for pH model; RMSECV=1.3544% w/w, R(c)=0.8871, RMSEP=1.4946% w/w, and R(p)=0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry. Copyright © 2012 Elsevier B.V. All rights reserved.
Stochastic growth logistic model with aftereffect for batch fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic growth logistic model with aftereffect for batch fermentation process
NASA Astrophysics Data System (ADS)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Determination of a transient heat transfer property of acrylic using thermochromic liquid crystals
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1994-01-01
An experiment was performed to determine a transient heat transfer property of acrylic. The experiment took advantage of the known analytical solution for heat conduction in a homogeneous semi-infinite solid with a constant surface heat flux. Thermochromic liquid crystals were used to measure the temperature nonintrusively. The relevant property in this experiment was the transient thermal conduction coefficient h(sub t), which is the square root of the product of density p, specific heat c(sub p), and thermal conductivity k (i.e., square root of pc(sub p)k). A value of 595.6 W square root of s/sq m K was obtained for h(sub t), with a standard deviation of 5.1 W square root of s/sq m K. Although there is no generally accepted value for h(sub t), a commonly used one is 580 W square root of s/sq m K, which is almost 3 percent less than the h(sub t) value obtained in this experiment. Since these results were highly repeatable and since there is no definitive value for h(sub t), the new value is recommended for future use.
Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration
Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.
2017-01-01
Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486
Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.
Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W
2017-01-01
To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.
On Roots and Squares--Estimation, Intuition and Creativity
ERIC Educational Resources Information Center
Patkin, Dorit; Gazit, Avikam
2013-01-01
The paper presents findings of a small scale study of a few items related to problem solving with squares and roots, for different teacher groups (pre-service and in-service mathematics teachers: elementary and junior high school). The research participants were asked to explain what would be the units digit of a natural number to be squared in…
Information and complexity measures for hydrologic model evaluation
USDA-ARS?s Scientific Manuscript database
Hydrological models are commonly evaluated through the residual-based performance measures such as the root-mean square error or efficiency criteria. Such measures, however, do not evaluate the degree of similarity of patterns in simulated and measured time series. The objective of this study was to...
Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun
2015-09-01
This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two components were 8 in the model. The performance of the model was evaluated according to root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP). In the model, RESECV of linalool and linalyl acetate were 0.170 and 0.416, respectively; RM-SEP were 0.188 and 0.364. The results indicated that raw data was pretreated by OSC and FiPLS, the NIR-PLS quantitative analysis model with good robustness, high measurement precision; it could quickly determine the content of linalool and linalyl acetate in lavender essential oil. In addition, the model has a favorable prediction ability. The study also provide a new effective method which could rapid quantitative analysis the major components of Xinjiang lavender essential oil.
Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.
2016-01-01
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373
Wood, Clive; Alwati, Abdolati; Halsey, Sheelagh; Gough, Tim; Brown, Elaine; Kelly, Adrian; Paradkar, Anant
2016-09-10
The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Validation of the Family Inpatient Communication Survey.
Torke, Alexia M; Monahan, Patrick; Callahan, Christopher M; Helft, Paul R; Sachs, Greg A; Wocial, Lucia D; Slaven, James E; Montz, Kianna; Inger, Lev; Burke, Emily S
2017-01-01
Although many family members who make surrogate decisions report problems with communication, there is no validated instrument to accurately measure surrogate/clinician communication for older adults in the acute hospital setting. The objective of this study was to validate a survey of surrogate-rated communication quality in the hospital that would be useful to clinicians, researchers, and health systems. After expert review and cognitive interviewing (n = 10 surrogates), we enrolled 350 surrogates (250 development sample and 100 validation sample) of hospitalized adults aged 65 years and older from three hospitals in one metropolitan area. The communication survey and a measure of decision quality were administered within hospital days 3 and 10. Mental health and satisfaction measures were administered six to eight weeks later. Factor analysis showed support for both one-factor (Total Communication) and two-factor models (Information and Emotional Support). Item reduction led to a final 30-item scale. For the validation sample, internal reliability (Cronbach's alpha) was 0.96 (total), 0.94 (Information), and 0.90 (Emotional Support). Confirmatory factor analysis fit statistics were adequate (one-factor model, comparative fit index = 0.981, root mean square error of approximation = 0.62, weighted root mean square residual = 1.011; two-factor model comparative fit index = 0.984, root mean square error of approximation = 0.055, weighted root mean square residual = 0.930). Total score and subscales showed significant associations with the Decision Conflict Scale (Pearson correlation -0.43, P < 0.001 for total score). Emotional Support was associated with improved mental health outcomes at six to eight weeks, such as anxiety (-0.19 P < 0.001), and Information was associated with satisfaction with the hospital stay (0.49, P < 0.001). The survey shows high reliability and validity in measuring communication experiences for hospital surrogates. The scale has promise for measurement of communication quality and is predictive of important outcomes, such as surrogate satisfaction and well-being. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Spectral combination of spherical gravitational curvature boundary-value problems
NASA Astrophysics Data System (ADS)
PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel
2018-04-01
Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error of the combined solutions and improves standard deviation of the solution based only on the least accurate components.
Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"
ERIC Educational Resources Information Center
Braza, Peter A.
2010-01-01
The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.
Liquid fuel spray processes in high-pressure gas flow
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1985-01-01
Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.
Liquid fuel spray processes in high-pressure gas flow
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1986-01-01
Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.
NASA Astrophysics Data System (ADS)
To, Wai-Ming; Yu, Tat-Wai
2016-12-01
This paper explores urban temperature in Hong Kong using long-term time series. In particular, the characterization of the urban temperature trend was investigated using the seasonal unit root analysis of monthly mean air temperature data over the period January 1970 to December 2013. The seasonal unit root test makes it possible to determine the stochastic trend of monthly temperatures using an autoregressive model. The test results showed that mean air temperature has increased by 0.169°C (10 yr)-1 over the past four decades. The model of monthly temperature obtained from the seasonal unit root analysis was able to explain 95.9% of the variance in the measured monthly data — much higher than the variance explained by the ordinary least-squares model using annual mean air temperature data and other studies alike. The model accurately predicted monthly mean air temperatures between January 2014 and December 2015 with a root-mean-square percentage error of 4.2%. The correlation between the predicted and the measured monthly mean air temperatures was 0.989. By analyzing the monthly air temperatures recorded at an urban site and a rural site, it was found that the urban heat island effect led to the urban site being on average 0.865°C warmer than the rural site over the past two decades. Besides, the results of correlation analysis showed that the increase in annual mean air temperature was significantly associated with the increase in population, gross domestic product, urban land use, and energy use, with the R2 values ranging from 0.37 to 0.43.
[Near infrared spectroscopy study on water content in turbine oil].
Chen, Bin; Liu, Ge; Zhang, Xian-Ming
2013-11-01
Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.
Basalekou, M.; Pappas, C.; Kotseridis, Y.; Tarantilis, P. A.; Kontaxakis, E.
2017-01-01
Color, phenolic content, and chemical age values of red wines made from Cretan grape varieties (Kotsifali, Mandilari) were evaluated over nine months of maturation in different containers for two vintages. The wines differed greatly on their anthocyanin profiles. Mid-IR spectra were also recorded with the use of a Fourier Transform Infrared Spectrophotometer in ZnSe disk mode. Analysis of Variance was used to explore the parameter's dependency on time. Determination models were developed for the chemical age indexes using Partial Least Squares (PLS) (TQ Analyst software) considering the spectral region 1830–1500 cm−1. The correlation coefficients (r) for chemical age index i were 0.86 for Kotsifali (Root Mean Square Error of Calibration (RMSEC) = 0.067, Root Mean Square Error of Prediction (RMSEP) = 0,115, and Root Mean Square Error of Validation (RMSECV) = 0.164) and 0.90 for Mandilari (RMSEC = 0.050, RMSEP = 0.040, and RMSECV = 0.089). For chemical age index ii the correlation coefficients (r) were 0.86 and 0.97 for Kotsifali (RMSEC 0.044, RMSEP = 0.087, and RMSECV = 0.214) and Mandilari (RMSEC = 0.024, RMSEP = 0.033, and RMSECV = 0.078), respectively. The proposed method is simpler, less time consuming, and more economical and does not require chemical reagents. PMID:29225994
Direction information in multiple object tracking is limited by a graded resource.
Horowitz, Todd S; Cohen, Michael A
2010-10-01
Is multiple object tracking (MOT) limited by a fixed set of structures (slots), a limited but divisible resource, or both? Here, we answer this question by measuring the precision of the direction representation for tracked targets. The signature of a limited resource is a decrease in precision as the square root of the tracking load. The signature of fixed slots is a fixed precision. Hybrid models predict a rapid decrease to asymptotic precision. In two experiments, observers tracked moving disks and reported target motion direction by adjusting a probe arrow. We derived the precision of representation of correctly tracked targets using a mixture distribution analysis. Precision declined with target load according to the square-root law up to six targets. This finding is inconsistent with both pure and hybrid slot models. Instead, directional information in MOT appears to be limited by a continuously divisible resource.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface
Kamrunnahar, M.; Schiff, S. J.
2017-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799
Has the Performance of Regional-Scale Photochemical Modelling Systems Changed over the Past Decade?
This study analyzed summertime ozone concentrations that have been simulated by various regional-scale photochemical modelling systems over the Eastern U.S. as part of more than ten independent studies. Results indicate that there has been a reduction of root mean square errors ...
Fracture behavior of thick, laminated graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Harris, C. E.; Morris, D. H.
1984-01-01
The effect of laminate thickness on the fracture behavior of laminated graphite epoxy (T300/5208) composites was studied. The predominantly experimental research program included the study of the 0/+ or - 45/90 sub ns and 0/90 sub ns laminates with thickness of 8, 32, 64, 96 and 120 plies and the 0/+ or - 45 sub ns laminate with thickness of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. The development of subcritical damage at the crack tip was studied nondestructively using enhanced X-ray radiography and destructively using the laminate deply technique. The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the 0 + or - 45/90 sub ns and 0/90 sub ns laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi square root of in. (1043 MPa square root of mm and 25 ksi square root of in (869 MPa square root of mm respectively. In contrast to the other two laminates, the fracture toughness of the 0/+ or - 45 sub ns laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi square root of in (1390 MPa square root of mm) at 30 plies. Fracture toughness was independent of crack size for both thin and thick laminates for all three laminate types except for the 0/90 sub 2s laminate which spilt extensively. The center cracked tension, three point bend and compact tension specimens gave comparable results.
NASA Technical Reports Server (NTRS)
Buchard, Virginie; Da Silva, Arlindo; Todling, Ricardo
2017-01-01
In the GEOS near real-time system, as well as in MERRA-2 which is the latest reanalysis produced at NASAs Global Modeling and Assimilation Office(GMAO), the assimilation of aerosol observations is performed by means of a so-called analysis splitting method. In line with the transition of the GEOS meteorological data assimilation system to a hybrid Ensemble-Variational formulation, we are updating the aerosol component of our assimilation system to an ensemble square root filter(EnSRF; Whitaker and Hamill (2002)) type of scheme.We present a summary of our preliminary results of the assimilation of column integrated aerosol observations (Aerosol Optical Depth; AOD) using an Ensemble Square Root Filters (EnSRF) scheme and the ensemble members produced routinely by the meteorological assimilation.
Direct measurement of the W Boson width in ppover collisions at square roots = 1.96 TeV.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Giovanni, G P Di; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-02-22
A direct measurement of the total decay width of the W boson Gamma(W) is presented using 350 pb(-1) of data from pp[over ] collisions at square root s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. The width is determined by normalizing predicted signal and background distributions to 230 185 W candidates decaying to enu and micronu in the transverse-mass region 50
Occupation probabilities and fluctuations in the asymmetric simple inclusion process
NASA Astrophysics Data System (ADS)
Reuveni, Shlomi; Hirschberg, Ori; Eliazar, Iddo; Yechiali, Uri
2014-04-01
The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and aggregation, was recently proposed as an "inclusion" counterpart of the asymmetric simple exclusion process. In this paper we present an exact closed-form expression for the probability that a given number of particles occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan's trapezoids—number arrays which generalize Catalan's numbers and Catalan's triangle. We further prove that the ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results is discussed.
Search for pair production of scalar bottom quarks in pp collisions at square root of s = 1.96 TeV.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lammers, S; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; McCarthy, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Oguri, V; Oliveira, N; Oshima, N; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Peters, K; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G
2006-10-27
A search for direct production of scalar bottom quarks (b) is performed with 310 pb(-1) of data collected by the D0 experiment in pp collisions at square root s = 1.96 TeV at the Fermilab Tevatron Collider. The topology analyzed consists of two b jets and an imbalance in transverse momentum due to undetected neutralinos (chi(1)0), with chi(1)0 assumed to be the lightest supersymmetric particle. We find the data consistent with standard model expectations, and set a 95% C.L. exclusion domain in the (m(b), m(chi(1)0)) mass plane, improving significantly upon the results from run I of the Tevatron.
New limb-darkening coefficients for modeling binary star light curves
NASA Technical Reports Server (NTRS)
Van Hamme, W.
1993-01-01
We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.
Negeri, Zelalem F; Shaikh, Mateen; Beyene, Joseph
2018-05-11
Diagnostic or screening tests are widely used in medical fields to classify patients according to their disease status. Several statistical models for meta-analysis of diagnostic test accuracy studies have been developed to synthesize test sensitivity and specificity of a diagnostic test of interest. Because of the correlation between test sensitivity and specificity, modeling the two measures using a bivariate model is recommended. In this paper, we extend the current standard bivariate linear mixed model (LMM) by proposing two variance-stabilizing transformations: the arcsine square root and the Freeman-Tukey double arcsine transformation. We compared the performance of the proposed methods with the standard method through simulations using several performance measures. The simulation results showed that our proposed methods performed better than the standard LMM in terms of bias, root mean square error, and coverage probability in most of the scenarios, even when data were generated assuming the standard LMM. We also illustrated the methods using two real data sets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Yu; Griffin, Michael J
2014-01-01
This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70-88 dBA SEL), 7 magnitudes of vibration (0.146-2.318 ms(- 1.75)) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a 'masking effect' of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.
An empirical model for estimating solar radiation in the Algerian Sahara
NASA Astrophysics Data System (ADS)
Benatiallah, Djelloul; Benatiallah, Ali; Bouchouicha, Kada; Hamouda, Messaoud; Nasri, Bahous
2018-05-01
The present work aims to determine the empirical model R.sun that will allow us to evaluate the solar radiation flues on a horizontal plane and in clear-sky on the located Adrar city (27°18 N and 0°11 W) of Algeria and compare with the results measured at the localized site. The expected results of this comparison are of importance for the investment study of solar systems (solar power plants for electricity production, CSP) and also for the design and performance analysis of any system using the solar energy. Statistical indicators used to evaluate the accuracy of the model where the mean bias error (MBE), root mean square error (RMSE) and coefficient of determination. The results show that for global radiation, the daily correlation coefficient is 0.9984. The mean absolute percentage error is 9.44 %. The daily mean bias error is -7.94 %. The daily root mean square error is 12.31 %.
Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L
2016-07-01
The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patient Perceptions of Deprescribing: Survey Development and Psychometric Assessment.
Linsky, Amy; Simon, Steven R; Stolzmann, Kelly; Meterko, Mark
2017-03-01
Although clinicians ultimately decide when to discontinue (deprescribe) medications, patients' perspectives may guide the process. To develop a survey instrument that assesses patients' experience with and attitudes toward deprescribing. We developed a questionnaire with established and newly created items. We used exploratory factor analysis and confirmatory factor analysis (EFA and CFA) to assess the psychometric properties. National sample of 1547 Veterans Affairs patients prescribed ≥5 medications. In the EFA, percent variance, a scree plot, and conceptual coherence determined the number of factors. In the CFA, proposed factor structures were evaluated using standardized root mean square residual, root mean square error of approximation, and comparative fit index. Respondents (n=790; 51% response rate) were randomly assigned to equal derivation and validation groups. EFA yielded credible 4-factor and 5-factor models. The 4 factors were "Medication Concerns," "Provider Knowledge," "Interest in Stopping Medicines," and "Unimportance of Medicines." The 5-factor model added "Patient Involvement in Decision-Making." In the CFA, a modified 5-factor model, with 2 items with marginal loadings moved based upon conceptual fit, had an standardized root mean square residual of 0.06, an RMSEA of 0.07, and a CFI of 0.91. The new scales demonstrated internal consistency reliability, with Cronbach α's of: Concerns, 0.82; Provider Knowledge, 0.86; Interest, 0.77; Involvement, 0.61; and Unimportance, 0.70. The Patient Perceptions of Deprescribing questionnaire is a novel, multidimensional instrument to measure patients' attitudes and experiences related to medication discontinuation that can be used to determine how to best involve patients in deprescribing decisions.
Flügge, Tabea V; Schlager, Stefan; Nelson, Katja; Nahles, Susanne; Metzger, Marc C
2013-09-01
Digital impression devices are used alternatively to conventional impression techniques and materials. The aims of this study were to evaluate the precision of digital intraoral scanning under clinical conditions (iTero; Align Technologies, San Jose, Calif) and to compare it with the precision of extraoral digitization. One patient received 10 full-arch intraoral scans with the iTero and conventional impressions with a polyether impression material (Impregum Penta; 3M ESPE, Seefeld, Germany). Stone cast models manufactured from the impressions were digitized 10 times with an extraoral scanner (D250; 3Shape, Copenhagen, Denmark) and 10 times with the iTero. Virtual models provided by each method were roughly aligned, and the model edges were trimmed with cutting planes to create common borders (Rapidform XOR; Inus Technologies, Seoul, Korea). A second model alignment was then performed along the closest distances of the surfaces (Artec Studio software; Artec Group, Luxembourg, Luxembourg). To assess precision, deviations between corresponding models were compared. Repeated intraoral scanning was evaluated in group 1, repeated extraoral model scanning with the iTero was assessed in group 2, and repeated model scanning with the D250 was assessed in group 3. Deviations between models were measured and expressed as maximums, means, medians, and root mean square errors for quantitative analysis. Color-coded displays of the deviations allowed qualitative visualization of the deviations. The greatest deviations and therefore the lowest precision were in group 1, with mean deviations of 50 μm, median deviations of 37 μm, and root mean square errors of 73 μm. Group 2 showed a higher precision, with mean deviations of 25 μm, median deviations of 18 μm, and root mean square errors of 51 μm. Scanning with the D250 had the highest precision, with mean deviations of 10 μm, median deviations of 5 μm, and root mean square errors of 20 μm. Intraoral and extraoral scanning with the iTero resulted in deviations at the facial surfaces of the anterior teeth and the buccal molar surfaces. Scanning with the iTero is less accurate than scanning with the D250. Intraoral scanning with the iTero is less accurate than model scanning with the iTero, suggesting that the intraoral conditions (saliva, limited spacing) contribute to the inaccuracy of a scan. For treatment planning and manufacturing of tooth-supported appliances, virtual models created with the iTero can be used. An extended scanning protocol could improve the scanning results in some regions. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Repeatability of paired counts.
Alexander, Neal; Bethony, Jeff; Corrêa-Oliveira, Rodrigo; Rodrigues, Laura C; Hotez, Peter; Brooker, Simon
2007-08-30
The Bland and Altman technique is widely used to assess the variation between replicates of a method of clinical measurement. It yields the repeatability, i.e. the value within which 95 per cent of repeat measurements lie. The valid use of the technique requires that the variance is constant over the data range. This is not usually the case for counts of items such as CD4 cells or parasites, nor is the log transformation applicable to zero counts. We investigate the properties of generalized differences based on Box-Cox transformations. For an example, in a data set of hookworm eggs counted by the Kato-Katz method, the square root transformation is found to stabilize the variance. We show how to back-transform the repeatability on the square root scale to the repeatability of the counts themselves, as an increasing function of the square mean root egg count, i.e. the square of the average of square roots. As well as being more easily interpretable, the back-transformed results highlight the dependence of the repeatability on the sample volume used.
Tantalum films with well-controlled roughness grown by oblique incidence deposition
NASA Astrophysics Data System (ADS)
Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.
2005-08-01
We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.
Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes
ERIC Educational Resources Information Center
Leite, Walter L.; Stapleton, Laura M.
2011-01-01
In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…
Nutritional Status of Rural Older Adults Is Linked to Physical and Emotional Health.
Jung, Seung Eun; Bishop, Alex J; Kim, Minjung; Hermann, Janice; Kim, Giyeon; Lawrence, Jeannine
2017-06-01
Although nutritional status is influenced by multidimensional aspects encompassing physical and emotional well-being, there is limited research on this complex relationship. The purpose of this study was to examine the interplay between indicators of physical health (perceived health status and self-care capacity) and emotional well-being (depressive affect and loneliness) on rural older adults' nutritional status. The cross-sectional study was conducted from June 1, 2007, to June 1, 2008. A total of 171 community-dwelling older adults, aged 65 years and older, residing within nonmetro rural communities in the United States participated in this study. Participants completed validated instruments measuring self-care capacity, perceived health status, loneliness, depressive affect, and nutritional status. Structural equation modeling was employed to investigate the complex interplay of physical and emotional health status with nutritional status among rural older adults. The χ 2 test, comparative fit index, root mean square error of approximation, and standardized root mean square residual were used to assess model fit. The χ 2 test and the other model fit indexes showed the hypothesized structural equation model provided a good fit to the data (χ 2 (2)=2.15; P=0.34; comparative fit index=1.00; root mean square error of approximation=0.02; and standardized root mean square residual=0.03). Self-care capacity was significantly related with depressive affect (γ=-0.11; P=0.03), whereas self-care capacity was not significantly related with loneliness. Perceived health status had a significant negative relationship with both loneliness (γ=-0.16; P=0.03) and depressive affect (γ=-0.22; P=0.03). Although loneliness showed no significant direct relationship with nutritional status, it showed a significant direct relationship with depressive affect (β=.4; P<0.01). Finally, the results demonstrated that depressive affect had a significant negative relationship with nutritional status (β=-.30; P<0.01). The results indicated physical health and emotional indicators have significant multidimensional associations with nutritional status among rural older adults. The present study provides insights into the importance of addressing both physical and emotional well-being together to reduce potential effects of poor emotional well-being on nutritional status, particularly among rural older adults with impaired physical health and self-care capacity. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
A Proposed Model of Jazz Theory Knowledge Acquisition
ERIC Educational Resources Information Center
Ciorba, Charles R.; Russell, Brian E.
2014-01-01
The purpose of this study was to test a hypothesized model that proposes a causal relationship between motivation and academic achievement on the acquisition of jazz theory knowledge. A reliability analysis of the latent variables ranged from 0.92 to 0.94. Confirmatory factor analyses of the motivation (standardized root mean square residual…
Perception of competence in middle school physical education: instrument development and validation.
Scrabis-Fletcher, Kristin; Silverman, Stephen
2010-03-01
Perception of Competence (POC) has been studied extensively in physical activity (PA) research with similar instruments adapted for physical education (PE) research. Such instruments do not account for the unique PE learning environment. Therefore, an instrument was developed and the scores validated to measure POC in middle school PE. A multiphase design was used consisting of an intensive theoretical review, elicitation study, prepilot study, pilot study, content validation study, and final validation study (N=1281). Data analysis included a multistep iterative process to identify the best model fit. A three-factor model for POC was tested and resulted in root mean square error of approximation = .09, root mean square residual = .07, goodness offit index = .90, and adjusted goodness offit index = .86 values in the acceptable range (Hu & Bentler, 1999). A two-factor model was also tested and resulted in a good fit (two-factor fit indexes values = .05, .03, .98, .97, respectively). The results of this study suggest that an instrument using a three- or two-factor model provides reliable and valid scores ofPOC measurement in middle school PE.
Hyland, Philip; Shevlin, Mark; Adamson, Gary; Boduszek, Daniel
2014-01-01
This study directly tests a central prediction of rational emotive behaviour therapy (REBT) that has received little empirical attention regarding the core and intermediate beliefs in the development of posttraumatic stress symptoms. A theoretically consistent REBT model of posttraumatic stress disorder (PTSD) was examined using structural equation modelling techniques among a sample of 313 trauma-exposed military and law enforcement personnel. The REBT model of PTSD provided a good fit of the data, χ(2) = 599.173, df = 356, p < .001; standardized root mean square residual = .05 (confidence interval = .04-.05); standardized root mean square residual = .04; comparative fit index = .95; Tucker Lewis index = .95. Results demonstrated that demandingness beliefs indirectly affected the various symptom groups of PTSD through a set of secondary irrational beliefs that include catastrophizing, low frustration tolerance, and depreciation beliefs. Results were consistent with the predictions of REBT theory and provides strong empirical support that the cognitive variables described by REBT theory are critical cognitive constructs in the prediction of PTSD symptomology. © 2013 Wiley Periodicals, Inc.
A hybrid least squares support vector machines and GMDH approach for river flow forecasting
NASA Astrophysics Data System (ADS)
Samsudin, R.; Saad, P.; Shabri, A.
2010-06-01
This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.
Tan, Jin; Li, Rong; Jiang, Zi-Tao; Tang, Shu-Hua; Wang, Ying; Shi, Meng; Xiao, Yi-Qian; Jia, Bin; Lu, Tian-Xiang; Wang, Hao
2017-02-15
Synchronous front-face fluorescence spectroscopy has been developed for the discrimination of used frying oil (UFO) from edible vegetable oil (EVO), the estimation of the using time of UFO, and the determination of the adulteration of EVO with UFO. Both the heating time of laboratory prepared UFO and the adulteration of EVO with UFO could be determined by partial least squares regression (PLSR). To simulate the EVO adulteration with UFO, for each kind of oil, fifty adulterated samples at the adulterant amounts range of 1-50% were prepared. PLSR was then adopted to build the model and both full (leave-one-out) cross-validation and external validation were performed to evaluate the predictive ability. Under the optimum condition, the plots of observed versus predicted values exhibited high linearity (R(2)>0.96). The root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) were both lower than 3%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Slojkowski, Steven; Lowe, Jonathan; Woodburn, James
2015-01-01
Since launch, the FDF has performed daily OD for LRO using the Goddard Trajectory Determination System (GTDS). GTDS is a batch least-squares (BLS) estimator. The tracking data arc for OD is 36 hours. Current operational OD uses 200 x 200 lunar gravity, solid lunar tides, solar radiation pressure (SRP) using a spherical spacecraft area model, and point mass gravity for the Earth, Sun, and Jupiter. LRO tracking data consists of range and range-rate measurements from: Universal Space Network (USN) stations in Sweden, Germany, Australia, and Hawaii. A NASA antenna at White Sands, New Mexico (WS1S). NASA Deep Space Network (DSN) stations. DSN data was sparse and not included in this study. Tracking is predominantly (50) from WS1S. The OD accuracy requirements are: Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and18 meters radial RMS. Predicted orbit accuracy less than 800 meters root sum squared (RSS) over an 84-hour prediction span.
Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy
NASA Astrophysics Data System (ADS)
Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao
2006-10-01
To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.
MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.
2012-01-01
A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.
Analysis of tractable distortion metrics for EEG compression applications.
Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando
2012-07-01
Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.
Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai
2014-10-01
In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.
Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping
2005-03-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-01-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498
A study of autonomous satellite navigation methods using the global positioning satellite system
NASA Technical Reports Server (NTRS)
Tapley, B. D.
1980-01-01
Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.
Superimposition of protein structures with dynamically weighted RMSD.
Wu, Di; Wu, Zhijun
2010-02-01
In protein modeling, one often needs to superimpose a group of structures for a protein. A common way to do this is to translate and rotate the structures so that the square root of the sum of squares of coordinate differences of the atoms in the structures, called the root-mean-square deviation (RMSD) of the structures, is minimized. While it has provided a general way of aligning a group of structures, this approach has not taken into account the fact that different atoms may have different properties and they should be compared differently. For this reason, when superimposed with RMSD, the coordinate differences of different atoms should be evaluated with different weights. The resulting RMSD is called the weighted RMSD (wRMSD). Here we investigate the use of a special wRMSD for superimposing a group of structures with weights assigned to the atoms according to certain thermal motions of the atoms. We call such an RMSD the dynamically weighted RMSD (dRMSD). We show that the thermal motions of the atoms can be obtained from several sources such as the mean-square fluctuations that can be estimated by Gaussian network model analysis. We show that the superimposition of structures with dRMSD can successfully identify protein domains and protein motions, and that it has important implications in practice, e.g., in aligning the ensemble of structures determined by nuclear magnetic resonance.
Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.
Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel
2017-04-01
Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-02-06
We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
An Assessment of the Nonparametric Approach for Evaluating the Fit of Item Response Models
ERIC Educational Resources Information Center
Liang, Tie; Wells, Craig S.; Hambleton, Ronald K.
2014-01-01
As item response theory has been more widely applied, investigating the fit of a parametric model becomes an important part of the measurement process. There is a lack of promising solutions to the detection of model misfit in IRT. Douglas and Cohen introduced a general nonparametric approach, RISE (Root Integrated Squared Error), for detecting…
Kim, Sun Jung; Yoo, Il Young
2016-03-01
The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Rapid reduced-order numerical models are being investigated as candidates to simulate the dynamics of a flexible launch vehicle during atmospheric ascent. There has also been the extension of these new approaches to include gust response. These methods are used to perform aeroelastic and gust response analyses at isolated Mach numbers. Such models require a method to time march through a succession of ascent Mach numbers. An approach is presented for interpolating reduced-order models of the unsteady aerodynamics at successive Mach numbers. The transonic Mach number range is considered here since launch vehicles can suffer the highest dynamic loads through this range. Realistic simulations of the flexible vehicle behavior as it traverses this Mach number range are presented. The response of the vehicle due to gusts is computed. Uncertainties in root mean square and maximum bending moment and crew module accelerations are presented due to assumed probability distributions in design parameters, ascent flight conditions, gusts. The primary focus is on the uncertainty introduced by modeling fidelity. It is found that an unsteady reduced order model produces larger excursions in the root mean square loading and accelerations than does a quasi-steady reduced order model.
Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina
2015-02-01
The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®
Durakli Velioglu, Serap; Ercioglu, Elif; Boyaci, Ismail Hakki
2017-05-01
This research paper describes the potential of synchronous fluorescence (SF) spectroscopy for authentication of buffalo milk, a favourable raw material in the production of some premium dairy products. Buffalo milk is subjected to fraudulent activities like many other high priced foodstuffs. The current methods widely used for the detection of adulteration of buffalo milk have various disadvantages making them unattractive for routine analysis. Thus, the aim of the present study was to assess the potential of SF spectroscopy in combination with multivariate methods for rapid discrimination between buffalo and cow milk and detection of the adulteration of buffalo milk with cow milk. SF spectra of cow and buffalo milk samples were recorded between 400-550 nm excitation range with Δλ of 10-100 nm, in steps of 10 nm. The data obtained for ∆λ = 10 nm were utilised to classify the samples using principal component analysis (PCA), and detect the adulteration level of buffalo milk with cow milk using partial least square (PLS) methods. Successful discrimination of samples and detection of adulteration of buffalo milk with limit of detection value (LOD) of 6% are achieved with the models having root mean square error of calibration (RMSEC) and the root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) values of 2, 7, and 4%, respectively. The results reveal the potential of SF spectroscopy for rapid authentication of buffalo milk.
NASA Technical Reports Server (NTRS)
Garneau, S.; Plaut, J. J.
2000-01-01
The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.
The contribution of transient counterion imbalances to DNA bending fluctuations.
Manning, Gerald S
2006-05-01
A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.
Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.
1987-01-01
The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.
ERIC Educational Resources Information Center
Mason, John; Watson, Anne
2009-01-01
While Socrates and Meno are discussing the nature of knowledge through considering the square-root of two with one of Meno's slaves, their wives are discussing the nature of knowledge through considering the square-root of three with one of the slave girls, using a diagram based on Raphael's "The School of Athens" being contemplated by Euclid.
Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun
This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
Park, Sun-Young; Park, Eun-Ja; Suh, Hae Sun; Ha, Dongmun; Lee, Eui-Kyung
2017-08-01
Although nonpreference-based disease-specific measures are widely used in clinical studies, they cannot generate utilities for economic evaluation. A solution to this problem is to estimate utilities from disease-specific instruments using the mapping function. This study aimed to develop a transformation model for mapping the pruritus-visual analog scale (VAS) to the EuroQol 5-Dimension 3-Level (EQ-5D-3L) utility index in pruritus. A cross-sectional survey was conducted with a sample (n = 268) drawn from the general population of South Korea. Data were randomly divided into 2 groups, one for estimating and the other for validating mapping models. To select the best model, we developed and compared 3 separate models using demographic information and the pruritus-VAS as independent variables. The predictive performance was assessed using the mean absolute deviation and root mean square error in a separate dataset. Among the 3 models, model 2 using age, age squared, sex, and the pruritus-VAS as independent variables had the best performance based on the goodness of fit and model simplicity, with a log likelihood of 187.13. The 3 models had similar precision errors based on mean absolute deviation and root mean square error in the validation dataset. No statistically significant difference was observed between the mean observed and predicted values in all models. In conclusion, model 2 was chosen as the preferred mapping model. Outcomes measured as the pruritus-VAS can be transformed into the EQ-5D-3L utility index using this mapping model, which makes an economic evaluation possible when only pruritus-VAS data are available. © 2017 John Wiley & Sons, Ltd.
Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed
2017-11-01
The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.
Boiret, Mathieu; Meunier, Loïc; Ginot, Yves-Michel
2011-02-20
A near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory and production scale batches. The reference values were obtained by high performance liquid chromatography (HPLC) and partial least squares (PLS) regression was used to establish a model. The model was challenged by calculating tablet potency of two external test sets. Root mean square errors of prediction were respectively equal to 2.0% and 2.7%. To use this model with a second spectrometer from the production field, a calibration transfer method called piecewise direct standardisation (PDS) was used. After the transfer, the root mean square error of prediction of the first test set was 2.4% compared to 4.0% without transferring the spectra. A statistical technique using bootstrap of PLS residuals was used to estimate confidence intervals of tablet potency calculations. This method requires an optimised PLS model, selection of the bootstrap number and determination of the risk. In the case of a chemical analysis, the tablet potency value will be included within the confidence interval calculated by the bootstrap method. An easy to use graphical interface was developed to easily determine if the predictions, surrounded by minimum and maximum values, are within the specifications defined by the regulatory organisation. Copyright © 2010 Elsevier B.V. All rights reserved.
The Consequences of Ignoring Item Parameter Drift in Longitudinal Item Response Models
ERIC Educational Resources Information Center
Lee, Wooyeol; Cho, Sun-Joo
2017-01-01
Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…
Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model
ERIC Educational Resources Information Center
Custer, Michael
2015-01-01
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
Li, Min; Liu, Fengjiao; Zhang, John Z H
2016-12-13
Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.
NASA Astrophysics Data System (ADS)
Magsakay, Clarenz B.; De Vera, Nora U.; Libatique, Criselda P.; Addawe, Rizavel C.; Addawe, Joel M.
2017-11-01
Dengue vaccination has become a breakthrough in the fight against dengue infection. This is however not applicable to all ages. Individuals from 0 to 8 years old and adults older than 45 years old remain susceptible to the vector-borne disease dengue. Forecasting future dengue cases accurately from susceptible age groups would aid in the efforts to prevent further increase in dengue infections. For the age groups of individuals not eligible for vaccination, the presence of outliers was observed and was treated using winsorization, square root, and logarithmic transformations to create a SARIMA model. The best model for the age group 0 to 8 years old was found to be ARIMA(13,1,0)(1,0,0)12 with 10 fixed variables using square root transformation with a 95% winsorization, and the best model for the age group older than 45 years old is ARIMA(7,1,0)(1,0,0)12 with 5 fixed variables using logarithmic transformation with 90% winsorization. These models are then used to forecast the monthly dengue cases for Baguio City for the age groups considered.
Seal Formation Mechanism Beneath Animal Waste Holding Ponds
NASA Astrophysics Data System (ADS)
Cihan, A.; Tyner, J. S.; Wright, W. C.
2005-12-01
Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yumin; Lum, Kai-Yew; Wang Qingguo
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew
2009-03-01
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.
Colson, B.E.
1986-01-01
In 1964 the U.S. Geological Survey in Mississippi expanded the small stream gaging network for collection of rainfall and runoff data to 92 stations. To expedite availability of flood frequency information a rainfall-runoff model using available long-term rainfall data was calibrated to synthesize flood peaks. Results obtained from observed annual peak flow data for 51 sites having 16 yr to 30 yr of annual peaks are compared with the synthetic results. Graphical comparison of the 2, 5, 10, 25, 50, and 100-year flood discharges indicate good agreement. The root mean square error ranges from 27% to 38% and the synthetic record bias from -9% to -18% in comparison with the observed record. The reduced variance in the synthetic results is attributed to use of only four long-term rainfall records and model limitations. The root mean square error and bias is within the accuracy considered to be satisfactory. (Author 's abstract)
Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-09-04
We report on the first direct search for charged Higgs bosons decaying into cs in tt events produced by pp collisions at square root s = 1.96 TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2 fb(-1) collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton + jets sample of tt candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at B(t --> H(+)b)< 0.1 to 0.3 for charged Higgs boson masses of 60 to 150 GeV/c(2) assuming B(H(+) --> cs)=1.0. The upper limits on B(t --> H(+)b) are also used as model-independent limits on the decay branching ratio of top quarks to generic scalar charged bosons beyond the standard model.
Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel
2011-01-01
The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).
Ratio of jet cross sections at square root of s = 630 GeV and 1800 GeV.
Abbott, B; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Alves, G A; Amos, N; Anderson, E W; Baarmand, M M; Babintsev, V V; Babukhadia, L; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Bantly, J; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bean, A; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blessing, S; Boehnlein, A; Bojko, N I; Borcherding, F; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cochran, J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Cummings, M A; Cutts, D; Dahl, O I; Davis, G A; Davis, K; De, K; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Di Loreto, G; Doulas, S; Draper, P; Ducros, Y; Dudko, L V; Duensing, S; Dugad, S R; Dyshkant, A; Edmunds, D; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fahland, T; Feher, S; Fein, D; Ferbel, T; Fisk, H E; Fisyak, Y; Flattum, E; Fleuret, F; Fortner, M; Frame, K C; Fuess, S; Gallas, E; Galyaev, A N; Gartung, P; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Gibbard, B; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González Solís, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Grinstein, S; Groer, L; Grudberg, P; Grünendahl, S; Gupta, A; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinson, A P; Heintz, U; Heuring, T; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hou, S; Huang, Y; Ito, A S; Jerger, S A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jones, M; Jöstlein, H; Juste, A; Kahn, S; Kajfasz, E; Karmanov, D; Karmgard, D; Kehoe, R; Kim, S K; Klima, B; Klopfenstein, C; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kotwal, A V; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kuznetsov, V E; Landsberg, G; Leflat, A; Lehner, F; Li, J; Li, Q Z; Lima, J G; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Maciel, A K; Madaras, R J; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Martin, R D; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McMahon, T; Melanson, H L; Meng, X C; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mincer, A; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Neal, H A; Negret, J P; Negroni, S; Norman, D; Oesch, L; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, M; Peters, O; Piegaia, R; Piekarz, H; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Rha, J; Rijssenbeek, M; Rockwell, T; Roco, M; Rubinov, P; Ruchti, R; Rutherfoord, J; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Sculli, J; Sen, N; Shabalina, E; Shankar, H C; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Singh, H; Singh, J B; Sirotenko, V; Slattery, P; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stephens, R W; Stevenson, M L; Stichelbaut, F; Stoker, D; Stolin, V; Stoyanova, D A; Strauss, M; Streets, K; Strovink, M; Stutte, L; Sznajder, A; Taylor, W; Tentindo-Repond, S; Thompson, J; Toback, D; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; van Gemmeren, P; Vaniev, V; Van Kooten, R; Varelas, N; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, H; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wightman, J A; Wijngaarden, D A; Willis, S; Wimpenny, S J; Wirjawan, J V; Womersley, J; Wood, D R; Yamada, R; Yamin, P; Yasuda, T; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M; Zheng, H; Zhou, Z; Zhu, Z H; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A
2001-03-19
The D0 Collaboration has measured the inclusive jet cross section in barpp collisions at square root of s = 630 GeV. The results for pseudorapidities (eta)<0.5 are combined with our previous results at square root of s = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute magnitude, the dependence of the ratio on jet transverse momentum is very similar for data and theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, L.M.; Jones, A.H.
1986-04-01
The fracture toughness of CIP-HIP (cold isostatic pressed-hot isostatic pressed) beryllium was determined using the short-bar fracture-toughness (K/sub IcSB/) method. The K/sub IcSB/ value measured was 10.96 MPa x the square root of m at room temperature. This falls well within the expected range of 9 to 12 MPa x the square root of m as observed from previous fracture toughness measurements of beryllium. Toughness increased rapidly between 400 F and 500 F reaching a value of 16.7 MPa x the square root of m at 500 F.
Kehimkar, Benjamin; Parsons, Brendon A; Hoggard, Jamin C; Billingsley, Matthew C; Bruno, Thomas J; Synovec, Robert E
2015-01-01
Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling put greater emphasis on obtaining detailed and accurate fuel properties, as well as elucidating the relationships between fuel compositions and their properties. Herein, we study multidimensional chromatographic data obtained by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS) to analyze RP-1 fuels. For GC × GC separations, RTX-Wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were implemented for the primary and secondary dimensions, respectively, to separate the chemical compound classes (alkanes, cycloalkanes, aromatics, etc.), providing a significant level of chemical compositional information. The GC × GC-TOFMS data were analyzed using partial least squares regression (PLS) chemometric analysis to model and predict advanced distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC method. The PLS modeling provides insight into the chemical species that impact the ADC data. The PLS modeling correlates compositional information found in the GC × GC-TOFMS chromatograms of each RP-1 fuel, and their respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and accuracy. The root-mean-square error of calibration (RMSEC) ranged from 0.1 to 0.5 °C, and was typically below ∼0.2 °C, for the PLS calibration of the ADC modeling with GC × GC-TOFMS data, indicating a good fit of the model to the calibration data. Likewise, the predictive power of the overall method via PLS modeling was assessed using leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation (RMSECV) ranging from 1.4 to 2.6 °C, and was typically below ∼2.0 °C, at each % distilled measurement point during the ADC analysis.
Kumar, Keshav; Mishra, Ashok Kumar
2015-07-01
Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R(2)), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.
NASA Astrophysics Data System (ADS)
Gidey, Amanuel
2018-06-01
Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.
An Algorithm for Computing Matrix Square Roots with Application to Riccati Equation Implementation,
1977-01-01
pansion is compared to Euclid’s method. The apriori by Aerospace Medical Research Laboratory, Aero— upper and lower bounds are also calculated. The third ... space Medical Division , Air Force Systems Command , part of this paper extends the scalar square root al— Wright—Patterson Air Force Base, Ohio 45433
Fast and stable algorithms for computing the principal square root of a complex matrix
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.
1987-01-01
This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.
Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.
Cheng, Jian; Jiang, Tianzi; Deriche, Rachid
2012-01-01
In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are nonnegative definite respectively in their domains S2 and R3. However, existing ODF/EAP estimation methods like SPFI seldom consider this natural constraint. Although some works considered the nonnegative constraint on the given discrete samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonnegative definite in the whole continuous domain. The Riemannian framework for ODFs and EAPs has been proposed via the square root parameterization based on pre-estimated ODFs and EAPs by other methods like SPFI. However, there is no work on how to estimate the square root of ODF/EAP called as the wavefuntion directly from diffusion signals. In this paper, based on the Riemannian framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis representation, we propose a unified model-free multi-shell HARDI method, named as Square Root Parameterized Estimation (SRPE), to simultaneously estimate both the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from diffusion signals. The experiments on synthetic data and real data showed SRPE is more robust to noise and has better EAP reconstruction than SPFI, especially for EAP profiles at large radius.
NASA Astrophysics Data System (ADS)
Hu, Leqian; Ma, Shuai; Yin, Chunling
2018-03-01
In this work, fluorescence spectroscopy combined with multi-way pattern recognition techniques were developed for determining the geographical origin of kudzu root and detection and quantification of adulterants in kudzu root. Excitation-emission (EEM) spectra were obtained for 150 pure kudzu root samples of different geographical origins and 150 fake kudzu roots with different adulteration proportions by recording emission from 330 to 570 nm with excitation in the range of 320-480 nm, respectively. Multi-way principal components analysis (M-PCA) and multilinear partial least squares discriminant analysis (N-PLS-DA) methods were used to decompose the excitation-emission matrices datasets. 150 pure kudzu root samples could be differentiated exactly from each other according to their geographical origins by M-PCA and N-PLS-DA models. For the adulteration kudzu root samples, N-PLS-DA got better and more reliable classification result comparing with the M-PCA model. The results obtained in this study indicated that EEM spectroscopy coupling with multi-way pattern recognition could be used as an easy, rapid and novel tool to distinguish the geographical origin of kudzu root and detect adulterated kudzu root. Besides, this method was also suitable for determining the geographic origin and detection the adulteration of the other foodstuffs which can produce fluorescence.
Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
NASA Technical Reports Server (NTRS)
Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Thorpe, J. I.
2016-01-01
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B
2011-05-01
Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Evaluation of Fast-Time Wake Vortex Prediction Models
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.
2009-01-01
Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.
Fast algorithm for computing a primitive /2 to power p + 1/p-th root of unity in GF/q squared/
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.; Miller, R. L.
1978-01-01
A quick method is described for finding the primitive (2 to power p + 1)p-th root of unity in the Galois field GF(q squared), where q = (2 to power p) - 1 and is known as a Mersenne prime. Determination of this root is necessary to implement complex integer transforms of length (2 to power k) times p over the Galois field, with k varying between 3 and p + 1.
Zhao, Y J; Wang, S W; Liu, Y; Wang, Y
2017-02-18
To explore a new method for rapid extracting and rebuilding three-dimensional (3D) digital root model of vivo tooth from cone beam computed tomography (CBCT) data based on the anatomical characteristics of periodontal ligament, and to evaluate the extraction accuracy of the method. In the study, 15 extracted teeth (11 with single root, 4 with double roots) were collected from oral clinic and 3D digital root models of each tooth were obtained by 3D dental scanner with a high accuracy 0.02 mm in STL format. CBCT data for each patient were acquired before tooth extraction, DICOM data with a voxel size 0.3 mm were input to Mimics 18.0 software. Segmentation, Morphology operations, Boolean operations and Smart expanded function in Mimics software were used to edit teeth, bone and periodontal ligament threshold mask, and root threshold mask were automatically acquired after a series of mask operations. 3D digital root models were extracted in STL format finally. 3D morphology deviation between the extracted root models and corresponding vivo root models were compared in Geomagic Studio 2012 software. The 3D size errors in long axis, bucco-lingual direction and mesio-distal direction were also calculated. The average value of the 3D morphology deviation for 15 roots by calculating Root Mean Square (RMS) value was 0.22 mm, the average size errors in the mesio-distal direction, the bucco-lingual direction and the long axis were 0.46 mm, 0.36 mm and -0.68 mm separately. The average time of this new method for extracting single root was about 2-3 min. It could meet the accuracy requirement of the root 3D reconstruction fororal clinical use. This study established a new method for rapid extracting 3D root model of vivo tooth from CBCT data. It could simplify the traditional manual operation and improve the efficiency and automation of single root extraction. The strategy of this method for complete dentition extraction needs further research.
2015-07-01
the radius of gyration in detail as a function FIG. 5. Variation of the root mean square (RMS) displacement of the center of mass of the protein with...depends on the temperature. The global motion can be examined by analyzing the variation of the root mean square displacement (RMS) of the center of...and global physical quantities during the course of simula- tion, including the energy of each residue, its mobility, mean square displacement of the
NASA Technical Reports Server (NTRS)
Seidel, David J.; Dubovitsky, Serge
2000-01-01
We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the stability requirements of SIM, which has been delivered to one of the SIM testbeds. We have also started on the development of a system to meet the stability needs of DS-3.
Tian, Hai-Qing; Wang, Chun-Guang; Zhang, Hai-Jun; Yu, Zhi-Hong; Li, Jian-Kang
2012-11-01
Outlier samples strongly influence the precision of the calibration model in soluble solids content measurement of melons using NIR Spectra. According to the possible sources of outlier samples, three methods (predicted concentration residual test; Chauvenet test; leverage and studentized residual test) were used to discriminate these outliers respectively. Nine suspicious outliers were detected from calibration set which including 85 fruit samples. Considering the 9 suspicious outlier samples maybe contain some no-outlier samples, they were reclaimed to the model one by one to see whether they influence the model and prediction precision or not. In this way, 5 samples which were helpful to the model joined in calibration set again, and a new model was developed with the correlation coefficient (r) 0. 889 and root mean square errors for calibration (RMSEC) 0.6010 Brix. For 35 unknown samples, the root mean square errors prediction (RMSEP) was 0.854 degrees Brix. The performance of this model was more better than that developed with non outlier was eliminated from calibration set (r = 0.797, RMSEC= 0.849 degrees Brix, RMSEP = 1.19 degrees Brix), and more representative and stable with all 9 samples were eliminated from calibration set (r = 0.892, RMSEC = 0.605 degrees Brix, RMSEP = 0.862 degrees).
Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yongni; He Yong; Mao Jingyuan
Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less
Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan Wikaira
2007-01-01
A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Cubic law with aperture-length correlation: implications for network scale fluid flow
NASA Astrophysics Data System (ADS)
Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.
2010-06-01
Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.
Model assessment using a multi-metric ranking technique
NASA Astrophysics Data System (ADS)
Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.
2017-12-01
Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.
Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.
Kuriakose, Saji; Thankappan, Xavier; Joe, Hubert; Venkataraman, Venkateswaran
2010-10-01
The confirmation of authenticity of essential oils and the detection of adulteration are problems of increasing importance in the perfumes, pharmaceutical, flavor and fragrance industries. This is especially true for 'value added' products like sandalwood oil. A methodical study is conducted here to demonstrate the potential use of Near Infrared (NIR) spectroscopy along with multivariate calibration models like principal component regression (PCR) and partial least square regression (PLSR) as rapid analytical techniques for the qualitative and quantitative determination of adulterants in sandalwood oil. After suitable pre-processing of the NIR raw spectral data, the models are built-up by cross-validation. The lowest Root Mean Square Error of Cross-Validation and Calibration (RMSECV and RMSEC % v/v) are used as a decision supporting system to fix the optimal number of factors. The coefficient of determination (R(2)) and the Root Mean Square Error of Prediction (RMSEP % v/v) in the prediction sets are used as the evaluation parameters (R(2) = 0.9999 and RMSEP = 0.01355). The overall result leads to the conclusion that NIR spectroscopy with chemometric techniques could be successfully used as a rapid, simple, instant and non-destructive method for the detection of adulterants, even 1% of the low-grade oils, in the high quality form of sandalwood oil.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-11-01
The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).
Geng, Zhaohui; Ogbolu, Yolanda; Wang, Jichuan; Hinds, Pamela S; Qian, Huijuan; Yuan, Changrong
2018-02-14
Better self-management control in cancer survivors would benefit their functional status, quality of life, and health service utilization. Factors such as self-efficacy, social support, and coping style are important predictors of self-management behaviors of cancer survivors; however, the impact of these factors on self-management behaviors has not yet been empirically tested in Chinese cancer survivors. The aim of this study was to examine how self-efficacy, social support, and coping style affect specific self-management behaviors. A secondary data analysis was completed from a cross-sectional study. A total of 764 cancer survivors were recruited in the study. Validated instruments were used to assess patients' self-efficacy, social support, and coping style. Structural equation modeling (SEM) was used to test the hypothesis. The SEM model fits the data very well, with root mean square error of approximation (RMSEA) of 0.034; close-fit test cannot reject the hypothesis of root mean square error of approximation of 0.05 or less, comparative fit index of 0.91, Tucker-Lewis index of 0.90, and weighted root mean square residual of 0.82. For the measurement models in the SEM, all items loaded highly on their underlying first-order factors, and the first-order factors loaded highly on their underlying second-order factors (self-efficacy and social support, respectively). The model demonstrated that self-efficacy and social support directly and indirectly, via coping style, affect 3 self-management behaviors (ie, communication, exercise, and information seeking). Our results provide evidence that self-efficacy and social support impose significant direct effects, as well as indirect effects via copying style, on the self-management of cancer survivors. Our findings may help nurses to further improve their care of cancer survivors in terms of their self-management behaviors, specifically communication, exercise, and information seeking.
NASA Astrophysics Data System (ADS)
Chen, Jiang; Zhu, Weining; Tian, Yong Q.; Yu, Qian; Zheng, Yuhan; Huang, Litong
2017-07-01
Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R2)=0.884, root-mean-squared error (RMSE)=0.731 m-1, relative root-mean-squared error (RRMSE)=28.02%, and bias=-0.1 m-1. The best Chla retrieval algorithm is a B5/B4 model with accuracy R2=0.49, RMSE=9.972 mg/m3, RRMSE=48.47%, and bias=-0.116 mg/m3. Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m×10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes.
Optimizing UV Index determination from broadband irradiances
NASA Astrophysics Data System (ADS)
Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.
2018-03-01
A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0.2-0.3 with a root-mean-square relative error in the scatter of ˜ 6.6 % for clear-sky conditions. Similar results are reproduced under cloudy conditions with light to moderate clouds, with a relative error comparable to the clear-sky counterpart; under strong attenuation due to clouds, a substantial increase in the root-mean-square relative error of up to 35 % is observed due to differing cloud radiative transfer models.
[Determination of Carbaryl in Rice by Using FT Far-IR and THz-TDS Techniques].
Sun, Tong; Zhang, Zhuo-yong; Xiang, Yu-hong; Zhu, Ruo-hua
2016-02-01
Determination of carbaryl in rice by using Fourier transform far-infrared (FT- Far-IR) and terahertz time-domain spectroscopy (THz-TDS) combined with chemometrics was studied and the spectral characteristics of carbaryl in terahertz region was investigated. Samples were prepared by mixing carbaryl at different amounts with rice powder, and then a 13 mm diameter, and about 1 mm thick pellet with polyethylene (PE) as matrix was compressed under the pressure of 5-7 tons. Terahertz time domain spectra of the pellets were measured at 0.5~1.5 THz, and the absorption spectra at 1.6. 3 THz were acquired with Fourier transform far-IR spectroscopy. The method of sample preparation is so simple that it does not need separation and enrichment. The absorption peaks in the frequency range of 1.8-6.3 THz have been found at 3.2 and 5.2 THz by Far-IR. There are several weak absorption peaks in the range of 0.5-1.5 THz by THz-TDS. These two kinds of characteristic absorption spectra were randomly divided into calibration set and prediction set by leave-N-out cross-validation, respectively. Finally, the partial least squares regression (PLSR) method was used to establish two quantitative analysis models. The root mean square error (RMSECV), the root mean square errors of prediction (RMSEP) and the correlation coefficient of the prediction are used as a basis for the model of performance evaluation. For the R,, a higher value is better; for the RMSEC and RMSEP, lower is better. The obtained results demonstrated that the predictive accuracy of. the two models with PLSR method were satisfactory. For the FT-Far-IR model, the correlation between actual and predicted values of prediction samples (Rv) was 0.99. The root mean square error of prediction set (RMSEP) was 0.008 6, and for calibration set (RMSECV) was 0.007 7. For the THz-TDS model, R. was 0. 98, RMSEP was 0.004 4, and RMSECV was 0.002 5. Results proved that the technology of FT-Far-IR and THz- TDS can be a feasible tool for quantitative determination of carbaryl in rice. This paper provides a new method for the quantitative determination pesticide in other grain samples.
SMAP Level 4 Surface and Root Zone Soil Moisture
NASA Technical Reports Server (NTRS)
Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.
2017-01-01
The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.
Huang, Xinchuan; Schwenke, David W; Lee, Timothy J
2011-01-28
In this work, we build upon our previous work on the theoretical spectroscopy of ammonia, NH(3). Compared to our 2008 study, we include more physics in our rovibrational calculations and more experimental data in the refinement procedure, and these enable us to produce a potential energy surface (PES) of unprecedented accuracy. We call this the HSL-2 PES. The additional physics we include is a second-order correction for the breakdown of the Born-Oppenheimer approximation, and we find it to be critical for improved results. By including experimental data for higher rotational levels in the refinement procedure, we were able to greatly reduce our systematic errors for the rotational dependence of our predictions. These additions together lead to a significantly improved total angular momentum (J) dependence in our computed rovibrational energies. The root-mean-square error between our predictions using the HSL-2 PES and the reliable energy levels from the HITRAN database for J = 0-6 and J = 7∕8 for (14)NH(3) is only 0.015 cm(-1) and 0.020∕0.023 cm(-1), respectively. The root-mean-square errors for the characteristic inversion splittings are approximately 1∕3 smaller than those for energy levels. The root-mean-square error for the 6002 J = 0-8 transition energies is 0.020 cm(-1). Overall, for J = 0-8, the spectroscopic data computed with HSL-2 is roughly an order of magnitude more accurate relative to our previous best ammonia PES (denoted HSL-1). These impressive numbers are eclipsed only by the root-mean-square error between our predictions for purely rotational transition energies of (15)NH(3) and the highly accurate Cologne database (CDMS): 0.00034 cm(-1) (10 MHz), in other words, 2 orders of magnitude smaller. In addition, we identify a deficiency in the (15)NH(3) energy levels determined from a model of the experimental data.
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
Mixed effects versus fixed effects modelling of binary data with inter-subject variability.
Murphy, Valda; Dunne, Adrian
2005-04-01
The question of whether or not a mixed effects model is required when modelling binary data with inter-subject variability and within subject correlation was reported in this journal by Yano et al. (J. Pharmacokin. Pharmacodyn. 28:389-412 [2001]). That report used simulation experiments to demonstrate that, under certain circumstances, the use of a fixed effects model produced more accurate estimates of the fixed effect parameters than those produced by a mixed effects model. The Laplace approximation to the likelihood was used when fitting the mixed effects model. This paper repeats one of those simulation experiments, with two binary observations recorded for every subject, and uses both the Laplace and the adaptive Gaussian quadrature approximations to the likelihood when fitting the mixed effects model. The results show that the estimates produced using the Laplace approximation include a small number of extreme outliers. This was not the case when using the adaptive Gaussian quadrature approximation. Further examination of these outliers shows that they arise in situations in which the Laplace approximation seriously overestimates the likelihood in an extreme region of the parameter space. It is also demonstrated that when the number of observations per subject is increased from two to three, the estimates based on the Laplace approximation no longer include any extreme outliers. The root mean squared error is a combination of the bias and the variability of the estimates. Increasing the sample size is known to reduce the variability of an estimator with a consequent reduction in its root mean squared error. The estimates based on the fixed effects model are inherently biased and this bias acts as a lower bound for the root mean squared error of these estimates. Consequently, it might be expected that for data sets with a greater number of subjects the estimates based on the mixed effects model would be more accurate than those based on the fixed effects model. This is borne out by the results of a further simulation experiment with an increased number of subjects in each set of data. The difference in the interpretation of the parameters of the fixed and mixed effects models is discussed. It is demonstrated that the mixed effects model and parameter estimates can be used to estimate the parameters of the fixed effects model but not vice versa.
Dissolution kinetics of soluble nondisintegrating disks.
de Blaey, C J; van der Graaff, H
1977-12-01
An equation describing the isotropical dissolution of soluble nondisintegrating disks was developed. It was equivalent to the cube root law only if the height and diameter of the disk were equal. The dissolution kinetics of sodium chloride disks were examined, using a beaker equipped with a centrifugal stirrer as the dissolution chamber. The fit of the experimental data to the cube root law had a coefficient of variation of about 4-5%. It was demonstrated statistically that a fit to a square root of mass versus time relation was significantly better. With increasing porosity, the dissolution process proceeded faster than predicted on the basis of the diffusion-convection model. An explanation is proposed by assuming an increased effective dissolution surface.
NASA Technical Reports Server (NTRS)
Bierman, G. J.
1975-01-01
Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.
14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...
14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...
14 CFR Appendix G to Part 25 - Continuous Gust Design Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Values of Ā (ratio of root-mean-square incremental load root-mean-square gust velocity) must be... gust velocity, ft./sec. Ω=reduced frequency, radians per foot. L=2,500 ft. (3) The limit loads must be... velocity Uσ: (i) At speed Vc: Uσ=85 fps true gust velocity in the interval 0 to 30,000 ft. altitude and is...
ERIC Educational Resources Information Center
Shinno, Yusuke
2018-01-01
This paper reports on combining semiotic and discursive approaches to reification in classroom interactions. It focuses on the discursive characteristics and semiotic processes involved in the teaching and learning of square roots in a ninth grade classroom in Japan. The purpose of this study is to characterize the development of mathematical…
NASA Astrophysics Data System (ADS)
Parise, M.
2018-01-01
A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.
2016-09-01
mean- square (RMS) error of 0.29° at ə° resolution. For a P4 coded signal, the RMS error in estimating the AOA is 0.32° at 1° resolution. 14...FMCW signal, it was demonstrated that the system is capable of estimating the AOA with a root-mean- square (RMS) error of 0.29° at ə° resolution. For a...Modulator PCB printed circuit board PD photodetector RF radio frequency RMS root-mean- square xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopdhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Foley, K J; Fomenko, K; Fu, J; Gagliardi, C A; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Urkinbaev, A; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Vznuzdaev, M; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zolnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N
2004-12-17
Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au + Au collisions at square root s(NN)=200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au + Au collisions to those in p + p at the same energy. The elliptic anisotropy v(2) is found to reach its maximum at p(t) approximately 3 GeV/c, then decrease slowly and remain significant up to p(t) approximately 7-10 GeV/c. Stronger suppression is found in the back-to-back high-p(t) particle correlations for particles emitted out of plane compared to those emitted in plane. The centrality dependence of v(2) at intermediate p(t) is compared to simple models based on jet quenching.
Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-10-26
We report the results of a search for a narrow resonance in electron-positron events in the invariant mass range of 150-950 GeV/c(2) using 1.3 fb(-1) of pp[over] collision data at square root s = 1.96 TeV collected by the CDF II detector at Fermilab. No significant evidence of such a resonance is observed and we interpret the results to exclude the standard-model-like Z' with a mass below 923 GeV/c(2) and the Randall-Sundrum graviton with a mass below 807 GeV/c(2) for k/M[over](pl) = 0.1, both at the 95% confidence level. Combining with diphoton data excludes the Randall-Sundrum graviton for masses below 889 GeV/c(2) for k/M[over](pl) = 0.1.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-25
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.
A Gompertzian model with random effects to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Kuzmanic, Antonija; Zagrovic, Bojan
2010-03-03
Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors
Kuzmanic, Antonija; Zagrovic, Bojan
2010-01-01
Abstract Root mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,
An Application of M[subscript 2] Statistic to Evaluate the Fit of Cognitive Diagnostic Models
ERIC Educational Resources Information Center
Liu, Yanlou; Tian, Wei; Xin, Tao
2016-01-01
The fit of cognitive diagnostic models (CDMs) to response data needs to be evaluated, since CDMs might yield misleading results when they do not fit the data well. Limited-information statistic M[subscript 2] and the associated root mean square error of approximation (RMSEA[subscript 2]) in item factor analysis were extended to evaluate the fit of…
Optical diagnosis of malaria infection in human plasma using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Saleem, Muhammad; Amanat, Samina Tufail; Shakoor, Huma Abdul; Rashid, Rashad; Mahmood, Arshad; Ahmed, Mushtaq
2015-01-01
We present the prediction of malaria infection in human plasma using Raman spectroscopy. Raman spectra of malaria-infected samples are compared with those of healthy and dengue virus infected ones for disease recognition. Raman spectra were acquired using a laser at 532 nm as an excitation source and 10 distinct spectral signatures that statistically differentiated malaria from healthy and dengue-infected cases were found. A multivariate regression model has been developed that utilized Raman spectra of 20 malaria-infected, 10 non-malarial with fever, 10 healthy, and 6 dengue-infected samples to optically predict the malaria infection. The model yields the correlation coefficient r2 value of 0.981 between the predicted values and clinically known results of trainee samples, and the root mean square error in cross validation was found to be 0.09; both these parameters validated the model. The model was further blindly tested for 30 unknown suspected samples and found to be 86% accurate compared with the clinical results, with the inaccuracy due to three samples which were predicted in the gray region. Standard deviation and root mean square error in prediction for unknown samples were found to be 0.150 and 0.149, which are accepted for the clinical validation of the model.
A comparative study of kinetic and connectionist modeling for shelf-life prediction of Basundi mix.
Ruhil, A P; Singh, R R B; Jain, D K; Patel, A A; Patil, G R
2011-04-01
A ready-to-reconstitute formulation of Basundi, a popular Indian dairy dessert was subjected to storage at various temperatures (10, 25 and 40 °C) and deteriorative changes in the Basundi mix were monitored using quality indices like pH, hydroxyl methyl furfural (HMF), bulk density (BD) and insolubility index (II). The multiple regression equations and the Arrhenius functions that describe the parameters' dependence on temperature for the four physico-chemical parameters were integrated to develop mathematical models for predicting sensory quality of Basundi mix. Connectionist model using multilayer feed forward neural network with back propagation algorithm was also developed for predicting the storage life of the product employing artificial neural network (ANN) tool box of MATLAB software. The quality indices served as the input parameters whereas the output parameters were the sensorily evaluated flavour and total sensory score. A total of 140 observations were used and the prediction performance was judged on the basis of per cent root mean square error. The results obtained from the two approaches were compared. Relatively lower magnitudes of percent root mean square error for both the sensory parameters indicated that the connectionist models were better fitted than kinetic models for predicting storage life.
A root-mean-square approach for predicting fatigue crack growth under random loading
NASA Technical Reports Server (NTRS)
Hudson, C. M.
1981-01-01
A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.
NASA Technical Reports Server (NTRS)
Muellerschoen, R. J.
1988-01-01
A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).
Application of multispectral reflectance for early detection of tomato disease
NASA Astrophysics Data System (ADS)
Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu
2006-10-01
Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.
Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian
2014-09-01
Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Voss, Frank D.; Curran, Christopher A.; Mastin, Mark C.
2008-01-01
A mechanistic water-temperature model was constructed by the U.S. Geological Survey for use by the Bureau of Reclamation for studying the effect of potential water management decisions on water temperature in the Yakima River between Roza and Prosser, Washington. Flow and water temperature data for model input were obtained from the Bureau of Reclamation Hydromet database and from measurements collected by the U.S. Geological Survey during field trips in autumn 2005. Shading data for the model were collected by the U.S. Geological Survey in autumn 2006. The model was calibrated with data collected from April 1 through October 31, 2005, and tested with data collected from April 1 through October 31, 2006. Sensitivity analysis results showed that for the parameters tested, daily maximum water temperature was most sensitive to changes in air temperature and solar radiation. Root mean squared error for the five sites used for model calibration ranged from 1.3 to 1.9 degrees Celsius (?C) and mean error ranged from ?1.3 to 1.6?C. The root mean squared error for the five sites used for testing simulation ranged from 1.6 to 2.2?C and mean error ranged from 0.1 to 1.3?C. The accuracy of the stream temperatures estimated by the model is limited by four errors (model error, data error, parameter error, and user error).
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.
2017-06-01
Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.
A note on evaluating model tidal currents against observations
NASA Astrophysics Data System (ADS)
Cummins, Patrick F.; Thupaki, Pramod
2018-01-01
The root-mean-square magnitude of the vector difference between modeled and observed tidal ellipses is a comprehensive metric to evaluate the representation of tidal currents in ocean models. A practical expression for this difference is given in terms of the harmonic constants that are routinely used to specify current ellipses for a given tidal constituent. The resulting metric is sensitive to differences in all four current ellipse parameters, including phase.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Parmar, Kulwinder Singh
2016-03-01
This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.
NASA Astrophysics Data System (ADS)
Castellano, Doc
2002-08-01
Galileo, the Father of Modern Science, put forth the first significant Modern Scientific Era/Philosophy. Best represented per: x' = x (+/-) vt. Locating/defining the dynamic x' in an Euclidean, fixed frame Universe. Einstein, the popularized relativist, utilizing Lorentz's transformation equations: x' = (x - vt)/square root [ 1- (v squared/c squared)], c the velocity of light. Arbitrarily decreed that c must be the ultimate, universal velocity. Thus, Reporters, the general Public and Scientists consider/considered, Einstein's OPINION of our Universe, 'The Omega Concept'. Castellano, since 1954, has PROVEN the "C Transformation Equations": X' = (X - vt)/square root [ 1 - (v squared/C squared)], Capital C = or greater than c; IS THE OMEGA CONCEPT. And "MAPHICS", combining the Philosophy of Mathematics with the Philosophy of Physics is "THE OMEGA PHILOSOPHY". Sufficient PROOFS & details are at: http://hometown.aol.com/phdco/myhomepage/index/html ----- Thank you for your interest. My sincere appreciation for deserved acknowledgements.
Robust scoring functions for protein-ligand interactions with quantum chemical charge models.
Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J
2011-10-24
Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).
De Girolamo, A; Lippolis, V; Nordkvist, E; Visconti, A
2009-06-01
Fourier transform near-infrared spectroscopy (FT-NIR) was used for rapid and non-invasive analysis of deoxynivalenol (DON) in durum and common wheat. The relevance of using ground wheat samples with a homogeneous particle size distribution to minimize measurement variations and avoid DON segregation among particles of different sizes was established. Calibration models for durum wheat, common wheat and durum + common wheat samples, with particle size <500 microm, were obtained by using partial least squares (PLS) regression with an external validation technique. Values of root mean square error of prediction (RMSEP, 306-379 microg kg(-1)) were comparable and not too far from values of root mean square error of cross-validation (RMSECV, 470-555 microg kg(-1)). Coefficients of determination (r(2)) indicated an "approximate to good" level of prediction of the DON content by FT-NIR spectroscopy in the PLS calibration models (r(2) = 0.71-0.83), and a "good" discrimination between low and high DON contents in the PLS validation models (r(2) = 0.58-0.63). A "limited to good" practical utility of the models was ascertained by range error ratio (RER) values higher than 6. A qualitative model, based on 197 calibration samples, was developed to discriminate between blank and naturally contaminated wheat samples by setting a cut-off at 300 microg kg(-1) DON to separate the two classes. The model correctly classified 69% of the 65 validation samples with most misclassified samples (16 of 20) showing DON contamination levels quite close to the cut-off level. These findings suggest that FT-NIR analysis is suitable for the determination of DON in unprocessed wheat at levels far below the maximum permitted limits set by the European Commission.
de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio
2011-08-05
The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.
Solar Irradiance from GOES Albedo performance in a Hydrologic Model Simulation of Snowmelt Runoff
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.; McGurk, B. J.
2015-12-01
In many hydrologic modeling applications, solar radiation has been parameterized using commonly available measures, such as the daily temperature range, due to scarce in situ solar radiation measurement network. However, these parameterized estimates often produce significant biases. Here we test hourly solar irradiance derived from the Geostationary Operational Environmental Satellite (GOES) visible albedo product, using several established algorithms. Focusing on the Sierra Nevada and White Mountain in California, we compared the GOES irradiance and that from a traditional temperature-based algorithm with incoming irradiance from pyranometers at 19 stations. The GOES based estimates yielded 21-27% reduction in root-mean-squared error (average over 19 sites). The derived irradiance is then prescribed as an input to Precipitation-Runoff Modeling System (PRMS). We constrain our experiment to the Tuolumne River watershed and focus our attention on the winter and spring of 1996-2014. A root-mean-squared error reduction of 2-6% in daily inflow to Hetch Hetchy at the lower end of the Tuolumne catchment was achieved by incorporating the insolation estimates at only 8 out of 280 Hydrologic Response Units (HRUs) within the basin. Our ongoing work endeavors to apply satellite-derived irradiance at each individual HRU.
Highly Efficient Compression Algorithms for Multichannel EEG.
Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda
2018-05-01
The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
Parastar, Hadi; Mostafapour, Sara; Azimi, Gholamhasan
2016-01-01
Comprehensive two-dimensional gas chromatography and flame ionization detection combined with unfolded-partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two-dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root-mean square error of leave-one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996-0.998, root-mean square error of prediction of 0.005-0.010 and relative error of prediction of 1.54-3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70-85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu
2018-02-01
A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.
Computing Robust, Bootstrap-Adjusted Fit Indices for Use with Nonnormal Data
ERIC Educational Resources Information Center
Walker, David A.; Smith, Thomas J.
2017-01-01
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Using Fit Indexes to Select a Covariance Model for Longitudinal Data
ERIC Educational Resources Information Center
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M.
2012-01-01
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
[Integral assessment of learning subjects difficulties].
Grebniak, N P; Shchudro, S A
2010-01-01
The integral criterion for subject difficulties in senior classes is substantiated in terms of progress in studies, variation coefficient, and subjective and expert appraisals of the difficulty of subjects. The compiled regression models adequately determine the difficulty of academic subjects. According to the root-mean-square deviation, all subjects were found to have 3 degrees of difficulty.
Analytical model of coincidence resolving time in TOF-PET
NASA Astrophysics Data System (ADS)
Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.
2016-06-01
The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.
Quantum cryptography: Security criteria reexamined
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaszlikowski, Dagomir; Liang, Y.C.; Englert, Berthold-Georg
2004-09-01
We find that the generally accepted security criteria are flawed for a whole class of protocols for quantum cryptography. This is so because a standard assumption of the security analysis, namely that the so-called square-root measurement is optimal for eavesdropping purposes, is not true in general. There are rather large parameter regimes in which the optimal measurement extracts substantially more information than the square-root measurement.
Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert
2011-11-01
In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity rates are most sensitive in the centre of the former ice sheet. As a result, tangential gravity rates offer constraints on a two-layer mantle viscosity profile that are different from radial gravity rates, which can be exploited in future GIA studies.
Mishra, Vishal
2015-01-01
The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (<0.001-0.04), sum of square errors (0.061-0.016), root mean square error (0.01-0.04) and F-test (2.22-19.92) reported in the present research indicated the suitability of the model over a wide range of proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.
Diffusion in inhomogeneous polymer membranes
NASA Astrophysics Data System (ADS)
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study
NASA Astrophysics Data System (ADS)
Žitko, Rok; Bonča, Janez; Pruschke, Thomas
2009-12-01
Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.
Standage, Martyn; Duda, Joan L; Ntoumanis, Nikos
2006-03-01
In the present study, we used a model of motivation grounded in self-determination theory (Deci & Ryan, 1985, 1991; Ryan & Deci, 2000a, 2000b, 2002) to examine the relationship between physical education (PE) students' motivational processes and ratings of their effort and persistence as provided by their PE teacher. Data were obtained from 394 British secondary school students (204 boys, 189 girls, 1 gender not specified; M age = 11.97 years; SD = .89; range = 11-14 years) who responded to a multisection inventory (tapping autonomy-support, autonomy, competence, relatedness, and self-determined motivation). The students' respective PE teachers subsequently provided ratings reflecting the effort and persistence each student exhibited in their PE classes. The hypothesized relationships among the study variables were examined via structural equation modeling analysis using latent factors. Results of maximum likelihood analysis using the bootstrapping method revealed the proposed model demonstrated a good fit to the data, chi-squared (292) = 632.68, p < .001; comparative fit index = .95; incremental fit index = .95, standardized root mean square residual = .077; root mean square error of approximation (RMSEA) = .054 (90% confidence interval of RMSEA = .049 -.060). Specifically, the model showed that students who perceived an autonomy supportive environment experienced greater levels of autonomy, competence, and relatedness and had higher scores on an index of self-determination. Student-reported levels of self-determined motivation positively predicted teacher ratings of effort and persistence in PE. The findings are discussed with regard to enhancing student motivation in PE settings.
A decentralized square root information filter/smoother
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
ERIC Educational Resources Information Center
Sueiro, Manuel J.; Abad, Francisco J.
2011-01-01
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Zheng, Wenjun; Brooks, Bernard R
2006-06-15
Recently we have developed a normal-modes-based algorithm that predicts the direction of protein conformational changes given the initial state crystal structure together with a small number of pairwise distance constraints for the end state. Here we significantly extend this method to accurately model both the direction and amplitude of protein conformational changes. The new protocol implements a multisteps search in the conformational space that is driven by iteratively minimizing the error of fitting the given distance constraints and simultaneously enforcing the restraint of low elastic energy. At each step, an incremental structural displacement is computed as a linear combination of the lowest 10 normal modes derived from an elastic network model, whose eigenvectors are reorientated to correct for the distortions caused by the structural displacements in the previous steps. We test this method on a list of 16 pairs of protein structures for which relatively large conformational changes are observed (root mean square deviation >3 angstroms), using up to 10 pairwise distance constraints selected by a fluctuation analysis of the initial state structures. This method has achieved a near-optimal performance in almost all cases, and in many cases the final structural models lie within root mean square deviation of 1 approximately 2 angstroms from the native end state structures.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Doggett, R. V., Jr.
1978-01-01
Some experimental results are presented from wind tunnel studies of a dynamic model equipped with an aeromechanical gust alleviation system for reducing the normal acceleration response of light airplanes. The gust alleviation system consists of two auxiliary aerodynamic surfaces that deflect the wing flaps through mechanical linkages when a gust is encountered to maintain nearly constant airplane lift. The gust alleviation system was implemented on a 1/6-scale, rod mounted, free flying model that is geometrically and dynamically representative of small, four place, high wing, single engine, light airplanes. The effects of flaps with different spans, two size of auxiliary aerodynamic surfaces, plain and double hinged flaps, and a flap elevator interconnection were studied. The model test results are presented in terms of predicted root mean square response of the full scale airplane to atmospheric turbulence. The results show that the gust alleviation system reduces the root mean square normal acceleration response by 30 percent in comparison with the response in the flaps locked condition. Small reductions in pitch-rate response were also obtained. It is believed that substantially larger reductions in normal acceleration can be achieved by reducing the rather high levels of mechanical friction which were extant in the alleviation system of the present model.
Troyer, T W; Miller, K D
1997-07-01
To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.
Alternative approaches to predicting methane emissions from dairy cows.
Mills, J A N; Kebreab, E; Yates, C M; Crompton, L A; Cammell, S B; Dhanoa, M S; Agnew, R E; France, J
2003-12-01
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited value where predictions are obtained for nutrient intakes and diet types outside those used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three nonlinear alternatives that were all of modified Mitscherlich (monomolecular) form. Of the linear models tested, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Tiyip, Tashpolat; Ding, Jianli; Zhang, Dong; Liu, Wei; Wang, Fei; Tashpolat, Nigara
2017-01-01
Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration (Rc2), root mean square errors of calibration (RMSEC), determinant coefficients of prediction (Rp2), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance (Rc2 = 0.907, RMSEC = 0.425%, Rp2 = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance (Rc2 = 0.888, RMSEC = 0.446%, Rp2 = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area. PMID:28934274
ERIC Educational Resources Information Center
Padula, Janice
2006-01-01
One of the most interesting and important proofs in the history of mathematics is the Pythagorean school's proof of the "irrationality" of the square root of 2. After a brief look at G. H. Hardy (1941) thoughts regarding it, two versions of the classic Pythagorean proof are examined and discussed in this article, one written by an American…
Comments on real tachyon vacuum solution without square roots
NASA Astrophysics Data System (ADS)
Arroyo, E. Aldo
2018-01-01
We analyze the consistency of a recently proposed real tachyon vacuum solution without square roots in open bosonic string field theory. We show that the equation of motion contracted with the solution itself is satisfied. Additionally, by expanding the solution in the basis of the curly ℒ0 and the traditional L 0 eigenstates, we evaluate numerically the vacuum energy and obtain a result in agreement with Sen's conjecture.
Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho
2018-07-15
Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Due Date Assignment in a Dynamic Job Shop with the Orthogonal Kernel Least Squares Algorithm
NASA Astrophysics Data System (ADS)
Yang, D. H.; Hu, L.; Qian, Y.
2017-06-01
Meeting due dates is a key goal in the manufacturing industries. This paper proposes a method for due date assignment (DDA) by using the Orthogonal Kernel Least Squares Algorithm (OKLSA). A simulation model is built to imitate the production process of a highly dynamic job shop. Several factors describing job characteristics and system state are extracted as attributes to predict job flow-times. A number of experiments under conditions of varying dispatching rules and 90% shop utilization level have been carried out to evaluate the effectiveness of OKLSA applied for DDA. The prediction performance of OKLSA is compared with those of five conventional DDA models and back-propagation neural network (BPNN). The experimental results indicate that OKLSA is statistically superior to other DDA models in terms of mean absolute lateness and root mean squares lateness in most cases. The only exception occurs when the shortest processing time rule is used for dispatching jobs, the difference between OKLSA and BPNN is not statistically significant.
Accelerometer Data Analysis and Presentation Techniques
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy
1997-01-01
The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.
Energy Performance Measurement and Simulation Modeling of Tactical Soft-Wall Shelters
2015-07-01
was too low to measure was on the order of 5 hours. Because the research team did not have access to the site between 1700 and 0500 hours the...Basic for Applications ( VBA ). The objective function was the root mean square (RMS) errors between modeled and measured heating load and the modeled...References Phase Change Energy Solutions. (2013). BioPCM web page, http://phasechange.com/index.php/en/about/our-material. Accessed 16 September
Comparison of measured and modeled BRDF of natural targets
NASA Astrophysics Data System (ADS)
Boucher, Yannick; Cosnefroy, Helene; Petit, Alain D.; Serrot, Gerard; Briottet, Xavier
1999-07-01
The Bidirectional Reflectance Distribution Function (BRDF) plays a major role to evaluate or simulate the signatures of natural and artificial targets in the solar spectrum. A goniometer covering a large spectral and directional domain has been recently developed by the ONERA/DOTA. It was designed to allow both laboratory and outside measurements. The spectral domain ranges from 0.40 to 0.95 micrometer, with a resolution of 3 nm. The geometrical domain ranges 0 - 60 degrees for the zenith angle of the source and the sensor, and 0 - 180 degrees for the relative azimuth between the source and the sensor. The maximum target size for nadir measurements is 22 cm. The spatial target irradiance non-uniformity has been evaluated and then used to correct the raw measurements. BRDF measurements are calibrated thanks to a spectralon reference panel. Some BRDF measurements performed on sand and short grass and are presented here. Eight bidirectional models among the most popular models found in the literature have been tested on these measured data set. A code fitting the model parameters to the measured BRDF data has been developed. The comparative evaluation of the model performances is carried out, versus different criteria (root mean square error, root mean square relative error, correlation diagram . . .). The robustness of the models is evaluated with respect to the number of BRDF measurements, noise and interpolation.
Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong
2008-06-01
A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.
A Model of Fatigue Following Traumatic Brain Injury.
Ponsford, Jennie; Schönberger, Michael; Rajaratnam, Shantha M W
2015-01-01
Fatigue is one of the most frequent sequelae of traumatic brain injury (TBI), although its causes are poorly understood. This study investigated the interrelationships between fatigue and sleepiness, vigilance performance, depression, and anxiety, using a structural equation modeling approach. Seventy-two participants with moderate to severe TBI (78% males) were recruited a median of 305 days postinjury. They completed the Fatigue Severity Scale, a vigilance task, the Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale. A model of the interrelationships between the study variables was developed, tested, and modified with path analysis. The modified model had a good overall fit (χ2 = 1.3, P = .54; comparative fit index = 1.0; root-mean square error of approximation = 0.0; standardized root-mean square residual = 0.02). Most paths in this model were significant (P < .05). Fatigue predicted anxiety, depression, and daytime sleepiness. Depression predicted daytime sleepiness and poor vigilance, whereas anxiety tended to predict reduced daytime sleepiness. This model confirms the complexity of fatigue experience. It supports the hypothesis that fatigue after TBI is a cause, not a consequence, of anxiety, depression, and daytime sleepiness, which, in turn (especially depression), may exacerbate fatigue by affecting cognitive functioning. These findings suggest that to alleviate fatigue, it is important to address each of these factors. However, the findings need to be confirmed with a longitudinal research design.
Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.
Jiang, B; Huang, Y D
2008-05-26
The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.
[Seedling index of Salvia miltiorrhiza and its simulation model].
Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan
2012-10-01
Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.
NASA Astrophysics Data System (ADS)
Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.
2015-10-01
This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-10-31
We present the results of searches for large extra dimensions in samples of events with large missing transverse energy E_{T} and either a photon or a jet produced in pp[over ] collisions at sqrt[s]=1.96 TeV collected with the Collider Detector at Fermilab II. For gamma+E_{T} and jet+E_{T} candidate samples corresponding to 2.0 and 1.1 fb;{-1} of integrated luminosity, respectively, we observe good agreement with standard model expectations and obtain a combined lower limit on the fundamental parameter of the large extra dimensions model M_{D} as a function of the number of extra dimensions in the model.
NASA Astrophysics Data System (ADS)
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-01
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb’s test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R2 and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data. PMID:26821026
An Investigation of the Sample Performance of Two Nonnormality Corrections for RMSEA
ERIC Educational Resources Information Center
Brosseau-Liard, Patricia E.; Savalei, Victoria; Li, Libo
2012-01-01
The root mean square error of approximation (RMSEA) is a popular fit index in structural equation modeling (SEM). Typically, RMSEA is computed using the normal theory maximum likelihood (ML) fit function. Under nonnormality, the uncorrected sample estimate of the ML RMSEA tends to be inflated. Two robust corrections to the sample ML RMSEA have…
Sobhani, Ehsan; Samadi-Kafil, Hossein; Pirzadeh, Ahmad; Jafari, Sanaz
2016-01-01
Background The purpose of this study was to compare the sealing ability of MTA Fillapex, Apatite Root Canal Sealer and AH26 sealers. Material and Methods The present in vitro study was carried out on 142 extracted single-rooted human mature teeth. The teeth were randomly divided into three experimental groups (n=44) and two control groups (n=5). Three root canal sealers were MTA Fillapex, Apatite Root Canal Sealer and AH26. The teeth in the control groups were either filled with no sealer or made completely impermeable. The root canals were prepared and obturated with gutta-percha and one of the sealers. The teeth were sterilized with ethylene oxide gas prior to the bacterial leakage assessment using Enterococcus faecalis. Leakage was evaluated every 24 hours for 90 days. Data were analyzed with descriptive statistical methods and chi-squared test. If the data were significant, a proper post hoc test was used. Statistical significance was set at P<0.05. Results The positive control specimens exhibited total bacterial penetration whilst the negative control specimens showed no evidence of bacterial penetration. At the end of the study, the analysis of microleakage with chi-squared test showed no significant differences between the experimental groups (P<0.05). The results of chi-squared test analyzing the pair-wise differences between the groups considering the numerical values for leakage day indicated the lowest leakage with AH26 and the highest with Apatite root sealer. Conclusions According to the results of the present study, sealing ability of AH26 was significantly higher than that of MTA Fillapex and Apatite Root Canal Sealer. Key words:Mineral Trioxide aggregate, root canal obturation, dental seal. PMID:27957271
Aulen, Maurice; Shipley, Bill; Bradley, Robert
2012-01-01
Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237
Advances of the smooth variable structure filter: square-root and two-pass formulations
NASA Astrophysics Data System (ADS)
Gadsden, S. Andrew; Lee, Andrew S.
2017-01-01
The smooth variable structure filter (SVSF) has seen significant development and research activity in recent years. It is based on sliding mode concepts, which utilize a switching gain that brings an inherent amount of stability to the estimation process. In an effort to improve upon the numerical stability of the SVSF, a square-root formulation is derived. The square-root SVSF is based on Potter's algorithm. The proposed formulation is computationally more efficient and reduces the risks of failure due to numerical instability. The new strategy is applied on target tracking scenarios for the purposes of state estimation, and the results are compared with the popular Kalman filter. In addition, the SVSF is reformulated to present a two-pass smoother based on the SVSF gain. The proposed method is applied on an aerospace flight surface actuator, and the results are compared with the Kalman-based two-pass smoother.
Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.
2013-01-01
In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004
NASA Astrophysics Data System (ADS)
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
Spiral tracing on a touchscreen is influenced by age, hand, implement, and friction.
Heintz, Brittany D; Keenan, Kevin G
2018-01-01
Dexterity impairments are well documented in older adults, though it is unclear how these influence touchscreen manipulation. This study examined age-related differences while tracing on high- and low-friction touchscreens using the finger or stylus. 26 young and 24 older adults completed an Archimedes spiral tracing task on a touchscreen mounted on a force sensor. Root mean square error was calculated to quantify performance. Root mean square error increased by 29.9% for older vs. young adults using the fingertip, but was similar to young adults when using the stylus. Although other variables (e.g., touchscreen usage, sensation, and reaction time) differed between age groups, these variables were not related to increased error in older adults while using their fingertip. Root mean square error also increased on the low-friction surface for all subjects. These findings suggest that utilizing a stylus and increasing surface friction may improve touchscreen use in older adults.
Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang
2016-03-01
An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. © The Author(s) 2016.
Damiano, Diane L.; Bulea, Thomas C.
2016-01-01
Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612
Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment
2009-01-01
reference point have the smallest unbiased RMSD value (Fig. 3). It would appear that the cluster of model points closest to the reference point may...total RMSD values. This is particularly the case for phyto- plankton absorption (Fig. 3B) where the cluster of points closest to the reference...pattern statistics and the bias (difference of mean values) each magnitude of the total Root-Mean-Square Difference ( RMSD ). An alternative skill score and
Zhang, Chu; Liu, Fei; Kong, Wenwen; He, Yong
2015-01-01
Visible and near-infrared hyperspectral imaging covering spectral range of 380–1030 nm as a rapid and non-destructive method was applied to estimate the soluble protein content of oilseed rape leaves. Average spectrum (500–900 nm) of the region of interest (ROI) of each sample was extracted, and four samples out of 128 samples were defined as outliers by Monte Carlo-partial least squares (MCPLS). Partial least squares (PLS) model using full spectra obtained dependable performance with the correlation coefficient (rp) of 0.9441, root mean square error of prediction (RMSEP) of 0.1658 mg/g and residual prediction deviation (RPD) of 2.98. The weighted regression coefficient (Bw), successive projections algorithm (SPA) and genetic algorithm-partial least squares (GAPLS) selected 18, 15, and 16 sensitive wavelengths, respectively. SPA-PLS model obtained the best performance with rp of 0.9554, RMSEP of 0.1538 mg/g and RPD of 3.25. Distribution of protein content within the rape leaves were visualized and mapped on the basis of the SPA-PLS model. The overall results indicated that hyperspectral imaging could be used to determine and visualize the soluble protein content of rape leaves. PMID:26184198
Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu
2016-11-18
The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal conductance models for oil sunflower are to be improved in further research.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
Zhu, Wen-Jing; Mao, Han-Ping; Li, Qing-Lin; Liu, Hong-Yu; Sun, Jun; Zuo, Zhi-Yu; Chen, Yong
2014-09-01
With 25%, 50%, 75%, 100% and 150%, five levels of, nitrogen (N), phosphorus (P) and potassium (K) nutrition stress samples cultivated in Venlo type greenhouse soilless cultivation mode as the research object, polarized reflectance spectra and hyperspectral images of different nutrient deficiency greenhouse tomato leaves were acquired by using polarized reflectance spectroscopy system developed by our own research group and hyperspectral imaging system respectively. The relationship between a certain number of changes in the bump and texture of non-smooth surface of the nutrient stress leaf and the level of polarization reflected radiation was clarified by scanning electron microscopy (SEM). On the one hand, the polarization spectrum was converted into the degree of polarization through Stokes equation, and the four polarization characteristics between the polarization spectroscopy and reference measurement values of N, P and K respectively were extracted. On the other hand, the four characteristic wavelengths of N, P, K hyperspectral image data were determined respectively through the principal component analysis, followed by eight hyperspectral texture features extracted corresponding to the four characteristic wavelengths through correlation analysis. Polarization characteristics and hyperspectral texture features combined with each characteristics of N, P, K were extracted. These 12 characteristic variables were normalized by maximum-minimum value method. N, P, K nutrient levels quantitative diagnostic models were established by SVR. Results of models are as follows: the correlation coefficient of nitrogen r = 0.961 8, root mean square error RMSE= 0.451; correlation coefficient of phosphorus r = 0.916 3, root mean square error RMSE = 0.620; correlation coefficient of potassium r = 0.940 6, root mean square error RMSE = 0.494. The results show that high precision tomato leaves nutrition prediction model could be built by using polarized reflectance spectroscopy combined with high spectral information fusion technology and achieve good diagnoses effect. It has a great significance for the improvement of model accuracy and the development of special instruments. The research provides a new idea for the rapid detection of tomato nutrient content.
Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver
2015-05-01
This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.
Teng, Le-sheng; Wang, Di; Song, Jia; Zhang, Yi-bo; Guo, Wei-liang; Teng, Li-rong
2008-08-01
Since 1980s, tuberculosis has become increasingly serious. Rifampicin tablets, isoniazide tablets, pyrazinamide tablets, rifampicin and isoniazide tablets and rifampicin isoniazide and pyrazinamide tablets are currently relatively efficacious antituberculosis drugs. In the present paper, near infrared spectroscopy (NIRS) with partial least squares (PLS) was applied to the simultaneous determination of rifampicin (RMP), isoniazide (INH) and pyrazinamide (PZA) contents in 5 varieties of anti-tuberculosis tablets. As the results showed, all of the models for the determination of RMP, INH and PZA contents applied the original NIR spectra. The most efficacious wavelength range for the determination of RMP contents was 1981-2195 nm, it was 1540-1717 nm and 2086-2197 nm for the determination of INH contents, and it was 1460-1537 nm, 1956-2022 nm and 2268-2393 nm for determination of PZA contents. The root mean square error of the calibration set obtained by cross-validation (RMSECV) of the optimum models for the quantitative analysis of RMP, INH and PZA contents was 0.0494, 0.0257 and 0.0307, respectively. Using these optimum models for the determination of RMP, INH and PZA contents in prediction set, the root mean square error of prediction set (RMSEP) was 0.0182, 0.0166 and 0.0134, respectively. The correlation coefficient (r(p)) between the predicted values and actual values was 0.9864, 0.9989 and 0.9993, respectively. These results demonstrated that this method was precise and reliable, and is significative for in situ measurement and the on-line quality control for anti-tuberculosis tablets production.
Feng, Chao-Hui; Makino, Yoshio; Yoshimura, Masatoshi; Thuyet, Dang Quoc; García-Martín, Juan Francisco
2018-02-01
The potential of hyperspectral imaging with wavelengths of 380 to 1000 nm was used to determine the pH of cooked sausages after different storage conditions (4 °C for 1 d, 35 °C for 1, 3, and 5 d). The mean spectra of the sausages were extracted from the hyperspectral images and partial least squares regression (PLSR) model was developed to relate spectral profiles with the pH of the cooked sausages. Eleven important wavelengths were selected based on the regression coefficient values. The PLSR model established using the optimal wavelengths showed good precision being the prediction coefficient of determination (R p 2 ) 0.909 and the root mean square error of prediction 0.035. The prediction map for illustrating pH indices in sausages was for the first time developed by R statistics. The overall results suggested that hyperspectral imaging combined with PLSR and R statistics are capable to quantify and visualize the sausages pH evolution under different storage conditions. In this paper, hyperspectral imaging is for the first time used to detect pH in cooked sausages using R statistics, which provides another useful information for the researchers who do not have the access to Matlab. Eleven optimal wavelengths were successfully selected, which were used for simplifying the PLSR model established based on the full wavelengths. This simplified model achieved a high R p 2 (0.909) and a low root mean square error of prediction (0.035), which can be useful for the design of multispectral imaging systems. © 2017 Institute of Food Technologists®.
Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.
2015-09-28
Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.
General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
Wang, J; Flanagan, D R
1999-07-01
Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding. PMID:29081606
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.
Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P
2011-08-01
Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
Cross-Shore Exchange on Natural Beaches
2014-09-01
87 Figure 2. Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines
Flight Measurement of Wall-Pressure Fluctuations and Boundary-Layer Turbulence
NASA Technical Reports Server (NTRS)
Mull, Harold R.; Algranti, Joseph S.
1960-01-01
The results are presented for a flight test program using a fighter type jet aircraft flying at pressure altitudes of 10,000, 20,000, and 30,000 feet at Mach numbers from 0.3 to 0.8. Specially designed apparatus was used to measure and record the output of microphones and hot-wire anemometers mounted on the forward-fuselage section and wing of the airplane. Mean-velocity profiles in the boundary layers were obtained from total-pressure measurements. The ratio of the root-mean-square fluctuating wall pressure to the free-stream dynamic pressure is presented as a function of Reynolds number and Mach number. The longitudinal component of the turbulent-velocity fluctuations was measured, and the turbulence-intensity profiles are presented for the wing and forward-fuselage section. In general, the results are in agreement with wind-tunnel measurements which have been-reported in the literature. For example, the variation the square root of p(sup 2)/q times the square root of p(sup 2) is the root mean square of the wall-pressure fluctuation, and q is the free-stream dynamic pressure) with Reynolds number was found to be essentially constant for the forward-fuselage-section boundary layer, while variations at the wing station were probably unduly affected by the microphone diameter (5/8 in.), which was large compared with the boundary-layer thickness.
NASA Astrophysics Data System (ADS)
Abo-Ezz, E. R.; Essa, K. S.
2016-04-01
A new linear least-squares approach is proposed to interpret magnetic anomalies of the buried structures by using a new magnetic anomaly formula. This approach depends on solving different sets of algebraic linear equations in order to invert the depth ( z), amplitude coefficient ( K), and magnetization angle ( θ) of buried structures using magnetic data. The utility and validity of the new proposed approach has been demonstrated through various reliable synthetic data sets with and without noise. In addition, the method has been applied to field data sets from USA and India. The best-fitted anomaly has been delineated by estimating the root-mean squared (rms). Judging satisfaction of this approach is done by comparing the obtained results with other available geological or geophysical information.
Response Surface Modeling Using Multivariate Orthogonal Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douici, M.; Allal, N. H.; Fellah, M.
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
2011-02-01
µECD Gas chromatography - micro electron capture detector HPAH high molecular weight polyaromatic hydrocarbon HOC Hydrophobic organic compound IR...hydrocarbon PCB Polychlorinated biphenyl PE Polyethylene PED Polyethylene devices PFC Perfluorinated chemical POM Polyoxymethylene PRC...Performance reference compound RMSE Root Mean Squared Error SPME Solid Phase Micro Extraction SERDP Strategic Environmental Research and Development
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.
Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2012-01-01
Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale. PMID:23144544
Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2012-01-01
Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale.
Modeling of pathogen survival during simulated gastric digestion.
Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru
2011-02-01
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens.
Modeling of Pathogen Survival during Simulated Gastric Digestion ▿
Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru
2011-01-01
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens. PMID:21131530
Borah, Pallab Kumar; Chakraborty, Sourav; Jha, Anupam N; Rajkhowa, Sanchaita; Duary, Raj Kumar
2016-11-01
ADAM metallopeptidase domain 17 (ADAM17) is an attractive target for the development of new anti-inflammatory drugs. We aimed to identify selective inhibitors of ADAM17 against matrix metalloproteinase enzymes (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, and MMP-16) which have substantial structural similarity. Target proteins were docked with 29 anti-inflammatory natural molecule ligands and a known selective inhibitor IK682. The ligands were screened based on Lipinski rules, interaction with the ADAM17 active site cavity, and then ranked using the proportional odds model multinomial logistic regression. Silymarin was the most selective inhibitor of ADAM17 exhibiting H-bonding with Glu 406, Gly 349, Glu 398, Asn 447, Tyr 433, and Lys 432. Molecular dynamics simulations were carried out for 10ns. The root mean square deviation (RMSD), root mean squared fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and H-bonding indicated the induced metastability. A comparison of the principal component analysis revealed that the silymarin complex also explored lesser region compared to IK682 complex. A control study on ADAM17 protein (2OI0) is included. These observations present silymarin (widely present in plants such as milk thistle (Silybum maianum), wild artichokes (Cynara cardunculus), turmeric (Curcuma longa) roots, coriander (Coriandrum sativum) seeds, etc.) as a promising natural template for development of ADAM17 selective drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Fast Dating Using Least-Squares Criteria and Algorithms.
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Fast Dating Using Least-Squares Criteria and Algorithms
To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier
2016-01-01
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. PMID:26424727
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Li, Wei; Yin, Bin; Chen, Weizhong; Kelly, Declan P.; Wang, Xiaoxin; Zheng, Kaiyi; Du, Yiping
2013-10-01
Coffee is the most heavily consumed beverage in the world after water, for which quality is a key consideration in commercial trade. Therefore, caffeine content which has a significant effect on the final quality of the coffee products requires to be determined fast and reliably by new analytical techniques. The main purpose of this work was to establish a powerful and practical analytical method based on near infrared spectroscopy (NIRS) and chemometrics for quantitative determination of caffeine content in roasted Arabica coffees. Ground coffee samples within a wide range of roasted levels were analyzed by NIR, meanwhile, in which the caffeine contents were quantitative determined by the most commonly used HPLC-UV method as the reference values. Then calibration models based on chemometric analyses of the NIR spectral data and reference concentrations of coffee samples were developed. Partial least squares (PLS) regression was used to construct the models. Furthermore, diverse spectra pretreatment and variable selection techniques were applied in order to obtain robust and reliable reduced-spectrum regression models. Comparing the respective quality of the different models constructed, the application of second derivative pretreatment and stability competitive adaptive reweighted sampling (SCARS) variable selection provided a notably improved regression model, with root mean square error of cross validation (RMSECV) of 0.375 mg/g and correlation coefficient (R) of 0.918 at PLS factor of 7. An independent test set was used to assess the model, with the root mean square error of prediction (RMSEP) of 0.378 mg/g, mean relative error of 1.976% and mean relative standard deviation (RSD) of 1.707%. Thus, the results provided by the high-quality calibration model revealed the feasibility of NIR spectroscopy for at-line application to predict the caffeine content of unknown roasted coffee samples, thanks to the short analysis time of a few seconds and non-destructive advantages of NIRS.
Samalin, Ludovic; Boyer, Laurent; Murru, Andrea; Pacchiarotti, Isabella; Reinares, María; Bonnin, Caterina Mar; Torrent, Carla; Verdolini, Norma; Pancheri, Corinna; de Chazeron, Ingrid; Boucekine, Mohamed; Geoffroy, Pierre-Alexis; Bellivier, Frank; Llorca, Pierre-Michel; Vieta, Eduard
2017-03-01
Many patients with bipolar disorder (BD) experience residual symptoms during their inter-episodic periods. The study aimed to analyse the relationship between residual depressive symptoms, sleep disturbances and self-reported cognitive impairment as determinants of psychosocial functioning in a large sample of euthymic BD patients. This was a cross-sectional study of 468 euthymic BD outpatients. We evaluated the residual depressive symptoms with the Bipolar Depression Rating Scale, the sleep disturbances with the Pittsburgh Sleep Quality Index, the perceived cognitive performance using visual analogic scales and functioning with the Functioning Assessment Short Test. Structural equation modelling (SEM) was used to describe the relationships among the residual depressive symptoms, sleep disturbances, perceived cognitive performance and functioning. SEM showed good fit with normed chi square=2.46, comparative fit index=0.94, root mean square error of approximation=0.05 and standardized root mean square residuals=0.06. This model revealed that residual depressive symptoms (path coefficient =0.37) and perceived cognitive performance (path coefficient=0.27) were the most important features significantly related to psychosocial functioning. Sleep disturbances were indirectly associated with functioning via residual depressive symptoms and perceived cognitive performance (path coefficient=0.23). This study contributes to a better understanding of the determinants of psychosocial functioning during the inter-episodic periods of BD patients. These findings should facilitate decision-making in therapeutics to improve the functional outcomes of BD during this period. Copyright © 2017 Elsevier B.V. All rights reserved.
Seward, Kirsty; Wolfenden, Luke; Wiggers, John; Finch, Meghan; Wyse, Rebecca; Oldmeadow, Christopher; Presseau, Justin; Clinton-McHarg, Tara; Yoong, Sze Lin
2017-04-04
While there are number of frameworks which focus on supporting the implementation of evidence based approaches, few psychometrically valid measures exist to assess constructs within these frameworks. This study aimed to develop and psychometrically assess a scale measuring each domain of the Theoretical Domains Framework for use in assessing the implementation of dietary guidelines within a non-health care setting (childcare services). A 75 item 14-domain Theoretical Domains Framework Questionnaire (TDFQ) was developed and administered via telephone interview to 202 centre based childcare service cooks who had a role in planning the service menu. Confirmatory factor analysis (CFA) was undertaken to assess the reliability, discriminant validity and goodness of fit of the 14-domain theoretical domain framework measure. For the CFA, five iterative processes of adjustment were undertaken where 14 items were removed, resulting in a final measure consisting of 14 domains and 61 items. For the final measure: the Chi-Square goodness of fit statistic was 3447.19; the Standardized Root Mean Square Residual (SRMR) was 0.070; the Root Mean Square Error of Approximation (RMSEA) was 0.072; and the Comparative Fit Index (CFI) had a value of 0.78. While only one of the three indices support goodness of fit of the measurement model tested, a 14-domain model with 61 items showed good discriminant validity and internally consistent items. Future research should aim to assess the psychometric properties of the developed TDFQ in other community-based settings.
Prediction of BP reactivity to talking using hybrid soft computing approaches.
Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar
2014-01-01
High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height, weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS), and least square-support vector machine (LS-SVM) model to remove the multicollinearity effect among anthropometric predictor variables. The statistical tests in terms of coefficient of determination (R (2)), root mean square error (RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed by PCA fused prediction models for prediction of biological variables.
Raffensperger, Jeff P.; Fleming, Brandon J.; Banks, William S.L.; Horn, Marilee A.; Nardi, Mark R.; Andreasen, David C.
2010-01-01
Increased groundwater withdrawals from confined aquifers in the Maryland Coastal Plain to supply anticipated growth at Fort George G. Meade (Fort Meade) and surrounding areas resulting from the Department of Defense Base Realignment and Closure Program may have adverse effects in the outcrop or near-outcrop areas. Specifically, increased pumping from the Potomac Group aquifers (principally the Patuxent aquifer) could potentially reduce base flow in small streams below rates necessary for healthy biological functioning. Additionally, water levels may be lowered near, or possibly below, the top of the aquifer within the confined-unconfined transition zone near the outcrop area. A three-dimensional groundwater flow model was created to incorporate and analyze data on water withdrawals, streamflow, and hydraulic head in the region. The model is based on an earlier model developed to assess the effects of future withdrawals from well fields in Anne Arundel County, Maryland and surrounding areas, and includes some of the same features, including model extent, boundary conditions, and vertical discretization (layering). The resolution (horizontal grid discretization) of the earlier model limited its ability to simulate the effects of withdrawals on the outcrop and near-outcrop areas. The model developed for this study included a block-shaped higher-resolution local grid, referred to as the child model, centered on Fort Meade, which was coupled to the coarser-grid parent model using the shared node Local Grid Refinement capability of MODFLOW-LGR. A more detailed stream network was incorporated into the child model. In addition, for part of the transient simulation period, stress periods were reduced in length from 1 year to 3 months, to allow for simulation of the effects of seasonally varying withdrawals and recharge on the groundwater-flow system and simulated streamflow. This required revision of the database on withdrawals and estimation of seasonal variations in recharge represented in the earlier model. The calibrated model provides a tool for future forecasts of changes in the system under different management scenarios, and for simulating potential effects of withdrawals at Fort Meade and the surrounding area on water levels in the near-outcrop area and base flow in the outcrop area. Model error was assessed by comparing observed and simulated water levels from 62 wells (55 in the parent model and 7 in the child model). The root-mean-square error values for the parent and child model were 8.72 and 11.91 feet, respectively. Root-mean-square error values for the 55 parent model observation wells range from 0.95 to 30.31 feet; the range for the 7 child model observation wells is 5.00 to 24.17 feet. Many of the wells with higher root-mean-square error values occur at the perimeter of the child model and near large pumping centers, as well as updip in the confined aquifers. Root-mean-square error values decrease downdip and away from the large pumping centers. Both the parent and child models are sensitive to increasing withdrawal rates. The parent model is more sensitive than the child model to decreasing transmissivity of layers 3, 4, 5, and 6. The parent model is relatively insensitive to riverbed vertical conductance, however, the child model does exhibit some sensitivity to decreasing riverbed conductance. The overall water budget for the model included sources and sinks of water including recharge, surface-water bodies and rivers and streams, general-head boundaries, and withdrawals from permitted wells. Withdrawal from wells in 2005 was estimated to be equivalent to 8.5 percent of the total recharge rate.
Modeling number of claims and prediction of total claim amount
NASA Astrophysics Data System (ADS)
Acar, Aslıhan Şentürk; Karabey, Uǧur
2017-07-01
In this study we focus on annual number of claims of a private health insurance data set which belongs to a local insurance company in Turkey. In addition to Poisson model and negative binomial model, zero-inflated Poisson model and zero-inflated negative binomial model are used to model the number of claims in order to take into account excess zeros. To investigate the impact of different distributional assumptions for the number of claims on the prediction of total claim amount, predictive performances of candidate models are compared by using root mean square error (RMSE) and mean absolute error (MAE) criteria.
Anomalous Fluctuations in Autoregressive Models with Long-Term Memory
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Honjo, Haruo
2015-10-01
An autoregressive model with a power-law type memory kernel is studied as a stochastic process that exhibits a self-affine-fractal-like behavior for a small time scale. We find numerically that the root-mean-square displacement Δ(m) for the time interval m increases with a power law as mα with α < 1/2 for small m but saturates at sufficiently large m. The exponent α changes with the power exponent of the memory kernel.
Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.
2000-12-01
The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.
Family caregiver adjustment and stroke survivor impairment: A path analytic model.
Pendergrass, Anna; Hautzinger, Martin; Elliott, Timothy R; Schilling, Oliver; Becker, Clemens; Pfeiffer, Klaus
2017-05-01
Depressive symptoms are a common problem among family caregivers of stroke survivors. The purpose of this study was to examine the association between care recipient's impairment and caregiver depression, and determine the possible mediating effects of caregiver negative problem-orientation, mastery, and leisure time satisfaction. The evaluated model was derived from Pearlin's stress process model of caregiver adjustment. We analyzed baseline data from 122 strained family members who were assisting stroke survivors in Germany for a minimum of 6 months and who consented to participate in a randomized clinical trial. Depressive symptoms were measured with the Center for Epidemiological Studies Depression Scale. The cross-sectional data were analyzed using path analysis. The results show an adequate fit of the model to the data, χ2(1, N = 122) = 0.17, p = .68; comparative fit index = 1.00; root mean square error of approximation: p < .01; standardized root mean square residual = 0.01. The model explained 49% of the variance in the caregiver depressive symptoms. Results indicate that caregivers at risk for depression reported a negative problem orientation, low caregiving mastery, and low leisure time satisfaction. The situation is particularly affected by the frequency of stroke survivor problematic behavior, and by the degree of their impairments in activities of daily living. The findings provide empirical support for the Pearlin's stress model and emphasize how important it is to target these mediators in health promotion interventions for family caregivers of stroke survivors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Oltean, Horea-Radu; Hyland, Philip; Vallières, Frédérique; David, Daniel Ovidiu
2017-11-01
This study aimed to assess the validity of two models which integrate the cognitive (satisfaction with life) and affective (symptoms of anxiety and depression) aspects of subjective well-being within the framework of rational emotive behaviour therapy (REBT) theory; specifically REBT's theory of psychopathology and theory of psychological health. 397 Irish and Northern Irish undergraduate students completed measures of rational/irrational beliefs, satisfaction with life, and anxiety/depression symptoms. Structural equation modelling techniques were used in order to test our hypothesis within a cross-sectional design. REBT's theory of psychopathology (χ2 = 373.78, d.f. = 163, p < .001; comparative fit index (CFI) = .92; Tucker Lewis index (TLI) = .91; root mean square error of approximation (RMSEA) = .06 (95% CI = .05 to .07); standardized root mean square residual (SRMR) = .07) and psychological health (χ2 = 371.89, d.f. = 181, p < .001; CFI = .93; TLI = .92; RMSEA = .05 (95% CI = .04 to .06); SRMR = .06) provided acceptable fit of the data. Moreover, the psychopathology model explained 34% of variance in levels of anxiety/depression, while the psychological health model explained 33% of variance. This study provides important findings linking the fields of clinical and positive psychology within a comprehensible framework for both researchers and clinicians. Findings are discussed in relation to the possibility of more effective interventions, incorporating and targeting not only negative outcomes, but also positive concepts within the same model.
Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy
NASA Astrophysics Data System (ADS)
Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen
2017-05-01
This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.
Pellegrino Vidal, Rocío B; Allegrini, Franco; Olivieri, Alejandro C
2018-03-20
Multivariate curve resolution-alternating least-squares (MCR-ALS) is the model of choice when dealing with some non-trilinear arrays, specifically when the data are of chromatographic origin. To drive the iterative procedure to chemically interpretable solutions, the use of constraints becomes essential. In this work, both simulated and experimental data have been analyzed by MCR-ALS, applying chemically reasonable constraints, and investigating the relationship between selectivity, analytical sensitivity (γ) and root mean square error of prediction (RMSEP). As the selectivity in the instrumental modes decreases, the estimated values for γ did not fully represent the predictive model capabilities, judged from the obtained RMSEP values. Since the available sensitivity expressions have been developed by error propagation theory in unconstrained systems, there is a need of developing new expressions or analytical indicators. They should not only consider the specific profiles retrieved by MCR-ALS, but also the constraints under which the latter ones have been obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of Tetracycline in Milk using NIR Spectroscopy and Partial Least Squares
NASA Astrophysics Data System (ADS)
Wu, Nan; Xu, Chenshan; Yang, Renjie; Ji, Xinning; Liu, Xinyuan; Yang, Fan; Zeng, Ming
2018-02-01
The feasibility of measuring tetracycline in milk was investigated by near infrared (NIR) spectroscopic technique combined with partial least squares (PLS) method. The NIR transmittance spectra of 40 pure milk samples and 40 tetracycline adulterated milk samples with different concentrations (from 0.005 to 40 mg/L) were obtained. The pure milk and tetracycline adulterated milk samples were properly assigned to the categories with 100% accuracy in the calibration set, and the rate of correct classification of 96.3% was obtained in the prediction set. For the quantitation of tetracycline in adulterated milk, the root mean squares errors for calibration and prediction models were 0.61 mg/L and 4.22 mg/L, respectively. The PLS model had good fitting effect in calibration set, however its predictive ability was limited, especially for low tetracycline concentration samples. Totally, this approach can be considered as a promising tool for discrimination of tetracycline adulterated milk, as a supplement to high performance liquid chromatography.
NASA Astrophysics Data System (ADS)
Yan, Wen-juan; Yang, Ming; He, Guo-quan; Qin, Lin; Li, Gang
2014-11-01
In order to identify the diabetic patients by using tongue near-infrared (NIR) spectrum - a spectral classification model of the NIR reflectivity of the tongue tip is proposed, based on the partial least square (PLS) method. 39sample data of tongue tip's NIR spectra are harvested from healthy people and diabetic patients , respectively. After pretreatment of the reflectivity, the spectral data are set as the independent variable matrix, and information of classification as the dependent variables matrix, Samples were divided into two groups - i.e. 53 samples as calibration set and 25 as prediction set - then the PLS is used to build the classification model The constructed modelfrom the 53 samples has the correlation of 0.9614 and the root mean square error of cross-validation (RMSECV) of 0.1387.The predictions for the 25 samples have the correlation of 0.9146 and the RMSECV of 0.2122.The experimental result shows that the PLS method can achieve good classification on features of healthy people and diabetic patients.
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; de Azevedo Mello, Paola; Ferrão, Marco Flores; de Fátima Pereira dos Santos, Maria; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm(-1)). This model produced a RMSECV of 400 mg kg(-1) S and RMSEP of 420 mg kg(-1) S, showing a correlation coefficient of 0.990. Copyright © 2011 Elsevier B.V. All rights reserved.
Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson
2015-01-01
A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
NASA Astrophysics Data System (ADS)
Li, Shuailing; Shao, Qingsong; Lu, Zhonghua; Duan, Chengli; Yi, Haojun; Su, Liyang
2018-02-01
Saffron is an expensive spice. Its primary effective constituents are crocin I and II, and the contents of these compounds directly affect the quality and commercial value of saffron. In this study, near-infrared spectroscopy was combined with chemometric techniques for the determination of crocin I and II in saffron. Partial least squares regression models were built for the quantification of crocin I and II. By comparing different spectral ranges and spectral pretreatment methods (no pretreatment, vector normalization, subtract a straight line, multiplicative scatter correction, minimum-maximum normalization, eliminate the constant offset, first derivative, and second derivative), optimum models were developed. The root mean square error of cross-validation values of the best partial least squares models for crocin I and II were 1.40 and 0.30, respectively. The coefficients of determination for crocin I and II were 93.40 and 96.30, respectively. These results show that near-infrared spectroscopy can be combined with chemometric techniques to determine the contents of crocin I and II in saffron quickly and efficiently.
Hao, Z Q; Li, C M; Shen, M; Yang, X Y; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y
2015-03-23
Laser-induced breakdown spectroscopy (LIBS) with partial least squares regression (PLSR) has been applied to measuring the acidity of iron ore, which can be defined by the concentrations of oxides: CaO, MgO, Al₂O₃, and SiO₂. With the conventional internal standard calibration, it is difficult to establish the calibration curves of CaO, MgO, Al₂O₃, and SiO₂ in iron ore due to the serious matrix effects. PLSR is effective to address this problem due to its excellent performance in compensating the matrix effects. In this work, fifty samples were used to construct the PLSR calibration models for the above-mentioned oxides. These calibration models were validated by the 10-fold cross-validation method with the minimum root-mean-square errors (RMSE). Another ten samples were used as a test set. The acidities were calculated according to the estimated concentrations of CaO, MgO, Al₂O₃, and SiO₂ using the PLSR models. The average relative error (ARE) and RMSE of the acidity achieved 3.65% and 0.0048, respectively, for the test samples.
Determination of total phenolic compounds in compost by infrared spectroscopy.
Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M
2016-06-01
Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xiaomeng; Fang, Dansi; Cong, Xiaodong; Cao, Gang; Cai, Hao; Cai, Baochang
2012-12-01
A method is described using rapid and sensitive Fourier transform near-infrared spectroscopy combined with high-performance liquid chromatography-diode array detection for the simultaneous identification and determination of four bioactive compounds in crude Radix Scrophulariae samples. Partial least squares regression is selected as the analysis type and multiplicative scatter correction, second derivative, and Savitzky-Golay filter were adopted for the spectral pretreatment. The correlation coefficients (R) of the calibration models were above 0.96 and the root mean square error of predictions were under 0.028. The developed models were applied to unknown samples with satisfactory results. The established method was validated and can be applied to the intrinsic quality control of crude Radix Scrophulariae.
Divya, O; Mishra, Ashok K
2007-05-29
Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Comparison of Nonlinear Filtering Techniques for Lunar Surface Roving Navigation
NASA Technical Reports Server (NTRS)
Kimber, Lemon; Welch, Bryan W.
2008-01-01
Leading up to the Apollo missions the Extended Kalman Filter, a modified version of the Kalman Filter, was developed to estimate the state of a nonlinear system. Throughout the Apollo missions, Potter's Square Root Filter was used for lunar navigation. Now that NASA is returning to the Moon, the filters used during the Apollo missions must be compared to the filters that have been developed since that time, the Bierman-Thornton Filter (UD) and the Unscented Kalman Filter (UKF). The UD Filter involves factoring the covariance matrix into UDUT and has similar accuracy to the Square Root Filter; however it requires less computation time. Conversely, the UKF, which uses sigma points, is much more computationally intensive than any of the filters; however it produces the most accurate results. The Extended Kalman Filter, Potter's Square Root Filter, the Bierman-Thornton UD Filter, and the Unscented Kalman Filter each prove to be the most accurate filter depending on the specific conditions of the navigation system.
Huang, Lihan; Hwang, Andy; Phillips, John
2011-10-01
The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combination and modification of the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for both suboptimal and the entire growth temperature ranges, was validated using a collection of 23 selected temperature-growth rate curves belonging to 5 groups of microorganisms, including Pseudomonas spp., Listeria monocytogenes, Salmonella spp., Clostridium perfringens, and Escherichia coli, from the published literature. The curve fitting is accomplished by nonlinear regression using the Levenberg-Marquardt algorithm. The resulting estimated growth rate (μ) values are highly correlated to the data collected from the literature (R(2) = 0.985, slope = 1.0, intercept = 0.0). The bias factor (B(f) ) of the new model is very close to 1.0, while the accuracy factor (A(f) ) ranges from 1.0 to 1.22 for most data sets. The new model is compared favorably with the Ratkowsky square root model and the Eyring equation. Even with more parameters, the Akaike information criterion, Bayesian information criterion, and mean square errors of the new model are not statistically different from the square root model and the Eyring equation, suggesting that the model can be used to describe the inherent relationship between temperature and microbial growth rates. The results of this work show that the new growth rate model is suitable for describing the effect of temperature on microbial growth rate. Practical Application: Temperature is one of the most significant factors affecting the growth of microorganisms in foods. This study attempts to develop and validate a mathematical model to describe the temperature dependence of microbial growth rate. The findings show that the new model is accurate and can be used to describe the effect of temperature on microbial growth rate in foods. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn; Ditlevsen, Susanne
2011-11-01
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.
[Modeling of sugar content based on NIRS during cider-making fermentation].
Peng, Bang-Zhu; Yue, Tian-Li; Yuan, Ya-Hong; Gao, Zhen-Peng
2009-03-01
The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm(-1) for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm(-1) at stage I and 6 102-5 446.2 cm(-1) at stage II were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage I and II were 98.93% and 99.34% respectively and the root mean square errors of cross validation(RMSECV) for stage I and II were 4.42 and 1.21 g x L(-1) respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g x L(-1) and 1.13 g x L(-1) respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.
Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake.
Markewitz, Daniel; Devine, Scott; Davidson, Eric A; Brando, Paulo; Nepstad, Daniel C
2010-08-01
*Deep root water uptake in tropical Amazonian forests has been a major discovery during the last 15 yr. However, the effects of extended droughts, which may increase with climate change, on deep soil moisture utilization remain uncertain. *The current study utilized a 1999-2005 record of volumetric water content (VWC) under a throughfall exclusion experiment to calibrate a one-dimensional model of the hydrologic system to estimate VWC, and to quantify the rate of root uptake through 11.5 m of soil. *Simulations with root uptake compensation had a relative root mean square error (RRMSE) of 11% at 0-40 cm and < 5% at 350-1150 cm. The simulated contribution of deep root uptake under the control was c. 20% of water demand from 250 to 550 cm and c. 10% from 550 to 1150 cm. Furthermore, in years 2 (2001) and 3 (2002) of throughfall exclusion, deep root uptake increased as soil moisture was available but then declined to near zero in deep layers in 2003 and 2004. *Deep root uptake was limited despite high VWC (i.e. > 0.30 cm(3) cm(-3)). This limitation may partly be attributable to high residual water contents (theta(r)) in these high-clay (70-90%) soils or due to high soil-to-root resistance. The ability of deep roots and soils to contribute increasing amounts of water with extended drought will be limited.
Moore, B C; Peters, R W; Glasberg, B R
1999-12-01
Psychometric functions for detecting increments or decrements in level of sinusoidal pedestals were measured for increment and decrement durations of 5, 10, 20, 50, 100, and 200 ms and for frequencies of 250, 1000, and 4000 Hz. The sinusoids were presented in background noise intended to mask spectral splatter. A three-interval, three-alternative procedure was used. The results indicated that, for increments, the detectability index d' was approximately proportional to delta I/I. For decrements, d' was approximately proportional to delta L. The slopes of the psychometric functions increased (indicating better performance) with increasing frequency for both increments and decrements. For increments, the slopes increased with increasing increment duration up to 200 ms at 250 and 1000 Hz, but at 4000 Hz they increased only up to 50 ms. For decrements, the slopes increased for durations up to 50 ms, and then remained roughly constant, for all frequencies. For a center frequency of 250 Hz, the slopes of the psychometric functions for increment detection increased with duration more rapidly than predicted by a "multiple-looks" hypothesis, i.e., more rapidly than the square root of duration, for durations up to 50 ms. For center frequencies of 1000 and 4000 Hz, the slopes increased less rapidly than predicted by a multiple-looks hypothesis, for durations greater than about 20 ms. The slopes of the psychometric functions for decrement detection increased with decrement duration at a rate slightly greater than the square root of duration, for durations up to 50 ms, at all three frequencies. For greater durations, the increase in slope was less than proportional to the square root of duration. The results were analyzed using a model incorporating a simulated auditory filter, a compressive nonlinearity, a sliding temporal integrator, and a decision device based on a template mechanism. The model took into account the effects of both the external noise and an assumed internal noise. The model was able to account for the major features of the data for both increment and decrement detection.
Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie
2007-11-01
Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.
Clark, D Angus; Bowles, Ryan P
2018-04-23
In exploratory item factor analysis (IFA), researchers may use model fit statistics and commonly invoked fit thresholds to help determine the dimensionality of an assessment. However, these indices and thresholds may mislead as they were developed in a confirmatory framework for models with continuous, not categorical, indicators. The present study used Monte Carlo simulation methods to investigate the ability of popular model fit statistics (chi-square, root mean square error of approximation, the comparative fit index, and the Tucker-Lewis index) and their standard cutoff values to detect the optimal number of latent dimensions underlying sets of dichotomous items. Models were fit to data generated from three-factor population structures that varied in factor loading magnitude, factor intercorrelation magnitude, number of indicators, and whether cross loadings or minor factors were included. The effectiveness of the thresholds varied across fit statistics, and was conditional on many features of the underlying model. Together, results suggest that conventional fit thresholds offer questionable utility in the context of IFA.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Determining the Uncertainty of X-Ray Absorption Measurements
Wojcik, Gary S.
2004-01-01
X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
Easmin, Sabina; Sarker, Md Zaidul Islam; Ghafoor, Kashif; Ferdosh, Sahena; Jaffri, Juliana; Ali, Md Eaqub; Mirhosseini, Hamed; Al-Juhaimi, Fahad Y; Perumal, Vikneswari; Khatib, Alfi
2017-04-01
Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm -1 frequency region and resolution of 4 cm -1 . The OPLS model generated the highest regression coefficient with R 2 Y = 0.98 and Q 2 Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity. Copyright © 2016. Published by Elsevier B.V.
Fadzlillah, Nurrulhidayah Ahmad; Rohman, Abdul; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi
2013-01-01
In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.
Spinon-Holon Attraction in the Supersymmetric t-J Model with 1/r
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernevig, B. A.; Giuliano, D.; Laughlin, R. B.
2001-10-22
We derive the coordinate representation of the one-spinon one-holon wave function for the supersymmetric t-J model with 1/r{sup 2} interaction. This result allows us to show that a spinon and a holon attract each other at short distance. The attraction gets stronger as the size of the system is increased and, in the thermodynamic limit, it is responsible for the square-root singularity in the hole spectral function [Y. Kato, Phys.Rev.Lett.81, 5402 (1998)].
Infrared radiometer for measuring thermophysical properties of wind tunnel models
NASA Technical Reports Server (NTRS)
Corwin, R. R.; Moorman, S. L.; Becker, E. C.
1978-01-01
An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.
2013-09-30
accuracy of the analysis . Root mean square difference ( RMSD ) is much smaller for RIP than for either Simple Ocean Data Assimilation or Incremental... Analysis Update globally for temperature as well as salinity. Regionally the same results were found, with only one exception in which the salinity RMSD ...short-term forecast using a numerical model with the observations taken within the forecast time window. The resulting state is the so-called “ analysis
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Giovanni, G P Di; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-06-22
We present a measurement of sigma(pp[over] --> W) x B(W --> e nu) at (square root)s = 1.96 TeV, using electrons identified in the forward region (1.2 < |eta| < 2.8) of the CDF II detector, in 223 pb(-1) of data. We measure sigma x B = 2796 +/- 13(stat)(-90)(+95)(syst) +/- 162(lum) pb. Combining this result with a previous CDF measurement obtained using electrons in the central region (|eta| approximately < 1), we present the first measurement of the ratio of central-electron to forward-electron W partial cross sections R(exp) = 0.925 +/- 0.006(stat) +/- 0.032(syst), consistent with theoretical predictions using Coordinated Theoretical-Experimental Project on QCD (CTEQ) and Martin-Roberts-Stirling-Thorne (MRST) parton distribution functions.
Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V
2018-03-01
Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were <30% (predefined criterion) and correlation (r) was at least 0.7950 for the consolidated internal and external datasets of 102 healthy subjects for the AUC 0-t prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Search for the associated production of the standard-model Higgs Boson in the all-hadronic channel.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2009-11-27
We report on a search for the standard-model Higgs boson in pp collisions at square root(s) = 1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(--> qq/qq')H(--> bb) decay for Higgs boson masses of 100-150 GeV/c2 using data from run II at the Fermilab Tevatron. For m(H) = 120 GeV/c2, we exclude cross sections larger than 38 times the standard-model prediction.
Light-regulated gravitropism in seedling roots of maize
NASA Technical Reports Server (NTRS)
Feldman, L. J.; Briggs, W. R.
1987-01-01
Red light-induced changes in the gravitropism of roots of Zea mays variety Merit is a very low fluence response with a threshold of 10(-9) moles per square meter and is not reversible by far red light. Blue light also affects root gravitropism but the sensitivity of roots to blue is 50 to 100 times less than to an equal fluence of red. In Z. mays Merit we conclude that phytochrome is the sole pigment associated with light-induced changes in root gravitropism.
PLS-LS-SVM based modeling of ATR-IR as a robust method in detection and qualification of alprazolam
NASA Astrophysics Data System (ADS)
Parhizkar, Elahehnaz; Ghazali, Mohammad; Ahmadi, Fatemeh; Sakhteman, Amirhossein
2017-02-01
According to the United States pharmacopeia (USP), Gold standard technique for Alprazolam determination in dosage forms is HPLC, an expensive and time-consuming method that is not easy to approach. In this study chemometrics assisted ATR-IR was introduced as an alternative method that produce similar results in fewer time and energy consumed manner. Fifty-eight samples containing different concentrations of commercial alprazolam were evaluated by HPLC and ATR-IR method. A preprocessing approach was applied to convert raw data obtained from ATR-IR spectra to normal matrix. Finally, a relationship between alprazolam concentrations achieved by HPLC and ATR-IR data was established using PLS-LS-SVM (partial least squares least squares support vector machines). Consequently, validity of the method was verified to yield a model with low error values (root mean square error of cross validation equal to 0.98). The model was able to predict about 99% of the samples according to R2 of prediction set. Response permutation test was also applied to affirm that the model was not assessed by chance correlations. At conclusion, ATR-IR can be a reliable method in manufacturing process in detection and qualification of alprazolam content.
NASA Astrophysics Data System (ADS)
Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang
2006-01-01
Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.
Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models
NASA Astrophysics Data System (ADS)
Mandal, Sukomal; Rao, Subba; N., Harish; Lokesha
2012-06-01
The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.
Kolodziejczyk, Julia K; Norman, Gregory J; Roesch, Scott C; Rock, Cheryl L; Arredondo, Elva M; Madanat, Hala; Patrick, Kevin
2015-01-01
There is a need for a self-report measure that assesses use of recommended strategies related to weight management. Cross-sectional analysis. Universities, community. Exploratory factor analysis (EFA) involved data from 404 overweight/obese young adults (mean age = 22 years, 48% non-Hispanic white, 68% ethnic minority). Confirmatory factor analysis (CFA) involved data from 236 overweight/obese adults (mean age = 42 years, 63% non-Hispanic white, 84% ethnic minority). The Strategies for Weight Management (SWM) measure is a 35-item questionnaire that assesses use of recommended behavioral strategies for reducing energy intake and increasing energy expenditure in overweight/obese adults. EFA and CFA were conducted on the SWM. Correlate models assessed the associations between SWM factor/total scores and demographics by using linear regressions. EFA suggested a four-factor model: strategies categorized as targeting (1) energy intake, (2) energy expenditure, (3) self-monitoring, and (4) self-regulation. CFA indicated good model fit (χ(2)/df = 2.0, comparative fit index = .90, standardized root mean square residual = .06, and root mean square error of approximation = .07, confidence interval = .06-.08, R(2) = .11-.74). The fourth factor had the lowest loadings, possibly because the items cover a wide domain. The final model included 20 items. Correlate models revealed weak associations between the SWM scores and age, gender, Hispanic ethnicity, and relationship status in both samples, with the models explaining only 1% to 8% of the variance (betas = -.04 to .29, p < .05). The SWM has promising psychometric qualities in two diverse samples.
Mathematical modelling of growth of Listeria monocytogenes in raw chilled pork.
Ye, K; Wang, K; Liu, M; Liu, J; Zhu, L; Zhou, G
2017-04-01
The aim of this study was to analyse the growth kinetics of Listeria monocytogenes in naturally contaminated chilled pork. A cocktail of 26 meat-borne L. monocytogenes was inoculated to raw or sterile chilled pork to observe its growth at 4, 10, 16, 22 and 28°C respectively. The growth data were fitted by the Baranyi model and Ratkowsky square-root model. Results showed that the Baranyi model and Ratkowsky square-root model could describe the growth characteristics of L. monocytogenes at different temperatures reasonably well in raw chilled pork (1·0 ≤ Bf ≤ Af ≤ 1·1). Compared with the growth of L. monocytogenes in sterile chilled pork, the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The microbial predictive models developed in this study can be used to predict the growth of L. monocytogenes during natural spoilage, and construct quantitative risk assessments in chilled pork. This study simulated the actual growth of Listeria monocytogenes in chilled pork to the maximum extent, and described its growth characteristics of L. monocytogenes during natural spoilage. This study showed that the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The models developed in this study can be used to predict the growth of L. monocytogenes during refrigerated storage. © 2017 The Society for Applied Microbiology.
Wang, Dan; Liu, Chenxi; Zhang, Zinan; Ye, Liping; Zhang, Xinping
2018-06-01
Background Patient-centeredness and participatory care is increasingly regarded as a proxy for high-quality interpersonal care. Considering the development of patient-centeredness and participatory care relationship model in pharmacist-patient domain, it is of great significance to explore the mechanism of how pharmacist and patient participative behaviors influence relationship quality and patient outcomes. Objective To validate pharmacist-patient relationship quality model in Chinese hospitals. Four tertiary hospitals in 2017. Methods The provision of pharmaceutical care was investigated. A cross-sectional questionnaire survey covering different constructs of communicative relationship quality model was conducted and the associations among pairs of the study constructs were explored. Based on the results of confirmatory factor analysis, path analysis was conducted to validate the proposed communicative relationship quality model. Main outcome measure Model fit indicators including Tucker-Lewis index (TLI), comparative fit index (CFI), root mean square error of approximation (RMSEA) and weighted root mean square residual(WRMR). Results There were 589 patients included in our study. The final path model had an excellent fit (TLI = 0.98, CFI = 0.98, RMSEA = 0.05; WRMR = 1.06). HCP participative behavior/patient-centeredness (β = 0.79, p < 0.001) and interpersonal communication (β = 0.13, p < 0.001) directly impact the communicative relationship quality. But patient participative behavior was not a predictor of either communicative relationship quality or patient satisfaction. Conclusion HCP participative behavior/patient-centeredness and interpersonal communication are positively related to relationship quality, and relationship quality is mediator between HCP participative behavior and interpersonal communication with patient satisfaction.
Perez-Guaita, David; Kuligowski, Julia; Quintás, Guillermo; Garrigues, Salvador; Guardia, Miguel de la
2013-03-30
Locally weighted partial least squares regression (LW-PLSR) has been applied to the determination of four clinical parameters in human serum samples (total protein, triglyceride, glucose and urea contents) by Fourier transform infrared (FTIR) spectroscopy. Classical LW-PLSR models were constructed using different spectral regions. For the selection of parameters by LW-PLSR modeling, a multi-parametric study was carried out employing the minimum root-mean square error of cross validation (RMSCV) as objective function. In order to overcome the effect of strong matrix interferences on the predictive accuracy of LW-PLSR models, this work focuses on sample selection. Accordingly, a novel strategy for the development of local models is proposed. It was based on the use of: (i) principal component analysis (PCA) performed on an analyte specific spectral region for identifying most similar sample spectra and (ii) partial least squares regression (PLSR) constructed using the whole spectrum. Results found by using this strategy were compared to those provided by PLSR using the same spectral intervals as for LW-PLSR. Prediction errors found by both, classical and modified LW-PLSR improved those obtained by PLSR. Hence, both proposed approaches were useful for the determination of analytes present in a complex matrix as in the case of human serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.
da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F
2016-03-01
An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
Soil sail content estimation in the yellow river delta with satellite hyperspectral data
Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang
2008-01-01
Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-11-01
Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.
Shahlaei, M.; Saghaie, L.
2014-01-01
A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262
NASA Astrophysics Data System (ADS)
Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen
2014-10-01
To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.
Vectorization of linear discrete filtering algorithms
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1977-01-01
Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.
The Bidirectional Relationship Between Depressive Symptoms and Homebound Status Among Older Adults.
Xiang, Xiaoling; An, Ruopeng; Oh, Hyunsung
2018-01-25
This study aimed to examine the bidirectional relationship between depressive symptoms and homebound status among older adults. The study sample included 7,603 community-dwelling older adults from the National Health and Aging Trends Study. A bivariate latent state-trait model of depressive symptoms and homebound status was estimated via structural equation modeling. The model fit the data well (Root Mean Square Error of Approximation = .02, Comparative Fit Index = .97, Standardized Root Mean Square Residual = .06). The relationship between homebound status and depressive symptoms can be decomposed into three parts: a moderate correlation between the stable trait components (r = .56, p <.001); a contemporary association of the state components (b = .17, p <.001); and bidirectional lagged effects between the state components. Change in homebound status was as a stronger predictor of depressive symptoms (b = .19, p < .001) than change in depressive symptoms was of homebound status (b = .06, p < .001; test of difference: Δ scaled χ2(1) = 24.2, p < .001). Homebound status and depressive symptoms form a feedback loop to influence each other. Improving the outdoor mobility of older adults may have immediate benefits for reducing depressive symptoms. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The self-transcendence scale: an investigation of the factor structure among nursing home patients.
Haugan, Gørill; Rannestad, Toril; Garåsen, Helge; Hammervold, Randi; Espnes, Geir Arild
2012-09-01
Self-transcendence, the ability to expand personal boundaries in multiple ways, has been found to provide well-being. The purpose of this study was to examine the dimensionality of the Norwegian version of the Self-Transcendence Scale, which comprises 15 items. Reed's empirical nursing theory of self-transcendence provided the theoretical framework; self-transcendence includes an interpersonal, intrapersonal, transpersonal, and temporal dimension. Cross-sectional data were obtained from a sample of 202 cognitively intact elderly patients in 44 Norwegian nursing homes. Exploratory factor analysis revealed two and four internally consistent dimensions of self-transcendence, explaining 35.3% (two factors) and 50.7% (four factors) of the variance, respectively. Confirmatory factor analysis indicated that the hypothesized two- and four-factor models fitted better than the one-factor model (cx (2), root mean square error of approximation, standardized root mean square residual, normed fit index, nonnormed fit index, comparative fit index, goodness-of-fit index, and adjusted goodness-of-fit index). The findings indicate self-transcendence as a multifactorial construct; at present, we conclude that the two-factor model might be the most accurate and reasonable measure of self-transcendence. This research generates insights in the application of the widely used Self-Transcendence Scale by investigating its psychometric properties by applying a confirmatory factor analysis. It also generates new research-questions on the associations between self-transcendence and well-being.
Evrendilek, Fatih
2007-12-12
This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.
Lanchon, Cecilia; Custillon, Guillaume; Moreau-Gaudry, Alexandre; Descotes, Jean-Luc; Long, Jean-Alexandre; Fiard, Gaelle; Voros, Sandrine
2016-07-01
To guide the surgeon during laparoscopic or robot-assisted radical prostatectomy an innovative laparoscopic/ultrasound fusion platform was developed using a motorized 3-dimensional transurethral ultrasound probe. We present what is to our knowledge the first preclinical evaluation of 3-dimensional prostate visualization using transurethral ultrasound and the preliminary results of this new augmented reality. The transurethral probe and laparoscopic/ultrasound registration were tested on realistic prostate phantoms made of standard polyvinyl chloride. The quality of transurethral ultrasound images and the detection of passive markers placed on the prostate surface were evaluated on 2-dimensional dynamic views and 3-dimensional reconstructions. The feasibility, precision and reproducibility of laparoscopic/transurethral ultrasound registration was then determined using 4, 5, 6 and 7 markers to assess the optimal amount needed. The root mean square error was calculated for each registration and the median root mean square error and IQR were calculated according to the number of markers. The transurethral ultrasound probe was easy to manipulate and the prostatic capsule was well visualized in 2 and 3 dimensions. Passive markers could precisely be localized in the volume. Laparoscopic/transurethral ultrasound registration procedures were performed on 74 phantoms of various sizes and shapes. All were successful. The median root mean square error of 1.1 mm (IQR 0.8-1.4) was significantly associated with the number of landmarks (p = 0.001). The highest accuracy was achieved using 6 markers. However, prostate volume did not affect registration precision. Transurethral ultrasound provided high quality prostate reconstruction and easy marker detection. Laparoscopic/ultrasound registration was successful with acceptable mm precision. Further investigations are necessary to achieve sub mm accuracy and assess feasibility in a human model. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Probing strong correlations with light scattering: Example of the quantum Ising model
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
2016-10-01
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
Probing strong correlations with light scattering: Example of the quantum Ising model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babujian, H. M.; Karowski, M.; Tsvelik, A. M.
In this article we calculate the nonlinear susceptibility and the resonant Raman cross section for the paramagnetic phase of the ferromagnetic quantum Ising model in one dimension. In this region the spectrum of the Ising model has a gap m. The Raman cross section has a strong singularity when the energy of the outgoing photon is at the spectral gap ω f ≈ m and a square root threshold when the frequency difference between the incident and outgoing photons ω i₋ω f≈2m. Finally, the latter feature reflects the fermionic nature of the Ising model excitations.
Generalized Jaynes-Cummings model as a quantum search algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanelli, A.
2009-07-15
We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.
Senck, Sascha; Bookstein, Fred L; Benazzi, Stefano; Kastner, Johann; Weber, Gerhard W
2015-05-01
Most hominin cranial fossils are incomplete and require reconstruction prior to subsequent analyses. Missing data can be estimated by geometric morphometrics using information from complete specimens, for example, by using thin-plate splines. In this study, we estimate missing data in several virtually fragmented models of hominoid crania (Homo, Pan, Pongo) and fossil hominins (e.g., Australopithecus africanus, Homo heidelbergensis). The aim is to investigate in which way different references influence estimations of cranial shape and how this information can be employed in the reconstruction of fossils. We used a sample of 64 three-dimensional digital models of complete human, chimpanzee, and orangutan crania and a set of 758 landmarks and semilandmarks. The virtually knocked out neurocranial and facial areas that were reconstructed corresponded to those of a real case found in A.L. 444-2 (A. afarensis) cranium. Accuracy of multiple intraspecies and interspecies reconstructions was computed as the maximum square root of the mean squared difference between the original and the reconstruction (root mean square). The results show that the uncertainty in reconstructions is a function of both the geometry of the knockout area and the dissimilarity between the reference sample and the specimen(s) undergoing reconstruction. We suggest that it is possible to estimate large missing cranial areas if the shape of the reference is similar enough to the shape of the specimen reconstructed, though caution must be exercised when employing these reconstructions in subsequent analyses. We provide a potential guide for the choice of the reference by means of bending energy. © 2015 Wiley Periodicals, Inc.
Kish, Nicole E.; Helmuth, Brian; Wethey, David S.
2016-01-01
Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change. PMID:27729979
Growth modeling of Listeria monocytogenes in pasteurized liquid egg.
Ohkochi, Miho; Koseki, Shigenobu; Kunou, Masaaki; Sugiura, Katsuaki; Tsubone, Hirokazu
2013-09-01
The growth kinetics of Listeria monocytogenes and natural flora in commercially produced pasteurized liquid egg was examined at 4.1 to 19.4°C, and a growth simulation model that can estimate the range of the number of L. monocytogenes bacteria was developed. The experimental kinetic data were fitted to the Baranyi model, and growth parameters, such as maximum specific growth rate (μ(max)), maximum population density (N(max)), and lag time (λ), were estimated. As a result of estimating these parameters, we found that L. monocytogenes can grow without spoilage below 12.2°C, and we then focused on storage temperatures below 12.2°C in developing our secondary models. The temperature dependency of the μ(max) was described by Ratkowsky's square root model. The N(max) of L. monocytogenes was modeled as a function of temperature, because the N(max) of L. monocytogenes decreased as storage temperature increased. A tertiary model of L. monocytogenes was developed using the Baranyi model and μ(max) and N(max) secondary models. The ranges of the numbers of L. monocytogenes bacteria were simulated using Monte Carlo simulations with an assumption that these parameters have variations that follow a normal distribution. Predictive simulations under both constant and fluctuating temperature conditions demonstrated a high accuracy, represented by root mean square errors of 0.44 and 0.34, respectively. The predicted ranges also seemed to show a reasonably good estimation, with 55.8 and 51.5% of observed values falling into the prediction range of the 25th to 75th percentile, respectively. These results suggest that the model developed here can be used to estimate the kinetics and range of L. monocytogenes growth in pasteurized liquid egg under refrigerated temperature.
The holographic dual of the Penrose transform
NASA Astrophysics Data System (ADS)
Neiman, Yasha
2018-01-01
We consider the holographic duality between type-A higher-spin gravity in AdS4 and the free U( N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these "square root" spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a "square root" of CPT.
[Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].
Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun
2009-10-01
To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.
The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911-655
NASA Technical Reports Server (NTRS)
Bult, Peter
2017-01-01
In this work, I report on the stochastic X-ray variability of the 340 hertz accreting millisecond pulsar MAXI J0911-655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01-10 hertz range with a total fractional variability of approximately 24 percent root mean square timing residuals in the 0.4 to 3 kiloelectronvolt energy band that increases to approximately 40 percent root mean square timing residuals in the 3 to 10 kiloelectronvolt band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 megahertz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense-Thirring precession model.
Oceanographic results from analysis of ERS-1 altimetry
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Chambers, D. P.; Peterson, G. E.; Ries, J. C.
1994-01-01
Large scale dynamic ocean topography and its variations were observed using ERS-1 radar altimeter measurements. The altimeter measurements analyzed are primarily from the ESA ocean product (OPR02) and from the Interim Geophysical Data Records (IGDR) generated by NOAA from the fast delivery (FD) data during the ERS-1 35 day repeat orbit phase. The precise orbits used for the dynamic topography solution are computed using dual satellite crossover measurements from ERS-1 and TOPEX (Topology Ocean Experiment)/Poseidon (T/P) as additional tracking data, and using improved models and constants which are consistent with T/P. Analysis of the ERS-1 dynamic topography solution indicates agreement with the T/P solution at the 5 cm root mean square level, with regional differences as large as 15 cm tide gauges at the 8 to 9 cm level. There are differences between the ERS-1 OPR02 and IGDR determined dynamic topography solutions on the order of 5 cm root mean square. Mesoscale oceanic variability time series obtained using collinear analysis of the ERS-1 altimeter data show good qualitative agreement when compared with the T/P results.
John R. Brooks; Gary W. Miller
2011-01-01
Data from even-aged hardwood stands in four ecoregions across the mid-Appalachian region were used to test projection accuracy for three available growth and yield software systems: SILVAH, the Forest Vegetation Simulator, and the Stand Damage Model. Average root mean squared error (RMSE) ranged from 20 to 140 percent of actual trees per acre while RMSE ranged from 2...
Examination of the Factor Structure of a Global Cognitive Function Battery across Race and Time
Barnes, Lisa L.; Yumoto, Futoshi; Capuano, Ana; Wilson, Robert S.; Bennett, David A.; Tractenberg, Rochelle E.
2016-01-01
Older African Americans tend to perform more poorly on cognitive function tests than older Whites. One possible explanation for their poorer performance is that the tests used to assess cognition may not reflect the same construct in African Americans and Whites. Therefore, we tested measurement invariance, by race and over time, of a structured 18-test cognitive battery used in three epidemiologic cohort studies of diverse older adults. Multi-group confirmatory factor analyses were carried out with full-information maximum likelihood estimation in all models to capture as much information as was present in the observed data. Four different aspects of the data were fit to each model: comparative fit index (CFI), standardized root mean square residuals (SRMR), root mean square error of approximation (RMSEA), and model χ2. We found that the most constrained model fit the data well (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057 (90% confidence interval: 0.056, 0.059); the model χ2 = 4600.68 on 862 df), supporting the characterization of this model of cognitive test scores as invariant over time and racial group. These results support the conclusion that the cognitive test battery used in the three studies is invariant across race and time and can be used to assess cognition among African Americans and Whites in longitudinal studies. Furthermore, the lower performance of African Americans on these tests is not due to bias in the tests themselves but rather likely reflect differences in social and environmental experiences over the life course. PMID:26563713
NASA Astrophysics Data System (ADS)
Jintao, Xue; Yufei, Liu; Liming, Ye; Chunyan, Li; Quanwei, Yang; Weiying, Wang; Yun, Jing; Minxiang, Zhang; Peng, Li
2018-01-01
Near-Infrared Spectroscopy (NIRS) was first used to develop a method for rapid and simultaneous determination of 5 active alkaloids (berberine, coptisine, palmatine, epiberberine and jatrorrhizine) in 4 parts (rhizome, fibrous root, stem and leaf) of Coptidis Rhizoma. A total of 100 samples from 4 main places of origin were collected and studied. With HPLC analysis values as calibration reference, the quantitative analysis of 5 marker components was performed by two different modeling methods, partial least-squares (PLS) regression as linear regression and artificial neural networks (ANN) as non-linear regression. The results indicated that the 2 types of models established were robust, accurate and repeatable for five active alkaloids, and the ANN models was more suitable for the determination of berberine, coptisine and palmatine while the PLS model was more suitable for the analysis of epiberberine and jatrorrhizine. The performance of the optimal models was achieved as follows: the correlation coefficient (R) for berberine, coptisine, palmatine, epiberberine and jatrorrhizine was 0.9958, 0.9956, 0.9959, 0.9963 and 0.9923, respectively; the root mean square error of validation (RMSEP) was 0.5093, 0.0578, 0.0443, 0.0563 and 0.0090, respectively. Furthermore, for the comprehensive exploitation and utilization of plant resource of Coptidis Rhizoma, the established NIR models were used to analysis the content of 5 active alkaloids in 4 parts of Coptidis Rhizoma and 4 main origin of places. This work demonstrated that NIRS may be a promising method as routine screening for off-line fast analysis or on-line quality assessment of traditional Chinese medicine (TCM).
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221
Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A
2017-08-01
The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2 > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.
Karhula, Maarit E; Salminen, Anna-Liisa; Hämäläinen, Päivi I; Ruutiainen, Juhani; Era, Pertti; Tolvanen, Asko
2017-11-01
The objective of this study was to evaluate the psychometric properties of the impact on participation and autonomy (IPA) questionnaire. The Finnish version of IPA (IPAFin) was translated into Finnish using the protocol for linguistic validation for patient-reported outcomes instruments. A total of 194 persons with multiple sclerosis (MS) (mean age 50 years SD 9, 72% female) with moderate to severe disability participated in this study. A confirmatory factor analysis (CFA) was used to confirm the four factor structure of the IPAFin. The work and educational opportunities domain was excluded from analysis, because it was only applicable to 51 persons. Internal consistency was investigated by calculating Cronbach's alpha. CFA confirmed the construct validity of the IPA (standardized root mean square residual (SRMR) = 0.06, comparative fit index (CFI) = 0.93, Tucker-Lewis index =0.93, root mean square error of approximation (RMSEA) = 0.06), indicating a good fit to the model. There was no difference in the models for females and males. Cronbach's alpha for the domains ranged between 0.80 and 0.91, indicating good homogeneity. The construct validity and reliability of the IPAFin is acceptable. IPAFin is a suitable measure of participation in persons with MS.
Tamilvanan, Thangaraju; Hopper, Waheeta
2014-01-01
Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.
Yu, Peigen; Low, Mei Yin; Zhou, Weibiao
2018-01-01
In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Hong, Quan Nha; Coutu, Marie-France; Berbiche, Djamal
2017-01-01
The Work Role Functioning Questionnaire (WRFQ) was developed to assess workers' perceived ability to perform job demands and is used to monitor presenteeism. Still few studies on its validity can be found in the literature. The purpose of this study was to assess the items and factorial composition of the Canadian French version of the WRFQ (WRFQ-CF). Two measurement approaches were used to test the WRFQ-CF: Classical Test Theory (CTT) and non-parametric Item Response Theory (IRT). A total of 352 completed questionnaires were analyzed. A four-factor and three-factor model models were tested and shown respectively good fit with 14 items (Root Mean Square Error of Approximation (RMSEA) = 0.06, Standardized Root Mean Square Residual (SRMR) = 0.04, Bentler Comparative Fit Index (CFI) = 0.98) and with 17 items (RMSEA = 0.059, SRMR = 0.048, CFI = 0.98). Using IRT, 13 problematic items were identified, of which 9 were common with CTT. This study tested different models with fewer problematic items found in a three-factor model. Using a non-parametric IRT and CTT for item purification gave complementary results. IRT is still scarcely used and can be an interesting alternative method to enhance the quality of a measurement instrument. More studies are needed on the WRFQ-CF to refine its items and factorial composition.
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara
2016-06-01
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
Quantitative comparison of the application accuracy between NDI and IGT tracking systems
NASA Astrophysics Data System (ADS)
Li, Qinghang; Zamorano, Lucia J.; Jiang, Charlie Z. W.; Gong, JianXing; Diaz, Fernando
1999-07-01
The application accuracy is a crucial factor for the stereotactic surgical localization system in which space digitization system is one of the most important part of equipment. In this study we compared the application accuracy of using the OPTOTRAK space digitization system (OPTOTRAK 3020, Northern Digital, Waterloo, CAN) and FlashPoint Model 3000 and 5000 3-D digitizer systems (FlashPoint Model 3000 and 5000, Image Guided Surgery Technology Inc., Boulder, CO 80301, USA) for interactive localization of intracranial lesions. A phantom was mounted with the implantable frameless marker system (Fischer- Leibinger, Freiburg, Germany) which randomly distributed markers on the surface of the phantom. The target point was digitized and the coordinates were recorded and compared with reference points. The differences from the reference points were used as the deviation from the `true point'. The mean square root was calculated to show the sum of vectors. A paired t-test was used to analyze results. The results of the phantom showed that the mean square roots were 0.76 +/- 0.54 mm for the OPTOTRAK system and 1.23 +/- 0.53 mm for FlashPoint Model 3000 3-D digitizer system and 1.00 +/- 0.42 mm for FlashPoint Model 3000 3-D digitizer system in the 1 mm sections of CT scan. This preliminary results showed that there is no significant difference between two tracking systems. Both of them can be used for image guided surgery procedure.
McKay, Carly D.; Merrett, Charlotte K.; Emery, Carolyn A.
2016-01-01
The Fédération Internationale de Football (FIFA) 11+ warm-up program is efficacious at preventing lower limb injury in youth soccer; however, there has been poor adoption of the program in the community. The purpose of this study was to determine the utility of the Health Action Process Approach (HAPA) behavior change model in predicting intention to use the FIFA 11+ in a sample of 12 youth soccer teams (coaches n = 10; 12–16 year old female players n = 200). A bespoke cross-sectional questionnaire measured pre-season risk perceptions, outcome expectancies, task self-efficacy, facilitators, barriers, and FIFA 11+ implementation intention. Most coaches (90.0%) and players (80.0%) expected the program to reduce injury risk but reported limited intention to use it. Player data demonstrated an acceptable fit to the hypothesized model (standardized root mean square residual (SRMR) = 0.08; root mean square of error of approximation (RMSEA) = 0.06 (0.047–0.080); comparative fit index (CFI) = 0.93; Tucker Lewis index (TLI) = 0.91) Task self-efficacy (β = 0.53, p ≤ 0.01) and outcome expectancies (β = 0.13 p ≤ 0.05) were positively associated with intention, but risk perceptions were not (β = −0.02). The findings suggest that the HAPA model is appropriate for use in this context, and highlight the need to target task self-efficacy and outcome expectancies in FIFA 11+ implementation strategies. PMID:27399746
Agent-based models for latent liquidity and concave price impact
NASA Astrophysics Data System (ADS)
Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe
2014-04-01
We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011), 10.1103/PhysRevX.1.021006], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.
Violato, Claudio; Gao, Hong; O'Brien, Mary Claire; Grier, David; Shen, E
2018-05-01
The distinction between basic sciences and clinical knowledge which has led to a theoretical debate on how medical expertise is developed has implications for medical school and lifelong medical education. This longitudinal, population based observational study was conducted to test the fit of three theories-knowledge encapsulation, independent influence, distinct domains-of the development of medical expertise employing structural equation modelling. Data were collected from 548 physicians (292 men-53.3%; 256 women-46.7%; mean age = 24.2 years on admission) who had graduated from medical school 2009-2014. They included (1) Admissions data of undergraduate grade point average and Medical College Admission Test sub-test scores, (2) Course performance data from years 1, 2, and 3 of medical school, and (3) Performance on the NBME exams (i.e., Step 1, Step 2 CK, and Step 3). Statistical fit indices (Goodness of Fit Index-GFI; standardized root mean squared residual-SRMR; root mean squared error of approximation-RSMEA) and comparative fit [Formula: see text] of three theories of cognitive development of medical expertise were used to assess model fit. There is support for the knowledge encapsulation three factor model of clinical competency (GFI = 0.973, SRMR = 0.043, RSMEA = 0.063) which had superior fit indices to both the independent influence and distinct domains theories ([Formula: see text] vs [Formula: see text] [[Formula: see text
Cohesion and coordination effects on transition metal surface energies
NASA Astrophysics Data System (ADS)
Ruvireta, Judit; Vega, Lorena; Viñes, Francesc
2017-10-01
Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.
Agent-based models for latent liquidity and concave price impact.
Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe
2014-04-01
We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011)], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.
Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; d'Ascenzo, N; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S
2010-02-12
We present a search for standard model (SM) Higgs boson production using pp collision data at square root(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb(-1). We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (sigma(H)) in the range from 110 to 200 GeV. These limits are the most stringent for m(H) > 130 GeV and are 1.29 above the predicted value of sigma(H) for c = 165 GeV.
Search for heavy long-lived particles that decay to photons at CDF II.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-09-21
We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma + jet + missing transverse energy events in pp[over] collisions at square root[s] = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3+/-0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with [Formula: see text] and place the world-best 95% C.L. lower limit on the [Formula: see text] mass of 101 GeV/c(2) at [Formula: see text].
Geometrical Solutions of Some Quadratic Equations with Non-Real Roots
ERIC Educational Resources Information Center
Pathak, H. K.; Grewal, A. S.
2002-01-01
This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…
Degradation trend estimation of slewing bearing based on LSSVM model
NASA Astrophysics Data System (ADS)
Lu, Chao; Chen, Jie; Hong, Rongjing; Feng, Yang; Li, Yuanyuan
2016-08-01
A novel prediction method is proposed based on least squares support vector machine (LSSVM) to estimate the slewing bearing's degradation trend with small sample data. This method chooses the vibration signal which contains rich state information as the object of the study. Principal component analysis (PCA) was applied to fuse multi-feature vectors which could reflect the health state of slewing bearing, such as root mean square, kurtosis, wavelet energy entropy, and intrinsic mode function (IMF) energy. The degradation indicator fused by PCA can reflect the degradation more comprehensively and effectively. Then the degradation trend of slewing bearing was predicted by using the LSSVM model optimized by particle swarm optimization (PSO). The proposed method was demonstrated to be more accurate and effective by the whole life experiment of slewing bearing. Therefore, it can be applied in engineering practice.
Prediction of atmospheric degradation data for POPs by gene expression programming.
Luan, F; Si, H Z; Liu, H T; Wen, Y Y; Zhang, X Y
2008-01-01
Quantitative structure-activity relationship models for the prediction of the mean and the maximum atmospheric degradation half-life values of persistent organic pollutants were developed based on the linear heuristic method (HM) and non-linear gene expression programming (GEP). Molecular descriptors, calculated from the structures alone, were used to represent the characteristics of the compounds. HM was used both to pre-select the whole descriptor sets and to build the linear model. GEP yielded satisfactory prediction results: the square of the correlation coefficient r(2) was 0.80 and 0.81 for the mean and maximum half-life values of the test set, and the root mean square errors were 0.448 and 0.426, respectively. The results of this work indicate that the GEP is a very promising tool for non-linear approximations.
Validation of Core Temperature Estimation Algorithm
2016-01-29
plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
Computational intelligence models to predict porosity of tablets using minimum features
Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander
2017-01-01
The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space. PMID:28138223
Computational intelligence models to predict porosity of tablets using minimum features.
Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander
2017-01-01
The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space.
Taylor, J M; Law, N
1998-10-30
We investigate the importance of the assumed covariance structure for longitudinal modelling of CD4 counts. We examine how individual predictions of future CD4 counts are affected by the covariance structure. We consider four covariance structures: one based on an integrated Ornstein-Uhlenbeck stochastic process; one based on Brownian motion, and two derived from standard linear and quadratic random-effects models. Using data from the Multicenter AIDS Cohort Study and from a simulation study, we show that there is a noticeable deterioration in the coverage rate of confidence intervals if we assume the wrong covariance. There is also a loss in efficiency. The quadratic random-effects model is found to be the best in terms of correctly calibrated prediction intervals, but is substantially less efficient than the others. Incorrectly specifying the covariance structure as linear random effects gives too narrow prediction intervals with poor coverage rates. Fitting using the model based on the integrated Ornstein-Uhlenbeck stochastic process is the preferred one of the four considered because of its efficiency and robustness properties. We also use the difference between the future predicted and observed CD4 counts to assess an appropriate transformation of CD4 counts; a fourth root, cube root and square root all appear reasonable choices.
Field, laboratory and numerical approaches to studying flow through mangrove pneumatophores
NASA Astrophysics Data System (ADS)
Chua, V. P.
2014-12-01
The circulation of water in riverine mangrove swamps is expected to be influenced by mangrove roots, which in turn affect the nutrients, pollutants and sediments transport in these systems. Field studies were carried out in mangrove areas along the coastline of Singapore where Avicennia marina and Sonneratia alba pneumatophore species are found. Geometrical properties, such as height, diameter and spatial density of the mangrove roots were assessed through the use of photogrammetric methods. Samples of these roots were harvested from mangrove swamps and their material properties, such as bending strength and Young's modulus were determined in the laboratory. It was found that the pneumatophores under hydrodynamic loadings in a mangrove environment could be regarded as fairly rigid. Artificial root models of pneumatophores were fabricated from downscaling based on field observations of mangroves. Flume experiments were performed and measurements of mean flow velocities, Reynolds stress and turbulent kinetic energy were made. The boundary layer formed over the vegetation patch is fully developed after x = 6 m with a linear mean velocity profile. High shear stresses and turbulent kinetic energy were observed at the interface between the top portion of the roots and the upper flow. The experimental data was employed to calibrate and validate three-dimensional simulations of flow in pneumatophores. The simulations were performed with the Delft3D-FLOW model, where the vegetation effect is introduced by adding a depth-distributed resistance force and modifying the k-ɛ turbulence model. The model-predicted profiles for mean velocity, turbulent kinetic energy and concentration were compared with experimental data. The model calibration is performed by adjusting the horizontal and vertical eddy viscosities and diffusivities. A skill assessment of the model is performed using statistical measures that include the Pearson correlation coefficient (r), the mean absolute error (MAE), and the root-mean-squared error (RMSE).
NASA Astrophysics Data System (ADS)
Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.
2017-12-01
Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.
NASA Astrophysics Data System (ADS)
Yu, Jiajia; He, Yong
Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.
Convex lattice polygons of fixed area with perimeter-dependent weights.
Rajesh, R; Dhar, Deepak
2005-01-01
We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a critical exponent which does not change with t. Using heuristic arguments, we find that theta(conv) is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected nonuniversality of theta(conv) is traced to existence of sharp corners in the asymptotic shape of these polygons.
Light-Regulated Gravitropism in Seedling Roots of Maize 1
Feldman, Lewis J.; Briggs, Winslow R.
1987-01-01
Red light-induced changes in the gravitropism of roots of Zea mays variety Merit is a very low fluence response with a threshold of 10−9 moles per square meter and is not reversible by far red light. Blue light also affects root gravitropism but the sensitivity of roots to blue is 50 to 100 times less than to an equal fluence of red. In Z. mays Merit we conclude that phytochrome is the sole pigment associated with light-induced changes in root gravitropism. PMID:11539030
Method of measuring cross-flow vortices by use of an array of hot-film sensors
NASA Technical Reports Server (NTRS)
Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)
1993-01-01
The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.
Expected distributions of root-mean-square positional deviations in proteins.
Pitera, Jed W
2014-06-19
The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Association of auricular pressing and heart rate variability in pre-exam anxiety students.
Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong
2013-03-25
A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety.
Association of auricular pressing and heart rate variability in pre-exam anxiety students
Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong
2013-01-01
A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety. PMID:25206734
Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.
Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T
2011-12-01
Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.
Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy.
Anjos, Ofélia; Santos, António J A; Paixão, Vasco; Estevinho, Letícia M
2018-02-01
This study aimed to evaluate the potential of FT-Raman spectroscopy in the prediction of the chemical composition of Lavandula spp. monofloral honey. Partial Least Squares (PLS) regression models were performed for the quantitative estimation and the results were correlated with those obtained using reference methods. Good calibration models were obtained for electrical conductivity, ash, total acidity, pH, reducing sugars, hydroxymethylfurfural (HMF), proline, diastase index, apparent sucrose, total flavonoids content and total phenol content. On the other hand, the model was less accurate for pH determination. The calibration models had high r 2 (ranging between 92.8% and 99.9%), high residual prediction deviation - RPD (ranging between 4.2 and 26.8) and low root mean square errors. These results confirm the hypothesis that FT-Raman is a useful technique for the quality control and chemical properties' evaluation of Lavandula spp honey. Its application may allow improving the efficiency, speed and cost of the current laboratory analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Bär, David; Debus, Heiko; Brzenczek, Sina; Fischer, Wolfgang; Imming, Peter
2018-03-20
Near-infrared spectroscopy is frequently used by the pharmaceutical industry to monitor and optimize several production processes. In combination with chemometrics, a mathematical-statistical technique, the following advantages of near-infrared spectroscopy can be applied: It is a fast, non-destructive, non-invasive, and economical analytical method. One of the most advanced and popular chemometric technique is the partial least square algorithm with its best applicability in routine and its results. The required reference analytic enables the analysis of various parameters of interest, for example, moisture content, particle size, and many others. Parameters like the correlation coefficient, root mean square error of prediction, root mean square error of calibration, and root mean square error of validation have been used for evaluating the applicability and robustness of these analytical methods developed. This study deals with investigating a Naproxen Sodium granulation process using near-infrared spectroscopy and the development of water content and particle-size methods. For the water content method, one should consider a maximum water content of about 21% in the granulation process, which must be confirmed by the loss on drying. Further influences to be considered are the constantly changing product temperature, rising to about 54 °C, the creation of hydrated states of Naproxen Sodium when using a maximum of about 21% water content, and the large quantity of about 87% Naproxen Sodium in the formulation. It was considered to use a combination of these influences in developing the near-infrared spectroscopy method for the water content of Naproxen Sodium granules. The "Root Mean Square Error" was 0.25% for calibration dataset and 0.30% for the validation dataset, which was obtained after different stages of optimization by multiplicative scatter correction and the first derivative. Using laser diffraction, the granules have been analyzed for particle sizes and obtaining the summary sieve sizes of >63 μm and >100 μm. The following influences should be considered for application in routine production: constant changes in water content up to 21% and a product temperature up to 54 °C. The different stages of optimization result in a "Root Mean Square Error" of 2.54% for the calibration data set and 3.53% for the validation set by using the Kubelka-Munk conversion and first derivative for the near-infrared spectroscopy method for a particle size >63 μm. For the near-infrared spectroscopy method using a particle size >100 μm, the "Root Mean Square Error" was 3.47% for the calibration data set and 4.51% for the validation set, while using the same pre-treatments. - The robustness and suitability of this methodology has already been demonstrated by its recent successful implementation in a routine granulate production process. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-01
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-15
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Meng-Han; Chen, Xiao-Jing; Ye, Peng-Chao; Chen, Xi; Shi, Yi-Jian; Zhai, Guang-Tao; Yang, Xiao-Kang
2016-11-01
The aim of this study was to use mid-infrared spectroscopy coupled with multiple model population analysis based on Monte Carlo-uninformative variable elimination for rapidly estimating the copper content of Tegillarca granosa. Copper-specific wavelengths were first extracted from the whole spectra, and subsequently, a least square-support vector machine was used to develop the prediction models. Compared with the prediction model based on full wavelengths, models that used 100 multiple MC-UVE selected wavelengths without and with bin operation showed comparable performances with Rp (root mean square error of Prediction) of 0.97 (14.60 mg/kg) and 0.94 (20.85 mg/kg) versus 0.96 (17.27 mg/kg), as well as ratio of percent deviation (number of wavelength) of 2.77 (407) and 1.84 (45) versus 2.32 (1762). The obtained results demonstrated that the mid-infrared technique could be used for estimating copper content in T. granosa. In addition, the proposed multiple model population analysis can eliminate uninformative, weakly informative and interfering wavelengths effectively, that substantially reduced the model complexity and computation time.
Active Vertical Tail Buffeting Alleviation on an F/A-18 Model in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1999-01-01
A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
Techie Quaicoe, Michael; Twenefour, Frank B K; Baah, Emmanuel M; Nortey, Ezekiel N N
2015-01-01
This research article aimed at modeling the variations in the dollar/cedi exchange rate. It examines the applicability of a range of ARCH/GARCH specifications for modeling volatility of the series. The variants considered include the ARMA, GARCH, IGARCH, EGARCH and M-GARCH specifications. The results show that the series was non stationary which resulted from the presence of a unit root in it. The ARMA (1, 1) was found to be the most suitable model for the conditional mean. From the Box-Ljung test statistics x-squared of 1476.338 with p value 0.00217 for squared returns and 16.918 with 0.0153 p values for squared residuals, the null hypothesis of no ARCH effect was rejected at 5% significance level indicating the presence of an ARCH effect in the series. ARMA (1, 1) + GARCH (1, 1) which has all parameters significant was found to be the most suitable model for the conditional mean with conditional variance, thus showing adequacy in describing the conditional mean with variance of the return series at 5% significant level. A 24 months forecast for the mean actual exchange rates and mean returns from January, 2013 to December, 2014 made also showed that the fitted model is appropriate for the data and a depreciating trend of the cedi against the dollar for forecasted period respectively.
NASA Technical Reports Server (NTRS)
Muellerschoen, R. J.
1988-01-01
A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.
Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities
NASA Technical Reports Server (NTRS)
Numata, Kenji; Kemery, Amy; Camp, Jordan
2004-01-01
We evaluated thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with t.he direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency- reference cavity of order 1 Hz/square root Hz(0.01 Hz/square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2006-12-22
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems
NASA Technical Reports Server (NTRS)
Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.
1974-01-01
By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.
Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A
2017-01-01
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.
Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.
Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
A nonlinear model of gold production in Malaysia
NASA Astrophysics Data System (ADS)
Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi
2014-06-01
Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.
Inviscid to turbulent transition of trailing vortices
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1974-01-01
The characteristics of the plateau region in the vortex system which trails from a lifting wing are discussed. The decay of the vortex due to viscous or turbulent shear is very slow in the plateau so that the maximum tangential speed in the vortices remains nearly constant for some distance downstream of roll-up and then begins to decrease, becoming inversely proportional to the square root of the distance downstream. Mathematical models are developed to analyze the structure of the plateau area. Solutions are obtained for both constant and variable eddy viscosity models.
Simulation Study Using a New Type of Sample Variance
NASA Technical Reports Server (NTRS)
Howe, D. A.; Lainson, K. J.
1996-01-01
We evaluate with simulated data a new type of sample variance for the characterization of frequency stability. The new statistic (referred to as TOTALVAR and its square root TOTALDEV) is a better predictor of long-term frequency variations than the present sample Allan deviation. The statistical model uses the assumption that a time series of phase or frequency differences is wrapped (periodic) with overall frequency difference removed. We find that the variability at long averaging times is reduced considerably for the five models of power-law noise commonly encountered with frequency standards and oscillators.
NASA Astrophysics Data System (ADS)
Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul
2016-10-01
Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
IMPROVED ALGORITHMS FOR RADAR-BASED RECONSTRUCTION OF ASTEROID SHAPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Adam H.; Margot, Jean-Luc
We describe our implementation of a global-parameter optimizer and Square Root Information Filter into the asteroid-modeling software shape. We compare the performance of our new optimizer with that of the existing sequential optimizer when operating on various forms of simulated data and actual asteroid radar data. In all cases, the new implementation performs substantially better than its predecessor: it converges faster, produces shape models that are more accurate, and solves for spin axis orientations more reliably. We discuss potential future changes to improve shape's fitting speed and accuracy.
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.
Kim, K; Lee, H; Gwak, E; Yoon, Y
2014-07-01
In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and 30°C for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (μ max; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At 4°C, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at 10°C to 30°C with a μ max of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The μ max values increased as temperature increased, while LPD values decreased, and μ max and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.
Tamhankar, Ashok J; Karnik, Shreyasee S; Stålsby Lundborg, Cecilia
2018-04-23
Antibiotic resistance, a consequence of antibiotic use, is a threat to health, with severe consequences for resource constrained settings. If determinants for human antibiotic use in India, a lower middle income country, with one of the highest antibiotic consumption in the world could be understood, interventions could be developed, having implications for similar settings. Year wise data for India, for potential determinants and antibiotic consumption, was sourced from publicly available databases for the years 2000-2010. Data was analyzed using Partial Least Squares regression and correlation between determinants and antibiotic consumption was evaluated, formulating 'Predictors' and 'Prediction models'. The 'prediction model' with the statistically most significant predictors (root mean square errors of prediction for train set-377.0 and test set-297.0) formulated from a combination of Health infrastructure + Surface transport infrastructure (HISTI), predicted antibiotic consumption within 95% confidence interval and estimated an antibiotic consumption of 11.6 standard units/person (14.37 billion standard units totally; standard units = number of doses sold in the country; a dose being a pill, capsule, or ampoule) for India for 2014. The HISTI model may become useful in predicting antibiotic consumption for countries/regions having circumstances and data similar to India, but without resources to measure actual data of antibiotic consumption.
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
Kaneko, Hiromasa; Funatsu, Kimito
2013-09-23
We propose predictive performance criteria for nonlinear regression models without cross-validation. The proposed criteria are the determination coefficient and the root-mean-square error for the midpoints between k-nearest-neighbor data points. These criteria can be used to evaluate predictive ability after the regression models are updated, whereas cross-validation cannot be performed in such a situation. The proposed method is effective and helpful in handling big data when cross-validation cannot be applied. By analyzing data from numerical simulations and quantitative structural relationships, we confirm that the proposed criteria enable the predictive ability of the nonlinear regression models to be appropriately quantified.
Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.
2017-07-20
Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer, without any periods of lethal oxythermal habitat. For Madison and Pearl Lakes, examples of important cool-water fish, particularly game fish, include northern pike (Esox lucius), walleye (Sander vitreus), and black crappie (Pomoxis nigromaculatus); examples of important warm-water fish include bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides), and smallmouth bass (Micropterus dolomieu). Sensitivity analyses were completed to understand lake response effects through the use of controlled departures on certain calibrated model parameters and input nutrient loads. These sensitivity analyses also operated as land-use change scenarios because alterations in agricultural practices, for example, could potentially increase or decrease nutrient loads.
Allegre, B; Therme, P
2008-10-01
Since the first writings on excessive exercise, there has been an increased interest in exercise dependence. One of the major consequences of this increased interest has been the development of several definitions and measures of exercise dependence. The work of Veale [Does primary exercise dependence really exist? In: Annet J, Cripps B, Steinberg H, editors. Exercise addiction: Motivation for participation in sport and exercise.Leicester, UK: Br Psychol Soc; 1995. p. 1-5.] provides an advance for the definition and measure of exercise dependence. These studies have adapted the DSM-IV criteria for substance dependence to measure exercise dependence. The Exercise Dependence Scale-Revised is based on these diagnostic criteria, which are: tolerance; withdrawal effects; intention effect; lack of control; time; reductions in other activities; continuance. Confirmatory factor analyses of EDS-R provided support to present a measurement model (21 items loaded in seven factors) of EDS-R (Comparative Fit Index=0.97; Root mean Square Error of Approximation=0.05; Tucker-Lewis Index=0.96). The aim of this study was to examine the psychometric properties of a French version of the EDS-R [Factorial validity and psychometric examination of the exercise dependence scale-revised. Meas Phys Educ Exerc Sci 2004;8(4):183-201.] to test the stability of the seven-factor model of the original version with a French population. A total of 516 half-marathoners ranged in age from 17 to 74 years old (Mean age=39.02 years, ET=10.64), with 402 men (77.9%) and 114 women (22.1%) participated in the study. The principal component analysis results in a six-factor structure, which accounts for 68.60% of the total variance. Because principal component analysis presents a six-factor structure differing from the original seven-factor structure, two models were tested, using confirmatory factor analysis. The first model is the seven-factor model of the original version of the EDS-R and the second is the model produced by the principal component analysis. The results of confirmatory factor analysis presented the original model (with a seven-factor structure) as a good model and fit indices were good (X(2)/ddl=2.89, Root Mean Square Error of Approximation (RMSEA)=0.061, Expected Cross Validation Index (ECVI)=1.20, Goodness-of-Fit Index (GFI)=0.92, Comparative Fit Index (CFI)=0.94, Standardized Root Mean Square (SRMS)=0.048). These results showed that the French version of EDS-R has an identical factor structure to the original. Therefore, the French version of EDS-R was an acceptable scale to measure exercise dependence and can be used on a French population.
NASA Technical Reports Server (NTRS)
Cho, Y. C.
1983-01-01
Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
Effect of root planing on surface topography: an in-vivo randomized experimental trial.
Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F
2015-04-01
The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong
2008-02-01
Visible and near infrared (Vis/NIR) transmission spectroscopy and chemometric methods were utilized to predict the pH values of cola beverages. Five varieties of cola were prepared and 225 samples (45 samples for each variety) were selected for the calibration set, while 75 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay and standard normal variate (SNV) followed by first-derivative were used as the pre-processing methods. Partial least squares (PLS) analysis was employed to extract the principal components (PCs) which were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. Then LS-SVM with radial basis function (RBF) kernel function and a two-step grid search technique were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias were 0.961, 0.040 and 0.012 for PLS, while 0.975, 0.031 and 4.697x10 -3 for LS-SVM, respectively. Both methods obtained a satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be applied as an alternative way for the prediction of pH of cola beverages.
Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong
2012-01-01
Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052
González-Durruthy, Michael; Monserrat, Jose M; Rasulev, Bakhtiyor; Casañola-Martín, Gerardo M; Barreiro Sorrivas, José María; Paraíso-Medina, Sergio; Maojo, Víctor; González-Díaz, Humberto; Pazos, Alejandro; Munteanu, Cristian R
2017-11-11
This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux ( J m ) under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments) and perturbation theory. The experimental measures of J m showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of J m for other CNTs was provided by random forest using eight features, obtaining test R-squared ( R ²) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.
Revised tephra volumes for Cascade Range volcanoes
NASA Astrophysics Data System (ADS)
Nathenson, Manuel
2017-07-01
Isopach maps from tephra eruptions from Mount St. Helens were reported in Carey et al. (1995) and for tephra eruptions from Glacier Peak in Gardner et al. (1998). For exponential thinning, the isopach data only define a single slope on a log thickness versus square root of area plot. Carey et al. (1995) proposed a model that was used to estimate a second slope, and volumes were presented in both studies using this model. A study by Sulpizio (2005) for estimating the second slope and square root of area where the lines intersect involves a systematic analysis of many eruptions to provide correlation equations. The purpose of this paper is to recalculate the volumes of Cascades eruptions and compare results from the two methods. In order to gain some perspective on the methods for estimating the second slope, we use data for thickness versus distance beyond the last isopach that are available for some of the larger eruptions in the Cascades. The thickness versus square root of area method is extended to thickness versus distance by developing an approximate relation between the two assuming elliptical isopachs with the source at one of the foci. Based on the comparisons made between the Carey et al. (1995) and Sulpizio (2005) methods, it is felt that the later method provides a better estimate of the second slope. For Mount St. Helens, the estimates of total volume using the Sulpizio (2005) method are generally smaller than those using the Carey et al. (1995) method. For the volume estimates of Carey et al. (1995), the volume of the May 18, 1980, eruption of Mount St. Helens is smaller than six of the eight previous eruptions. With the new volumes using the Sulpizio (2005) method, the 1980 eruption is smaller in volume than the upper end of the range for only three of the layers (Wn, Ye, and Yn) and is the same size as layer We. Thus the 1980 eruption becomes representative of the mid-range of volumes rather than being in the lower range.
Foveal Curvature and Asymmetry Assessed Using Optical Coherence Tomography.
VanNasdale, Dean A; Eilerman, Amanda; Zimmerman, Aaron; Lai, Nicky; Ramsey, Keith; Sinnott, Loraine T
2017-06-01
The aims of this study were to use cross-sectional optical coherence tomography imaging and custom curve fitting software to evaluate and model the foveal curvature as a spherical surface and to compare the radius of curvature in the horizontal and vertical meridians and test the sensitivity of this technique to anticipated meridional differences. Six 30-degree foveal-centered radial optical coherence tomography cross-section scans were acquired in the right eye of 20 clinically normal subjects. Cross sections were manually segmented, and custom curve fitting software was used to determine foveal pit radius of curvature using the central 500, 1000, and 1500 μm of the foveal contour. Radius of curvature was compared across different fitting distances. Root mean square error was used to determine goodness of fit. The radius of curvature was compared between the horizontal and vertical meridians for each fitting distance. There radius of curvature was significantly different when comparing each of the three fitting distances (P < .01 for each comparison). The average radii of curvature were 970 μm (95% confidence interval [CI], 913 to 1028 μm), 1386 μm (95% CI, 1339 to 1439 μm), and 2121 μm (95% CI, 2066 to 2183) for the 500-, 1000-, and 1500-μm fitting distances, respectively. Root mean square error was also significantly different when comparing each fitting distance (P < .01 for each comparison). The average root mean square errors were 2.48 μm (95% CI, 2.41 to 2.53 μm), 6.22 μm (95% CI, 5.77 to 6.60 μm), and 13.82 μm (95% CI, 12.93 to 14.58 μm) for the 500-, 1000-, and 1500-μm fitting distances, respectively. The radius of curvature between the horizontal and vertical meridian radii was statistically different only in the 1000- and 1500-μm fitting distances (P < .01 for each), with the horizontal meridian being flatter than the vertical. The foveal contour can be modeled as a sphere with low curve fitting error over a limited distance and capable of detecting subtle foveal contour differences between meridians.
Revised tephra volumes for Cascade Range volcanoes
Nathenson, Manuel
2017-01-01
Isopach maps from tephra eruptions from Mount St. Helens were reported in Carey et al. (1995) and for tephra eruptions from Glacier Peak in Gardner et al. (1998). For exponential thinning, the isopach data only define a single slope on a log thickness versus square root of area plot. Carey et al. (1995) proposed a model that was used to estimate a second slope, and volumes were presented in both studies using this model. A study by Sulpizio (2005) for estimating the second slope and square root of area where the lines intersect involves a systematic analysis of many eruptions to provide correlation equations. The purpose of this paper is to recalculate the volumes of Cascades eruptions and compare results from the two methods. In order to gain some perspective on the methods for estimating the second slope, we use data for thickness versus distance beyond the last isopach that are available for some of the larger eruptions in the Cascades. The thickness versus square root of area method is extended to thickness versus distance by developing an approximate relation between the two assuming elliptical isopachs with the source at one of the foci. Based on the comparisons made between the Carey et al. (1995) and Sulpizio (2005) methods, it is felt that the later method provides a better estimate of the second slope. For Mount St. Helens, the estimates of total volume using the Sulpizio (2005) method are generally smaller than those using the Carey et al. (1995) method. For the volume estimates of Carey et al. (1995), the volume of the May 18, 1980, eruption of Mount St. Helens is smaller than six of the eight previous eruptions. With the new volumes using the Sulpizio (2005) method, the 1980 eruption is smaller in volume than the upper end of the range for only three of the layers (Wn, Ye, and Yn) and is the same size as layer We. Thus the 1980 eruption becomes representative of the mid-range of volumes rather than being in the lower range.
Analysis of S-box in Image Encryption Using Root Mean Square Error Method
NASA Astrophysics Data System (ADS)
Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan
2012-07-01
The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes
Elengoe, Asita; Hamdan, Salehhuddin
2017-12-01
In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.
Improving Marine Corps Assignment of SDAP Levels
2013-03-01
Nettles , Colonel, USMC, M&RA (MPO). 15 Information Paper SDAP. 17 for a job or being able to fill the position at all, in addition to the potential to...Total 7850672.93 60132 130.557323 Root MSE = 6.2241... Root MSE = .26638 Adj R-squared = 0.0097 Residual 4577.29534 64507 .070958118
On Nth roots of positive operators
NASA Technical Reports Server (NTRS)
Brown, D. R.; Omalley, M. J.
1978-01-01
A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).
Jungnickel, Luise; Kruse, Casper; Vaeth, Michael; Kirkevang, Lise-Lotte
2018-04-01
To evaluate factors associated with treatment quality of ex vivo root canal treatments performed by undergraduate dental students using different endodontic treatment systems. Four students performed root canal treatment on 80 extracted human teeth using four endodontic treatment systems in designated treatment order following a Latin square design. Lateral seal and length of root canal fillings was radiographically assessed; for lateral seal, a graded visual scale was used. Treatment time was measured separately for access preparation, biomechanical root canal preparation, obturation and for the total procedure. Mishaps were registered. An ANOVA mirroring the Latin square design was performed. Use of machine-driven nickel-titanium systems resulted in overall better quality scores for lateral seal than use of the manual stainless-steel system. Among systems with machine-driven files, scores did not significantly differ. Use of machine-driven instruments resulted in shorter treatment time than manual instrumentation. Machine-driven systems with few files achieved shorter treatment times. With increasing number of treatments, root canal-filling quality increased, treatment time decreased; a learning curve was plotted. No root canal shaping file separated. The use of endodontic treatment systems with machine-driven files led to higher quality lateral seal compared to the manual system. The three contemporary machine-driven systems delivered comparable results regarding quality of root canal fillings; they were safe to use and provided a more efficient workflow than the manual technique. Increasing experience had a positive impact on the quality of root canal fillings while treatment time decreased.
Research on the infiltration processes of lawn soils of the Babao River in the Qilian Mountain.
Li, GuangWen; Feng, Qi; Zhang, FuPing; Cheng, AiFang
2014-01-01
Using a Guelph Permeameter, the soil water infiltration processes were analyzed in the Babao River of the Qilian Mountain in China. The results showed that the average soil initial infiltration and the steady infiltration rates in the upstream reaches of the Babao River are 1.93 and 0.99 cm/min, whereas those of the middle area are 0.48 cm/min and 0.21 cm/min, respectively. The infiltration processes can be divided into three stages: the rapidly changing stage (0-10 min), the slowly changing stage (10-30 min) and the stabilization stage (after 30 min). We used field data collected from lawn soils and evaluated the performances of the infiltration models of Philip, Kostiakov and Horton with the sum of squared error, the root mean square error, the coefficient of determination, the mean error, the model efficiency and Willmott's index of agreement. The results indicated that the Kostiakov model was most suitable for studying the infiltration process in the alpine lawn soils.
NASA Astrophysics Data System (ADS)
Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.
2017-12-01
In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.
Peng, Dan; Bi, Yanlan; Ren, Xiaona; Yang, Guolong; Sun, Shangde; Wang, Xuede
2015-12-01
This study was performed to develop a hierarchical approach for detection and quantification of adulteration of sesame oil with vegetable oils using gas chromatography (GC). At first, a model was constructed to discriminate the difference between authentic sesame oils and adulterated sesame oils using support vector machine (SVM) algorithm. Then, another SVM-based model is developed to identify the type of adulterant in the mixed oil. At last, prediction models for sesame oil were built for each kind of oil using partial least square method. To validate this approach, 746 samples were prepared by mixing authentic sesame oils with five types of vegetable oil. The prediction results show that the detection limit for authentication is as low as 5% in mixing ratio and the root-mean-square errors for prediction range from 1.19% to 4.29%, meaning that this approach is a valuable tool to detect and quantify the adulteration of sesame oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
The prediction of food additives in the fruit juice based on electronic nose with chemometrics.
Qiu, Shanshan; Wang, Jun
2017-09-01
Food additives are added to products to enhance their taste, and preserve flavor or appearance. While their use should be restricted to achieve a technological benefit, the contents of food additives should be also strictly controlled. In this study, E-nose was applied as an alternative to traditional monitoring technologies for determining two food additives, namely benzoic acid and chitosan. For quantitative monitoring, support vector machine (SVM), random forest (RF), extreme learning machine (ELM) and partial least squares regression (PLSR) were applied to establish regression models between E-nose signals and the amount of food additives in fruit juices. The monitoring models based on ELM and RF reached higher correlation coefficients (R 2 s) and lower root mean square errors (RMSEs) than models based on PLSR and SVM. This work indicates that E-nose combined with RF or ELM can be a cost-effective, easy-to-build and rapid detection system for food additive monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Isok
2014-01-01
This study used a path analytic technique to examine associations among critical ethnic awareness, racial discrimination, social support, and depressive symptoms. Using a convenience sample from online survey of Asian American adults (N = 405), the study tested 2 main hypotheses: First, based on the empowerment theory, critical ethnic awareness would be positively associated with racial discrimination experience; and second, based on the social support deterioration model, social support would partially mediate the relationship between racial discrimination and depressive symptoms. The result of the path analysis model showed that the proposed path model was a good fit based on global fit indices, χ²(2) = 4.70, p = .10; root mean square error of approximation = 0.06; comparative fit index = 0.97; Tucker-Lewis index = 0.92; and standardized root mean square residual = 0.03. The examinations of study hypotheses demonstrated that critical ethnic awareness was directly associated (b = .11, p < .05) with the racial discrimination experience, whereas social support had a significant indirect effect (b = .48; bias-corrected 95% confidence interval [0.02, 1.26]) between the racial discrimination experience and depressive symptoms. The proposed path model illustrated that both critical ethnic awareness and social support are important mechanisms for explaining the relationship between racial discrimination and depressive symptoms among this sample of Asian Americans. This study highlights the usefulness of the critical ethnic awareness concept as a way to better understand how Asian Americans might perceive and recognize racial discrimination experiences in relation to its mental health consequences.
Peña, Juan A; Corral, Victoria; Martínez, Miguel A; Peña, Estefanía
2018-01-01
In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be dependent on arterial location. To demonstrate any possible position-related difference, our study analyzed and compared the biaxial mechanical properties of the ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta stemming from the same porcine subjects, and reported values of constitutive parameters for well-known strain energy functions, showing how these mechanical properties are affected by location along the aorta. When comparing ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta, abdominal tissues were found to be stiffer and highly anisotropic. We found that the aorta changed from a more isotropic to a more anisotropic tissue and became progressively less compliant and stiffer with the distance to the heart. We observed substantial differences in the anisotropy parameter between aortic samples where abdominal samples were more anisotropic and nonlinear than the thoracic samples. The phenomenological model was not able to capture the passive biaxial properties of each specific porcine aorta over a wide range of biaxial deformations, showing the best prediction root mean square error ε=0.2621 for ascending thoracic samples and, especially, the worst for the infrarenal abdominal samples ε=0.3780. The micro-structured model with Bingham orientation density function was able to better predict biaxial deformations (ε=0.1372 for ascending thoracic aorta samples). The root mean square error of the micro-structural model and the micro-structured model with von Mises orientation density function were similar for all positions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Melenteva, Anastasiia; Galyanin, Vladislav; Savenkova, Elena; Bogomolov, Andrey
2016-07-15
A large set of fresh cow milk samples collected from many suppliers over a large geographical area in Russia during a year has been analyzed by optical spectroscopy in the range 400-1100 nm in accordance with previously developed scatter-based technique. The global (i.e. resistant to seasonal, genetic, regional and other variations of the milk composition) models for fat and total protein content, which were built using partial least-squares (PLS) regression, exhibit satisfactory prediction performances enabling their practical application in the dairy. The root mean-square errors of prediction (RMSEP) were 0.09 and 0.10 for fat and total protein content, respectively. The issues of raw milk analysis and multivariate modelling based on the historical spectroscopic data have been considered and approaches to the creation of global models and their transfer between the instruments have been proposed. Availability of global models should significantly facilitate the dissemination of optical spectroscopic methods for the laboratory and in-line quantitative milk analysis. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
de Campos, Luana Janaína; de Melo, Eduardo Borges
2017-08-01
In the present study, 199 compounds derived from pyrimidine, pyrimidone and pyridopyrazine carboxamides with inhibitory activity against HIV-1 integrase were modeled. Subsequently, a multivariate QSAR study was conducted with 54 molecules employed by Ordered Predictors Selection (OPS) and Partial Least Squares (PLS) for the selection of variables and model construction, respectively. Topological, electrotopological, geometric, and molecular descriptors were used. The selected real model was robust and free from chance correlation; in addition, it demonstrated favorable internal and external statistical quality. Once statistically validated, the training model was used to predict the activity of a second data set (n = 145). The root mean square deviation (RMSD) between observed and predicted values was 0.698. Although it is a value outside of the standards, only 15 (10.34%) of the samples exhibited higher residual values than 1 log unit, a result considered acceptable. Results of Williams and Euclidean applicability domains relative to the prediction showed that the predictions did not occur by extrapolation and that the model is representative of the chemical space of test compounds.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.
2012-01-01
The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 13.0 to 5.3 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.80 to 0.40. Percent-bias values ranged from 25.4 to 4.0 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.35. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.86 to 0.56. For the streamgage with the best agreement between observed and estimated streamflow, higher streamflows appear to be underestimated. For the streamgage with the worst agreement between observed and estimated streamflow, low flows appear to be overestimated whereas higher flows seem to be underestimated. Estimated cumulative streamflows for the period October 1, 2004, to September 30, 2009, are underestimated by -25.8 and -7.4 percent for the closest and poorest comparisons, respectively. For the Flow Duration Curve Transfer method, results of the validation study conducted by using the same six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 437 to 93.9 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 906 to 169 ft3/s. Values of the percent root-mean-square-error ranged from 67.0 to 25.6 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 12.5 to 4.4 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.79 to 0.40. Percent-bias values ranged from 22.7 to 0.94 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.38. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.89 to 0.48. For the streamgage with the closest agreement between observed and estimated streamflow, there is relatively good agreement between observed and estimated streamflows. For the streamgage with the poorest agreement between observed and estimated streamflow, streamflows appear to be substantially underestimated for much of the time period. Estimated cumulative streamflow for the period October 1, 2004, to September 30, 2009, are underestimated by -9.3 and -22.7 percent for the closest and poorest comparisons, respectively.
Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline
2013-01-01
Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.
Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline
2013-01-01
Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID:24167506
Aloba, Olutayo; Ajao, Olayinka; Alimi, Taiwo; Esan, Olufemi
2016-01-01
Objectives: To examine the construct and correlates of hopelessness among family caregivers of Nigerian psychiatric patients. Materials and Methods: This is a cross-sectional, descriptive study involving 264 family caregiver-patients’ dyads recruited from two university teaching hospitals psychiatric clinics in Southwestern Nigeria. Results: Exploratory factor analysis revealed a two-factor 9-item model of the Beck Hopelessness Scale (BHS) among the family caregivers. Confirmatory factor analysis of the model revealed satisfactory indices of fitness (goodness of fit index = 0.97, comparative fit index = 0.96, Chi-square/degree of freedom (CMIN/DF) = 1.60, root mean square error of approximation = 0.048, expected cross-validation index = 0.307, and standardized root mean residual = 0.005). Reliability of the scale was modestly satisfactory (Cronbach's alpha 0.72). Construct validity of scale was supported by significant correlations with the family caregivers’ scores on the Zarit Burden Interview, mini international neuropsychiatric interview suicidality module, General Health Questionnaire-12 (GHQ-12), and Patient Health Questionnaire-9. The greatest variance in the family caregivers’ scores on the BHS was contributed by their scores on the psychological distress scale (GHQ-12). Conclusions: The BHS has adequate psychometric properties among Nigerian psychiatric patients’ family caregivers. There is the need to pay attention to the psychological well-being of the family caregivers of Nigerian psychiatric patients. PMID:28163498
Henry, Michelle; Wolf, Pedro S.A.; Ross, Ian L.; Thomas, Kevin G.F.
2015-01-01
Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. In fact, hydrocortisone replacement in AD patients likely induces disrupted sleep. Given that healthy sleep plays an important role in improving quality of life, optimizing cognition, and ensuring affect regulation, the aim of this study was to investigate whether poor quality of life, mood alterations, and memory complaints reported by AD patients are associated with their disrupted sleep patterns. Sixty patients with AD and 60 matched healthy controls completed a battery of self-report questionnaires assessing perceived physical and mental health (Short-Form 36), mood (Beck Depression Inventory—II), sleep quality (Pittsburgh Sleep Quality Index), and cognition (Cognitive Failures Questionnaire). A latent variable model revealed that although AD had a significant direct effect on quality of life, the indirect effect of sleep was significantly greater. Furthermore, although AD had no direct effect on cognitive functioning, the indirect effect of sleep was significant. The overall model showed a good fit (comparative fit index = 0.91, root mean square of approximation = 0.09, and standardized root mean square residual = 0.05). Our findings suggest that disrupted sleep, and not the disease per se, may induce poor quality of life, memory impairment, and affect dysregulation in patients with AD. We think that improving sleep architecture may improve cognitive, affective, and physical functioning. PMID:26256520
NASA Astrophysics Data System (ADS)
Tong, M.; Xue, M.
2006-12-01
An important source of model error for convective-scale data assimilation and prediction is microphysical parameterization. This study investigates the possibility of estimating up to five fundamental microphysical parameters, which are closely involved in the definition of drop size distribution of microphysical species in a commonly used single-moment ice microphysics scheme, using radar observations and the ensemble Kalman filter method. The five parameters include the intercept parameters for rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow. Parameter sensitivity and identifiability are first examined. The ensemble square-root Kalman filter (EnSRF) is employed for simultaneous state and parameter estimation. OSS experiments are performed for a model-simulated supercell storm, in which the five microphysical parameters are estimated individually or in different combinations starting from different initial guesses. When error exists in only one of the microphysical parameters, the parameter can be successfully estimated without exception. The estimation of multiple parameters is found to be less robust, with end results of estimation being sensitive to the realization of the initial parameter perturbation. This is believed to be because of the reduced parameter identifiability and the existence of non-unique solutions. The results of state estimation are, however, always improved when simultaneous parameter estimation is performed, even when the estimated parameters values are not accurate.
Chen, Hui; Fan, Li; Wu, Wei; Liu, Hong-Bin
2017-09-26
Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010-2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R 2 ), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R 2 , MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.
Baltieri, Danilo Antonio; Luísa de Souza Gatti, Ana; Henrique de Oliveira, Vitor; Junqueira Aguiar, Ana Saito; Almeida de Souza Aranha e Silva, Renata
2016-02-01
Although men constitute the widest consumer group of pornography, the Internet has facilitated both the production of and access to pornographic material by women as well. However, few measures are available to examine pornography-use constructs, which can compromise the reliability of statements regarding the harmful use of pornography. Our study aimed to confirm the factorial validity and internal consistency of the Pornography Consumption Inventory (PCI) in a sample of female university students in Brazil. The PCI is a four-factor, 15-item, five-point Likert-type scale. After translation and back-translation of the PCI, it was administered to 105 female medical students. Exploratory and confirmatory factor analyses were conducted to examine the construct validity. The results supported the four-factor model of the PCI. The model showed adequate internal reliability and good fit indices (comparative fit index (CFI) = 0.95, Tucker-Lewis index (TLI) = 0.94, root mean square error of approximation (RMSEA) = 0.07 (95% confidence interval (CI) = 0.04-0.09), and standardized root mean square residual (SRMR) = 0.08). Overall, the findings from this study support the use of the PCI in Portuguese-speaking women. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Estimates of Ionospheric Transport and Ion Loss at Mars
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.
2017-10-01
Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.
Application of square-root filtering for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Schmidt, S. F.; Goka, T.
1978-01-01
Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.
Cooper, Fred; Liu, Ming X; Nayak, Gouranga C
2004-10-22
We study J/psi production in pp collisions at BNL Relativistic Heavy Ion Collider (RHIC) within the PHENIX detector acceptance range using the color singlet and color octet mechanism which are based on perturbative QCD and nonrelativistic QCD. Here we show that the color octet mechanism reproduces the RHIC data for J/psi production in pp collisions with respect to the p(T) distribution, the rapidity distribution, and the total cross section at square root = 200 GeV. The color singlet mechanism leads to a relatively small contribution to the total cross section when compared to the octet contribution.
Advanced optical system for scanning-spot photorefractive keratectomy (PRK)
NASA Astrophysics Data System (ADS)
Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo
1999-06-01
Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.
Month-to-month and year-to-year reproducibility of high frequency QRS ECG signals
NASA Technical Reports Server (NTRS)
Batdorf, Niles J.; Feiveson, Alan H.; Schlegel, Todd T.
2004-01-01
High frequency electrocardiography analyzing the entire QRS complex in the frequency range of 150 to 250 Hz may prove useful in the detection of coronary artery disease, yet the long-term stability of these waveforms has not been fully characterized. Therefore, we prospectively investigated the reproducibility of the root mean squared voltage, kurtosis, and the presence versus absence of reduced amplitude zones in signal averaged 12-lead high frequency QRS recordings acquired in the supine position one month apart in 16 subjects and one year apart in 27 subjects. Reproducibility of root mean squared voltage and kurtosis was excellent over these time intervals in the limb leads, and acceptable in the precordial leads using both the V-lead and CR-lead derivations. The relative error of root mean squared voltage was 12% month-to-month and 16% year-to-year in the serial recordings when averaged over all 12 leads. Reduced amplitude zones were also reproducible up to a rate of 87% and 81%, respectively, for the month-to-month and year-to-year recordings. We conclude that 12-lead high frequency QRS electrocardiograms are sufficiently reproducible for clinical use.
NASA Astrophysics Data System (ADS)
Saad, Ahmed S.; Hamdy, Abdallah M.; Salama, Fathy M.; Abdelkawy, Mohamed
2016-10-01
Effect of data manipulation in preprocessing step proceeding construction of chemometric models was assessed. The same set of UV spectral data was used for construction of PLS and PCR models directly and after mathematically manipulation as per well known first and second derivatives of the absorption spectra, ratio spectra and first and second derivatives of the ratio spectra spectrophotometric methods, meanwhile the optimal working wavelength ranges were carefully selected for each model and the models were constructed. Unexpectedly, number of latent variables used for models' construction varied among the different methods. The prediction power of the different models was compared using a validation set of 8 mixtures prepared as per the multilevel multifactor design and results were statistically compared using two-way ANOVA test. Root mean squares error of prediction (RMSEP) was used for further comparison of the predictability among different constructed models. Although no significant difference was found between results obtained using Partial Least Squares (PLS) and Principal Component Regression (PCR) models, however, discrepancies among results was found to be attributed to the variation in the discrimination power of adopted spectrophotometric methods on spectral data.
Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant
2016-05-15
A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.
2017-12-01
Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies in groundwater resources management.
l/f Noise in the Superconducting Transition of a MgB2 Thin Film
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.
2010-01-01
The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.
Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd
2017-09-25
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas
2016-01-01
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351
System and Method for Determining Rate of Rotation Using Brushless DC Motor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.
Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco
2014-11-15
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.