Square wave voltammetry at the dropping mercury electrode: Experimental
Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.
1977-01-01
Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.
Mann, Megan A; Helfrick, John C; Bottomley, Lawrence A
2014-08-19
Theory for cyclic square wave voltammetry of quasireversible electron transfer reactions is presented and experimentally verified. The impact of empirical parameters on the shape of the current-voltage curve is examined. From the trends, diagnostic criteria enabling the use of this waveform as a tool for mechanistic analysis of electrode reaction processes are presented. These criteria were experimentally confirmed using Eu(3+)/Eu(2+), a well-established quasireversible analyte. Using cyclic square wave voltammetry, both the electron transfer coefficient and rate were calculated for this analyte and found to be in excellent agreement with literature. When properly applied, these criteria will enable nonexperts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
Yilmaz, B.; Kaban, S.; Akcay, B. K.
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry methods were developed and validated for determination of etodolac in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of etodolac at platinum electrode in acetonitrile solution containing 0.1 M lithium perchlorate. The well-defined oxidation peak was observed at 1.03 V. The calibration curves were linear for etodolac at the concentration range of 2.5-50 μg/ml for linear sweep, square wave and differential pulse voltammetry methods, respectively. Intra- and inter-day precision values for etodolac were less than 4.69, and accuracy (relative error) was better than 2.00%. The mean recovery of etodolac was 100.6% for pharmaceutical preparations. No interference was found from three tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Etol, Tadolak and Etodin tablets as pharmaceutical preparation. PMID:26664057
Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions.
Mann, Megan A; Bottomley, Lawrence A
2015-09-01
The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
Helfrick, John C; Mann, Megan A; Bottomley, Lawrence A
2016-08-18
Theory for cyclic square wave voltammetry of electrode reactions with chemical reactions preceding the electron transfer is presented. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure reaction kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.
Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W
2017-05-09
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
Stivaktakis, Polychronis D; Giannakopoulos, Evangelos; Vlastos, Dimitris; Matthopoulos, Demetrios P
2017-02-01
The interaction of pesticides with environmental factors, such as pH, may result in alterations of their physicochemical properties and should be taken into consideration in regard to their classification. This study investigates the genotoxicity of methidathion and its alkaline hydrolysis by-products in cultured human lymphocytes, using the square-wave voltammetry (square wave-adsorptive cathodic stripping voltammetry (SW-AdCSV) technique) and the cytokinesis block micronucleus assay (CBMN assay). According to the SW-AdCSV data the alkaline hydrolysis of methidathion results in two new molecules, one non-electro-active and a second electro-active which is more genotoxic than methidathion itself in cultured human lymphocytes, inducing higher micronuclei frequencies. The present study confirms the SW-AdCSV technique as a voltammetric method which can successfully simulates the electrodynamics of the cellular membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Meng; Xu, Su-Ying; Gross, Andrew J; Hammond, Jules L; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D; Marken, Frank
2015-06-10
The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual-plate generator-collector micro-trench electrode (steady state) and 2) a square-wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding).
NASA Astrophysics Data System (ADS)
Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.
2011-08-01
The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.
Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation.
Toward an in situ phosphate sensor in seawater using Square Wave Voltammetry.
Barus, C; Romanytsia, I; Striebig, N; Garçon, V
2016-11-01
A Square Wave Voltammetry electrochemical method is proposed to measure phosphate in seawater as pulse techniques offer a higher sensitivity as compared to classical cyclic voltammetry. Chronoamperometry cannot be either adapted for an in situ sensor since this method requires to have controlled convection which will be impossible in a miniaturised sensor. Tests and validation of Square Wave Voltammetry parameters have been performed using an open cell and for the first time with a small volume (<400µL) laboratory prototypes. Two designs of prototypes have been compared. Using high frequency (f=250Hz) allows to obtain a linear behaviour between 0.1 and 1µmolL(-1) with a very low limit of detection of 0.05 µmolL(-1) after 60min of complexation waiting time. In order to obtain a linear regression for a larger concentration range i.e. 0.25-4µmolL(-1), a lower frequency of 2.5Hz is needed. A limit of detection of 0.1µmolL(-1) is obtained in this case after 30min of complexation waiting time for the peak measured at E=0.12V. Changing the position of the molybdenum electrode for the complexation step and moving the detection into another electrochemical cell allow to decrease the reaction time down to 5min. Copyright © 2016 Elsevier B.V. All rights reserved.
Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela
2017-06-28
A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.
Ghoneim, Mohamed M; El-Desoky, Hanaa S; Abdel-Galeil, Mohamed M
2011-06-01
Naltrexone HCl (NAL.HCl) has been reduced at the mercury electrode in Britton-Robinson universal buffer of pH values 2-11 with a mechanism involving the quasi-reversible uptake of the first transferring electron followed by a rate-determining protonation step of its C=O double bond at position C-6. Simple, sensitive, selective and reliable linear-sweep and square-wave adsorptive cathodic stripping voltammetry methods have been described for trace quantitation of NAL.HCl in bulk form, commercial formulation and human body fluids without the necessity for sample pretreatment and/or time-consuming extraction steps prior to the analysis. Limits of quantitation of 6.0×10(-9)M and 8.0×10(-10)M NAL.HCl in bulk form or commercial formulation and of 9.0×10(-9) and 1.0×10(-9)M NAL.HCl in spiked human serum samples were achieved by the described linear and square-wave stripping voltammetry methods, respectively. Furthermore, pharmacokinetic parameters of the drug in human plasma samples of healthy volunteers following the administration of an oral single dose of 50mg NAL.HCl (one Revia(®) tablet) were estimated by means of the described square-wave stripping voltammetry method without interferences from the drug's metabolites and/or endogenous human plasma constituents. The estimated pharmacokinetic parameters were favorably compared with those reported in literature. Copyright © 2011 Elsevier B.V. All rights reserved.
The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...
Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef
2016-02-01
The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2μmolL(-1), with a detection limit of 0.065μmolL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Carpani, Irene; Conti, Paolo; Lanteri, Silvia; Legnani, Pier Paolo; Leoni, Erica; Tonelli, Domenica
2008-02-28
A home-made microelectrode array, based on reticulated vitreous carbon, was used as working electrode in square wave voltammetry experiments to quantify the bacterial load of Escherichia coli ATCC 13706 and Pseudomonas aeruginosa ATCC 27853, chosen as test microorganisms, in synthetic samples similar to drinking water (phosphate buffer). Raw electrochemical signals were analysed with partial least squares regression coupled to variable selection in order to correlate these values with the bacterial load estimated by aerobic plate counting. The results demonstrated the ability of the method to detect even low loads of microorganisms in synthetic water samples. In particular, the model detects the bacterial load in the range 3-2,020 CFU ml(-1) for E. coli and in the range 76-155,556 CFU ml(-1) for P. aeruginosa.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623
Zhang, Chang; Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Jiachao; Peng, Bo; Xie, Xia; Lai, Cui; Long, Beiqing; Zhu, Jingjing
2016-01-01
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination. PMID:28344264
Arantes, Tatiane M; Sardinha, André; Baldan, Mauricio R; Cristovan, Fernando H; Ferreira, Neidenei G
2014-10-01
Monitoring heavy metal ion levels in water is essential for human health and safety. Electroanalytical techniques have presented important features to detect toxic trace heavy metals in the environment due to their high sensitivity associated with their easy operational procedures. Square-wave voltammetry is a powerful electrochemical technique that may be applied to both electrokinetic and analytical measurements, and the analysis of the characteristic parameters of this technique also enables the mechanism and kinetic evaluation of the electrochemical process under study. In this work, we present a complete optimized study on the heavy metal detection using diamond electrodes. It was analyzed the influence of the morphology characteristics as well as the doping level on micro/nanocrystalline boron-doped diamond films by means of square-wave anodic stripping voltammetry (SWASV) technique. The SWASV parameters were optimized for all films, considering that their kinetic response is dependent on the morphology and/or doping level. The films presented reversible results for the Lead [Pb (II)] system studied. The Pb (II) analysis was performed in ammonium acetate buffer at pH 4.5, varying the lead concentration in the range from 1 to 10 μg L(-1). The analytical responses were obtained for the four electrodes. However, the best low limit detection and reproducibility was found for boron doped nanocrystalline diamond electrodes (BDND) doped with 2000 mg L(-1) in B/C ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions
NASA Astrophysics Data System (ADS)
Liu, Qiong; Xiang, Pengzhi; Huang, Yao
2018-01-01
A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.
Remes, Adriana; Pop, Aniela; Manea, Florica; Baciu, Anamaria; Picken, Stephen J.; Schoonman, Joop
2012-01-01
The aim of this study was the preparation, characterization, and application of a multi-wall carbon nanotubes-epoxy composite electrode (MWCNT-EP) with 25%, wt. MWCNTs loading for the voltammetric/amperometric determination of pentachlorophenol (PCP) in aqueous solutions. The structural and morphological aspects of the MWCNT-EP composite electrode were examined by scanning electron microscopy. The electrical properties were characterized by direct-current conductivity measurements in relation with the percolation threshold. The electrochemical behavior of PCP at the MWCNT-EP composite electrode was investigated using cyclic voltammetry in 0.1 M Na2SO4 supporting electrolyte in order to establish the parameters for amperometric/voltammetric determination of PCP. The linear dependence of current vs. PCP concentrations was reached in a wide concentration range from 0.2 to 12 μM PCP using cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry, chronoamperometry, and multiple-pulsed amperometry techniques. The best electroanalytical performances of this composite electrode were achieved using a pre-concentration/square-wave voltammetric technique and also multiple-pulsed amperometry techniques envisaging the practical applications. The ease of preparation, high sensitivity, and stability of this composite electrode should open novel avenues and applications for fabricating robust sensors for detection of many important species. PMID:22969335
El Mhammedi, M A; Achak, M; Bakasse, M; Chtaini, A
2009-08-01
This paper reports on the use of platinum electrode modified with kaolin (K/Pt) and square wave voltammetry for analytical detection of trace lead(II) in pure water, orange and apple samples. The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using square wave voltammetry. The analytical performances of the extraction method has been explored by studying the incubating time, and effect of interferences due to other ions. During the preconcentration step, Pb(II) was accumulated on the surface of the kaolin. The observed detection and quantification limits in pure water were 3.6x10(-9)molL(-1) and 1.2x10(-8)molL(-1), respectively. The precision of the method was also determined; the results was 2.35% (n=5).
Malecka, Kamila; Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Dehaen, Wim; Radecka, Hanna; Radecki, Jerzy
2015-03-15
This paper concerns the development of a redox-active monolayer and its application for the construction of an electrochemical genosensor designed for the detection of specific DNA and RNA oligonucleotide sequences related to the avian influenza virus (AIV) type H5N1. This new redox layer was created on a gold electrode surface step by step. Cyclic Voltammetry, Osteryoung Square-Wave Voltammetry and Differential Pulse Voltammetry were used for its characterization. This new redox-active layer was applied for the construction of the DNA biosensor. The NH2-NC3 probe (20-mer) was covalently attached to the gold electrode surface via a "click" reaction between the amine and an epoxide group. The hybridization process was monitored using the Osteryoung Square-Wave Voltammetry. The 20-mer DNA and ca. 280-mer RNA oligonucleotides were used as the targets. The constructed genosensor was capable to determine complementary oligonucleotide sequences with a detection limit in the pM range. It is able to distinguish the different position of the part RNA complementary to the DNA probe. The genosensor was very selective. The 20-mer DNA as well as the 280-mer RNA oligonucleotides without a complementary sequence generated a weak signal. Copyright © 2014 Elsevier B.V. All rights reserved.
Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y
2014-01-31
Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.
Electrochemical sensing of ammonium ion at the water/1,6-dichlorohexane interface.
Ribeiro, José A; Silva, F; Pereira, Carlos M
2012-01-15
In this work, ion transfer and facilitated ion transfer of ammonium ion by a lipophilic cyclodextrin is investigated at the water/1,6-dichlorohexane micro-interface, using electrochemical approaches (cyclic voltammetry, differential pulse voltammetry and square wave voltammetry). The association constant has been obtained for the complex between ammonium ion and the cyclodextrin. Experimental conditions for the analytical determination of ammonium ion were established and a detection limit of 0.12 μM was obtained. The amperometric sensor gave a current response proportional to the ammonium ion concentration in the range from 4.2 to 66 μM. Copyright © 2011 Elsevier B.V. All rights reserved.
On-line Monitoring of Actinide Concentrations in Molten Salt Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis W. Johnson; Mary Lou Dunzik-Gougar; Shelly X. Li
2006-11-01
Pyroprocessing, a treatment method for spent nuclear fuel (SNF), is currently being studied at the Idaho National Laboratory. The key operation of pyroprocessing which takes place in an electrorefiner is the electrochemical separation of actinides from other constituents in spent fuel. Efficient operation of the electrorefiner requires online monitoring of actinide concentrations in the molten salt electrolyte. Square-wave voltammetry (SWV) and normal pulse voltammetry (NPV) are being investigated to assess their applicability to the measurement of actinide concentrations in the electrorefiner.
NASA Astrophysics Data System (ADS)
Eissa, Shimaa; Zourob, Mohammed
2012-11-01
A novel graphene-based voltammetric immunosensor for sensitive detection of okadaic acid (OA) was developed. A simple and efficient electrografting method was utilized to functionalize graphene-modified screen-printed carbon electrodes (GSPE) by the electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt in acidic aqueous solution. Next, the okadaic acid antibody was covalently immobilized on the carboxyphenyl modified graphene electrodes via carbodiimide chemistry. Square wave voltammetry (SWV) was used to investigate the stepwise assembly of the immunosensor. A competitive assay between OA and a fixed concentration of okadaic acid-ovalbumin conjugate (OA-OVA) for the immobilized antibodies was employed for the detection of okadaic acid. The decrease of the [Fe(CN)6]3-/4- reduction peak current in the square wave voltammetry for various concentrations of okadaic acid was used for establishing the calibration curve. A linear relationship between the SWV peak current difference and OA concentration was obtained up to ~5000 ng L-1. The developed immunosensor allowed a detection limit of 19 ng L-1 of OA in PBS buffer. The matrix effect studied with spiked shellfish tissue extracts showed a good percentage of recovery and the method was also validated with certified reference mussel samples.A novel graphene-based voltammetric immunosensor for sensitive detection of okadaic acid (OA) was developed. A simple and efficient electrografting method was utilized to functionalize graphene-modified screen-printed carbon electrodes (GSPE) by the electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt in acidic aqueous solution. Next, the okadaic acid antibody was covalently immobilized on the carboxyphenyl modified graphene electrodes via carbodiimide chemistry. Square wave voltammetry (SWV) was used to investigate the stepwise assembly of the immunosensor. A competitive assay between OA and a fixed concentration of okadaic acid-ovalbumin conjugate (OA-OVA) for the immobilized antibodies was employed for the detection of okadaic acid. The decrease of the [Fe(CN)6]3-/4- reduction peak current in the square wave voltammetry for various concentrations of okadaic acid was used for establishing the calibration curve. A linear relationship between the SWV peak current difference and OA concentration was obtained up to ~5000 ng L-1. The developed immunosensor allowed a detection limit of 19 ng L-1 of OA in PBS buffer. The matrix effect studied with spiked shellfish tissue extracts showed a good percentage of recovery and the method was also validated with certified reference mussel samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32146g
Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyrazinoporphyrazines
NASA Astrophysics Data System (ADS)
Pişkin, Mehmet; Öztürk, Naciye; Durmuş, Mahmut
2017-12-01
This study presents the synthesis and characterization of novel metal-free (H2Pc) and metallo porphyrazines (magnesium(II) (MgPz), copper(II) (CuPz), iron(II) (FePz), manganese(II) (MnPz) and nickel(II) (NiPz)) substituted with four 2-methylpyrazine groups on the peripheral positions. The spectroscopic properties of newly synthesized porphyrazines were investigated. The electrochemical behaviors of these porphyrazines were also determined in DMSO solution by cyclic voltammetry (CV) and square wave voltammetry (SWV) methods on edge plane pyrolytic graphite electrode (EPPG) electrode.
MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)
A sulfide identification protocol was developed to quantify specific metal
sulfides that could exist in river water. Using a series of acid additions,
nitrogen purges, and voltammetric analyses, metal sulfides were identified and
semiquantified in three specific gr...
Mercury-Free Analysis of Lead in Drinking Water by Anodic Stripping Square Wave Voltammetry
ERIC Educational Resources Information Center
Wilburn, Jeremy P.; Brown, Kyle L.; Cliffel, David E.
2007-01-01
The analysis of drinking water for lead, which has well-known health effects, is presented as an instructive example for undergraduate chemistry students. It allows the students to perform an experiment and evaluate to monitor risk factors and common hazard of everyday life.
Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium
Gougis, Maxime; Ma, Dongling; Mohamedi, Mohamed
2015-01-01
In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 μA cm−2 mM−1 up to 10 mM of glucose and a low detection limit of 10 μM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. PMID:25931820
Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando
2014-04-07
A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.
Suprun, Elena V; Saveliev, Anatoly A; Evtugyn, Gennady A; Lisitsa, Alexander V; Bulko, Tatiana V; Shumyantseva, Victoria V; Archakov, Alexander I
2012-03-15
A novel direct antibodies-free electrochemical approach for acute myocardial infarction (AMI) diagnosis has been developed. For this purpose, a combination of the electrochemical assay of plasma samples with chemometrics was proposed. Screen printed carbon electrodes modified with didodecyldimethylammonium bromide were used for plasma charactrerization by cyclic (CV) and square wave voltammetry and square wave (SWV) voltammetry. It was shown that the cathodic peak in voltammograms at about -250 mV vs. Ag/AgCl can be associated with AMI. In parallel tests, cardiac myoglobin and troponin I, the AMI biomarkers, were determined in each sample by RAMP immunoassay. The applicability of the electrochemical testing for AMI diagnostics was confirmed by statistical methods: generalized linear model (GLM), linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), artificial neural net (multi-layer perception, MLP), and support vector machine (SVM), all of which were created to obtain the "True-False" distribution prediction where "True" and "False" are, respectively, positive and negative decision about an illness event. Copyright © 2011 Elsevier B.V. All rights reserved.
Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo
2016-10-27
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.
Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis
2016-11-01
Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qiu, Jingxia; Chen, Jin; Ma, Qianqian; Miao, Yuqing
2009-09-01
A square wave voltammetry method was developed for the assessment of organophosphorus (OPs) compound impact on the cholinesterase of Pheretima with 2,6-dichloroindophenol (2,6-DCIP) as a redox indicator. The substrate of acetylthiocholine is hydrolysed by the cholinesterase (ChE) from soil animal pheretima, and the produced thiocholine reacts with the 2,6-DCIP to give obvious shift of electrochemical signal. The inhibition of ChE was assessed by measuring the enzyme activity before and after incubating with parathion-methyl. The reduction peak current of 2,6-DCIP decreases with the time of enzymatical reaction. The ChE loses almost 32.74% activity after 10 min incubation with 1ng mL(-1) paraoxon and 54.62% with 10 microg mL(-1) paraoxon, while the activity that corresponds to 100 microg mL(-1) paraoxon was nearly completely inhibited. This method can be employed to assess the inhibition of ChE and investigate OPs impact on environmental animals.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Azab, Hassan Ahmed; Anwar, Zeinab M; Abdel-Salam, Enas T; el-Sayed-Sebak, Mahmoud
2012-01-01
Two new ligands derived from phloroglucinol 2-{[(4-methoxy benzoyl)oxy]} methyl benzoic acid[L1] and 2-{[(4-methyl benzoyl)oxy] methyl} benzoic acid[L2] were synthesized. The solid complex Eu(III)-L2 has been synthesised and characterized by elemental analysis, UV and IR spectra. The reaction of Eu(III) with the two synthesized ligands has been investigated in I = 0.1 mol dm(-3) p-toluene sulfonate by cyclic voltammetry and square wave voltammetry. The reaction of Eu (III)-L1 and Eu (III)-L2 binary complexes with nucleotide 5'-AMP, 5'-ADP, 5'-ATP, 5'- GMP, 5'-IMP, and 5'-CMP has been investigated using UV, fluorescence and electrochemical methods. The experimental conditions were selected such that self-association of the nucleotides and their complexes was negligibly small, that is, the monomeric complexes were studied. The interaction of the Eu(III)-L1 or L2 solid complexes with calf-thymus DNA has been investigated by fluorescence and electrochemical methods including cyclic voltammetery(CV), differential pulse polarography (DPP) and square wave voltammetry (SWV) on a glassy carbon electrode. The fluorescence intensity of Eu(III)-L2 complex was enhanced with the addition of DNA. Under optimal conditions in phosphate buffer pH 7.0 at 25 °C the linear range is 3-20 μM for calf thymus DNA (CT-DNA) and the corresponding determination limit is 1.8 μM.
Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua
2017-05-15
Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.
Fernández-Baldo, Martín A; Bertolino, Franco A; Messina, Germán A; Sanz, Maria I; Raba, Julio
2010-12-15
This work described the development and characterization of an electrochemical method using square wave voltammetry (SWV) combined with the use of modified magnetic nanoparticles (MNPs), which had shown a rapid and sensitive determination of ochratoxin A (OTA) in wine grapes (Cabernet Sauvignon, Malbec and Syrah) post-harvest tissues. The wine grapes were inoculated with Aspergillus ochraceus to obtain OTA in artificially infected samples. The OTA was directly determined using square-wave voltammetry. The current obtained is directly proportional to the concentration of OTA present in the samples. This method has been used for OTA determination in wine grapes and it was validated against a commercial ELISA test kit. The limits of detection calculated for electrochemical detection and the ELISA were 0.02 and 1.9 μg kg(-1), respectively and the coefficients of variation for accuracy and precision dates were below 5.5%. This method promises to be suitable for the detection and quantification of OTA in apparently healthy fruits post-harvest for assuring safety and quality of food as well as consumer's health. Copyright © 2010 Elsevier B.V. All rights reserved.
Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail
2013-11-15
An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Lourenço, Anabel S; Nascimento, Raphael F; Silva, Amanda C; Ribeiro, Williame F; Araujo, Mario C U; Oliveira, Severino C B; Nascimento, Valberes B
2018-05-30
The electrocatalytic oxidation of tartaric acid on a carbon paste electrode modified with cobalt (II)-phthalocyanine was demonstrated and applied to the development of a highly sensitive, simple, fast and inexpensive voltammetric sensor to determine tartaric acid. The electrochemical behavior of the modified electrode was investigated by cyclic and square wave voltammetry, and the effect of experimental variables, such as dispersion and loading of cobalt (II)-phthalocyanine, together with optimum conditions for sensing the analyte by square wave voltammetry were assessed. In addition, the absence of a significant memory effect combined with the ease of electrode preparation led to the development of a sensitive and direct method to determine tartaric acid in wines. Interferences from other low molecular weight organic acids commonly present in wines were circumvented by using a multiway calibration technique, successfully obtaining the second order advantage by modeling voltammetric data with unfolded partial least square with residual bilinearization (U-PLS/RBL). A linear response range between 10 and 100 μmol L -1 (r = 0.9991), a relative prediction error of 4.55% and a recovery range from 96.41 to 102.43% were obtained. The proposed method is non-laborious, since it does not use sample pretreatment such as filtration, extraction, pre-concentration or cleanup procedures. Copyright © 2018 Elsevier B.V. All rights reserved.
Hoyos-Arbeláez, Jorge; Vázquez, Mario; Contreras-Calderón, José
2017-04-15
The growing interest in functional foods had led to the use of analytical techniques to quantify some properties, among which is the antioxidant capacity (AC). In order to identify and quantify this capacity, some techniques are used, based on synthetic radicals capture; and they are monitored by UV-vis spectrophotometry. Electrochemical techniques are emerging as alternatives, given some of the disadvantages faced by spectrophotometric methods such as the use of expensive reagent not environmentally friendly, undefined reaction time, long sample pretreatment, and low precision and sensitivity. This review focuses on the four most commonly used electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and chronoamperometry). Some of the applications to determine AC in foods and beverages are presented, as well as the correlation between both spectrophotometric and electrochemical techniques that have been reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop
2013-04-01
This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.
Pulse-voltammetric glucose detection at gold junction electrodes.
Rassaei, Liza; Marken, Frank
2010-09-01
A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.
Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.
2014-01-01
Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081
NASA Astrophysics Data System (ADS)
Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel
2017-05-01
In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.
Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N
2003-02-01
An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Casella, Amanda J.
The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism andmore » acid dependence of the redox reaction.« less
A graphene-based electrochemical sensor for sensitive detection of paracetamol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Xinhuang; Wang, Jun; Wu, Hong
2010-05-15
An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptivemore » capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.« less
2015-01-01
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591
Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian
2014-12-16
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.
Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel
NASA Astrophysics Data System (ADS)
Boratto, Miguel H.; Ramos, Roberto A.; Congiu, Mirko; Graeff, Carlos F. O.; Scalvi, Luis V. A.
2017-07-01
A novel and cheap Resistive Random Access Memory (RRAM) device is proposed within this work, based on the interface between antimony doped Tin Oxide (4%at Sb:SnO2) and Titanium Oxide (TiO2) thin films, entirely prepared through a low-temperature sol-gel process. The device was fabricated on glass slides using evaporated aluminum electrodes. Typical bipolar memristive behavior under cyclic voltage sweeping and square wave voltages, with well-defined high and low resistance states (HRS and LRS), and set and reset voltages are shown in our samples. The switching mechanism, explained by charges trapping/de-trapping by defects in the SnO2/TiO2 interface, is mainly driven by the external electric field. The calculated on/off ratio was about 8 × 102 in best conditions with good reproducibility over repeated measurement cycles under cyclic voltammetry and about 102 under applied square wave voltage.
Synthesis and bioelectrochemical behavior of aromatic amines.
Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie
2017-12-01
Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R
2012-01-15
The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3). Copyright © 2011 Elsevier B.V. All rights reserved.
Tian, Xianqing; Cheng, Changming; Yuan, Hongyan; Du, Juan; Xiao, Dan; Xie, Shunping; Choi, Martin M F
2012-05-15
Graphene decorated with gold nanoparticles (AuNPs-β-CD-Gra) has been synthesized by in situ thermal reduction of graphene oxide and HAuCl(4) with β-cyclodextrin (β-CD) under alkaline condition. The AuNPs-β-CD-Gra product was well characterized by infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction. This material was used to fabricate an AuNPs-β-CD-Gra-modified glassy carbon electrode (GCE) which showed excellent electro-oxidation of l-ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.10 M NaH(2)PO(4)-HCl buffer solution (pH 2.0) by square wave voltammetry (SWV). Three well-resolved oxidation peaks of AA and DA and UA were obtained. The AuNPs-β-CD-Gra/GCE exhibits linear responses to AA, DA and UA in the ranges 30-2000, 0.5-150 and 0.5-60 μM, respectively. The detection limits (based on S/N=3 and preconcentration time=3.0 min) for AA, DA and UA are 10, 0.15 and 0.21 μM, respectively. The AuNPs-β-CD-Gra/GCE has been successfully applied to determine UA in human urine with satisfactory results. Our work provides a simple, convenient and green route to synthesize AuNPs on Gra which is potentially useful in electroanalysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Viviana Tarditto, Lorena; Alicia Zon, María; García Ovando, Hugo; Roberto Vettorazzi, Nelio; Javier Arévalo, Fernando; Fernández, Héctor
2017-11-01
Diseases caused by enterotoxicogenic Escherichia coli F4 (K88) (ETEC F4) are a problem in swine production establishments. Due to the high rate of mortality and morbidity of E. coli infections, a rapid and accurate diagnosis is important in order to choose an appropriate treatment to reduce the economic impact. Therefore, an electrochemical magneto-immunosensor (EMI) was developed to detect and quantify ETEC F4 in swine feces samples through a direct non-competitive immunoassay. ETEC F4 was selectively captured by immunomagnetic separation. The detection principle was based on the activity of β-galactosidase endogenous enzyme (β-gal), which hydrolyses the p-aminophenyl-β-D-galactopyranoside (p-APG) producing p-aminophenol (p-AP), which was oxidized on a carbon screen printed electrode (CSPE) using square wave voltammetry (SWV). All parameters related to construction and electrochemical responses were optimized. The total analysis time to quantify ETEC F4 using the EMI was less than 2h and the limit of detection (LOD) was 33CFUmL -1 . The perceptual relative error (%E r ) was 20%. The magneto-immunosensor was validated versus conventional method of culture and plate count, obtaining a very good agreement. The EMI is simple, fast and economical to detect and quantify ETEC F4 in swine feces samples, being thus a valuable tool in swine production. Copyright © 2017 Elsevier B.V. All rights reserved.
Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre
2010-09-01
This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Koca, Atıf; Bekircan, Olcay; Kantekin, Halit
2018-03-01
In the present study novel tetra 4-(4-fluorophenyl)-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thio substituted non-peripherally metal free (4), zinc(II) (5), lead (II) (6) and copper(II) (7) phthalocyanines were synthesized. The obtained novel compounds were characterized by a combination of FT-IR, 1H NMR, UV-Vis and MALDI-TOF techniques. The redox properties of the complexes have been investigated via cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemistry. The compounds displayed ring-based, reversible and/or quasi-reversible reduction and oxidation processes and aggregation of the complexes influenced the redox character of the processes. The color changes during the redox processes of metallo phthalocyanine were recorded by in-situ spectroelectrochemical measurements. In situ UV-vis spectroelectrochemical measurements, which was associated with color change of the complexes, showed their applicability in the fields of the electrochemical technologies.
NASA Astrophysics Data System (ADS)
Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan
2016-03-01
A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.
NASA Astrophysics Data System (ADS)
Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.
2017-08-01
Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.
Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali
2017-06-01
This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. Copyright © 2017. Published by Elsevier B.V.
Cobo Solis, Airam K; Correa, N Mariano; Molina, Patricia G
2017-10-31
This report describes the studies performed to determine the permeability coefficient value (P) of 1-naphthyl phosphate (1-NP) through the benzyl-hexadecyldimethylammonium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT-BHD) vesicle bilayer. 1-NP was added in the external phase and must cross the bilayer of the vesicle to react with the encapsulated enzyme (alkaline phosphatase) to yield 1-naphtholate (NPh - ), the product of the enzymatic hydrolysis. This product is electrochemically detected, at basic pH value, by a square wave voltammetry technique, which can be a good alternative over the spectroscopic one, to measure the vesicle solutions because scattering (due to its turbidity) does not make any influence in the electrochemical signal. The experimental data allow us to propose a mathematical model, and a value of P = (1.00 ± 0.15) × 10 -9 cm s -1 was obtained. Also, a value of P = (2.0 ± 0.5) × 10 -9 cm s -1 was found by using an independent technique, ultraviolet-visible spectroscopy, for comparison. It is evident that the P values obtained from both the techniques are comparable (within the experimental error of both techniques) under the same experimental conditions. This study constitutes the first report of the 1-NP permeability determination in this new vesicle. We want to highlight the importance of the introduction of a new method and the electrochemical response of the product generated through an enzymatic reaction that occurs in the inner aqueous phase of the vesicle, where the enzyme is placed.
Determination of tryptamine in foods using square wave adsorptive stripping voltammetry.
Costa, Daniel J E; Martínez, Ana M; Ribeiro, Williame F; Bichinho, Kátia M; Di Nezio, María Susana; Pistonesi, Marcelo F; Araujo, Mario C U
2016-07-01
Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Damián Chanique, Gerardo; Heraldo Arévalo, Alejandro; Alicia Zon, María; Fernández, Héctor
2013-07-15
The electro-reduction of patulin mycotoxin and 5-hydroxymethylfurfural at glassy carbon electrodes in acetonitrile +0.1 mol L(-1) tetrabutylammonium perchlorate, in both the absence and the presence of different aliquots of trifluoroacetic acid is reported. 5-hydroxymethylfurfural is the most common interference in the determination of patulin in products derived from apples. The electrochemical techniques were cyclic and square wave voltammetries, and controlled potential bulk electrolysis. The number of electrons exchanged in the patulin electro-reduction of n=1 could be inferred from controlled potential bulk electrolysis measurements. Ultraviolet-visible and infrared spectroscopies were used to identify patulin electro-reduction product/s. A value of (2.1±0.1)×10(-5) cm(2) s(-1) for the patulin diffusion coefficient was calculated from convoluted cyclic voltammograms. A method based on square wave voltammetry was developed for the quantitative determination of patulin in both fresh, and commercial apple juices in the presence of 5-hydroxymethylfurfural. Calibration curves obtained from solutions of the commercial reagent, and commercial apple juices were linear in the range from 3.0×10(-7) to 2.2×10(-5) mol L(-1). The lowest concentration measured experimentally for a signal to noise ratio of 3:1 was 3×10(-7) mol L(-1) (45 ppb) and a recovery percent of 84% was determined for commercial apple juices. This electroanalytical methodology appears as a good screening method for the determination of patulin in apple juices. Copyright © 2013 Elsevier B.V. All rights reserved.
Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela
2017-03-01
The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
Asadpour-Zeynali, Karim; Mollarasouli, Fariba
2017-06-15
This work introduces a new electrochemical sensor based on polyvinyl pyrrolidone capped CoFe 2 O 4 @CdSe core-shell modified electrode for a rapid detection and highly sensitive determination of rifampicin (RIF) by square wave adsorptive stripping voltammetry. The new PVP capped CoFe 2 O 4 @CdSe with core-shell nanostructure was synthesized by a facile synthesis method for the first time. PVP can act as a capping and etching agent for protection of the outer surface nanoparticles and formation of a mesoporous shell, respectively. Another important feature of this work is the choice of the ligand (1,10-phenanthroline) for precursor cadmium complex that works as a chelating agent in order to increase optical and electrical properties and stability of prepared nanomaterial. The nanoparticles have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-vis, photoluminescence (PL) spectroscopy, FT-IR, and cyclic voltammetry techniques. The PL spectroscopy study of CoFe 2 O 4 @CdSe has shown significant PL quenching by the formation of CoFe 2 O 4 core inside CdSe, this shows that CoFe 2 O 4 NPs are efficient electron acceptors with the CdSe. It is clearly observed that the biosensor can significantly enhance electrocatalytic activity towards the oxidation of RIF, under the optimal conditions. The novelty of this work arises from the new synthesis method for the core-shell of CoFe 2 O 4 @CdSe. Then, the novel electrochemical biosensor was fabricated for ultra-trace level determination of rifampicin with very low detection limit (4.55×10 -17 M) and a wide linear range from 1.0×10 -16 to 1.0×10 -7 M. The fabricated biosensor showed high sensitivity and selectivity, good reproducibility and stability. Therefore, it was successfully applied for the determination of ultra-trace RIF amounts in biological and pharmaceutical samples with satisfactory recovery data. Copyright © 2016 Elsevier B.V. All rights reserved.
Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids.
Goyal, Rajendra N; Bishnoi, Sunita
2009-08-15
A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of approximately -1230 and approximately -1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 microM and the detection limit (3 sigma/slope) observed for prednisone and prednisolone were 0.45 x 10(-8), 0.90 x 10(-8)M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.
The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt
NASA Astrophysics Data System (ADS)
Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng
2016-02-01
The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.
Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas
2016-09-01
In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. Copyright © 2016. Published by Elsevier B.V.
dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C
2010-03-01
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5 ± 0.3)C (paraquat) - (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Guzmán-Vázquez de Prada, A; Loaiza, Oscar A; Serra, B; Morales, D; Martínez-Ruiz, P; Reviejo, A J; Pingarrón, J M
2007-05-01
A molecularly imprinted polymer was developed and used for solid-phase extraction (MISPE) of the antihelmintic fenbendazole in beef liver samples. Detection of the analyte was accomplished using square wave voltammetry (SWV) at a cylindrical carbon fibre microelectrode (CFME). A mixture of MeOH/HAc (9:1) was employed both as eluent in the MISPE system and as working medium for electrochemical detection of fenbendazole. The limit of detection was 1.9x10(-7) mol L-1 (57 microg L-1), which was appropriate for the determination of fenbendazole at the maximum residue level permitted by the European Commission (500 microg kg-1 in liver). Given that the SW voltammetric analysis could not be directly performed in the sample extract as a consequence of interference from some sample components, a sample clean-up with a MIP for selectively retaining fenbendazole was performed. The MIP was synthesized using a 1:8:22 template/methacrylic acid/ethylene glycol dimethacrylate ratio. A Britton-Robinson Buffer of pH 9.0 was selected for retaining fenbendazole in the MIP cartridges, and an eluent volume of 5.0 mL at a flow rate of 2.0 mL min-1 was chosen in the elution step. Cross-reactivity with the MIP was observed for other benzimidazoles. The synthesized MIP exhibited a good selectivity for benzimidazoles with respect to other veterinary drugs. The applicability of the MISPE-SWV method was tested with beef liver samples, spiked with fenbendazole at 5,000 and 500 microg kg-1. Results obtained for ten different liver samples yielded mean recoveries of (95+/-12)% and (96+/-11)% for the upper and lower concentration level, respectively.
Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications
NASA Astrophysics Data System (ADS)
Nguyen, Le Huy; Dzung Nguyen, Tuan; Hoang Tran, Vinh; Thu Huyen Dang, Thi; Tran, Dai Lam
2014-09-01
A novel biosensing platform was designed by the functionalizing reduced graphene oxide sheets (rGO) with electroactive copolymer juglone. The composite film showed well-defined, stable electroactivity in a biocompatible buffer medium. Square wave voltammetry is used to record the redox signal for DNA hybridization. Current increase upon hybridization (signal-on) evidenced that short DNA target as well as polymerase chain reaction (PCR), so called ‘real sample’ products, related to different lineages of Mycobacterium tuberculosis strain. The signal-on reached ∼40% with 1 nM of short DNA (25 mer) target, while PCR product (Africanum, EAI and Beijing strains) produced a current change of ∼20%.
Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu
2013-08-06
Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Goyal, Rajendra N; Gupta, Vinod K; Bachheti, Neeta
2007-07-30
The electrochemical behaviour of nandrolone is investigated by cyclic, differential pulse and square-wave voltammetry in phosphate buffer system at fullerene-C60-modified electrode. The modified electrode shows an excellent electrocatalytic activity towards the oxidation of nandrolone resulting in a marked lowering in the peak potential and considerable improvement of the peak current as compared to the electrochemical activity at the bare glassy carbon electrode. The oxidation process is shown to be irreversible and diffusion-controlled. A linear range of 50 microM to 0.1 nM is obtained along with a detection limit and sensitivity of 0.42 nM and 0.358 nA nM(-1), respectively, in square-wave voltammetric technique. A diffusion coefficient of 4.13x10(-8) cm2 s(-1) was found for nandrolone using chronoamperometry. The effect of interferents, stability and reproducibility of the proposed method were also studied. The described method was successfully employed for the determination of nandrolone in human serum and urine samples. A cross-validation of observed results by GC-MS indicates that the results are in good agreement with each other.
Galandová, Júlia; Ovádeková, Renáta; Ferancová, Adriana; Labuda, Ján
2009-06-01
A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)(3)](2+) redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)(6)](3-/4-) indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT-PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT-PEI interface exhibited better properties than the MWCNT-chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time.
Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery
2017-04-15
The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kg wet weight,ww ). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kg ww , with performance comparable to that of DMA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Guiying; Sun, Hong; Hou, Shifeng
2016-06-01
In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb-SGO-Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb-SGO-Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around -0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential. Copyright © 2016. Published by Elsevier Inc.
Jiang, Lin; Ding, Yaping; Jiang, Feng; Li, Li; Mo, Fan
2014-06-23
A nitrogen-doped graphene/carbon nanotubes (NGR-NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR-NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR-NCNTs (ENGR-NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR-NCNTs/GCE exhibited a wide linearity of 0.06-50 μM for CAF and 0.01-10 μM for VAN with detection limits of 0.02 μM and 3.3×10(-3) μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR-NCNTs nanocomposite has promising potential in electrocatalytic biosensor application. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mayedwa, Noluthando; Matinise, Nolubabalo; Mongwaketsi, Nametso; Maaza, Malik
2018-05-01
The aim of this work was to study structural and kinetic parameters as well as the mechanism of platinum nanoparticles (PtNP) reduced with sodium borohydride (NaBH4) and capped with polyvinyl pyrrolidone (PVP). The nanoparticles were supported on Pt electrode for ammonia oxidation in fuel cell application. X-ray diffraction (XRD) was used to study structural composition and high resolution transmission electron microscopy (HRTEM) was used for morphological study of the nanoalloy. The electrocatalysts were studied in alkaline solution of potassium hydroxide (KOH) by cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). CV showed that the ammonia oxidation over potential for PtNP was -431 mV and with exchange current density of 1.726 × 10-4 A. EIS showed that the charge transfer resistance (Rct) of PtNP was the lowest (Rct = 1.943 × 106 Ω) compared to that of bare Pt working electrode (2.0604 × 106 Ω), indicating that the Pt nanoparticles have good conductivity and played an important role in accelerating the transfer of electrons.
Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali
2012-01-01
We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1-210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.
Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R.; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali
2012-01-01
We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples. PMID:22675657
Bernalte, E; Marín Sánchez, C; Pinilla Gil, E
2011-03-09
The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. Copyright © 2011 Elsevier B.V. All rights reserved.
Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.
Lu, Min; Compton, Richard G
2014-09-21
Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.
Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi; Alizadeh, Reza
2014-09-07
A novel carbon paste electrode modified with ZnO nanorods and 5-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'-AAZCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of levodopa, is described. The electrode was employed to study the electrocatalytic oxidation of levodopa, using cyclic voltammetry (CV), chronoamperometry (CHA), and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of levodopa at the surface of the modified electrode occurs at a potential of about 370 mV less positive than that of an unmodified carbon paste electrode. The SWV results exhibit a linear dynamic range from 1.0 × 10(-7) M to 7.0 × 10(-5) M and a detection limit of 3.5 × 10(-8) M for levodopa. In addition, this modified electrode was used for the simultaneous determination of levodopa and carbidopa. Finally, the modified electrode was used for the determination of levodopa and carbidopa in some real samples.
Universal mobile electrochemical detector designed for use in resource-limited applications
Nemiroski, Alex; Christodouleas, Dionysios C.; Hennek, Jonathan W.; Kumar, Ashok A.; Maxwell, E. Jane; Fernández-Abedul, Maria Teresa; Whitesides, George M.
2014-01-01
This paper describes an inexpensive, handheld device that couples the most common forms of electrochemical analysis directly to “the cloud” using any mobile phone, for use in resource-limited settings. The device is designed to operate with a wide range of electrode formats, performs on-board mixing of samples by vibration, and transmits data over voice using audio—an approach that guarantees broad compatibility with any available mobile phone (from low-end phones to smartphones) or cellular network (second, third, and fourth generation). The electrochemical methods that we demonstrate enable quantitative, broadly applicable, and inexpensive sensing with flexibility based on a wide variety of important electroanalytical techniques (chronoamperometry, cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and potentiometry), each with different uses. Four applications demonstrate the analytical performance of the device: these involve the detection of (i) glucose in the blood for personal health, (ii) trace heavy metals (lead, cadmium, and zinc) in water for in-field environmental monitoring, (iii) sodium in urine for clinical analysis, and (iv) a malarial antigen (Plasmodium falciparum histidine-rich protein 2) for clinical research. The combination of these electrochemical capabilities in an affordable, handheld format that is compatible with any mobile phone or network worldwide guarantees that sophisticated diagnostic testing can be performed by users with a broad spectrum of needs, resources, and levels of technical expertise. PMID:25092346
NASA Astrophysics Data System (ADS)
Mirzapoor, Aboulfazl; Ranjbar, Bijan
2017-09-01
DNA self-assembled hybrid nanostructures are widely used in recent research in nanobiotechnology. Combination of DNA with carbon based nanoparticles such as single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and carbon quantum dot were applied in important biological applications. Many examples of biosensors, nanowires and nanoelectronic devices, nanomachine and drug delivery systems are fabricated by these hybrid nanostructures. In this study, a new hybrid nanostructure has been fabricated by noncovalent interactions between single or double stranded DNA and SWNT nanoparticles and biophysical properties of these structures were studied comparatively. Biophysical properties of hybrid nanostructures studied by circular dichroism, UV-vis and fluorescence spectroscopy techniques. Also, electrochemical properties studied by cyclic voltammetry, linear sweep voltammetry, square wave voltammetry, choronoamperometry and impedance spectroscopy (EIS). Results revealed that the biophysical and electrochemical properties of SWNT/DNA hybrid nanostructures were different compare to ss-DNA, ds-DNA and SWNT singly. Circular dichroism results showed that ss-DNA wrapped around the nanotubes through π-π stacking interactions. The results indicated that after adding SWNT to ss-DNA and ds-DNA intensity of CD and UV-vis spectrum peaks were decreased. Electrochemical experiments indicated that the modification of single-walled carbon nanotubes by ss-DNA improves the electron transfer rate of hybrid nanostructures. It was demonstrated SWNT/DNA hybrid nanostructures should be a good electroactive nanostructure that can be used for electrochemical detection or sensing.
NASA Astrophysics Data System (ADS)
Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen
2017-02-01
A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.
Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu
2018-08-01
In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.
Facile and quantitative electrochemical detection of yeast cell apoptosis
NASA Astrophysics Data System (ADS)
Yue, Qiulin; Xiong, Shiquan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin
2014-03-01
An electrochemical method based on square wave anodic stripping voltammetry (SWASV) was developed to detect the apoptosis of yeast cells conveniently and quantitatively through the high affinity between Cu2+ and phosphatidylserine (PS) translocated from the inner to the outer plasma membrane of the apoptotic cells. The combination of negatively charged PS and Cu2+ could decrease the electrochemical response of Cu2+ on the electrode. The results showed that the apoptotic rates of cells could be detected quantitatively through the variations of peak currents of Cu2+ by SWASV, and agreed well with those obtained through traditional flow cytometry detection. This work thus may provide a novel, simple, immediate and accurate detection method for cell apoptosis.
Zhao, Guo; Wang, Hui; Liu, Gang
2017-07-03
Abstract : In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for quantitatively and directly detecting Cd 2+ in the presence of Cu 2+ without further electrode modifications by combining square-wave anodic stripping voltammetry (SWASV) and a back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the Cu 2+ concentration on the stripping response to Cd 2+ was studied. In addition, the effect of the ferrocyanide concentration on the SWASV detection of Cd 2+ in the presence of Cu 2+ was investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear relationship between the concentration of Cd 2+ and the stripping peak currents of Cu 2+ and Cd 2+ . The factors affecting the SWASV detection of Cd 2+ and the key parameters of the BP-ANN were optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models were compared to verify the prediction performance of these models in terms of their mean absolute errors (MAEs), root mean square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher prediction accuracy than the direct calibration model and the other prediction models. Finally, the proposed method was used to detect Cd 2+ in soil samples with satisfactory results.
Dos Santos, Luciana B O; Masini, Jorge C
2007-05-15
This paper describes the development of a sequential injection analysis method to automate the determination of picloram by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800muL monosegment is formed, composed by 400muL of sample and 400muL of conditioning/standard solution, in medium of 0.10molL(-1) H(2)SO(4). Homogenization of the monosegment is achieved by three flow reversals. After homogenization the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50muLs(-1). After a suitable delay time, the potential is scanned from -0.5 to -1.0V versus Ag/AgCl at frequency of 300Hz and pulse height of 25mV. The linear dynamic range is observed for picloram concentrations between 0.10 and 2.50mgL(-1) fitting to the linear equation I(p)=(-2.19+/-0.03)C(picloram)+(0.096+/-0.039), with R(2)=0.9996, for which the slope is given in muALmg(-1). The detection and quantification limits are 0.036 and 0.12mgL(-1), respectively. The sampling frequency is 37h(-1) when the standard addition protocol is followed, but can be increased to 41h(-1) if the protocol to obtain in-line external calibration curve is used for quantification. The method was applied for determination of picloram in spiked water samples and the accuracy was evaluated by comparison with high performance liquid chromatography using molecular absorption at 220nm for detection. No evidences of statistically significant differences between the two methods were observed.
Multistep Oxidation of Diethynyl Oligophenylamine-Bridged Diruthenium and Diiron Complexes.
Zhang, Jing; Guo, Shen-Zhen; Dong, Yu-Bao; Rao, Li; Yin, Jun; Yu, Guang-Ao; Hartl, František; Liu, Sheng Hua
2017-01-17
Homo-dinuclear nonlinear complexes [{M(dppe)Cp*} 2 {μ-(-C≡C) 2 X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η 5 -C 5 Me 5 ; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1 H, 13 C, and 31 P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a] + with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.
Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel
2013-03-15
An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. Published by Elsevier B.V.
Dar, Riyaz Ahmad; Brahman, Pradeep Kumar; Tiwari, Sweety; Pitre, Krishna Sadashiv
2012-10-01
The electrochemical behavior of quinine was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV) using surfactant. The reduction peak current of quinine increases remarkably in presence of 1% CTAB. Its electrochemical behavior is quasi-reversible in the Britton-Robinson buffers of pH 10.38 by exhibiting the well-defined single cathodic and anodic waves and the ratio of I(p)(a)/I(p)(c) approaching one at the scan rate of 500 mVs(-1). On the basis of CV, SWV and Coulometry, electrochemical reduction mechanism of quinine has been proposed which has shown that protonation occurs on the nitrogen of the quinoline moiety. Linearity was obtained when the peak currents (I(p)) were plotted against concentrations of quinine in the range of 30.0-230.0 ng mL(-1) with a detection limit of 0.132 ng mL(-1) in SWV and 90.0-630.0 ng mL(-1) with a detection limit of 0.238 ng mL(-1) in DPV. Fast and sensitive SWV has been applied for the quantitative analysis of quinine in bark of Cinchona sp. and in soft drinks and a good recovery was obtained. The accuracy and precision of the method are determined and validated statistically. No interferences from other food additives were observed. The relative standard deviation for intraday and interday assay was 0.89 and 0.73% (n=3) respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Ndiaye, Amadou L.; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain
2016-01-01
Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH2-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH2-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH2-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM–400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM–300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode. PMID:27598214
Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara
2012-01-01
A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634
Nucleic acid sensor for insecticide detection.
Solanki, Pratima R; Prabhakar, Nirmal; Pandey, M K; Malhotra, B D
2008-01-01
Nucleic acid sensor based on polyaniline (PANI) has been fabricated by covalently immobilizing double stranded calf thymus (dsCT) DNA onto perchlorate (ClO(-) (4))-doped PANI film deposited onto indium-tin-oxide (ITO) glass plate using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) chemistry. These dsCT-DNA-PANI-ClO(4)/ITO and PANI-ClO(4)/ITO electrodes have been characterized using square wave voltammetry, electrochemical impedance, scanning electron microscopy (SEM) and Fourier-transform-infrared (FTIR) measurements. This disposable dsCT-DNA-PANI-ClO(4)/ITO bioelectrode, stable for about 4 months, can be used to detect cypermethrin (0.005 ppm) and trichlorfon (0.01 ppm) in 30 and 60 s, respectively. John Wiley & Sons, Ltd
Chatterjee, Sanghamitra; Chen, Aicheng
2012-11-02
A simple, rapid and highly selective method for the determination of the most abundant α-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1×10(-6) to 100×10(-6)M with a 0.9979 correlation coefficient; and a low detection limit of 2.8×10(-9)M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal. Copyright © 2012 Elsevier B.V. All rights reserved.
Stanković, Dalibor M
2015-10-01
Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100μM consisting of two linear ranges: from 4 to 20μM (R(2)=0.9964) and from 20 to 100μM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9μM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method. Copyright © 2015 Elsevier Inc. All rights reserved.
Electrochemical and nonenzymatic glucose biosensor based on MDPA/MWNT/PGE nanocomposite.
Surucu, Ozge; Abaci, Serdar
2017-09-01
The nonenzymatic detection of glucose has been widely investigated in a variety of fields ranging from biomedical applications to ecological approaches. Among these fields, electrochemical methods have great advantages such as high electrocatalytic ability, high sensitivity, good selectivity and low-cost for the electrooxidation of glucose. Future trends on glucose sensing are nanostructured electrodes depending upon the development of nanotechnology. In this study, an electrochemical and nonenzymatic glucose sensor based on (E)-4-((5-methylthiazole-2-yl)diazenyl)-N-phenylaniline (MDPA)/multi-walled carbon nanotube (MWNT)/pencil graphite electrode (PGE) was performed. Electrochemical measurements were obtained using cyclic voltammetry and square wave voltammetry techniques, and characterization of surfaces was carried out using scanning electron microscope and electrochemical impedance spectroscopy techniques. The modification of PGE was made using MDPA and MWNT, and 10 cycles coating was used to prepare the proposed electrode. The effects of scan rate and pH on the peak potential and the peak current were determined. The limit of detection and linear range were calculated using various concentrations of glucose. The interference study was made using coexisting substances including metal ions such as Al 3+ , Cu 2+ , Fe 3+ and ascorbic acid. Copyright © 2017 Elsevier B.V. All rights reserved.
Mbokou, Serge Foukmeniok; Pontié, Maxime; Razafimandimby, Bienvenue; Bouchara, Jean-Philippe; Njanja, Evangéline; Tonle Kenfack, Ignas
2016-08-01
The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode.
Temerk, Yassien; Ibrahim, Hossieny
2014-07-01
The binding mode and thermodynamic characteristics of the anticancer drug dacarbazine (Dac) with double and single stranded DNA were investigated in the absence and presence of Cu(II) using cyclic voltammetry, square wave voltammetry and fluorescence spectroscopy. The interaction of Dac and Dac-Cu(II) complex with dsDNA indicated their intercalation into the base stacking domain of dsDNA double helix and the strength of interaction is independent on the ionic strength. The interaction of Dac with dsDNA in the presence of Cu(II) leads to a much stronger intercalation. The interaction mode of Dac molecules with ssDNA is electrostatic attraction via negative phosphate on the exterior of the ssDNA with Dac. The binding constants, stoichiometric coefficients and thermodynamic parameters of Dac and Dac-Cu(II) complex with dsDNA and ssDNA were evaluated. Comparison of the mode interaction of Dac with dsDNA and ssDNA was discussed. The decrease of peak current of Dac was proportional to DNA concentration, which was applied for determination of dsDNA and ssDNA concentration. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun
2016-01-01
In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Figueiredo-Filho, Luiz C S; Silva, Tiago A; Vicentini, Fernando C; Fatibello-Filho, Orlando
2014-06-07
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.
Koch, Jason A; Baur, Melinda B; Woodall, Erica L; Baur, John E
2012-11-06
Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.
Electrochemistry of uranium in molten LiF-CaF2
NASA Astrophysics Data System (ADS)
Nourry, C.; Souček, P.; Massot, L.; Malmbeck, R.; Chamelot, P.; Glatz, J.-P.
2012-11-01
This article is focused on the electrochemical behaviour of U ions in molten LiF-CaF2 (79-21 wt.%) eutectic. On a W electrode, U(III) is reduced in one step to U metal and U(III) can be also oxidised to U(IV). Both systems were studied by cyclic and square wave voltammetry. Reversibility of both systems for both techniques was verified and number of exchanged electrons was determined, as well as diffusion coefficients for U(III) and U(IV). The results are in a good agreement with previous studies. On a Ni electrode, the depolarisation effect due to intermetallic compounds formation was observed. Electrorefining of U metal in a melt containing U and Gd ions was carried out using a reactive Ni electrode with promising results.
Hrdý, Radim; Kynclová, Hana; Klepáčová, Ivana; Bartošík, Martin; Neužil, Pavel
2017-09-05
We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide-ferrocyanide redox couple (Fe 2+ /Fe 3+ ) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.
Electrochemical study of ricin at glassy carbon electrode.
Ribeiro, Williame F; da Costa, Daniel J E; Lourenço, Anabel S; Lopes, Ilanna C; de Medeiros, Everaldo P; Salazar-Banda, Giancarlo R; do Nascimento, Valberes B; de Araújo, Mário C U
2013-08-21
Ricin, Ricinus communis agglutinin 60 - RCA 60, is a deadly phytotoxic protein which inhibits ribosomes (class II), and there is no known effective antidote in living organisms. Ricin is composed of two polypeptide chains, A and B, linked covalently by a single disulfide bond. The analytical methods for the detection of RCA 60 are commonly laborious, expensive, require skilled labor, and involve sophisticated equipment. Aimed at the development of electroanalytical methods for RCA 60 detection, here we studied the electrochemical oxidation of RCA 60 on a glassy carbon (GC) electrode over a wide pH range, using cyclic voltammetry, differential pulse voltammetry (DPV) and square wave voltammetry (SWV). Two quasi-reversible electrochemical RCA 60 oxidation peaks were identified on the GC electrode by SWV. For values of 2.2 ≤ pH ≤ 10.2, DPV studies revealed that the peak potentials, EP1 and EP2, display a linear dependence with pH and the reaction mechanism involves the transfer of 2H⁺/2e⁻ (peak 1) and 1H⁺/1e⁻ (peak 2). The first and second RCA 60 oxidation steps may correspond to the oxidation of cysteine and tyrosine-tryptophan residues, respectively. The oxidation product of the second RCA 60 oxidation step appears at 7.0 ≤ pH ≤ 11.8. For pH ≥ 10.2, both processes are pH independent, resulting in a pKa of ca. 10.2. A third RCA 60 oxidation peak only appears at acidic pH. RCA 60 samples extracted from different castor seed cultivars showed similar electrochemical behavior, enabling the implementation of an analytical voltammetric method.
Alizadeh, Taher; Zare, Mashaalah; Ganjali, Mohamad Reza; Norouzi, Parviz; Tavana, Babak
2010-01-15
A high selective voltammetric sensor for 2,4,6-trinitrotoluene (TNT) was introduced. TNT selective MIP and non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, incorporated in the carbon paste electrode, functioned as selectively recognition element and pre-concentrator agent for TNT determination. The prepared electrode was used for TNT measurement by the three steps procedure, including analyte extraction in the electrode, electrode washing and electrochemical measurement of TNT. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after TNT extraction led to enhanced selectivity. The response of square wave voltammetry for TNT determination by proposed electrode was higher than that of differential pulse voltammetry. Some parameters affecting sensor response were optimized and then a calibration curve plotted. A dynamic linear range of 5x10(-9) to 1x10(-6) mol l(-1) was obtained. The detection limit of the sensor was calculated equal to 1.5x10(-9) mol l(-1). This sensor was used successfully for TNT determination in different water and soil samples. Copyright 2009 Elsevier B.V. All rights reserved.
Leuna, Jules-Blaise Mabou; Sop, Sergeot Kungo; Makota, Suzanne; Njanja, Evangeline; Ebelle, Thiery Christophe; Azebaze, Anatole Guy; Ngameni, Emmanuel; Nassi, Achille
2018-02-01
The electrochemical oxidation of Mammeisin (MA) was studied in a solution containing acetone and 0.1M phosphate buffer +0.1M KCl (pH=5.3) at a glassy carbon electrode (GCE), using cyclic (CV) and square wave voltammetry (SWV). MA showed a quasi-reversible process, which is pH dependent and that involves the exchange of two electrons and two protons. The oxidation product was adsorbed by the electrode surface to form a film that blocks active sites over repetitive cyclic. Moreover, the interaction of MA and bovine serum albumin (BSA) was studied by CV and SWV at different pHs (5.4, 7.2, 9.5). As a result of the affinity binding with BSA, electrochemically inactive complex was formed. In addition, the oxidation potential of MA in the presence of BSA depends on the pH. The diffusion coefficients of both free and bound MA were estimated from the cyclic voltammetry data using the method developed by Randles-Sevich (D f =9.85×10 -5 cm 2 s -1 and D b =1.27×10 -9 cm 2 s -1 ) and the binding constant of MA-BSA complex, K=3.47×10 2 Lmol -1 , was obtained. Copyright © 2017. Published by Elsevier B.V.
Rizwan, Mohammad; Elma, Syazwani; Lim, Syazana Abdullah; Ahmed, Minhaz Uddin
2018-06-01
In this work, a nanocomposite of gold nanoparticles (AuNPs), carbon nano-onions (CNOs), single-walled carbon nanotubes (SWCNTs) and chitosan (CS) (AuNPs/CNOs/SWCNTs/CS) was prepared for the development of highly sensitive electrochemical immunosensor for the detection of carcinoembryonic antigen (CEA), clinical tumor marker. Firstly, layer-by-layer fabrication of the CEA-immunosensors was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV). By combining the advantages of large surface area and electronic properties of AuNPs, CNOs, SWCNTs, and film forming properties of CS, AuNPs/CNOs/SWCNTs/CS-nanocomposite-modified glassy carbon electrode showed a 200% increase in effective surface area and electronic conductivity. The calibration plot gave a negative linear relationship between log[concentration] of CEA and electrical current with a correlation coefficient of 0.9875. The CEA-immunosensor demonstrated a wide linear detection range of 100 fg mL -1 to 400 ng mL -1 with a low detection limit of 100 fg mL -1 . In addition to high sensitivity, reproducibility and large stability, CEA-immunosensor provided an excellent selectivity and resistant-to-interference in the presence of other antigens in serum and hence a potential to be used with real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Shumyantseva, Victoria V; Bulko, Tatiana V; Sigolaeva, Larisa V; Kuzikov, Alexey V; Archakov, Alexander I
2016-12-15
Electrosynthesis of molecularly imprinted polymer (MIP) templated with myoglobin (Mb) and the reference non-imprinted polymer (NIP) was examined with o-phenylenediamine (o-PD) as a monomer. Mass-sensitive quartz crystal microbalance with dissipation monitoring supplied by an electrochemical module (EQCM-D) was applied to characterize and optimize MIP/NIP electrosynthesis. Mb rebinding was detected by direct electrocatalytic reduction of Mb by square wave voltammetry (SWV) or differential pulse voltammetry (DPV). The results obtained showed high specificity of polymeric antibodies to template Mb, with an imprinting factor determined as a ratio Imax(MIP)/Imax(NIP) of 2-4. The prepared MIP sensor is characterized by an apparent dissociation constant of (3.3±0.5)×10(-9)M and has a broad range of working concentrations of 1nM-1μМ, with the detection limit of 0.5nM (9ng/ml). Mb rebinding was examined in Mb-free diluted human serum spiked with Mb as well as in plasma samples of patients with acute myocardial infarction (AMI) and in control plasma of healthy donors in order to demonstrate the potential medical application of developed MIP sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G
2002-07-19
The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.
Biyiklioglu, Zekeriya; Bas, Huseyin; Alp, Hakan
2015-08-21
A novel series of axially disubstituted silicon(iv) phthalocyanines bearing electropolymerizable ligands were designed and synthesized for the first time. The silicon(iv) phthalocyanines were characterized by various spectroscopic techniques as well as elemental analysis. The aggregation behavior of the SiPcs were examined in different solvents and at different concentrations in chloroform. In all the studied solvents and concentrations, the SiPcs were non-aggregated. The thermal behavior of the silicon(iv) phthalocyanines was also studied. The electropolymerization properties of the silicon(iv) phthalocyanines were investigated by cyclic and square wave voltammetry. This study is the first example of the electropolymerization of axially disubstituted silicon phthalocyanines. The type of axial ligand on the phthalocyanine ring did not show any effect on the absorption and thermal properties but influenced the electropolymerization of the phthalocyanines.
Brycht, Mariola; Skrzypek, Sławomira; Guzsvány, Valéria; Berenji, Janoš
2013-12-15
A new square-wave adsorptive stripping voltammetric (SWAdSV) method was developed for the determination of the neonicotinoid insecticide clothianidin (Clo), based on its reduction at a renewable silver amalgam film electrode (Hg(Ag)FE). The key point of the procedure is the pretreatment of the Hg(Ag)FE by applying the appropriate conditioning potential (-1.70 V vs. Ag/AgCl reference electrode). Under the optimized voltammetric conditions, such pretreatment resulted in the peak for the Clo reduction in Britton-Robinson buffer pH 9.0 at about -0.60 V, which was used for the analytical purpose. The developed SWAdSV procedure made it possible to determine Clo in the concentration range of 6.0×10(-7)-7.0×10(-6) mol L(-1) (LOD=1.8×10(-7) mol L(-1), LOQ=6.0×10(-7) mol L(-1)) and 7.0×10(-6)-4.0×10(-5) mol L(-1) (LOD=1.3×10(-6) mol L(-1), LOQ=4.2×10(-6) mol L(-1)). The repeatability, precision, and the recovery of the method were determined. The effect of common interfering pesticides was also investigated. Standard addition method was successfully applied and validated for the determination of Clo in spiked Warta River water, corn seeds samples, and in corn seeds samples treated with the commercial formulation PONCHO 600 FS. © 2013 Elsevier B.V. All rights reserved.
Faucher, Stéphane; Cugnet, Cyril; Authier, Laurent; Lespes, Gaëtane
2014-02-01
The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found. The limits of detection and quantification for copper were 0.4 and 1.3 μg L(-1), respectively. Finally, the method was applied on soil leachates, which allowed evaluating the cupric transfer from the soil to the leachates and quantifying the electrolabile copper part in leachates.
Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode
NASA Astrophysics Data System (ADS)
Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.
2015-04-01
A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.
Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph
2010-02-19
This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.
Bioelectrochemical Magnetic Immunosensing of Trichloropyridinol: A Potential Insecticide Biomarker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Timchalk, Chuck; Lin, Yuehe
2006-07-01
A magnetic beads-based bioelectrochemical magnetic immunosensor was developed for the fast and sensitive determination of the trichloropyridinol (TCP) biomarker in environmental samples. After liquid phrase competitive immunoreaction among a limited amount of TCP antibody coated-magnetic beads (Ab-MBs), TCP analyte, and horseradish peroxidase (HRP) labeled TCP (HRP-TCP), a magnet/glassy carbon (MGC) electrode was used to collect a TCP-Abs-MBs and a HRP-TCP-Ab-MBs immunocomplex assembly. The activity of HRP tracers bound to the beads was monitored with highly sensitive square wave voltammetry (SWV) by accumulating an electroactive enzymatic product to the MGC electrode surface under constant potential (0.5 V) during enzymatic reaction inmore » the presence of 3’,3’,5’,5’-tetramethylbenzidine (TMB)-H2O2 substrate solution. The electrochemical characteristics of substrate and product were investigated, and the parameters of the immunoassay were optimized.« less
Seifert, Sabine; Schmidt, David
2015-01-01
Here we report the first example of an isolable, ambient stable perylene bisimide (PBI) dianion which was synthesized by catalytic reduction of a highly electron deficient PBI derivative. The remarkable stability of this unprecedented dianion in air for months facilitated its complete characterization by different methods, including single crystal X-ray analysis. Furthermore, solvent dependent cyclic and square wave voltammetry studies revealed that the formation of PBI dianions is preferred in more polar solvents, whereas the generation of PBI radical anions should be favoured in less polar solvents. PMID:28717450
Noyhouzer, Tomer; Mandler, Daniel
2011-01-17
The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms. Copyright © 2010 Elsevier B.V. All rights reserved.
Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana
2016-05-01
A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.
Polymer platforms for selective detection of cocaine in street samples adulterated with levamisole.
Florea, Anca; Cowen, Todd; Piletsky, Sergey; De Wael, Karolien
2018-08-15
Accurate drug detection is of utmost importance for fighting against drug abuse. With a high number of cutting agents and adulterants being added to cut or mask drugs in street powders the number of false results is increasing. We demonstrate for the first time the usefulness of employing polymers readily synthesized by electrodeposition to selectively detect cocaine in the presence of the commonly used adulterant levamisole. The polymers were selected by computational modelling to exhibit high binding affinity towards cocaine and deposited directly on the surface of graphene-modified electrodes via electropolymerization. The resulting platforms allowed a distinct electrochemical signal for cocaine, which is otherwise suppressed by levamisole. Square wave voltammetry was used to quantify cocaine alone and in the presence of levamisole. The usefulness of the platforms was demonstrated in the screening of real street samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd
2015-11-01
In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water. Copyright © 2015 Elsevier B.V. All rights reserved.
Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin
2014-11-15
A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Damiati, Samar; Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A; Becker, Holger; Kodzius, Rimantas; Schuster, Bernhard
2018-02-14
Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.
Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel
2018-02-06
A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.
Synthesis and (spectro)electrochemistry of mixed-valent diferrocenyl-dihydrothiopyran derivatives.
Kowalski, Konrad; Karpowicz, Rafał; Mlostoń, Grzegorz; Miesel, Dominique; Hildebrandt, Alexander; Lang, Heinrich; Czerwieniec, Rafał; Therrien, Bruno
2015-04-07
Three novel diferrocenyl complexes were prepared and characterised. 2,2-Diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran (1, sulphide) was accessible by the hetero-Diels-Alder reaction of diferrocenyl thioketone with 2,3-dimethyl-1,3-butadiene. Stepwise oxidation of 1 gave the respective oxides 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1-oxide (2, sulfoxide) and 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1,1-dioxide (3, sulfone), respectively. The molecular structures of 1 and 3 in the solid state were determined by single crystal X-ray crystallography. The oxidation of sulphide 1 to sulfone 3, plays only a minor role on the overall structure of the two compounds. Electrochemical (cyclic voltammetry (= CV), square wave voltammetry (= SWV)) and spectroelectrochemical (in situ UV-Vis/NIR spectroscopy) studies were carried out. The CV and SWV measurements showed that an increase of the sulphur atom oxidation from -2 in 1 to +2 in 3 causes an anodic shift of the ferrocenyl-based oxidation potentials of about 100 mV. The electrochemical oxidation of 1-3 generates mixed-valent cations 1(+)-3(+). These monooxidised species display low-energy electronic absorption bands between 1000 and 3000 nm assigned to IVCT (= Inter-Valence Charge Transfer) electronic transitions. Accordingly, the mixed-valent cations 1(+)-3(+) are classified as weakly coupled class II systems according to Robin and Day.
Miodek, Anna; Mejri, Nawel; Gomgnimbou, Michel; Sola, Christophe; Korri-Youssoufi, Hafsa
2015-09-15
Two-step electrochemical patterning methods have been employed to elaborate composite nanomaterials formed with multiwalled carbon nanotubes (MWCNTs) coated with polypyrrole (PPy) and redox PAMAM dendrimers. The nanomaterial has been demonstrated as a molecular transducer for electrochemical DNA detection. The nanocomposite MWCNTs-PPy has been formed by wrapping the PPy film on MWCNTs during electrochemical polymerization of pyrrole on the gold electrode. The MWCNTs-PPy layer was modified with PAMAM dendrimers of fourth generation (PAMAM G4) with covalent bonding by electro-oxidation method. Ferrocenyl groups were then attached to the surface as a redox marker. The electrochemical properties of the nanomaterial (MWCNTs-PPy-PAMAM-Fc) were studied using both square wave voltammetry and cyclic voltammetry to demonstrate efficient electron transfer. The nanomaterial shows high performance in the electrochemical detection of DNA hybridization leading to a variation in the electrochemical signal of ferrocene with a detection limit of 0.3 fM. Furthermore, the biosensor demonstrates ability for sensing DNA of rpoB gene of Mycobacterium tuberculosis in real PCR samples. Developed biosensor was suitable for detection of sequences with a single nucleotide polymorphism (SNP) T (TCG/TTG), responsible for resistance of M. tuberculosis to rifampicin drug, and discriminating them from wild-type samples without such mutation. This shows potential of such systems for further application in pathogens diagnostic and therapeutic purpose.
Yadav, Saurabh K; Agrawal, Bharati; Chandra, Pranjal; Goyal, Rajendra N
2014-05-15
A sensitive and selective electrochemical biosensor is developed for the determination of chloramphenicol (CAP) exploring its direct electron transfer processes in in-vitro model and pharmaceutical samples. This biosensor exploits a selective binding of CAP with aptamer, immobilized onto the poly-(4-amino-3-hydroxynapthalene sulfonic acid) (p-AHNSA) modified edge plane pyrolytic graphite. The electrochemical reduction of CAP was observed in a well-defined peak. A quartz crystal microbalance (QCM) study is performed to confirm the interaction between the polymer film and the aptamer. Cyclic voltammetry (CV) and square wave voltammetry (SWV) were used to detect CAP. The in-vitro CAP detection is performed using the bacterial strain of Haemophilus influenza. A significant accumulation of CAP by the drug sensitive H. influenza strain is observed for the first time in this study using a biosensor. Various parameters affecting the CAP detection in standard solution and in in vitro detection are optimized. The detection of CAP is linear in the range of 0.1-2500 nM with the detection limit and sensitivity of 0.02 nM and 0.102 µA/nM, respectively. CAP is also detected in the presence of other common antibiotics and proteins present in the real sample matrix, and negligible interference is observed. Copyright © 2013 Elsevier B.V. All rights reserved.
Farahi, Abdelfettah; Achak, Mounia; El Gaini, Laila; El Mhammedi, Moulay Abderrahim; Bakasse, Mina
2015-09-01
Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2), under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10 -7 mol/L to 1.0 × 10 -3 mol/L. The detection limit and quantification limit were 2.01 × 10 -8 mol/L and 6.073 × 10 -8 mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10 -5 mol/L (n = 8) was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures. Copyright © 2015. Published by Elsevier B.V.
Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.
Nan, Tianxiang; Yang, Jianguang; Chen, Bing
2018-04-01
Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.
Ni, Yongnian; Wang, Lin; Kokot, Serge
2011-01-01
A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Phongikaroon, Supathorn; Zhang, Jinsuo
This project addresses the problem of achieving accurate material control and accountability (MC&A) around pyroprocessing electrorefiner systems. Spent nuclear fuel pyroprocessing poses a unique challenge with respect to reprocessing technology in that the fuel is never fully dissolved in the process fluid. In this case, the process fluid is molten, anhydrous LiCl-KCl salt. Therefore, there is no traditional input accountability tank. However, electrorefiners (ER) accumulate very large quantities of fissile nuclear material (including plutonium) and should be well safeguarded in a commercial facility. Idaho National Laboratory (INL) currently operates a pyroprocessing facility for treatment of spent fuel from Experimental Breedermore » Reactor-II with two such ER systems. INL implements MC&A via a mass tracking model in combination with periodic sampling of the salt and other materials followed by destructive analysis. This approach is projected to be insufficient to meet international safeguards timeliness requirements. A real time or near real time monitoring method is, thus, direly needed to support commercialization of pyroprocessing. A variety of approaches to achieving real time monitoring for ER salt have been proposed and studied to date—including a potentiometric actinide sensor for concentration measurements, a double bubbler for salt depth and density measurements, and laser induced breakdown spectroscopy (LIBS) for concentration measurements. While each of these methods shows some promise, each also involves substantial technical complexity that may ultimately limit their implementation. Yet another alternative is voltammetry—a very simple method in theory that has previously been tested for this application to a limited extent. The equipment for a voltammetry system consists of off-the-shelf components (three electrodes and a potentiostat), which results in substantial benefits relative to cost and robustness. Based on prior knowledge of electrochemical reduction potentials for each of the species of interest, voltammetry can be used to quantify concentrations of a variety of elemental species—including uranium, plutonium, minor actinides, and rare earths. Various methods have been tested by other researchers to date—including cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, etc. In most cases, it has been observed that there is a very limited concentration range for which the output can be readily correlated with concentration in the salt. Furthermore, testing to date has been limited to simple ternary salts with only a single element being quantified. While incomplete for application to MC&A for pyroprocessing, these results lead us to believe that voltammetry can be optimized based on salt properties and fundamental electrochemical rate processes to yield a highly accurate and robust method. This project is divided into four tasks jointly executed by three university research groups. This includes experimental measurement of key physical data on the systems of interest, development of a predictive voltammetry model, experimental validation of the voltammetry model, and design/verification of an optimized measurement method. This project supports the goals of the US-ROK Joint Fuel Cycle Study in addition to the NA-24 Office of the National Nuclear Security Agency and the International Atomic Energy Agency (IAEA).« less
Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A.; Schuster, Bernhard
2018-01-01
Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection. PMID:29443890
Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad
2016-09-01
In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon.
Lourenço, Anabel S; Sanches, Fátima A C; Magalhães, Renata R; Costa, Daniel J E; Ribeiro, Williame F; Bichinho, Kátia M; Salazar-Banda, Giancarlo R; Araújo, Mário C U
2014-02-01
Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations. © 2013 Elsevier B.V. All rights reserved.
Hildebrandt, Alexander; Schaarschmidt, Dieter; Claus, Ron; Lang, Heinrich
2011-11-07
A series of 2,5-di- and 2,3,4,5-tetraferrocenyl-substituted thiophenes, furans, and pyrroles were synthesized using the Negishi C,C cross-coupling protocol. The electronic and electrochemical properties of these compounds were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), and in situ UV-vis/NIR spectroscopy. The molecular structures of 2,5-diferrocenyl furan and 2,3,4,5-tetraferrocenyl-1-methyl-1H-pyrrole in the solid state are discussed. The ferrocenyls could sequentially be oxidized giving two or four reversible responses for the appropriate di- or tetraferrocenyl-substituted heterocyclic molecules. The observed ΔE°' values range between 186 and 450 mV. The NIR measurements confirm electronic communication as intervalence charge transfer (IVCT) absorptions were found in the corresponding mono- and in case of the tetraferrocenyl compounds also in the dicationic species. All compounds, except tetraferrocenyl thiophene (a class I system), were classified as class II systems according to Robin and Day. They show a linear relationship between ΔE°' and the IVCT oscillator strength f which could be shown for the first time in organometallic chemistry. This was possible because the series of molecules exhibit analogous geometries and hence, similar electrostatic properties. This correlation was confirmed by electro- and spectro-electrochemical measurements. Within these studies a new approach for the estimation of the effective electron transfer distances r(ab) is discussed. © 2011 American Chemical Society
Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry.
Alghamdi, Ahmad H; Alshammery, Hamed M; Abdalla, Mohamed A; Alghamdi, Ali F
2009-01-01
The behavior of the food colorant agent carmine (E120) was studied by square-wave adsorptive stripping voltammetry (SW-AdSV) at the hanging mercury drop electrode. It was observed that carmine gave a sensitive stripping voltammetric peak at -350 mV in pH 3 acetate buffer. The cyclic voltammetric technique was also used to characterize the electrochemical reduction process of carmine. The adsorptive voltammetric signal was evaluated with respect to various experimental conditions, and the optimized values were supporting electrolyte, acetate buffer; buffer acidity, pH 3; dye concentration, 3 x 10(-7) M; accumulation time, 150 s; accumulation potential, -0.2 V; scan rate, 300 mV/s; pulse amplitude, 185 mV; SW frequency, 20 Hz; working electrode area, 0.6 mm2; and convection rate, 2600 rpm. The SW-AdSV peak currents depended linearly on the concentration of carmine from 5 x 10(-8) to 1.25 x 10(-7) mol/L (r = 0.99). A detection limit of 1.43 x 10(-9) mol/L with an RSD of 2.2% and a mean recovery of 97.9% were obtained. Possible interferences by several substances usually present in food products such as food additive dyes (E102, E100, E123, E127, and E129), artificial sweeteners, preservatives, and antioxidants were also evaluated. The proposed electrochemical procedure was successfully applied to the determination of carmine food dye in spiked commercially available ice cream and soft drinks.
Ni, Yongnian; Wei, Min; Kokot, Serge
2011-11-01
Interaction of isoprenaline (ISO) with calf-thymus DNA was studied by spectroscopic and electrochemical methods. The behavior of ISO was investigated at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV); ISO was oxidized and an irreversible oxidation peak was observed. The binding constant K and the stoichiometric coefficient m of ISO with DNA were evaluated. Also, with the addition of DNA, hyperchromicity of the UV-vis absorption spectra of ISO was noted, while the fluorescence intensity decreased significantly. Multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics method was applied to resolve the combined spectroscopic data matrix, which was obtained by the UV-vis and fluorescence methods. Pure spectra of ISO, DNA and ISO-DNA complex, and their concentration profiles were then successfully obtained. The results indicated that the ISO molecule intercalated into the base-pairs of DNA, and the complex of ISO-DNA was formed. Copyright © 2011 Elsevier B.V. All rights reserved.
Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh
2017-01-01
A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K / h , were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine.
NASA Astrophysics Data System (ADS)
Vanitha, M.; Balasubramanian, N.; Joni, I. Made; Panatarani, Camellia
2018-02-01
The detection of contaminants in wastewater is of massive importance in today's situation as they pose a serious threat to the environment as well as humans. One such vital contaminants is mercury and its compound, the reported mercury detectors grieve from low sensitivity, high cost and slow response. In the present work graphene based electrode material is developed for sensing mercury contaminants in wastewater using electrochemical technique. The synthesized material graphene oxide (GO) modified with L-Cysteine in presence of polyvinylpyrrolidone (PVP) as capping agent was characterized using SEM, TEM and Raman Spectroscopic analysis. It is ascertained from the morphological characterization that the nanocomposite exhibits a spherical morphology. The L-cysteine modified graphene oxide electrode is electrochemically characterized using redox couple [Fe(CN)63-/4-] and electrochemical impedance spectroscopic (EIS) analysis. Electrochemical sensing of Hg (II) ions in solution was done using Square wave anodic stripping voltammetry (SWASV). The incorporation of graphene significantly increases the sensitivity and selectivity towards mercury sensing.
Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L
2014-01-01
Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.
Amare, Meareg; Abicho, Samuel; Admassie, Shimelis
2014-01-01
A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.
Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G
2016-10-15
May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing
2016-06-22
Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.
Zheng, Xueqin; Sun, Hong; Hou, Shifeng
2015-01-01
In this work, an electroactive porous Mb-CA's composite film was fabricated by incorporating myoglobin (Mb) in a three-dimension (3D) porous calcium alginate (CA) film with polyvinyl alcohol, glycerol, and gelatin. The porous Mb-CA's film modified electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.37 V vs. SCE in pH 7.0 buffers, characteristic of Mb heme Fe((III))/Fe((II)) redox couples. The electrochemical parameters, such as formal potentials (E(o')) and apparent heterogeneous electron-transfer rate constants (ks), were estimated by square-wave voltammetry with nonlinear regression analysis. The porous CA's composite film could form hydrogel in aqueous solution. The positions of the Soret absorbance band suggest that Mb in the CA's composite film kept its native states in the medium pH range. Hydrogen peroxide, oxygen, and nitrite were electrochemically catalyzed by the Mb-CA's composite film with significant lowering of the reduction overpotential.
Mohamed, Mona A; Hasan, Menna M; Abdullah, Ibrahim H; Abdellah, Ahmed M; Yehia, Ali M; Ahmed, Nashaat; Abbas, Walaa; Allam, Nageh K
2018-08-01
A strategy for trace-level carbon-based electrochemical sensors is investigated via exploring the interesting properties of BaNb 2 O 6 nanofibers (NFs). Utilizing adsorptive stripping square wave voltammetry (ASSWV), an electrochemical sensing platform was developed based on BaNb 2 O 6 nanofibers-modified carbon paste electrode (CPE) for the sensitive detection of lornoxicam (LOR). Different techniques were used to characterize the fabricated BaNb 2 O 6 perovskite NFs. The obtained data show the feasibility to electro-oxidize LOR and paracetamol (PAR) on the surface of the fabricated sensor. The amount of nanofiber and testing conditions were optimized using response surface methodology and ASSWV technique. The optimized BaNb 2 O 6 /CPE sensor exhibits low detection limit of 6.39 × 10 -10 mol L -1 , even in the presence of the co-formulated drug paracetamol (PAR). The sensor was successfully applied for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Yardım, Yavuz; Keskin, Ertugrul; Şentürk, Zühre
2013-11-15
Herein, a boron-doped diamond (BDD) electrode that is anodically pretreated was used for the simultaneous determination of caffeine (CAF) and chlorogenic acid (CGA) by cyclic and adsorptive stripping voltammetry. The dependence of peak current and potential on pH, scan rate, accumulation parameters and other experimental variables were studied. By using square-wave stripping mode after 60 s accumulation under open-circuit voltage, the BDD electrode was able to separate the oxidation peak potentials of CAF and CGA present in binary mixtures by about 0.4V in Britton-Robinson buffer at pH 1.0. The limits of detection were 0.107 µg mL(-1) (5.51×10(-7) M) for CAF, and 0.448 µg mL(-1) (1.26×10(-6) M) for CGA. The practical applicability of this methodology was tested in commercially available beverage samples. © 2013 Elsevier B.V. All rights reserved.
Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.
2014-01-01
Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163
Electrochemical product detection of an asymmetric convective polymerase chain reaction.
Duwensee, Heiko; Mix, Maren; Stubbe, Marco; Gimsa, Jan; Adler, Marcel; Flechsig, Gerd-Uwe
2009-10-15
For the first time, we describe the application of heated microwires for an asymmetric convective polymerase chain reaction (PCR) in a modified PCR tube in a small volume. The partly single-stranded product was labeled with the electrochemically active compound osmium tetroxide bipyridine using a partially complementary protective strand with five mismatches compared to the single-stranded product. The labeled product could be successfully detected at a gold electrode modified with a complementary single-stranded capture probe immobilized via a thiol-linker. Our simple thermo-convective PCR yielded electrochemically detectable products after only 5-10 min. A significant discrimination between complementary and non-complementary target was possible using different immobilized capture probes. The total product yield was approx. half the amount of the classical thermocycler PCR. Numerical simulations describing the thermally driven convective PCR explain the received data. Discrimination between complementary capture probes and non-complementary capture probes was performed using square-wave voltammetry. The coupling of asymmetric thermo-convective PCR with electrochemical detection is very promising for future compact DNA sensor devices.
Yaman, Yesim Tugce; Abaci, Serdar
2016-01-01
A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912
Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh
2017-01-01
A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K/h, were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine. PMID:29201090
Diagnosis of Helicobacter pylori bacterial infections using a voltammetric biosensor.
Ly, Suw Young; Yoo, Hai-Soo; Choa, Sung Hoon
2011-10-01
The voltammetric assay of Helicobacter pylori DNA was investigated using a bismuth-immobilized carbon nanotube electrode (BCNE). The analytical cyclic voltammetry (CV) peak potential was obtained at a 0.4V reduction scan, where the diagnostic optimum square-wave (SW) stripping working range was achieved at 0.72-7.92 μg/mL H. pylori DNA (11 points). A relative standard deviation of 1.68% (RSD, n=5) was obtained with 3.2 mg/mL H. pylori DNA using a 240 s accumulation time. Under optimum conditions, detection limit was 0.06 μg/mL. The developed sensors can be used for clinical application in the 15th doubted human gastric tissues, since the patient's peak current increased a hundred times more than the negative healthy tissue did. The sensing time obtained was only two minutes, and the process was simpler compared to common PCR amplification and electrophoresis photometric detection systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Square-wave voltammetry assays for glycoproteins on nanoporous gold
Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.
2014-01-01
Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A – ALP (or soybean agglutinin – ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A–ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL−1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035
Trevisani, M; Cecchini, M; Taffetani, L; Vercellotti, L; Rosmini, R
2011-02-01
A square-wave anodic-stripping voltammetric method for the analysis of lead and cadmium in chicken muscle and liver was developed and validated, and the results of a monitoring study relative to chicken and pigeon meat are reported. The voltammetric method allows the analysis of lead and cadmium at the same time in samples after acid digestion. The use of perchloric acid for digestion and of acetate buffer in the supporting electrolyte are suitable to reduce matrix interferences and obtain limits of quantification which were below 10 ng g⁻¹ for meat and liver samples. The regression between the analytical signal and the concentration of the target analytes in spiked samples and Certified Reference Materials proved to be linear within the 10-100 ng g⁻¹ range for meat and within the 50-500 ng g⁻¹ range for liver. The analytical method was verified using available Certified Reference Materials BCR-184 (cattle meat) and BCR-185R (cattle liver) as well as with spiked chicken samples. Precision (i.e. repeatability and intermediate precision) and accuracy (percentage recovery and bias) were of the order of 0.3-4.5% for both lead and cadmium The level of lead in muscle was in the range between 6.4 and 59.8 ng g⁻¹ in chickens and between 7.9 and 63.6 ng g⁻¹ in farmed pigeons, whereas it was between 8.0 and 84.4 ng g⁻¹ in chicken liver. The cadmium concentration was 0.4-10.4 ng g⁻¹ in chicken muscle, 10.4-90.6 ng g⁻¹ in chicken liver and 2.2-8.0 ng g⁻¹ in farmed pigeons.
Note: A novel method for generating multichannel quasi-square-wave pulses.
Mao, C; Zou, X; Wang, X
2015-08-01
A 21-channel quasi-square-wave nanosecond pulse generator was constructed. The generator consists of a high-voltage square-wave pulser and a channel divider. Using an electromagnetic relay as a switch and a 50-Ω polyethylene cable as a pulse forming line, the high-voltage pulser produces a 10-ns square-wave pulse of 1070 V. With a specially designed resistor-cable network, the channel divider divides the high-voltage square-wave pulse into 21 identical 10-ns quasi-square-wave pulses of 51 V, exactly equal to 1070 V/21. The generator can operate not only in a simultaneous mode but also in a delay mode if the cables in the channel divider are different in length.
Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel
2016-11-01
Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water. Copyright © 2016 Elsevier B.V. All rights reserved.
Charoenkitamorn, Kanokwan; Chaiyo, Sudkate; Chailapakul, Orawon; Siangproh, Weena
2018-04-03
In this work, for the first time, manganese (IV) oxide-modified screen-printed graphene electrodes (MnO 2 /SPGEs) were developed for the simultaneous electrochemical detection of coenzyme Q10 (CoQ10) and α-lipoic acid (ALA). This sensor exhibits attractive benefits such as simplicity, low production costs, and disposability. Cyclic voltammetry (CV) was used to characterize the electrochemical behavior of the analyte and investigate the capacitance and electroactive surface area of the unmodified and modified electrode surfaces. The electrochemical behavior of CoQ10 and ALA on MnO 2 /SPGEs was also discussed. Additionally, square wave anodic stripping voltammetry (SWASV) was used for the quantitative determination of CoQ10 and ALA. Under optimal conditions, the obtained signals are linear in the concentration range from 2.0 to 75.0 μg mL -1 for CoQ10 and 0.3-25.0 μg mL -1 for ALA. The low limits of detection (LODs) were found to be 0.56 μg mL -1 and 0.088 μg mL -1 for CoQ10 and ALA, respectively. Moreover, we demonstrated the utility and applicability of the MnO 2 /SPGE sensor through simultaneous measurements of CoQ10 and ALA in dietary supplements. The sensor provides high accuracy measurements, exhibiting its high potential for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph
2014-08-19
Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.
Cardoso, Ana R; Moreira, Felismina T C; Fernandes, Rúben; Sales, M Goreti F
2016-06-15
This work, describes for the first time, a simple biosensing design to yield an ultrasensitive electrochemical biosensor for a cancer biomarker detection, miRNA-155, with linear response down to the attomolar range. MiRNA-155 was selected for being overexpressed in breast cancer. The biosensor was assembled in two stages: (1) the immobilization of the anti-miRNA-155 that was thiol modified on an Au-screen printed electrode (Au-SPE), followed by (2) blocking the areas of non-specific binding with mercaptosuccinic acid. Atomic force microscopy (AFM) and electrochemical techniques including cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV) confirmed the surface modification of these devices and their ability to hybridize successfully and stably with miRNA-155. The final biosensor provided a sensitive detection of miRNA-155 from 10 aM to 1.0 nM with a low detection limit (LOD) of 5.7 aM in real human serum samples. Good results were obtained in terms of selectivity towards breast cancer antigen CA-15.3 and bovine serum albumin (BSA). Raw fluid extracts from cell-lines of melanoma did not affect the biosensor response (no significant change of the blank), while raw extracts from breast cancer yielded a positive signal against miRNA-155. This simple and sensitive strategy is a promising alternative for simultaneous quantitative analysis of multiple miRNA in physiological fluids for biomedical research and point-of-care (POC) diagnosis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu
2013-12-01
The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters?
Zhang, Xiaorong; Yarman, Aysu; Erdossy, Júlia; Katz, Sagie; Zebger, Ingo; Jetzschmann, Katharina J; Altintas, Zeynep; Wollenberger, Ulla; Gyurcsányi, Róbert E; Scheller, Frieder W
2018-05-15
Molecularly imprinted polymer (MIP) nanofilms for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of ~5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered. Copyright © 2018 Elsevier B.V. All rights reserved.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
1.9 μm square-wave passively Q-witched mode-locked fiber laser.
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin
2018-05-14
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z
2017-06-21
Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.
Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas
2015-03-01
We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.
Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease.
Kergaravat, Silvina V; Beltramino, Luis; Garnero, Nidia; Trotta, Liliana; Wagener, Marta; Isabel Pividori, Maria; Hernandez, Silvia R
2013-10-15
An electrochemical magneto immunosensor for the detection of anti-transglutaminase antibodies (ATG2) in celiac disease was developed. The immunological reaction is performed on magnetic beads (MBs) as a solid support in which the transglutaminase enzyme (TG2) is covalently immobilized (TG2-MB) and then ATG2 were revealed by an antibody labeled with peroxidase. The electrochemical response of the enzymatic reaction with o-phenilendiamine and H₂O₂ as substrates by square wave voltammetry was correlated with the ATG2. Graphite-epoxi composite cylindrical electrodes and screen printed electrodes were used as transducers in the immunosensor. A total number of 29 sera from clinically confirmed cases of celiac disease and 19 negative control sera were tested by the electrochemical magneto immunosensor. The data were submitted to the receiver-operating characteristic plot (ROC) analysis which indicated that 16.95 units was the most effective cut-off value (COV) to discriminate correctly between celiac and non-celiac patients. Using this point for prediction, sensitivity was found to be 100%, while specificity was 84%. Copyright © 2013 Elsevier B.V. All rights reserved.
Biotin determination in food supplements by an electrochemical magneto biosensor.
Kergaravat, Silvina V; Gómez, Gabriel A; Fabiano, Silvia N; Laube Chávez, Tamara I; Pividori, María I; Hernández, Silvia R
2012-08-15
An electrochemical magneto biosensor for the rapid determination of biotin in food samples is reported. The affinity reaction was performed on streptavidin-modified magnetic microbeads as a solid support in a direct competitive format. The biotinylated horseradish peroxidase enzyme (biotin-HRP) competes with free biotin in the sample for the binding sites of streptavidin on the magnetic microbeads. The modified magnetic beads were then easily captured by a magneto graphite-epoxy composite electrode and the electrochemical signal was based on the enzymatic activity of the HRP enzyme under the addition of H(2)O(2) as the substrate and o-phenilendiamine as cosubstrate. The response was electrochemically detected by square wave voltammetry. The limit of detection was 8.4×10(-8) mol L(--1) of biotin (20 μg L(--1)) with a dynamic range from 0.94 to 2.4×10(-7) mol L(--1). Biotin-fortified commercial dietary supplement and infant formula samples were evaluated obtaining good performances in the results. Total time of analysis was 40 min per 20 assays. Copyright © 2012 Elsevier B.V. All rights reserved.
Mn cycling in marine biofilms: effect on the rate of localized corrosion.
Dexter, S C; Xu, K; Luther, G L
2003-04-01
Microelectrodes of the Au-Hg amalgam type have been used together with square wave voltammetry to measure profiles of oxygen, peroxide, Fe, Mn and sulfur chemical species through the thickness of natural assemblage marine biofilms grown on stainless steel alloy Nitronic 50 (UNS S20910). The data show Mn+2 and peroxide together at locations where the dissolved oxygen concentration was low. Oxidized species of Fe were also found at some locations. Sulfur species (predominantly S-2) was often found at locations where the dissolved oxygen concentration was below the detectable limit. Confocal scanning laser microscopy was used to image the microbial assemblage at the locations of the chemical profile data. Organisms with a filamentous morphology were found in consortia with rod and coccoidal shaped microbes at locations where dissolved Mn and peroxide were measured. The filamentous forms were usually absent at locations where Mn was not detected. It is suggested that the filamentous organisms may be Mn metabolizers, and that peroxidatic Mn re-oxidation may be taking place within the biofilm.
Investigation of interaction between magnetic silica particles and lambda phage DNA fragment.
Smerkova, Kristyna; Dostalova, Simona; Vaculovicova, Marketa; Kynicky, Jindrich; Trnkova, Libuse; Kralik, Miroslav; Adam, Vojtech; Hubalek, Jaromir; Provaznik, Ivo; Kizek, Rene
2013-12-01
Nucleic acids belong to the most important molecules and therefore the understanding of their properties, function and behavior is crucial. Even though a range of analytical and biochemical methods have been developed for this purpose, one common step is essential for all of them - isolation of the nucleic acid from the from complex sample matrix. The use of magnetic particles for the separation of nucleic acids has many advantages over other isolation methods. In this study, an isolation procedure for extraction of DNA was optimized. Each step of the isolation process including washing, immobilization and elution was optimized and therefore the efficiency was increased from 1.7% to 28.7% and the total time was shortened from 75 to 30min comparing to the previously described method. Quantification of the particular parameter influence was performed by square-wave voltammetry using hanging drop mercury electrode. Further, we compared the optimized method with standard chloroform extraction and applied on isolation of DNA from Staphylococcus aureus and Escherichia coli. Copyright © 2013 Elsevier B.V. All rights reserved.
Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine.
Rodthongkum, Nadnudda; Ruecha, Nipapan; Rangkupan, Ratthapol; Vachet, Richard W; Chailapakul, Orawon
2013-12-04
A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6](3-/4-) couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe
2011-12-01
The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Marin, Sergio; Merkoçi, Arben
2009-02-01
Electrochemical detection of a cadmium sulfide quantum dots (CdS QDs)-DNA complex connected to paramagnetic microbeads (MB) was performed without the need for chemical dissolving. The method is based on dropping 20 µl of CdS QD-DNA-MB suspension on the surface of a screen-printed electrode. It is followed by magnetic collection on the surface of the working electrode and electrochemical detection using square-wave voltammetry (SWV), giving a well-shaped and sensitive analytical signal. A cystic-fibrosis-related DNA sequence was sandwiched between the two DNA probes. One DNA probe is linked via biotin-streptavidin bonding with MB and the other one via thiol groups with the CdS QD used as tags. Nonspecific signals of DNA were minimized using a blocking agent and the results obtained were successfully employed in a model DNA sensor with an interest in future applications in the clinical field. The developed nanoparticle biosensing system may offer numerous opportunities in other fields where fast, low cost and efficient detection of small volume samples is required.
Tin oxide quantum dots embedded iron oxide composite as efficient lead sensor
NASA Astrophysics Data System (ADS)
Dutta, Dipa; Bahadur, Dhirendra
2018-04-01
SnO2 quantum dots (QDs) embedded iron oxide (IO) nanocomposite is fabricated and explored as a capable sensor for lead detection. Square wave anodic stripping voltammetry (SWASV) and amperometry have been used to explore the proposed sensor's response towards lead detection. The modified electrode shows linear current response for concentration of lead ranging from 99 nM to 6.6 µM with limit of detection 0.42 µM (34 ppb). Amperometry shows a detection limit as low as 0.18 nM (0.015 ppb); which is far below the permissible limit of lead in drinking water by World Health Organization. This proposed sensor shows linear current response (R2 = 0.98) for the lead concentration ranging from 133 × 10-9 to 4.4 × 10-6M. It also exhibits rapid response time of 12 sec with an ultra high sensitivity of 5.5 µA/nM. These detection properties promise the use of SnO2 QDs -IO composite for detection of lead in environmental sample with great ease.
NASA Astrophysics Data System (ADS)
Meddings, Nina; Owen, John R.; Garcia-Araez, Nuria
2017-10-01
Lithium ion conducting membranes are important to protect the lithium metal electrode and act as a barrier to crossover species such as polysulphides in Li-S systems, redox mediators in Li-O2 cells or dissolved cathode species or electrolyte oxidation products in high voltage Li-ion batteries. We present an in-situ method for measuring permeability of membranes to crossover redox species. The method employs a 'Swagelok' cell design equipped with a glassy carbon working electrode, in which redox species are placed initially in the counter electrode compartment only. Permeability through the membrane, which separates working and counter electrodes, is determined using a square wave voltammetry technique that allows the concentration of crossover redox species to be evaluated over time with very high precision. We test the method using a model and well-behaved electrochemical system to demonstrate its sensitivity, reproducibility and reliability relative to alternative approaches. This new method offers advantages in terms of small electrolyte volume, and simple, fast, quantitative and in-situ measurement.
Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A
2016-11-15
A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Biosensor-based selective detection of Zika virus specific antibodies in infected individuals.
Cabral-Miranda, Gustavo; Cardoso, Ana R; Ferreira, Luis C S; Sales, M Goreti F; Bachmann, Martin F
2018-08-15
Zika virus (ZIKV) recently emerged as a global threat subsequent to its global spread because it induces microencephaly and other brain damages in infants born to infected mothers. Epidemiological monitoring of infection has been hampered by the absence of reliable serological tests capable to distinguish between ZIKV and other Flavivirus infections, in particular Dengue virus (DENV). As both viruses are transmitted by the same mosquito-species, their distributions largely overlap and reliable serological distinction between the viruses is essential. Here we develop a novel biosensor which is based on recombinant forms of ZIKV non-structural protein 1 (NS1) and the domain III of the envelope protein (EDIII). Using electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), we demonstrate that in addition to extremely sensitive detection of ZIKV-specific antibodies in serum and saliva, the biosensor promptly distinguished ZIKV and DENV-specific antibodies. Hence, this novel biosensor allows assessing ZIKV antibodies in blood and saliva and results are unaffected by presence of DENV virus-specific antibodies. Copyright © 2018 Elsevier B.V. All rights reserved.
Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef
2016-08-01
A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merzougui, Moufida; Ouari, Kamel; Weiss, Jean
2016-09-01
The oxovanadium (IV) complex ;VOL; of a tetradentate Schiff base ligand derived from the condensation of diaminoethane and 2-hydroxy-1-naphthaldehyde was efficiently prepared via ultrasound irradiation and the template effect of VO(acac)2. The resulting product was characterized by elemental analysis, infrared, electronic absorption and molar conductance measurement. Single X-ray structure analysis showed that the complex is a monomeric five-coordinate with a distorted square pyramidal geometry. It crystallizes in monoclinic system having unit cell parameters a = 8.3960 (5) Å; b = 12.5533 (8) Å and c = 18.7804 (11) Å; α = γ = 90°; β = 104.843°(2), with P 21/c space group. Cyclic voltammetry of the complex, carried out on a glassy carbon (GC) electrode in DMF, showed reversible cyclic voltammograms response in the potential range 0.15-0.60 V involving a single electron redox wave VV/VIV, the diffusion coefficient is determinedusing GC rotating disk electrode. The Levich plot Ilim = f(ω1/2), was used to calculate the diffusion-convection controlled currents.
On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone
NASA Astrophysics Data System (ADS)
Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.
Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.
Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).
Sladkov, Vladimir; David, François; Fourest, Blandine
2003-01-01
The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.
Rabani, Amir
2016-01-01
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324
Rabani, Amir
2016-10-12
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.
Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat
2016-08-02
Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.
Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.
Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus
2017-05-15
H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.
Determination of allura red in some food samples by adsorptive stripping voltammetry.
Alghamdi, Ahmad H
2005-01-01
Square wave (SW) voltammetry was used to explore the adsorption properties of the food additive dye Allura Red on a hanging mercury drop electrode (HMDE). By using the adsorptive stripping voltammetric approach, we developed a sensitive electroanalytical method for the determination of this azo dye. A well-developed voltammetric peak probably related to the cathodic reduction of the azo moiety was obtained in pH 9 Britton-Robinson (B-R) buffer at 613 mV. Cyclic voltammetric studies indicated that the reduction process was irreversible and primarily controlled by adsorption. The adsorptive voltammetric signal was evaluated with respect to various experimental conditions; the optimized values were supporting electrolyte, B-R buffer; pH 11; accumulation time, 180 s; accumulation potential, 0.0 V; scan rate, 900 mV/s; pulse amplitude, 75 mV; and SW frequency, 90 Hz. Adsorptive voltammetric peak current showed a linear response for Allura Red in the concentration range of 2.5 x 10(-8) to 2.0 x 10(-7) mol/L (r = 0.998). The limit of detection was 8.5 x 10(-9) mol/L (4.2 ng/mL), the precision in terms of relative standard deviation was 1.3%, and the mean recovery was 102%. Possible interferences by several substances usually present in food products such as food additive azo dyes (E110, E102), gelatin, natural and artificial sweeteners, preservatives, and antioxidants were also evaluated. The proposed electrochemical procedure was successfully applied to the determination of this food dye in commercially available candy and a soft drink. The results were compared by statistical evaluation with those obtained by a reference spectrophotometric method.
Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Gao, Shuqin; Cheng, Jianlin; He, Bo; Liao, Lifu; Deng, Jian
2017-08-15
An innovative electrochemical sensor, based on a carbon paste electrode (CPE) modified with graphene (GR) and a boron-embedded duplex molecularly imprinted hybrid membrane (B-DMIHM), was fabricated for the highly sensitive and selective determination of lamotrigine (LMT). Density functional theory (DFT) was employed to study the interactions between the template and monomers to screen appropriate functional monomers for rational design of the B-DMIHM. The distinct synergic effect of GR and B-DMIHM was evidenced by the positive shift of the reduction peak potential of LMT at B-DMIHM/GR modified CPE (B-DMIHM/GR/CPE) by about 300mV, and the 13-fold amplification of the peak current, compared to a bare carbon paste electrode (CPE). The electrochemical reduction mechanism of lamotrigine was investigated by different voltammetric techniques. It was illustrated that square wave voltammetry (SWV) was more sensitive than different pulse voltammetry (DPV) for the quantitative analysis of LMT. Thereafter, a highly sensitive electroanalytical method for LMT was established by SWV at B-DMIHM/GR/CPE with a good linear relationship from 5.0×10 -8 to 5.0×10 -5 and 5.0×10 -5 to 3.0×10 -4 molL -1 with a lower detection limit (1.52×10 -9 molL -1 ) based on the lower linear range(S/N=3). The practical application of the sensor was demonstrated by determining the concentration of LMT in pharmaceutical and biological samples with good precision (RSD 1.04-4.41%) and acceptable recoveries (92.40-107.0%). Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Hsin-Yi; Chen, Po-Yu
2010-12-15
Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼ 80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ=3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ=3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ=3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode. Copyright © 2010 Elsevier B.V. All rights reserved.
Evaluation of quasi-square wave inverter as a power source for induction motors
NASA Technical Reports Server (NTRS)
Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.
1977-01-01
The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.
Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2015-03-09
In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang
2016-09-21
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, A.M.; Feldberg, S.W.; Greenhill, H.B.
1992-05-01
Instrumental, experimental and theoretical approaches required to quantify the thermodynamic and kinetic aspects of the square reaction scheme relating the fac{sup +/0} and mer{sup +/0} redox couples in the high-resistance solvent dichloromethane, at microelectrodes, under both steady-state and fast scan rate (transient) conditions, are presented. fac{sup +}, mer{sup +}, fac{sup 0}, and mer{sup 0} represent the facial and meridional isomers of Cr-(CO){sub 3}({eta}{sup 3}-Ph{sub 2}PCH{sub 2}CH{sub 2}P(Ph)CH{sub 2}CH{sub 2}PPh{sub 2}) in the oxidized 17 electron (fac{sup +}, mer{sup +}) and reduced 18 electron (fac{sup 0}, mer{sup 0}) configurations, respectively. A computationally efficient simulation method based on the DuFort-Frankel algorithm ismore » readily applied to microelectrodes and enables simulations to be undertaken for both steady-state and transient voltammetry at electrodes of microdisk geometry. The minimal ohmic drop present under steady-state conditions enables a limited set of parameters to be calculated for the square scheme. However, data relevant to species generated as a product of electron transfer have to be determined from the transient voltammetry at fast scans rates. For the latter experiments, a newly designed electrochemical cell was developed along with relevant electronic circuitry to minimize the background current and uncompensated resistance. The cell contains two matched working microelectrodes (one in the test solution and one in the separated electrolyte solution) and a common quasi-reference electrode which passes through both compartments of the cell. It is concluded that a judicious choice of steady-state and transient techniques, such as those described in this work, are necessary to characterize complex reaction schemes in high-resistance solvents. 46 refs., 7 figs., 3 tabs.« less
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han
2014-06-24
The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.
Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.
Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M
2011-10-01
Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society
Li, Bang Lin; Luo, Jun Hua; Luo, Hong Qun; Li, Nian Bing
2015-04-15
In the present work, a new method for the determination of Sudan I has been developed based on a conducting poly(p-aminobenzene sulphonic acid) (poly(p-ABSA)) film modified electrode. The new electrochemical sensor showed strong accumulation ability and excellent electrocatalytic activity for Sudan I. Electrochemical oxidation signal of Sudan I at the poly(p-ABSA) modified glassy carbon electrode (poly(p-ABSA)/GCE) was significantly increased when compared to that at the bare GCE. The experimental conditions such as amount of alcohol, pH of buffer solution, accumulation time, and instrumental parameters for square wave anodic stripping voltammetry were optimised for the determination of Sudan I. Under optimum conditions, the linear regression equation of Sudan I was ip=1.868+0.1213c (ip: μA, c: μgL(-1), R=0.9981) from 1 to 500 μg L(-1) with a detection limit of 0.3 μg L(-1). Finally, this sensor was successfully employed to detect Sudan I in some hot chili and ketchup samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rowe, Aaron A; Bonham, Andrew J; White, Ryan J; Zimmer, Michael P; Yadgar, Ramsin J; Hobza, Tony M; Honea, Jim W; Ben-Yaacov, Ilan; Plaxco, Kevin W
2011-01-01
Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe
2018-02-01
Heavy metal concentrations (cadmium, lead, and copper) in spring, tap, and bottled waters of the Sibylline Mountains National Park (central Italy) were investigated using square wave anodic stripping voltammetry from 2004 to 2011. The mean (±SD) concentrations detected (1.3 ± 0.4 ng L -1 cadmium, 14 ± 6 ng L -1 lead, and 0.16 ± 0.10 μg L -1 copper) were below the limits stipulated by Italian and European legislation for drinking and natural mineral water. In the three studied areas of the park (Mount Bove north, Mount Bove south, and springs of River Nera) with very few exceptions, both mineral waters bottled in the area and aqueduct waters from public fountains had approximately the same metal concentrations as did the spring waters from which they were derived. Conversely, substantially higher metal concentrations were found at some sites in private houses, which may be due to release of metals from old metal pipes. At the time of this study, waters of Sibylline Mountains National Park were of good quality, and no influence of the bottling process on heavy metal concentrations was found.
Metallo-Graphene Nanocomposite Electrocatalytic Platform for the Determination of Toxic Metal Ions
Willemse, Chandre M.; Tlhomelang, Khotso; Jahed, Nazeem; Baker, Priscilla G.; Iwuoha, Emmanuel I.
2011-01-01
A Nafion-Graphene (Nafion-G) nanocomposite solution in combination with an in situ plated mercury film electrode was used as a highly sensitive electrochemical platform for the determination of Zn2+, Cd2+, Pb2+ and Cu2+ in 0.1 M acetate buffer (pH 4.6) by square-wave anodic stripping voltammetry (SWASV). Various operational parameters such as deposition potential, deposition time and electrode rotation speed were optimized. The Nafion-G nanocomposite sensing platform exhibited improved sensitivity for metal ion detection, in addition to well defined, reproducible and sharp stripping signals. The linear calibration curves ranged from 1 μg L−1 to 7 μg L−1 for individual analysis. The detection limits (3σ blank/slope) obtained were 0.07 μg L−1 for Pb2+, Zn2+ and Cu2+ and 0.08 μg L−1 for Cd2+ at a deposition time of 120 s. For practical applications recovery studies was done by spiking test samples with known concentrations and comparing the results with inductively coupled plasma mass spectrometry (ICP-MS) analyses. This was followed by real sample analysis. PMID:22163831
Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan
2018-04-18
In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Electrochemical detection of nitromethane vapors combined with a solubilization device.
Delile, Sébastien; Aussage, Adeline; Maillou, Thierry; Palmas, Pascal; Lair, Virginie; Cassir, Michel
2015-01-01
During the past decade, the number of terrorism acts has increased and the need for efficient explosive detectors has become an urgent worldwide necessity. A prototype, Nebulex™, was recently developed in our laboratory. Basically, it couples the solubilization of an analyte from the atmosphere by a nebulization process and in-situ detection. This article presents the development and integration of an electrochemical sensor for the detection of nitromethane, a common chemical product that can be used to make an improvised explosive device. A gold screen-printed electrode was used in a flow-cell and a detection limit of 4.5 µM was achieved by square wave voltammetry. The detection method was also determined to be selective toward nitromethane over a large panel of interfering compounds. Detection tests with the Nebulex™ were thus carried out using a custom-made calibrated nitromethane vapor generator. Detection times of less than one minute were obtained for nitromethane contents of 8 and 90 ppmv. Further measurements were performed in a room-measurement configuration leading to detection times in the range of 1-2 min, clearly demonstrating the system's efficiency under quasi-real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Khaleghi, Fatemeh; Irai, Abolfazl Elyasi; Sadeghi, Roya; Gupta, Vinod Kumar; Wen, Yangping
2016-01-01
Vitamin B9 or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B9 using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B9 by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08–650 μM. The detection limit for vitamin B9 was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B9 in food and pharmaceutical samples. PMID:27231909
Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens
NASA Astrophysics Data System (ADS)
Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.
2018-06-01
Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).
Synthesis, structures and properties of a new series of platinum-diimine-dithiolate complexes.
Adams, Christopher J; Fey, Natalie; Parfitt, Matthew; Pope, Simon J A; Weinstein, Julia A
2007-10-21
The new square-planar platinum-diimine-dithiolate compounds [Pt(mesBIAN)SS] have been synthesised {mesBIAN = bis(mesityl)biazanaphthenequinone; SS = 1,2-dithiooxalate (dto) , maleonitriledithiolate (mnt) , 1,2-benzenedithiolate (bdt) , 3,4-toluenedithiolate (tdt) and 1,3-dithia-2-thione-4,5-dithiolate (dmit) }, and the X-ray crystal structures of and determined. Cyclic voltammetry reveals that all the compounds form stable anions, and ESR spectroscopy of these anions shows that the SOMO is based upon the mesBIAN ligand; compounds also show a reversible oxidation wave in their CV. Computational studies reveal that charge-transfer processes from orbitals that are combinations of metal and dithiolate ligand to a mesBIAN pi-based LUMO are responsible for the low energy absorptions seen in the UV/visible spectra of these compounds, and that the reverse process is responsible for the observed room-temperature solution luminescence of [Pt(mesBIAN)Cl(2)] and , and . Compounds and , containing aromatic thiolates, were not found to luminesce under the same conditions. Resonance Raman experiments have shown the origin of band-broadening of the lowest-energy absorption band in the absorption spectra of to be due to vibronic structure within one electronic transition.
Alizadeh, Taher; Ganjali, Mohammad Reza; Rafiei, Faride
2017-06-29
In this study an innovative method was introduced for selective and precise determination of urea in various real samples including urine, blood serum, soil and water. The method was based on the square wave voltammetry determination of an electroactive product, generated during diacetylmonoxime reaction with urea. A carbon paste electrode, modified with multi-walled carbon nanotubes (MWCNTs) was found to be an appropriate electrochemical transducer for recording of the electrochemical signal. It was found that the chemical reaction conditions influenced the analytical signal directly. The calibration graph of the method was linear in the range of 1 × 10 -7 - 1 × 10 -2 mol L -1 . The detection limit was calculated to be 52 nmol L -1 . Relative standard error of the method was also calculated to be 3.9% (n = 3). The developed determination procedure was applied for urea determination in various real samples including soil, urine, plasma and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.
2012-01-01
Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998
Barroso, M Fátima; Luna, M Alejandra; Moyano, Fernando; Delerue-Matos, Cristina; Correa, N Mariano; Molina, Patricia G
2018-04-01
In this contribution an electrochemical study is described for the first time of lipid peroxidation and the role of antioxidant on lipid protection using large unilamellar vesicles (LUVs). In order to simulate the cell membrane, LUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used. A vesicle-modified electrode was constructed by immobilizing DOPC LUVs onto carbon paste electrodes (CPEs). Lipid peroxidation was studied electrochemically by incubating the vesicle-modified electrodes with hydroxyl (HO) radicals generated via the Fenton reaction. Oxidative damage induced by HO was verified by using square wave voltammetry (SWV) and was indirectly measured by the increase of electrochemical peak current to [Fe(CN) 6 ] 4- which was used as the electrochemical label. Ascorbic acid (AA) was used as the antioxidant model in order to study its efficacy on free radical scavenging. The decrease of the electrochemical signal confirms the protective key role promoted by AA in the prevention of lipid peroxidation in vesicles. Through microscopy, it was possible to observe morphologic modification on vesicle structures after lipid peroxidation in the presence or absence of AA. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghaedi, Hamed; Afkhami, Abbas; Madrakian, Tayyebeh; Soltani-Felehgari, Farzaneh
2016-02-01
A new chemically modified carbon paste electrode (CMCPE) was applied to the simple, rapid, highly selective and sensitive determination of citalopram in human serum and pharmaceutical preparations using adsorptive square wave voltammetry (ASWV). The ZnO nanoparticles and multi-walled carbon nanotubes modified CPE (ZnO-MWCNT/CPE) electrode was prepared by incorporation of the ZnO nanoparticles and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection and the linear range were found to be 0.005 and 0.012 to 1.54μmolL(-1) of citalopram, respectively. The effects of potentially interfering substances on the determination of this compound were investigated and found that the electrode is highly selective. The proposed CMCPE was used to the determination of citalopram in human serum, urine and pharmaceutical samples. This reveals that ZnO-MWCNT/CPE shows excellent analytical performance for the determination of citalopram in terms of very low detection limit, high sensitivity, very good repeatability and reproducibility over other methods reported in the literature. Copyright © 2015. Published by Elsevier B.V.
Brondani, Daniela; Scheeren, Carla Weber; Dupont, Jairton; Vieira, Iolanda Cruz
2012-08-21
Halloysite clay nanotubes were used as a support for the immobilization of the enzyme peroxidase from clover sprouts (Trifolium), and employed together with platinum nanoparticles in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Pt-BMI·PF(6)) in the development of a new biosensor for the determination of catecholamines by square-wave voltammetry. Under optimized conditions, the analytical curves showed detection limits of 0.05, 0.06, 0.07, 0.12 μM for dopamine, isoproterenol, dobutamine and epinephrine, respectively. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (18% decrease in response over 150 days). A recovery study of dopamine in pharmaceutical samples gave values from 97.5 to 101.4%. The proposed biosensor was successfully applied to the determination of dopamine in pharmaceutical samples, with a maximum relative error of ±1.0% in relation to the standard (spectrophotometric) method. The good analytical performance of the proposed method can be attributed to the efficient immobilization of the peroxidase in the nanoclay, and the facilitation of electron transfer between the protein and the electrode surface due to the presence of the Pt nanoparticles and ionic liquid.
CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications
Rowe, Aaron A.; Bonham, Andrew J.; White, Ryan J.; Zimmer, Michael P.; Yadgar, Ramsin J.; Hobza, Tony M.; Honea, Jim W.; Ben-Yaacov, Ilan; Plaxco, Kevin W.
2011-01-01
Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license. PMID:21931613
Breher, Frank; Rüegger, Heinz; Mlakar, Marina; Rudolph, Manfred; Deblon, Stephan; Schönberg, Hartmut; Boulmaâz, Souad; Thomaier, Jörg; Grützmacher, Hansjörg
2004-02-06
The formation of adducts of the square-planar 16-electron complexes trans-[M(tropp(ph))(2)](+) and cis-[M(tropp(ph))(2)](+) (M=Rh, Ir; tropp(Ph)=5-diphenylphosphanyldibenzo[a,d]cycloheptene) with acetonitrile (acn) and Cl(-), and the redox chemistry of these complexes was investigated by various physical methods (NMR and UV-visible spectroscopy, square-wave voltammetry), in order to obtain some fundamental thermodynamic and kinetic data for these systems. A trans/cis isomerization cannot be detected for [M(tropp(ph))(2)](+) in non-coordinating solvents. However, both isomers are connected through equilibria of the type trans-[M(tropp(ph))(2)](+)+L<==>[ML(tropp(ph))(2)](n)<==>cis-[M(tropp(ph))(2)](+)+L, involving five-coordinate intermediates [ML(tropp(ph))(2)](n) (L=acn, n=+1; L=Cl(-), n=0). Values for K(d) (K(f)), that is, the dissociation (formation) equilibrium constant, and k(d) (k(f)), that is, the dissociation (formation) rate constant, were obtained. The formation reactions are fast, especially with the trans isomers (k(f)>1x10(5) m(-1) s(-1)). The reaction with the sterically more hindered cis isomers is at least one order of magnitude slower. The stability of the five-coordinate complexes [ML(tropp(ph))(2)](n) increases with Ir>Rh and Cl(-)>acn. The dissociation reaction has a pronounced influence on the square-wave (SW) voltammograms of trans/cis-[Ir(tropp(ph))(2)](+). With the help of the thermodynamic and kinetic data independently determined by other physical means, these reactions could be simulated and allowed the setting up of a reaction sequence. Examination of the data obtained showed that the trans/cis isomerization is a process with a low activation barrier for the four-coordinate 17-electron complexes [M(tropp(ph))(2)](0) and especially that a disproportionation reaction 2 trans/cis-[M(tropp(ph))(2)](0)-->[M(tropp(ph))(2)](+)+[M(tropp(ph))(2)](-) may be sufficiently fast to mask the true reactivity of the paramagnetic species, which are probably less reactive than their diamagnetic equilibrium partners.
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.
Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R
2001-04-01
In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.
Voltammetric studies of antimony ions in soda-lime-silica glass melts up to 1873 K.
Yamashita, H; Yamaguchi, S; Nishimura, R; Maekawa, T
2001-01-01
The half wave potential of reduction of Sb5+ in 16Na2O x 10CaO x 74SiO2 glass melts was examined by differential pulse voltammetry up to 1873 K. The half wave potential shifted to the positive direction with an increase in temperature. The results indicate that the equilibrium of Sb5+/Sb3+ shifted to negative direction with an increase in temperature. The half wave potential shifted to positive direction (48 mV at 1473 K) when the atmosphere over the melts changed from pure oxygen gas to air, in agreement with the theoretical prediction. The reversibility of Pt:O2 reference electrode is confirmed.
Study on THz wave generation from air plasma induced by quasi-square Airy beam
NASA Astrophysics Data System (ADS)
Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin
2018-01-01
Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.
Low frequency AC waveform generator
Bilharz, Oscar W.
1986-01-01
Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.
Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic
NASA Astrophysics Data System (ADS)
Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn
2014-09-01
Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.
Low frequency ac waveform generator
Bilharz, O.W.
1983-11-22
Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.
Square-Wave Ocular Oscillation and Ataxia in an Anti-GAD-Positive Individual With Hypothyroidism.
Brokalaki, Chrysoula; Kararizou, Evangelia; Dimitrakopoulos, Antonis; Evdokimidis, Ioannis; Anagnostou, Evangelos
2015-12-01
Cerebellar ataxia is an uncommon manifestation of hypothyroidism with unknown pathomechanism. The few descriptions of the clinical phenotype range from limb, gait, and trunk ataxia to various ocular motor abnormalities. We evaluated a 62-year-old woman with previously undetected severe hypothyroidism who presented with prominent saccadic intrusions and gait ataxia. She had high titers of antithyroid autoantibodies and anti-glutamic acid decarboxylase (anti-GAD) antibodies. Horizontal eye movement recordings revealed a series of nearly continuous pseudoharmonic square wave jerks (SWJs) constituting a square wave oscillation. Amplitudes reached maximum values of about 4, and wave frequency approached 100 cycles per minute. Thyroxine substitution and corticosteroid administration had little effect on SWJ parameters. The square wave oscillation nearly completely resolved after a single treatment session with intravenous immunoglobulin suggesting a causal link between an autoimmune process and the cerebellar dysfunction. Current concepts of the genesis of saccadic intrusions favor a role for anti-GAD antibodies in the etiology of SWJs.
Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan
2015-09-21
The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.
Brotons, Ariadna; Mas, Luis Alcaraz; Metters, Jonathan P; Banks, Craig E; Iniesta, Jesús
2013-09-21
Improvements in analytical methods for the determination and quantification of methylcytosine in DNA are vital since it has the potential to be used as a biomarker to detect different diseases in the first stage such as in the case of carcinomas and sterility. In this work we utilized screen printed graphite electrodes (SPGE) for studying the electrochemical response of all free DNA bases, methylcytosine and short oligonucleotides by cyclic voltammetry (CV) and square wave voltammetry (SWV). CV and SWV responses of free DNA bases and methylcytosine have been investigated by using SPGE platforms and the feasibility of detecting and quantifying cytosine and methylcytosine as free DNA moieties has been evaluated as a function of pH, concentration and the presence of the other free DNA bases in solution simultaneously. Repeatability of using SWV has been performed for the electrochemical behavior of both 250 μM cytosine and 250 μM methylcytosine in the presence of 25 μM guanine, with coefficient of variations of 6.9% and 2.6% respectively based upon peak current (N = 5). Six-mer oligonucleotides with a sequence 5'-XXXCGC-3', where the XXX motif corresponds to TTT, TTA, TAA and AAA have been performed using SWV in 0.1 M acetate buffer pH 5.0 to explore how the DNA base position effects the electrooxidation of guanine and cytosine into the oligonucleotide. Furthermore SWV comparisons of the electrooxidation of the oligonucleotides 5'-CGCGCG-3' and its methylated 5'-mCGmCGmCG-3' have been performed with concentrations in acetate buffer solutions, and the interaction of both oligonucleotides with the graphitic surface of the SPGE has been demonstrated by fitting well-known adsorption models such as Freundlich and Langmuir kinetics according to the SWV current response of guanine, cytosine and methylcytosine into the oligonucleotide.
Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat
2016-01-01
Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl4 solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5–50 mg·L−1 nitrite with a limit of detection (LOD) of 0.12 mg·L−1. Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO2− solution and in sausage sample solution, to which different concentrations of NO2− standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples. PMID:27490543
Electrochemical Sensors for In Situ Phosphate and Nitrate Measurements in Seawater
NASA Astrophysics Data System (ADS)
Romanytsia, I.; Chen Legrand, D.; Barus, C.; Striebig, N.; Garcon, V.
2016-02-01
Monitoring the evolution of concentrations of dissolved inorganic nutrients, like phosphate and nitrate, provides insights on the oceanic biogeochemical cycles. This long term monitoring is key to investigate how changing oceanic conditions will alter biogeochemical cycles. We report here the latest development and analytical method to measure phosphate and nitrate concentrations in seawater without any addition of liquid reagents. We propose to use a derivative electrochemical method such as Square Wave Voltammetry (SWV) to detect phosphomolybdic complex and nitrate as this method offers a higher sensitivity than classical cyclic voltammetry and avoids the need of stirring the solution like for chronoamperometry technique. Phosphate is a non-electroactive species and its determination is performed by measuring its corresponding phosphomolybdic complex formed in situ after oxidation of two molybdenum electrodes placed into two different compartments connected with a proton-exchange membrane. [1]. All the SWV parameters such as step potential, amplitude and frequency have been determined to detect phosphomolybdic complex as fast as possible and with the lowest limit of detection. Depending on the frequency used, two calibration curves have been obtained for two phosphate concentration ranges: 0.07-1.06 µM (250 Hz) and 0.5-6 µM (2.5 Hz). We are currently working to adapt those parameters to laboratory prototype and results obtained will be presented. On the other hand, nitrate can be detected directly on gold electrode modified with silver nanoparticles (AgNPs) where the nitrate reduction process can be easily measured at -0.97 V [2]. This method allows to obtain good calibration curves with a detection limit of 10 nM, very short measuring time (2.8 s) and long life time of the modified electrode (minimum 47 days storage in seawater). [1] Jonca et al., Electrochimica Acta 88 (2013) 165-169 [2] Fajerwerg et al., Electrochem. Commun. 12 (2010) 1439-1441
Pattern masking: the importance of remote spatial frequencies and their phase alignment.
Huang, Pi-Chun; Maehara, Goro; May, Keith A; Hess, Robert F
2012-02-16
To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.
Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.
Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C
2008-12-24
The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.
Reconfigurable wave band structure of an artificial square ice
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...
2016-04-18
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
Reconfigurable wave band structure of an artificial square ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
Square-Wave Model for a Pendulum with Oscillating Suspension
ERIC Educational Resources Information Center
Yorke, Ellen D.
1978-01-01
Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)
Research on spacecraft electrical power conversion
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1974-01-01
The steady state characteristics and starting behavior of some widely used self-oscillating magnetically coupled square wave inverters were studied and the development of LC-tuned square wave inverters is reported. An analysis on high amplitude voltage spikes which occur in dc-to-square-wave parallel converters shows the importance of various circuit parameters for inverter design and for the suppression of spikes. A computerized simulation of an inductor energy storage dc-to-dc converter with closed loop regulators and of a preregulating current step-up converter are detailed. Work continued on the computer aided design of two-winding energy storage dc-to-dc converters.
Smith, Parker J; Goeltz, John C
2017-12-07
The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.
Liu, Guozhen; Wang, Shuo; Liu, Jingquan; Song, Dandan
2012-05-01
A glassy carbon substrate was covalently modified with a mixed layer of 4-aminophenyl and phenyl via in situ electrografting of their aryldiazonium salts in acidic solutions. Single-walled carbon nanotubes (SWNTs) were covalently and vertically anchored on the electrode surface via the formation of amide bonds from the reaction between the amines located on the modified substrate and the carboxylic groups at the ends of the nanotubes. Ferrocenedimethylamine (FDMA) was subsequently attached to the ends of SWNTs through amide bonding followed by the attachment of an epitope, i.e., endosulfan hapten to which an antibody would bind. Association or dissociation of the antibody with the sensing interface causes a modulation of the ferrocene electrochemistry. Antibody-complexed electrodes were exposed to samples containing spiked endosulfan (unbound target analyte) in environment water and interrogated using the square wave voltammetry (SWV) technique. The modified sensing surfaces were characterized by atomic force microscopy, XPS, and electrochemistry. The fabricated electrochemical immunosensor can be successfully used for the detection of endosulfan over the range of 0.01-20 ppb by a displacement assay. The lowest detection limit of this immunosensor is 0.01 ppb endosulfan in 50 mM phosphate buffer at pH 7.0.
Jarocka, Urszula; Sawicka, Róża; Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Sączyńska, Violetta; Porębska, Anna; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna
2015-10-01
This paper describes the development of a biosensor for the detection of anti-hemagglutinin antibodies against the influenza virus hemagglutinin. The steps of biosensor fabrications are as follows: (i) creation of a mixed layer containing the thiol derivative of dipyrromethene and 4-mercapto-1-butanol, (ii) complexation of Cu(II) ions, (iii) oriented immobilization of the recombinant histidine-tagged hemagglutinin, and (iv) filling free spaces with bovine serum albumin. The interactions between recombinants hemagglutinin from the highly pathogenic avian influenza virus type H5N1 and anti-hemagglutinin H5 monoclonal antibodies were explored with Osteryoung square-wave voltammetry. The biosensor displayed a good detection limit of 2.4 pg/mL, quantification limit of 7.2 pg/mL, and dynamic range from 4.0 to 100.0 pg/mL in buffer. In addition, this analytical device was applied for the detection of antibodies in hen sera from individuals vaccinated and non-vaccinated against the avian influenza virus type H5N1. The limit of detection for the assay was the dilution of sera 1: 7 × 10(6), which is about 200 times better than the enzyme-linked immunosorbent assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Lin, Yuehe
2005-09-15
Electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO₂) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of a strong affinity of zirconia to the phosphoric group, nitroaromatic OPs strongly bind to the ZrO₂ nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface canmore » be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and the pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5–200 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 1 ng/mL (10 min accumulation), and good precision (RSD=5.3 %, n = 10). The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analyzing of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.« less
A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences
Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.
2017-01-01
Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782
Biyiklioglu, Zekeriya; Alp, Hakan
2015-11-21
A novel type of peripherally tetra-substituted as well as axially disubstituted silicon(iv) phthalocyanine containing electropolymerizable ligands was designed and synthesized for the first time. Axial bis-hydroxy silicon phthalocyanine 2 was prepared from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}phthalocyanine 1 in dichloromethane by using 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) and trichlorosilane. Peripherally tetra and axially di-substituted silicon phthalocyanine 4 was synthesized from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}silicon(iv)phthalocyanine dihydroxide 2 with 1-(3-chloropropyl)-4-phenylpiperazine 3 in toluene in the presence of NaH at 120 °C. These complexes were fully characterized by various spectroscopy techniques such as (1)H-NMR, (13)C-NMR, IR, UV-Vis, and MALDI-TOF spectroscopy and elemental analysis as well. Electropolymerization properties of silicon(IV) phthalocyanine complexes were investigated by cyclic and square wave voltammetry. Electrochemical studies reveal that silicon(IV) phthalocyanine complexes were electropolymerized on the working electrode during the anodic potential scan. This study is the first example of electropolymerization of both peripherally tetra and axially di-substituted silicon phthalocyanines on the same molecule.
Melucci, Dora; Locatelli, Marcello; Locatelli, Clinio
2013-12-01
An analytical procedure regarding the voltammetric determination of mercury(II), copper(II), lead(II), cadmium(II) and zinc(II) by square wave anodic stripping voltammetry (SWASV) in matrices involved in food chain is proposed. In particular, tea leaves were analyzed as real samples. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 acidic attack mixture; 0.01 mol L(-1) EDTA-Na2+ 0.15 mol L(-1) NaCl + 0.5 mol L(-1) HCl was employed as the supporting electrolyte. The voltammetric measurements were carried out using a conventional three electrode cell, employing, as working electrodes, a gold electrode (GE) and a stationary hanging mercury drop electrode (HMDE). The analytical procedure has been verified on the standard reference materials Spinach Leaves NIST-SRM 1570a, Tomato Leaves NIST-SRM 1573a and Apple Leaves NIST-SRM 1515. For all the elements, the precision as repeatability, expressed as relative standard deviation (sr) was of the order of 3-5%, while the trueness, expressed as relative error (e) was of the order of 3-7%. Once set up on the standard reference materials, the analytical procedure was applied to commercial tea leaves samples. A critical comparison with spectroscopic measurements is also discussed.
Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I
2017-07-15
This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.
Chobot, Vladimir; Kubicova, Lenka; Bachmann, Gert; Hadacek, Franz
2013-01-01
Some antioxidants have been shown to possess additional pro-oxidant effects. Diverse methodologies exist for studying redox properties of synthetic and natural chemicals. The latter are substantial components of our diet. Exploration of their contribution to life-extending or -compromising effects is mandatory. Among reactive oxygen species (ROS), hydroxyl radical (•OH) is the most damaging species. Due to its short half-life, the assay has to contain a specific generation system. Plants synthesize flavonoids, phenolic compounds recognized as counter-agents to coronary heart disease. Their antioxidant activities are affected by their hydroxylation patterns. Moreover, in the plant, they mainly occur as glycosides. We chose three derivatives, quercetin, luteolin, and rutin, in attempts to explore their redox chemistry in contrasting hydrogen peroxide environments. Initial addition of hydrogen peroxide in high concentration or gradual development constituted a main factor affecting their redox chemical properties, especially in case of quercetin. Our study exemplifies that a combination of a chemical assay (deoxyribose degradation) with an electrochemical method (square-wave voltammetry) provides insightful data. The ambiguity of the tested flavonoids to act either as anti- or pro-oxidant may complicate categorization, but probably contributed to their evolution as components of a successful metabolic system that benefits both producer and consumer. PMID:23736691
Influencing the electronic interaction in diferrocenyl-1-phenyl-1H-pyrroles.
Hildebrandt, Alexander; Lang, Heinrich
2011-11-28
Functionalised diferrocenyl-1-phenyl-1H-pyrroles were synthesised using Negishi C,C cross-coupling reactions. The influence of different substituents at the phenyl moiety on the electronic interaction was studied using electrochemistry (cyclic and square-wave voltammetry) and spectro-electrochemistry (in situ UV/Vis-NIR spectroscopy). The ferrocenyl moieties gave rise to two sequential, reversible redox processes in each of the diferrocenyl-1-phenyl-1H-pyrroles. The observed ΔE(1/2) values (ΔE(1/2) = difference between first and second oxidation) range between 420 and 480 mV. A linear relationship between the Hammett constants σ of the substituents and the separation of the redox potentials exists. The NIR measurements confirm electronic communication between the iron centers as intervalence charge transfer (IVCT) absorptions were observed in the corresponding mixed-valent monocationic species. All compounds were classified as class II systems according to Robin and Day (M. B. Robin and P. Day, Adv. Inorg. Chem., 1967, 10, 247-423). The oscillator strength of the charge transfer transition highly depends on the electron donating or electron withdrawing character of the phenyl substituents. This enables direct tuning of the intermetallic communication by simple modification of the molecule's functional group. Hence, this series of molecules may be regarded as model compounds for single molecule transistors.
Kuwabara, J.S.; VanGeen, A.; McCorkle, D.C.; Bernhard, J.M.
1999-01-01
Dissolved sulfide concentrations in the water column and in sediment pore waters were measured by square-wave voltammetry (nanomolar detection limit) during three cruises to the Santa Barbara Basin in February 1995, November-December 1995, and April 1997. In the water column, sulfide concentrations measured outside the basin averaged 3 ?? 1 nM (n = 28) in the 0 to 600 m depth range. Inside the basin, dissolved sulfides increased to reach values of up to 15 nM at depths >400 m. A suite of box cores and multicores collected at four sites along the northeastern flank of the basin showed considerable range in surficial (400 ??M at 10 cm. Decreases in water-column nitrate below the sill depth indicate nitrate consumption (-55 to -137 ??mole m-2 h-1) similar to nearby Santa Monica Basin. Peaks in pore-water iron concentrations were generally observed between 2 and 5 cm depth with shallowest peaks at the 590 m site. These observations, including observations of the benthic microfauna, suggest that the extent to which the sulfide flux, sustained by elevated pore-water concentrations, reaches the water column may be modulated by the abundance of sulfide-oxidizing bacteria in addition to iron redox and precipitation reactions.
Pandey, Binod; Demchenko, Alexei V.; Stine, Keith J.
2013-01-01
Nanoporous gold (NPG) was utilized as a support for immobilizing alkaline phosphatase (ALP) conjugated to monoclonal antibodies against either prostate specific antigen (PSA) or carcinoembryonic antigen (CEA). The antibody-ALP conjugates were coupled to self-assembled monolayers of lipoic acid and used in direct kinetic assays. Using the enzyme substrate p-aminophenylphosphate, the product p-aminophenol was detected by its oxidation near 0.1 V (vs. Ag|AgCl) using square wave voltammetry. The difference in peak current arising from oxidation of p-aminophenol before and after incubation with biomarker increased with biomarker concentration. The response to these two biomarkers was linear up to 10 ng mL-1 for CEA and up to 30 ng mL-1 for PSA. The effect of interference on the PSA assay was studied using bovine serum albumin (BSA) as a model albumin protein. The effect of interference from a serum matrix was examined for the PSA assay using newborn calf serum. A competitive version of the immunoassay using antigen immobilized onto the NPG surface was highly sensitive at lower antigen concentration. Estimates of the surface coverage of the antibody-ALP conjugates on the NPG surface are presented. PMID:23935216
Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian
2012-08-21
An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.
Highly sensitive dual mode electrochemical platform for microRNA detection
NASA Astrophysics Data System (ADS)
Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro
2016-11-01
MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.
Kariuki, James; Ervin, Emily; Olafson, Carly
2015-07-31
The development of portable sensors that can be used outside the lab is an active area of research in the electroanalytical field. A major focus of such research is the development of low-cost electrodes for use in these sensors. Current electrodes, such as glassy-carbon electrodes (GCEs), are costly and require time-consuming preparation. Alternatives have been proposed, including mechanical pencil-lead electrodes (MPEs). However, MPEs themselves possess numerous drawbacks, particularly structural fragility. In this paper, we present a novel pencil-graphite electrode (PGE) fabricated from a regular HB#2 pencil. This PGE is a simple, disposable, extremely low-cost alternative to GCEs ($0.30 per PGE, vs. $190 + per GCE), and possesses the structural stability that MPEs lack. PGEs were characterized by square-wave voltammetry of ferricyanide, gallic acid, uric acid, dopamine, and several foodstuffs. In all cases, PGEs demonstrated sensitivities comparable or superior to those of the GCE and MPE (LOD = 5.62 × 10(-4) M PGE, 4.80 × 10(-4) M GCE, 2.93 × 10(-4) M MPE). Signal areas and peak heights were typically four to ten times larger for the PGE relative to the GCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.
We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infraredmore » spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.« less
Bouden, Sarra; Chaussé, Annie; Dorbes, Stephane; El Tall, Omar; Bellakhal, Nizar; Dachraoui, Mohamed; Vautrin-Ul, Christine
2013-03-15
This paper describes the use of 4-carboxyphenyl-grafted screen-printed carbon electrodes (4-CP-SPEs) for trace lead analysis. These novel and simple use of electrodes were easily prepared by the electrochemical reduction of the corresponding diazonium salt. Pb detection was then performed by a three-steps method in order to avoid oxygen interference: (i) immersion of the grafted screen-printed electrode (SPE) in the sample and adsorption of Pb(II), (ii) reduction of adsorbed Pb(II) by chronoamperometry (CA), and (iii) oxidation of Pb by Anodic Square Wave Voltammetry (SWV). The reoxidation response was exploited for lead detection and quantification. In order to optimize the analytical responses, the influence of the adsorption medium pH and the adsorption time were investigated. Moreover, an interference study was carried out with Cu(II), Hg(II), Al(III), Mn(II), Zn(II), Cd(II) and no major interference can be expected to quantify Pb(II). The described method provided a limit of detection and a limit of quantification of 1.2 × 10(-9)M and 4.1 × 10(-9)M, respectively. These performances indicate that the 4-CP-SPE could be considered as an efficient tool for environmental analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1975-01-01
A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.
Re-examination of radiofrequency mass spectrometers: Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1989-01-01
The three-stage, two-cycle, Bennett mass spectrometers in use in space and ground experiments today are of the same physical configuration as developed by Bennett in 1950. Sine-wave radiofrequency (RF) is also still used. The literature indicates that the electronics and physical manufacturing capabilities of 1950 technology may have limited the use of other improvements at that time. Therefore, a study, experimental and analytical, was undertaken to examine previously rejected RF approaches as well as new ones. The results of this study indicate there are other approaches which use fewer grids and square wave or a combination of square-wave and sine-wave RF. In regard to suppression of harmonics, none performed better than the three-stage, two-cycle, Bennett mass spectrometer. Use of square-wave RF in the Bennett approach can provide a slightly more compact configuration but no increase in throughput.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1982-01-01
Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7.
Lamb waves in phononic crystal slabs with square or rectangular symmetries
NASA Astrophysics Data System (ADS)
Brunet, Thomas; Vasseur, Jérôme; Bonello, Bernard; Djafari-Rouhani, Bahram; Hladky-Hennion, Anne-Christine
2008-08-01
We report on both numerical and experimental results showing the occurrence of band gaps for Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is used to calculate the band structures and to predict the position and the magnitude of the gaps. The band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb waves in the megahertz range and with wave vectors ranging over more than the first two reduced Brillouin zones are investigated.
Instrument For Simulation Of Piezoelectric Transducers
NASA Technical Reports Server (NTRS)
Mcnichol, Randal S.
1996-01-01
Electronic instrument designed to simulate dynamic output of integrated-circuit piezoelectric acceleration or pressure transducer. Operates in conjunction with external signal-conditioning circuit, generating square-wave signal of known amplitude for use in calibrating signal-conditioning circuit. Instrument also useful as special-purpose square-wave generator in other applications.
Fully printed flexible and disposable wireless cyclic voltammetry tag.
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-29
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Fully printed flexible and disposable wireless cyclic voltammetry tag
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250
Fully printed flexible and disposable wireless cyclic voltammetry tag
NASA Astrophysics Data System (ADS)
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Cyclic voltammetry of apple fruits: Memristors in vivo.
Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I
2016-12-01
A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. Copyright © 2016 Elsevier B.V. All rights reserved.
Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J
2015-06-25
The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
The Langley Research Center and Virginia Institute of Marine Science wave refraction computer model was applied to the Baltimore Canyon region of the mid-Atlantic continental shelf. Wave refraction diagrams for a wide range of normally expected wave periods and directions were computed by using three bottom topography approximation techniques: quadratic least squares, cubic least squares, and constrained bicubic interpolation. Mathematical or physical interpretation of certain features appearing in the computed diagrams is discussed.
Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space
NASA Technical Reports Server (NTRS)
Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.
2001-01-01
The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.
NASA Technical Reports Server (NTRS)
Mclyman, C. W.
1983-01-01
Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.
Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet
2016-10-01
An accurate and precise determination of terbutaline has been carried out using a glassy carbon electrode (GCE) modified with a composite of multi-walled carbon nanotubes (MWCNTs) and nanoparticles of zirconium oxide (ZrO2NPs). Energy dispersive X-ray and scanning electron microscopic techniques were utilized for the characterization of the composite layer. Terbutaline exhibited a broad oxidation peak at 770mV on a GCE. However, MWCNTs/GCE presented an electrocatalytic effect toward the oxidation of terbutaline with a better anodic peak at 660mV. Furthermore, the electrochemical behavior of terbutaline has greatly been improved at a GCE modified with a composite of MWCNTs and nanoparticles of ZrO2. The ZrO2NPs/MWCNTs/GCE exhibited a sharp anodic wave at 645mV with a large enhancement of the current response for terbutaline. Square wave voltammetry (SWV) was performed for the determination of terbutaline at ZrO2NPs/MWCNTs/GCE. A linear plot was obtained for the current responses of terbutaline against concentrations in the range of 10-160nM yielding a detection limit of 2.25nM (based on 3Sb/m). Improved voltammetric behavior, long-time stability and good reproducibility were obtained for terbutaline at the proposed electrode. A mean recovery of 101.2% with an RSD% of 1.9 was obtained for the analysis of the drug formulation. The accurate and precise quantification of terbutaline makes the ZrO2NPs/MWCNTs/GCE system of great interest for monitoring its therapeutic use. Copyright © 2016 Elsevier B.V. All rights reserved.
Cross-Shore Exchange on Natural Beaches
2014-09-01
87 Figure 2. Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines
Orthogonality catastrophe and fractional exclusion statistics
NASA Astrophysics Data System (ADS)
Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.
2018-02-01
We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
Orthogonality catastrophe and fractional exclusion statistics.
Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R
2018-02-01
We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vubangsi, M.; Tchoffo, M.; Fai, L. C.
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbiotti, G.; Tacchi, S.; Montoncello, F.
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained bymore » dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.« less
NASA Astrophysics Data System (ADS)
Pandey, Binod Prasad
Nanoporous gold (NPG) is a versatile material of high surface area to volume ratio that can be readily modified with self-assembled monolayers of alkanethiols to which biomolecules can be linked. NPG presents new opportunities for the development of immunoassays, and for the development of carbohydrate based assays. This thesis explores the use of NPG as a support for self-assembled monolayers, their linkage to antibody-enzyme conjugates for immunoassay development, and for the study and application of carbohydrate-protein interactions. Direct kinetic electrochemical immunoassays were developed on NPG for prostate specific antigen (PSA) and carcinoembryonic antigen (CEA). The decrease in enzymatic conversion of p-aminophenylphosphate to p-aminophenol, by alkaline phosphatase conjugated to an antibody, due to steric hindrance caused by the presence of antigen on antibody, was observed as a drop in peak current in square-wave voltammetry. Detection limit of these assays was 0.075 ng mL -1 and 0.015 ng mL-1 for PSA and CEA, respectively. Similarly, the linear range of determination of these biomarkers extended up to 30 ng mL-1 and 10 ng mL-1 for PSA and CEA, respectively. Minimal interference was observed using newborn calf serum as a substitute for the human serum matrix. A rapid and sensitive enzyme linked lectinsorbant assay was also developed for the study of glycoprotein-lectin interactions on the NPG surface. Self-assembled monolayers of alkanethiols on NPG were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Similarly, the applicability of this surface for the formation of carbohydrate monolayers and its application for lectin carbohydrate interactions was also studied. Pure and mixed SAMs of 8-mercaptooctyl β-D-mannopyranoside (αMan-C8-SH) and α-D-Gal-(1→4)-β-D-Gal-(1α)-D-Glc-1-O-mercaptooctane (Gb3-C8-SH) with alkanethiols having varying tail groups were prepared. Binding affinity and binding kinetics of concanavalin A to mannoside and soybean agglutinin to galactose in these SAMs were found to be different on NPG than on flat polycrystalline gold, and was also sensitive to the chemical composition of the modified surfaces.
Enzymatic biosensors based on ingá-cipó peroxidase immobilised on sepiolite for TBHQ quantification.
Regina de Oliveira, Tássia; Grawe, Gregory Ferreira; Moccelini, Sally Katiuce; Terezo, Ailton J; Castilho, Marilza
2014-05-07
Sepiolite clay mineral was used as a support for the immobilisation of the peroxidase enzyme from ingá-cipó (Inga edulis Mart.) and was used with graphite powder, multi-walled carbon nanotubes (CNTs), mineral oil, and nafion 0.5% (v/v) in the development of a new biosensor for the determination of the antioxidant tert-butylhydroquinone (TBHQ) by square-wave voltammetry (SWV). For the optimisation and application of the biosensor, several parameters were investigated to determine the optimum experimental conditions using SWV. The best performance was obtained using a 0.1 mol L(-1) phosphate buffer solution (pH 7.0), 4.0 × 10(-4) mol L(-1) hydrogen peroxide, a frequency of 50 Hz, a pulse amplitude of 60 mV, and a scan increment of 6 mV. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The analytical curve revealed a linear response range of 1.65 to 9.82 mg L(-1) (r = 0.994) with detection and quantification limits of 0.41 and 1.25 mg L(-1). A recovery study of TBHQ in salad dressing samples yielded values from 99.6-104.8%. The proposed biosensor was successfully used for the determination of TBHQ in commercial salad dressing samples, giving a relative error of 5.4% in relation to the comparative method (chromatographic).
Wong, Ademar; Santos, Anderson Martin; Silva, Tiago Almeida; Fatibello-Filho, Orlando
2018-06-01
We explored the use of carbon black (CB), graphene oxide (GO), copper nanoparticles (CuNPs) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode materials for the simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine. The designed nanostructured surface was widely characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), contact angle measurements and electrochemistry. From electrochemical characterization assays carried out towards the potassium ferricyanide redox probe, fast electron transfer kinetics and a considerably higher electroactive surface area were observed for the modified electrodic surface based on CB, GO, CuNPs and PEDOT:PSS film. Using square-wave voltammetry (SWV), well defined and resolved anodic peaks were detected for isoproterenol, acetaminophen, folic acid, propranolol and caffeine, with peak-to-peak potential separation not less than 170 mV. Then, the SWV technique was explored for the simultaneous determination of quinary mixtures of these analytes, resulting in analytical curves with linear ranges and limits of detection at micromolar concentration levels. The practical viability of the proposed voltammetric sensor was illustrated in the analysis of human body fluid samples. The proposed sensor showed good repeatability and a successful application using urine and serum matrices, with recoveries close to 100%. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Dan; Chen, Aiqiong; Xie, Yunying
2011-05-15
A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. Themore » proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.« less
da Silva, Cristiano P; Franzoi, Ana C; Fernandes, Suellen C; Dupont, Jairton; Vieira, Iolanda C
2013-04-10
A biosensor based on the iridium nanoparticles dispersed in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (Ir-BMI·PF6) and a celery (Apium graveolens) extract as a source of polyphenol oxidase (PPO) was constructed. A modified support based on β-cyclodextrin (β-CDEP) was used for enzyme immobilization. The behavior of phenolic compounds was investigated by square-wave voltammetry and rutin was selected by presenting the greatest signal. The best performance was obtained with a composition of 70:10:10:10% (w/w/w/w) of the graphite powder:β-CDEP:Nujol:Ir-BMI·PF6 composition, a PPO concentration of 500unitsmL(-1), in 0.1M phosphate buffer solution (pH 6.0) with frequency, pulse amplitude and scan increment at 100Hz, 60mV, and 3.0mV, respectively. Under optimized conditions, the cathodic currents increased linearly for the rutin concentration range of 1.3×10(-7)-2.0×10(-6)M with a detection limit of 7.9×10(-8)M. This sensor demonstrated acceptable repeatability and reproducibility and the results for the rutin recovery ranged from 92.8 to 103.4%. A relative error of 0.7% was obtained in the rutin determination in simulated samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Trnkova, Libuse; Krizkova, Sona; Adam, Vojtech; Hubalek, Jaromir; Kizek, Rene
2011-01-15
In this paper, heavy metal biosensor based on immobilization of metallothionein (MT) to the surface of carbon paste electrode (CPE) via anti-MT-antibodies is reported. First, the evaluation of MT electroactivity was done. The attention was focused on the capturing of MT to the CPE surface. Antibodies incorporated and mixed into carbon paste were stable; even after two weeks the observed changes in signal height were lower than 5%. Further, the interaction of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by square-wave voltammetry. In the voltammogram, two signals--labelled as cys(MT) and W(a)--were observed. The cys(MT) corresponded to -SH moieties of MT and W(a) corresponded to tryptophan residues of chicken antibodies. Time of interaction (300 s) and MT concentration (125 μg/ml) were optimized to suggest a silver(I) ions biosensor. Biosensor (CPE modified with anti-MT antibody) prepared under the optimized conditions was then used for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions was estimated as 0.5 nM. The proposed biosensor was tested by detection spiking of silver(I) ions in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104%. Copyright © 2010 Elsevier B.V. All rights reserved.
MetILs 3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids
Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.; ...
2017-07-26
We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infraredmore » spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.« less
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.
2018-05-01
In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.
Perdomo, Yeny; Arancibia, Verónica; Nagles, Edgar
2017-01-01
A fast, sensitive, and selective method for the simultaneous determination of one pair of synthetic colorants commonly found mixed in food products, Amaranth (AM) and Tartrazine (TZ), based on their adsorption and oxidation on a screen-printed electrode (SPE) is presented. The variation of peak current with pH, supporting electrolyte, adsorption time, and adsorption potential were optimized using square wave adsorptive voltammetry. The optimal conditions were found to be: pH 3.2 (PBS), Eads 0.00 V, and tads 30 s. Under these conditions, the AM and TZ signals were observed at 0.56 and 0.74 V, respectively. A linear response were found over the 0.15 to 1.20 µmol L−1 and 0.15 to 0.80 µmol L−1 concentrations, with detection limits (3σ/slope) of 26 and 70 nmol L−1 for AM and TZ, respectively. Reproducibility for 17.7 µmol L–1 AM and TZ solutions were 2.5 and 3.0% (n = 7), respectively, using three different electrodes. The method was validated by determining AM and TZ in spiked tap water and unflavored gelatin spiked with AM and TZ. Because a beverage containing both AM and TZ was not found, the method was applied to the determination of AM in a kola soft drink and TZ in an orange jelly and a soft drink powder. PMID:29156561
Effect of current on spectrum of breaking waves in water of finite depth
NASA Technical Reports Server (NTRS)
Tung, C. C.; Huang, N. E.
1987-01-01
This paper presents an approximate method to compute the mean value, the mean square value and the spectrum of waves in water of finite depth taking into account the effect of wave breaking with or without the presence of current. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first obtained using the wave energy flux balance equation without considering wave breaking. The Miche wave breaking criterion for waves in finite water depth is used to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and its second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value and the spectrum are obtained. These results are applied to the case in which a deep water unidirectional wave train, propagating normally towards a straight shoreline over gently varying sea bottom of parallel and straight contours, encounters an adverse steady current whose velocity is assumed to be uniformly distributed with depth. Numerical results are obtained and presented in graphical form.
Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A
2013-07-01
Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.
Kalimuthu, Palraj; Heath, Matthew D; Santini, Joanne M; Kappler, Ulrike; Bernhardt, Paul V
2014-01-01
We describe the catalytic voltammograms of the periplasmic arsenite oxidase (Aio) from the chemolithoautotrophic bacterium Rhizobium sp. str. NT-26 that oxidizes arsenite to arsenate. Electrochemistry of the enzyme was accomplished using its native electron transfer partner, cytochrome c552 (cyt c552), as a mediator. The protein cyt c552 adsorbed on a mercaptoundecanoic acid (MUA) modified Au electrode exhibited a stable, reversible one-electron voltammetric response at +275mV vs NHE (pH6). In the presence of arsenite and Aio the voltammetry of cyt c552 is transformed from a transient response to an amplified sigmoidal (steady state) wave consistent with an electro-catalytic system. Digital simulation was performed using a single set of parameters for all catalytic voltammetries obtained at different sweep rates and various substrate concentrations. The obtained kinetic constants from digital simulation provide new insight into the kinetics of the NT-26 Aio catalytic mechanism. © 2013.
Borthakur, R; Kumar, A; Lal, R A
2015-10-05
Synthesis, structural characterization and redox properties of three heterobimetallic complexes with formule {[NiCu(L(n))(CH3OH)3]·CH3OH} using [Cu(H2L(n))(H2O)] as metalloligand have been demonstrated in the present paper. Electronic spectroscopy suggests that the copper center has a pseudo square pyramidal stereochemistry in all the complexes while the nickel center has a distorted octahedral stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Hui; Chen, Yueyuan; Chu, Daping; Feng, Shiwei; Zhang, Yingqiao; Wang, Pengfei
2016-09-01
The fatigue of lead zirconate titanate (PZT) thin films was measured under repetitive switching using asymmetric square waves. The remnant polarization and coercive voltage were found to present regular changes in the initial 10 s, independent of the asymmetry or frequency of switching waves. We attributed the change to the relaxation of stress in the film and identified a coercive voltage V 0 of 0.6 V for the stress-free film. By comparing the coercive voltage and V 0, we found that a built-in electric field was induced by asymmetric switching, where the direction and magnitude were dependent on the degree of waveform asymmetry. Furthermore, the fatigue speed was suggested to be closely related to the generation rate of oxygen vacancies. It was confirmed by our result that a faster decay of remnant polarization can be obtained by applying square waves with a higher degree of asymmetry or symmetry of square waves with a lower frequency.
1991-05-01
vaveshapea. While the use of high scan rates enhances the effect of electrode kinetics upon the voltametry , the deleterious coupled influence of pa 20...waveshapes. While the use of high scan rates enhances the effect of electrode kinetics upon the voltametry , the deleterious coupled influence of P...2 1 Aoki et al have in- 23 vestigated linear sweep voltammetry at microdisks in the reversible case, and Zoski and co-workers have developed
NASA Astrophysics Data System (ADS)
Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying
2010-04-01
In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.
Ionization tube simmer current circuit
Steinkraus, R.F. Jr.
1994-12-13
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.
Ionization tube simmer current circuit
Steinkraus, Jr., Robert F.
1994-01-01
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.
Majumdar, Kingshuk
2011-03-23
The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1982-01-01
The sample LANDSAT-4 TM tape (7 bands) of NE Arkansas/Tennessee area was received and displayed. Snow reflectance in all 6 TM reflective bands, i.e. 1, 2, 3, 4, 5, and 7 was simulated, using Wiscombe and Warren's (1980) delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. One of the objectives is to interpret surface optical grain size of snow, for spectral extension of albedo. While TM data of the study area are not received, simulation results are encouraging. It also appears that the TM filters resemble a "square-wave" closely enough to permit assuming a square-wave in calculations. Integrated band reflectance over the actual response functions was simulated, using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
NASA Astrophysics Data System (ADS)
Dumlao, Morphy C.; Xiao, Dan; Zhang, Daming; Fletcher, John; Donald, William A.
2017-04-01
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, 2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for 50 h by common 9 V-battery (PP3).
Optical NOR logic gate design on square lattice photonic crystal platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in
We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.
A second-order all-digital phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Tegnelia, C. R.
1974-01-01
A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.
Multiple soliton production and the Korteweg-de Vries equation.
NASA Technical Reports Server (NTRS)
Hershkowitz, N.; Romesser, T.; Montgomery, D.
1972-01-01
Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.
Wang, Pan; Zhao, Kangjun; Xiao, Xiaosheng; Yang, Changxi
2017-11-27
We report on the first demonstration of dual-wavelength square-wave pulses in a thulium-doped fiber laser. Under appropriate cavity parameters, dual-wavelength dissipative soliton resonances (DSRs) and domain wall solitons (DWSs) are successively obtained. Meanwhile, dark pulses generation is achieved at the dual-wavelength DWSs region due to the overlap of the two domain wall pulses. The fiber-based Lyot filter, conducted by inserting PMF between an in-line PBS and a PD-ISO, facilitates the generation of dual-wavelength operation. The polarization-resolved investigation suggests that the cross coupling between two orthogonal polarization components in the high nonlinear fiber plays an important role in the square-wave pulses formation. The investigation may be helpful for further understanding the square-wave pulse formation and has potential in application filed of multi-wavelength pulsed fiber lasers.
Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian
2016-01-01
We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.
Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.
2017-10-05
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less
Dengel, Donald R; Evanoff, Nicholas G; Marlatt, Kara L; Geijer, Justin R; Mueller, Bryon A; Lim, Kelvin O
2017-11-01
Hypercapnia has been utilized as a stimulus to elicit changes in cerebral blood flow (CBF). However, in many instances it has been delivered in a non-controlled method that is often difficult to reproduce. The purpose of this study was to examine the within- and between-visit reproducibility of blood oxygen level-dependent (BOLD) signal changes to an iso-oxic square wave alteration in end-tidal carbon dioxide partial pressure (P et CO 2 ). Two 3-Tesla (3T) MRI scans were performed on the same visit, with two square wave alterations administered per scan. The protocol was repeated on a separate visit with minimum of 3 days between scanning sessions. P et CO 2 was altered to stimulate changes in cerebral vascular reactivity (CVR), while P et O 2 was held constant. Eleven subjects (six females; mean age 26·5 ± 5·7 years) completed the full testing protocol. Excellent within-visit square wave reproducibility (ICC > 0·75) was observed. Similarly, square waves were reproducible between scanning sessions (ICC > 0·7). This study demonstrates BOLD signal changes in response to alterations in P et CO 2 are reproducible both within- and between-visit MRI scans. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Square wave jerks and anxiety as distinctive biomarkers for anorexia nervosa.
Phillipou, Andrea; Rossell, Susan Lee; Castle, David Jonathan; Gurvich, Caroline; Abel, Larry Allen
2014-12-02
The factors contributing to the cause and maintenance of anorexia nervosa (AN) are poorly understood, though increasing interest surrounds the neurobiological underpinnings of the condition. The examination of saccadic eye movements has proven useful in our understanding of the neurobiology of some other psychiatric illnesses, as they utilize identifiable brain circuits. Square wave jerks (SWJs), which describe an involuntary saccade away and back to fixation, have been observed to occur at abnormally high rates in neurodegenerative disorders and some psychiatric illnesses, but have not been examined in AN. Therefore, the aim of this study was to investigate whether individuals with AN and healthy control (HC) individuals differ in SWJ rate during attempted fixation. Square wave jerk frequency was compared across 23 female participants with AN and 22 HC participants matched for age, sex, and premorbid intelligence. Anorexia nervosa participants were found to make SWJs at a significantly higher rate than HC participants. The rate of SWJs in AN was also found to negatively correlate with anxiety. Square wave jerk rate and anxiety were found to correctly classify groups, with an accuracy of 87% for AN participants and 95.5% for HCs. Given our current understanding of saccadic eye movements, the findings suggest a potential role of γ-aminobutyric acid (GABA) in the superior colliculus, frontal eye fields, or posterior parietal cortex in the psychopathology of AN. © ARVO.
Jian, Jin-Ming; Liu, Yan-Yan; Zhang, Ye-Lei; Guo, Xi-Shan; Cai, Qiang
2013-01-01
In this study, reduced graphene oxide (rGO) was electrochemically deposited on the surface of screen-printed carbon electrodes (SPCE) to prepare a disposable sensor for fast detection of Pb2+ in foods. The SEM images showed that the rGO was homogeneously deposited onto the electrode surface with a wrinkled nanostructure, which provided 2D bridges for electron transport and a larger active area for Pb2+ adsorption. Results showed that rGO modification enhanced the activity of the electrode surface, and significantly improved the electrochemical properties of SPCE. The rGO modified SPCE (rGO-SPCE) was applied to detect Pb2+ in standard aqueous solution, showing a sharp stripping peak and a relatively constant peak potential in square wave anodic stripping voltammetry (SWASV). The linear range for Pb2+ detection was 5∼200 ppb (R2 = 0.9923) with a low detection limit of 1 ppb (S/N = 3). The interference of Cd2+ and Cu2+ at low concentrations was effectively avoided. Finally, the rGO-SPCE was used for determination of lead in real tap water, juice, preserved eggs and tea samples. Compared with results from graphite furnace atomic absorption spectroscopy (GFAAS), the results based on rGO-SPCE were both accurate and reliable, suggesting that the disposable sensor has great potential in application for fast, sensitive and low-cost detection of Pb2+ in foods. PMID:24077322
Grawe, Gregory Ferreira; de Oliveira, Tássia Regina; de Andrade Narciso, Esther; Moccelini, Sally Katiuce; Terezo, Ailton José; Soares, Marcos Antonio; Castilho, Marilza
2015-01-15
In this work, a biosensor was constructed by physical adsorption of the isolated endophytic fungus Eupenicillium shearii FREI-39 esterase on halloysite, using graphite powder, multi-walled carbon nanotubes and mineral oil for the determination of carbofuran pesticide by inhibition of the esterase using square-wave voltammetry (SWV). Specific esterase activities were determined each 2 days over a period of 15 days of growth in four different inoculation media. The highest specific activity was found on 6th day, with 33.08 U on PDA broth. The best performance of the proposed biosensor was obtained using 0.5 U esterase activity. The carbofuran concentration response was linear in the range from 5.0 to 100.0 µg L(-1) (r=0.9986) with detection and quantification limits of 1.69 µg L(-1) and 5.13 µg L(-1), respectively. A recovery study of carbofuran in spiked water samples showed values ranging from 103.8±6.7% to 106.7±9.7%. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The determination of carbofuran in spiked water samples using the proposed biosensor was satisfactory when compared to the chromatographic reference method. The results showed no significant difference at the 95% confidence level with t-test statistics. The application of enzymes from endophytic fungi in constructing biosensors broadens the biotechnological importance of these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Alizadeh, Taher
2014-11-15
In this study, the TNT-imprinted polymer shell was created on nano-sized Fe3O4 cores in order to construct the nano-sized magnetic molecularly imprinted polymer (nano-MMIP). For this purpose, the surface of the synthesized magnetic nanoparticles was modified with methacrylic acid. The modified particles were then utilized as the core on which the TNT-imprinted polymeric shell was synthesized. The synthesized materials were then characterized by scanning electron microscopy, FT-IR and thermal gravimetric analysis (TGA). The resulting nano-MMIP particles were suspended in TNT solution and then collected on the surface of a carbon paste electrode via a permanent magnet, situated within the CP electrode. The extracted TNT was analyzed on the CP electrode by applying square wave voltammetry (SWV). It was found that the oxidative signal of TNT is much favorable for TNT detection on the resulting magnetic carbon paste electrode. The electrode with nano-MMIP showed distinctly higher signal to TNT, compared to that containing magnetic non-imprinted polymer (MNIP) nanoparticles. All parameters influencing the method performance including extraction pH, extraction time and sorbent amount were evaluated and optimized. The developed method showed a dynamic linear concentration range of 1.0-130.0 nM for TNT measurement. The detection limit of the method was calculated to be 0.5 nM. The method showed appropriate capability for TNT analysis in real water samples. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe
2013-12-15
An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less
Yao, Juan; Zhang, Zhang; Deng, Zhenghua; Wang, Youqiang; Guo, Yongcan
2017-10-23
An isothermal, enzyme free, ultra-specific and ultra-sensitive protocol for electrochemical detection of miRNAs is proposed based on the toehold-mediated strand displacement reaction (SDR) and non-enzymatic catalytic hairpin reaction (CHA) recycling. The SDR was first triggered only in the presence of target miRNA and this process also affects other miRNA interferences having similar target sequences, thus guaranteeing a high discrimination factor and could be used in rare content miRNA detection with various amounts of interferences having similar target sequences. The output protector strand then triggered enzyme free CHA amplification and generates plenty of hairpin self-assembly products. This process in turn influences SDR equilibrium to move to the right and generates large amounts of protector output to ensure analysis sensitivity. Compared with traditional CHA, our proposed method greatly improved the signal to noise ratio and shows excellent performance in rare miRNA detection with miRNA analogue interference. Under the optimal experimental conditions and using square wave voltammetry, the established biosensor could detect target miRNA-21 down to 30 fM (S/N = 3) with a dynamic range from 100 fM to 2 nM, and discriminate rare target miRNA-21 from mismatched miRNA with high selectivity. This method holds great promise in miRNA detection from human cancer cell lines and would be a versatile and powerful tool for clinical molecular diagnostics.
Martínez-Mancera, Flavio Dolores; García-López, Patricia; Hernández-López, José Luis
2015-04-15
The ELISA format for measuring carcinoembryonic antigen (CEA) serves as a reference standard against which other assays are compared. Because the World Health Organization (WHO) increasingly recommends the use of serum CEA as a diagnostic tool for cancer, it is relevant to explore the reliability of the new decentralized CEA point-of-care-testing (POCT) technologies that are available to physicians and patients, in compliance with mandates of the clinical laboratories' regulatory agencies. Electrochemical immunoassay (ECIA) based on trace lead (Pb) analysis by anodic stripping techniques using sandwich-type immunocomplex conjugates: (MB)Ab/AgCEA/Ab(PbS), and a commercial ELISA test system with optical transmission. The ECIA provides better analytical performance than does the ELISA. The within assay precision coefficient of variance (%CVw) of the ECIA is lower than the value recommended by the Hong Kong Association of Medical Laboratories (HKAML), and the recoveries of CEA at 1.0, 5.0, 10.0, 25.0 and 50.0 ng/ml are in the range of 99-110% for control serum samples. The ECIA showed a minimal positive bias of 0.0267 ± 0.3270 ng/ml (P=0.9389). The proposed CEA screening technology can be practically employed for decentralized clinical analysis of CEA in human serum. Therefore, it can be viewed as a control method for personalized therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert
2013-01-01
The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544
Malecka, Kamila; Michalczuk, Lech; Radecka, Hanna; Radecki, Jerzy
2014-10-09
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
NASA Astrophysics Data System (ADS)
Samin, Adib; Wu, Evan; Zhang, Jinsuo
2017-02-01
Pyroprocessing technology is a promising tool for recycling nuclear fuel and producing high purity gadolinium for industrial applications. An efficient implementation of pyroprocessing entails a careful characterization of the electrochemical and transport properties of lanthanides in high temperature molten salts. In this work, the cyclic voltammetry signals of Gd in molten LiCl-KCl salt were recorded for a combination of three temperatures (723 K, 773 K, and 823 K) and three concentration levels (3 wt. %, 6 wt. %, and 9 wt. %) including concentration levels higher than previously reported and relevant for a realistic application of pyroprocessing for molten salt recycle, and the concentration effects were investigated. Four scan rates (200 mV/s to 500 mV/s) were used for each condition, and the signals were examined using conventional Cyclic Voltammetry (CV) analysis equations and by utilizing a two-plate Brunauer, Emmett, and Teller (BET) model accounting for mass diffusion, kinetics, adsorption, and the evolution of electrode morphology via a nonlinear least squares procedure for fitting the model to the experimental signals. It was determined that the redox process is quasi-reversible for the scan rates being used. Furthermore, the applicability of the conventional equations for CV analysis was shown to be problematic for the conditions used, and this is thought to be due to the fact that these equations were derived under the assumption of reversible conditions. The model-derived values for diffusivity are consistent with the literature and are shown to decrease with increasing concentration. This may be due to increased interactions at higher concentration levels. It was also shown that the formal redox potential increased with a concentration and was slightly more positive on the covered electrode.
Biosensors for hepatitis B virus detection.
Yao, Chun-Yan; Fu, Wei-Ling
2014-09-21
A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.
Functional significance of the pattern of renal sympathetic nerve activation.
Dibona, G F; Sawin, L L
1999-08-01
To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.
NASA Astrophysics Data System (ADS)
Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika
2018-02-01
A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).
Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan
2015-08-01
A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.
Simplified method for the calculation of irregular waves in the coastal zone
NASA Astrophysics Data System (ADS)
Leont'ev, I. O.
2011-04-01
A method applicable for the estimation of the wave parameters along a set bottom profile is suggested. It takes into account the principal processes having an influence on the waves in the coastal zone: the transformation, refraction, bottom friction, and breaking. The ability to use a constant mean value of the friction coefficient under conditions of sandy shores is implied. The wave breaking is interpreted from the viewpoint of the concept of the limiting wave height at a given depth. The mean and root-mean-square wave heights are determined by the height distribution function, which transforms under the effect of the breaking. The verification of the method on the basis of the natural data shows that the calculation results reproduce the observed variations of the wave heights in a wide range of conditions, including profiles with underwater bars. The deviations from the calculated values mostly do not exceed 25%, and the mean square error is 11%. The method does not require a preliminary setting and can be implemented in the form of a relatively simple calculator accessible even for an inexperienced user.
A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...
NASA Astrophysics Data System (ADS)
Parise, M.
2018-01-01
A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.
Acoustophoretic particle motion in a square glass capillary
NASA Astrophysics Data System (ADS)
Barnkob, Rune; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.
2014-11-01
Acoustofluidics applications often use complex resonator geometries and complex acoustic actuation, which complicates the prediction of the acoustic resonances and the induced forces from the acoustic radiation and the acoustic streaming. Recently, it was shown that simultaneous actuation of two perpendicular half-wave resonances in a square channel can lead to acoustic streaming that will spiral small particles towards the pressure nodal center (Antfolk, Anal. Chem. 84, 2012). This we investigate in details experimentally by examining a square glass capillary with a 400- μm microchannel acoustically actuated around its 2-MHz half-wave transverse resonance. The acoustic actuation leads to the formation of a half-wave resonance in both the vertical and horizontal direction of the microchannel. Due to viscous and dissipative losses both resonances have finite widths, but are shifted in frequency due to asymmetric actuation and fabrication tolerances making the channel not perfectly square. We determine the resonance widths and shift by measuring the 3D3C trajectories of large particles whose motion is fully dominated by acoustic radiation forces, while the induced acoustic streaming is determined by measuring smaller particles weakly influenced by the acoustic radiation force. DFG KA 1808/16-1.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
Response functions for sine- and square-wave modulations of disparity.
NASA Technical Reports Server (NTRS)
Richards, W.
1972-01-01
Depth sensations cannot be elicited by modulations of disparity that are more rapid than about 6 Hz, regardless of the modulation amplitude. Vergence tracking also fails at similar modulation rates, suggesting that this portion of the oculomotor system is limited by the behavior of disparity detectors. For sinusoidal modulations of disparity between 1/2 to 2 deg of disparity, most depth-response functions exhibit a low-frequency decrease that is not observed with square-wave modulations of disparity.
Optimal decay rate for the wave equation on a square with constant damping on a strip
NASA Astrophysics Data System (ADS)
Stahn, Reinhard
2017-04-01
We consider the damped wave equation with Dirichlet boundary conditions on the unit square parametrized by Cartesian coordinates x and y. We assume the damping a to be strictly positive and constant for x<σ and zero for x>σ . We prove the exact t^{-4/3}-decay rate for the energy of classical solutions. Our main result (Theorem 1) answers question (1) of Anantharaman and Léautaud (Anal PDE 7(1):159-214, 2014, Section 2C).
Faraday wave patterns on a square cell network
NASA Astrophysics Data System (ADS)
Peña-Polo, Franklin; Vargas, Carlos A.; Vásquez-González, Benjamín; Medina, Abraham; Trujillo, Leonardo; Klapp, Jaime; Sigalotti, Leonardo Di G.
2017-05-01
We present the experimental observations of the Faraday instability when the vibrated liquid is contained in a network of small square cells for exciting frequencies in the range 10≤ F≤ 24 Hz. A sweep of the parameter space has been performed to investigate the amplitudes and frequencies of the driving force for which different patterns form over the network. Regular patterns in the form of square lattices are observed for driving frequencies in the range 10≤ F<14 Hz, while ordered matrices of oscillons are formed for 14
Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds
NASA Astrophysics Data System (ADS)
Lassas, Matti; Uhlmann, Gunther; Wang, Yiran
2018-06-01
We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.
Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets
NASA Astrophysics Data System (ADS)
Singh, Iqbal; Kaur, Bikramjeet
2018-05-01
The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.
The Joint CCSDS-SFCG Modulation Study--A Comparison of Modulation Schemes
NASA Technical Reports Server (NTRS)
Martin, W. L.; Nguyen, T. M.
1994-01-01
This paper compares the various modulation schemes, namely, PCM/PSK/PM, PCM/PM and BPSK. The subcarrier wave form for PCM/PSK/PM can be either square wave or sine wave, and the data format for PCM/PM and BPSK can be wither NRZ or Bi-phase.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
NASA Astrophysics Data System (ADS)
Igra, Dan; Igra, Ozer
2018-05-01
The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.
AMLSA Algorithm for Hybrid Precoding in Millimeter Wave MIMO Systems
NASA Astrophysics Data System (ADS)
Liu, Fulai; Sun, Zhenxing; Du, Ruiyan; Bai, Xiaoyu
2017-10-01
In this paper, an effective algorithm will be proposed for hybrid precoding in mmWave MIMO systems, referred to as alternating minimization algorithm with the least squares amendment (AMLSA algorithm). To be specific, for the fully-connected structure, the presented algorithm is exploited to minimize the classical objective function and obtain the hybrid precoding matrix. It introduces an orthogonal constraint to the digital precoding matrix which is amended subsequently by the least squares after obtaining its alternating minimization iterative result. Simulation results confirm that the achievable spectral efficiency of our proposed algorithm is better to some extent than that of the existing algorithm without the least squares amendment. Furthermore, the number of iterations is reduced slightly via improving the initialization procedure.
Wear, Keith A
2010-10-01
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.
2016-01-01
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs. PMID:27934904
NASA Astrophysics Data System (ADS)
Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.
2016-12-01
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.
Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J
2016-12-09
The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.
2007-02-01
Waves in a Cloudy Vortex DAVID A. SCHECTER Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado MICHAEL T. MONTGOMERY...waves account for precessing tilts and elliptical (triangular, square, etc.) deformations of the vortex core. If the Rossby number of the cyclone ex...ceeds unity, its baroclinic VR waves can efficiently ex- Corresponding author address: Dr. David Schecter, NorthWest Research Associates, 14508 NE 20th
Voltammetry at the Thin-Film Mercury Electrode (TFME).
ERIC Educational Resources Information Center
Pomeroy, R. S.; And Others
1989-01-01
Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
Polarization switching of sodium guide star laser for brightness enhancement
NASA Astrophysics Data System (ADS)
Fan, Tingwei; Zhou, Tianhua; Feng, Yan
2016-07-01
The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.
Amplification of a high-frequency electromagnetic wave by a relativistic plasma
NASA Technical Reports Server (NTRS)
Yoon, Peter H.
1990-01-01
The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
NASA Technical Reports Server (NTRS)
Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Thorpe, J. I.
2016-01-01
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
NASA Astrophysics Data System (ADS)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
Pulse Voltammetry in Single Cells Using Platinum Microelectrodes
1991-11-22
E. and the range for Ed in multiple pulse voltammetry can be chosen from examination of voltammograms obtained by cyclic voltammetry or lin-ir sweep ... voltametry [3,13]. As pointed out by Sinru et al. [14) the potential and time of each pulse has a direct effect on the nature of the voltammetry
Ugliano, Maurizio
2016-12-01
This work describes the application of disposable screen printed carbon paste sensors for the analysis of the main white wine oxidizable compounds as well as for the rapid fingerprinting and classification of white wines from different grape varieties. The response of individual white wine antioxidants such as flavanols, flavanol derivatives, phenolic acids, SO2 and ascorbic acid was first assessed in model wine. Analysis of commercial white wines gave voltammograms featuring two unresolved anodic waves corresponding to the oxidation of different compounds, mostly phenolic antioxidants. Calculation of the first order derivative of measured current vs. applied potential allowed resolving these two waves, highlighting the occurrence of several electrode processes corresponding to the oxidation of individual wine components. Through the application of Principal Component Analysis (PCA), derivative voltammograms were used to discriminate among wines of different varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stress Wave E-Rating of Structural Timber—Size and Moisture Content Effects
Xiping Wang
2013-01-01
The objectives of this study were to investigate the influence of cross sectional size and moisture content on stress wave properties of structural timber in various sizes and evaluate the feasibility of using stress wave method to E-rate timber in green conditions. Four different sizes of Douglas-fir (Pseudotsuga menziesii) square timbers were...
Importance of Fluctuations in Light on Plant Photosynthetic Acclimation1[CC-BY
2017-01-01
The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field. PMID:28184008
Oil Slick Observation at Low Incidence Angles in Ku-Band
NASA Astrophysics Data System (ADS)
Panfilova, M. A.; Karaev, V. Y.; Guo, Jie
2018-03-01
On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-11-01
The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp; Zheng, Rencheng; Nakano, Kimihiko
Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analyticalmore » model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.« less
1981-04-01
acceleration of gravity H wave height H average wave height Hrms root-mean-square wave height Hs significant wave height IX longshore transport rate in...wave height, H, measured during the tests (and discussed later in Section IV) is equal to Hrms . By rewriting equation (4), S ( Cg cos.) C (7) xy 8 Cg...only for conditions where H equals Hrms * 2. Energy Flux. In literature, the longshore transport rate has been empirically related most frequently to a
Some simple solutions of Schrödinger's equation for a free particle or for an oscillator
NASA Astrophysics Data System (ADS)
Andrews, Mark
2018-05-01
For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.
Zhang, Sen; Ma, Hongmin; Yan, Liangguo; Cao, Wei; Yan, Tao; Wei, Qin; Du, Bin
2014-09-15
Constructions of versatile electroactive labels are key issues in the development of electrochemical immunosensors. In this study, copper-doped titanium dioxide nanoparticle (Cu@TiO2) was synthesized and used as labels for fabrication of sandwich-type electrochemical immunosensors on glassy carbon electrode (GCE). Due to the presence of copper ions, Cu@TiO2 shows a strong response current when coupled to an electrode. The prepared nanocomposite also shows high electrocatalytic activity towards reduction of hydrogen peroxide (H2O2). The dual functionality of Cu@TiO2 enables the fabrication of immunosensor using different detection modes, that is, square wave voltammetry (SWV) or chronoamperometry (CA). While Cu@TiO2 was used as labels of secondary antibodies (Ab2), carboxyl functionalized graphene oxide (CFGO) was used as electrode materials to immobilize primary antibodies (Ab1). Using human immunoglobulin G (IgG) as a model analyte, the immunosensor shows high sensitivity, acceptable stability and good reproducibility for both detection modes. Under optimal conditions, a linear range from 0.1 pg/mL to 100 ng/mL with a detection limit of 0.052 pg/mL was obtained for SWV analysis. For CA analysis, a wider linear range from 0.01 pg/mL to 100 ng/mL and a lower detection limit of 0.0043 pg/mL were obtained. The proposed metal ion-based enzyme-free and noble metal-free immunosensor may have promising applications in clinical diagnoses and many other fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Santos-Cancel, Mirelis; Lazenby, Robert A; White, Ryan J
2018-06-22
In this manuscript, we employ the technique intermittent pulse amperometry (IPA) to interrogate equilibrium and kinetic target binding to the surface of electrochemical, aptamer-based (E-AB) sensors, achieving as fast as 2 ms time resolution. E-AB sensors comprise an electrode surface modified with a flexible nucleic acid aptamer tethered at the 3'-terminus with a redox-active molecule. The introduction of a target changes the conformation and flexibility of the nucleic acid, which alters the charge transfer rate of the appended redox molecule. Typically, changes in charge transfer rate within this class of sensor are monitored via voltammetric methods. Here, we demonstrate that the use of IPA enables the detection of changes in charge transfer rates (i.e., current) at times <100 μs after the application of a potential pulse. Changes in sensor current are quantitatively related to target analyte concentration and can be used to create binding isotherms. Furthermore, the application of IPA enables rapid probing of the electrochemical surface with a time resolution equivalent to as low as twice the applied potential pulse width, not previously demonstrated with traditional voltammetric techniques employed with E-AB sensors (alternating current, square wave, cyclic). To visualize binding, we developed false-color plots analogous to those used in the field of fast-scan cyclic voltammetry. The use of IPA is universal, as demonstrated with two representative small molecule E-AB sensors directed against the aminoglycoside antibiotic tobramycin and adenosine triphosphate (ATP). Intermittent pulse amperometry exhibits an unprecedented sub-microsecond temporal response and is a general method for measuring rapid sensor performance.
Zhang, Yi; Zeng, Guang Ming; Tang, Lin; Chen, Jun; Zhu, Yuan; He, Xiao Xiao; He, Yan
2015-01-20
An electrochemical sensor was developed for attomolar Hg(2+) detection. Three single-stranded DNA probes were rationally designed for selective and sensitive detection of the target, which combined T-Hg(2+)-T coordination chemistry and the characteristic of convenient modification of electrochemical signal indicator. Graphene and nanoAu were successively electrodeposited on a glass carbon electrode surface to improve the electrode conductivity and functionalize with the 10-mer thymine-rich DNA probe (P1). NanoAu carriers functionalized with 29-mer guanine-rich DNA probe (P3) labeled methyl blue (MB-nanoAu-P 3s) were used to further strengthen signal response. In the presence of Hg(2+), a T-T mismatched dsDNA would occur between P1 and a 22-mer thymine-rich DNA probe (P2) on the electrode surface due to T-Hg(2+)-T coordination chemistry. Followed by adding the MB-nanoAu-P 3s for hybridization with P2, square wave voltammetry was executed. Under optimal conditions, Hg(2+) could be detected in the range from 1.0 aM to 100 nM with a detection limit of 0.001 aM. Selectivity measurements reveal that the sensor is specific for Hg(2+) even with interference by high concentrations of other metal ions. Three different environmental samples were analyzed by the sensor and the results were compared with that from an atomic fluorescence spectrometry. The developed sensor was demonstrated to achieve excellent detectability. It may be applied to development of ultrasensitive detection strategies.
Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ai Cheng; Du, Dan; Chen, Baowei
2014-09-07
Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection wasmore » studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.« less
Kling, Beata; Bücherl, Daniel; Palatzky, Peter; Matysik, Frank-Michael; Decker, Michael; Wegener, Joachim; Heilmann, Jörg
2014-03-28
A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput.
Electrochemical Biosensor for the Detection of Glycated Albumin.
Mikula, Edyta; Wyslouch-Cieszynska, Aleksandra; Zhukova, Liliya; Verwilst, Peter; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna
2017-01-01
Alzheimer's disease (AD) is the most common form of dementia. The process of AD can begin 20 years before any symptom of cognitive loss. Thus, the development of systems for early diagnosis and prevention is very important. The mechanism of AD is still under debate. Nevertheless, higher levels of glycated albumin in cerebrospinal fluid and plasma are observed in AD patients. Therefore, glycated albumin could be a biomarker of AD development. Electrochemical biosensor for direct determination of glycated albumin was based on thiol derivative of pentetic acid (DTPA) complex with Cu(II) created on gold electrode surface. His-tagged domains of Receptors for Advanced Glycation End Products (RAGE) were applied as analytical active element for glycated albumin recognition. The binding of glycated albumin by His6- RAGE domains was monitored using Osteryoung square - wave voltammetry. Electrodes modified with His6 - RAGE VC1 natural domain generated decrease of Cu(II) redox currents in the presence of glycated albumin. Human albumin, Aβ 1-40 and S100B protein caused negligible influence on biosensors responses towards glycated albumin. The detection limits were: 2.3 pM, 1.1 pM, 2.9 pM and 3.1 pM in the presence of: buffer, buffer + albumin, buffer + S100B, buffer + Aβ1-40 , respectively. The presented electrochemical biosensor was successfully applied for the determination of glycated albumin. Considering analytical parameters such as good selectivity and sensitivity in pM range, biosensor could be recommended as an analytical tool for medical samples analysis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Serafín, V; Úbeda, N; Agüí, L; Yáñez-Sedeño, P; Pingarrón, J M
2012-05-01
In this paper, an electrochemical magneto-immunosensor for the detection of human growth hormone (hGH) is described for the first time. The immunosensor involves the use of tosyl-activated magnetic microparticles (TsMBs) to covalently immobilize a monoclonal mAbhHG antibody. A sandwich-type immunoassay with a secondary pAbhGH antibody and anti-IgG labelled with alkaline phosphatase (anti-IgG-AP) was employed. TsMBs–mAbhGH–hGH–pAbhGH–anti-IgG-AP conjugates were deposited onto the surface of a screen-printed gold electrode using a small neodymium magnet, and electrochemical detection was performed by square-wave voltammetry upon the addition of 4-aminophenyl phosphate as the AP substrate. All the variables involved in the preparation of immunoconjugates and in the immunoassay protocol were optimized. A calibration curve for hGH was constructed with a linear range between 0.01 and 100 ng/mL (r = 0.998) and a limit of detection of 0.005 ng/mL. This value is nearly three orders of magnitude lower than that obtained using surface plasmon resonance (Treviño et al., Talanta 78:1011-1016, 2009). Furthermore, good repeatability, with RSD = 3% (n = 10) at the 1-ng/mL hGH level, was obtained. Cross-reactivity studies with other hormones demonstrated good selectivity. The magneto-immunosensor was applied to the analysis of human serum spiked with hGH at the 4- and 0.1-ng/mL levels. Mean recoveries of 96 ± 6% and 99 ± 2%, respectively, were obtained.
An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.
Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás
2016-02-04
Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.
Spin configurations on a decorated square lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mert, Gülistan; Mert, H. Şevki
Spin configurations on a decorated square lattice are investigated using Bertaut’s microscopic method. We have obtained collinear and non-collinear (canted) modes for the given wave vectors in the ground state. We have found ferromagnetic and antiferromagnetic commensurate spin configurations. We have found canted incommensurate spin configurations.
Oscillation of a polymer gel entrained with a periodic force.
Shiota, Takaya; Ikura, Yumihiko S; Nakata, Satoshi
2013-02-21
The oscillation of a polymer gel induced by the Belousov-Zhabotinsky (BZ) reaction was investigated under an external force composed of a square wave. The oscillation of the BZ reaction entrained to the periodic force and the features of this entrainment changed depending on the period and duty cycle of the square wave. The experimental results suggest that the change in the volume of the gel also gave feedback to the BZ reaction. The mechanism of entrainment is discussed in relation to the compression of the gel and the reaction-diffusion system in the BZ reaction.
Silicon-controlled-rectifier square-wave inverter with protection against commutation failure
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1971-01-01
The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.
1974-01-01
A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.
Teaching Graphical Simulations of Fourier Series Expansion of Some Periodic Waves Using Spreadsheets
ERIC Educational Resources Information Center
Singh, Iqbal; Kaur, Bikramjeet
2018-01-01
The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…
Parameter identification of JONSWAP spectrum acquired by airborne LIDAR
NASA Astrophysics Data System (ADS)
Yu, Yang; Pei, Hailong; Xu, Chengzhong
2017-12-01
In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.
ERIC Educational Resources Information Center
Jewett, John W., Jr.
1991-01-01
Describes science demonstrations with light-emitting diodes that include electrical concepts of resistance, direct and alternating current, sine wave versus square wave, series and parallel circuits, and Faraday's Law; optics concepts of real and virtual images, photoresistance, and optical communication; and modern physics concepts of spectral…
Wear, Keith A
2013-04-01
The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.
Speckle evolution with multiple steps of least-squares phase removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Mingzhou; Dainty, Chris; Roux, Filippus S.
2011-08-15
We study numerically the evolution of speckle fields due to the annihilation of optical vortices after the least-squares phase has been removed. A process with multiple steps of least-squares phase removal is carried out to minimize both vortex density and scintillation index. Statistical results show that almost all the optical vortices can be removed from a speckle field, which finally decays into a quasiplane wave after such an iterative process.
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
2016-01-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W.-T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.
2018-04-01
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg^2 requires at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Appert, S; Arai, K; Araya, A; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Asada, H; Ascenzi, S; Ashton, G; Aso, Y; Ast, M; Aston, S M; Astone, P; Atsuta, S; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Awai, K; Babak, S; Bacon, P; Bader, M K M; Baiotti, L; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Fiore, L Di; Giovanni, M Di; Girolamo, T Di; Lieto, A Di; Pace, S Di; Palma, I Di; Virgilio, A Di; Doctor, Z; Doi, K; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Eda, K; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fujii, Y; Fujimoto, M-K; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hagiwara, A; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Hayama, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hirose, E; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Ioka, K; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Itoh, Y; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kagawa, T; Kajita, T; Kakizaki, M; Kalaghatgi, C V; Kalogera, V; Kamiizumi, M; Kanda, N; Kandhasamy, S; Kanemura, S; Kaneyama, M; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Kataoka, Y; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawai, N; Kawamura, S; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, H; Kim, J C; Kim, J; Kim, W; Kim, Y-M; Kimbrell, S J; Kimura, N; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Kojima, Y; Kokeyama, K; Koley, S; Komori, K; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kotake, K; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, Rahul; Kumar, Rakesh; Kuo, L; Kuroda, K; Kutynia, A; Kuwahara, Y; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mano, S; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marchio, M; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Matsumoto, N; Matsushima, F; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Michimura, Y; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyamoto, A; Miyamoto, T; Miyoki, S; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morii, W; Morisaki, S; Moriwaki, Y; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Nagano, S; Nakamura, K; Nakamura, T; Nakano, H; Nakano, Masaya; Nakano, Masayuki; Nakao, K; Napier, K; Nardecchia, I; Narikawa, T; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Ni, W-T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohashi, M; Ohishi, N; Ohkawa, M; Ohme, F; Okutomi, K; Oliver, M; Ono, K; Ono, Y; Oohara, K; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Peña Arellano, F E; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sago, N; Saijo, M; Saito, Y; Sakai, K; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sasaki, Y; Sassolas, B; Sathyaprakash, B S; Sato, S; Sato, T; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sekiguchi, T; Sekiguchi, Y; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shibata, M; Shikano, Y; Shimoda, T; Shoda, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somiya, K; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Sugimoto, Y; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Suzuki, T; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tagoshi, H; Takada, S; Takahashi, H; Takahashi, R; Takamori, A; Talukder, D; Tanaka, H; Tanaka, K; Tanaka, T; Tanner, D B; Tápai, M; Taracchini, A; Tatsumi, D; Taylor, R; Telada, S; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomaru, T; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Tsubono, K; Tsuzuki, T; Turconi, M; Tuyenbayev, D; Uchiyama, T; Uehara, T; Ueki, S; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Ushiba, T; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Putten, M H P M; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wakamatsu, T; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yamamoto, K; Yamamoto, T; Yancey, C C; Yano, K; Yap, M J; Yokoyama, J; Yokozawa, T; Yoon, T H; Yu, Hang; Yu, Haocun; Yuzurihara, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zeidler, S; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-01-01
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; van den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-01-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe
2016-04-20
New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.
Sines and Cosines. Part 1 of 3
NASA Technical Reports Server (NTRS)
Apostol, Tom M. (Editor)
1992-01-01
Applying the concept of similarities, the mathematical principles of circular motion and sine and cosine waves are presented utilizing both film footage and computer animation in this 'Project Mathematics' series video. Concepts presented include: the symmetry of sine waves; the cosine (complementary sine) and cosine waves; the use of sines and cosines on coordinate systems; the relationship they have to each other; the definitions and uses of periodic waves, square waves, sawtooth waves; the Gibbs phenomena; the use of sines and cosines as ratios; and the terminology related to sines and cosines (frequency, overtone, octave, intensity, and amplitude).
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Silambarasan, Krishnamoorthy; Narendra Kumar, Alam Venugopal; Joseph, James
2016-03-14
Charge transport in polymeric films bound by redox reagents is a topic of current interest. The dynamics of electroinactive ions across the interface is studied by immobilizing ferrocyanide anion in a polysilsesquioxanes (PSQs) modified electrode. Redox reagents can stay in the polymeric film by either physical forces or electrostatic binding. The present work describes the immobilization of ferro/ferricyanide redox couples in PSQ films possessing protonated amine functional groups by electrostatic interactions. Charge transport in [Fe(CN)6](4-)-PSQs film was found to be anion dependent, and its formal potential value varied with the relative hydrophilic or hydrophobic nature of the anion used in the supporting electrolyte, unlike the observed dependence on solution cation for electrodes modified with metal hexacyanoferrates (Prussian Blue analogues). The [Fe(CN)6](4-) bound PSQs films were extensively characterized by varying different supporting electrolytes anions using cyclic voltammetry. The redox peak currents were linearly proportional to the square root of the scan rate, implying that the transport of charge carriers is accompanied with redox ion diffusion and electron hopping in a confined space. dsDNA molecules were found to interact with this polymer matrix through anionic phosphate groups. Both voltammetry and A.C. impedance spectroscopy studies revealed that these interactions could be exploited for the determination of ultra-low level (0.5 attomolar) of dsDNA present in aqueous solution.
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
Prospects for gravitational wave astronomy with next generation large-scale pulsar timing arrays
NASA Astrophysics Data System (ADS)
Wang, Yan; Mohanty, Soumya D.
2018-02-01
Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries.
Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian
Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...
2013-05-15
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less
A study of the stress wave factor technique for the characterization of composite materials
NASA Technical Reports Server (NTRS)
Govada, A. K.; Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.
1985-01-01
This study has investigated the potential of the Stress Wave Factor as an NDT technique for thin composite laminates. The conventional SWF and an alternate method for quantifying the SWF were investigated. Agreement between the initial SWF number, ultrasonic C-scan, inplane displacements as obtained by full field moire interferometry, and the failure location have been observed. The SWF number was observed to be the highest when measured along the fiber direction and the lowest when measured across the fibers. The alternate method for quantifying the SWF used square root of the zeroth moment (square root of M sub o) of the frequency spectrum of the received signal as a quantitative parameter. From this study it therefore appears that the stress wave factor has an excellent potential to monitor damage development in thin composite laminates.
Ultrasonic tracking of shear waves using a particle filter.
Ingle, Atul N; Ma, Chi; Varghese, Tomy
2015-11-01
This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques.
Power conditioning system for energy sources
Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL
2008-05-13
Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.
Costas loop lock detection in the advanced receiver
NASA Technical Reports Server (NTRS)
Mileant, A.; Hinedi, S.
1989-01-01
The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.
Degradation in finite-harmonic subcarrier demodulation
NASA Technical Reports Server (NTRS)
Feria, Y.; Townes, S.; Pham, T.
1995-01-01
Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.
GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence
NASA Astrophysics Data System (ADS)
Lange, Jacob; LIGO-Virgo Collaboration
2018-01-01
The fourth gravitational wave detection was observed on the 14th of August 2017 announced on the 27th of September 2017. While LIGO observatories again contributed, this was the first detection that included data from the Virgo observatory in Pisa, Italy. The inferred masses of the initial black holes are 30.5 and 25.3 at the 90% credible level. The luminosity distance of the source is 540 Mpc, corresponding to a redshift of z = 0.11. Due to the addition of the third observatory, the sky localization of the source is improved from a 1160 square degrees to 60 square degrees.
NASA Astrophysics Data System (ADS)
Rebolledo, M. A.; Martinez-Betorz, J. A.
1989-04-01
In this paper the accuracy in the determination of the period of an oscillating signal, when obtained from the photon statistics time-interval probability, is studied as a function of the precision (the inverse of the cutoff frequency of the photon counting system) with which time intervals are measured. The results are obtained by means of an experiment with a square-wave signal, where the Fourier or square-wave transforms of the time-interval probability are measured. It is found that for values of the frequency of the signal near the cutoff frequency the errors in the period are small.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1974-01-01
A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.
Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2017-01-01
Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.
Canards in a minimal piecewise-linear square-wave burster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desroches, M.; Krupa, M.; Fernández-García, S., E-mail: soledad@us.es
We construct a piecewise-linear (PWL) approximation of the Hindmarsh-Rose (HR) neuron model that is minimal, in the sense that the vector field has the least number of linearity zones, in order to reproduce all the dynamics present in the original HR model with classical parameter values. This includes square-wave bursting and also special trajectories called canards, which possess long repelling segments and organise the transitions between stable bursting patterns with n and n + 1 spikes, also referred to as spike-adding canard explosions. We propose a first approximation of the smooth HR model, using a continuous PWL system, and show that itsmore » fast subsystem cannot possess a homoclinic bifurcation, which is necessary to obtain proper square-wave bursting. We then relax the assumption of continuity of the vector field across all zones, and we show that we can obtain a homoclinic bifurcation in the fast subsystem. We use the recently developed canard theory for PWL systems in order to reproduce the spike-adding canard explosion feature of the HR model as studied, e.g., in Desroches et al., Chaos 23(4), 046106 (2013).« less
True amplitude wave equation migration arising from true amplitude one-way wave equations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.
Analog circuit for the measurement of phase difference between two noisy sine-wave signals
NASA Technical Reports Server (NTRS)
Shakkottai, P.; Kwack, E. Y.; Back, L. H.
1989-01-01
A simple circuit was designed to measure the phase difference between two noisy sine waves. It locks over a wide range of frequencies and produces an output proportional to the phase difference of rapidly varying signals. A square wave locked in frequency and phase to the first signal is produced by a phase-locked loop and is amplified by an operational amplifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, Barbara; Iachello, Francesco; Macek, Michal
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Dietz, Barbara; Iachello, Francesco; Macek, Michal
2017-08-07
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Hua, Shih-Hao; Chen, Chao-Pin; Han, Pin
2017-08-01
The simple and nondestructive detection system studied in this work uses a near-infrared (NIR) detector and parallel-polarized (P-wave) NIR lasers to determine the soluble solids content (SSC) of apples. The P-wave NIR laser in this system is incident into the apple's pulp at the Brewster angle to minimize the interference caused by interfacial reflections. After the apple has been illuminated by four P-wave NIR lasers that correspond to the specified wavelengths of the SSC chemical bonds (880, 940, 980, and 1064 nm), the prediction of correlation (rp2) and the root-mean-square error for prediction (RMSEP) of the SSC are determined via partial least square regression analysis of the reflectance. Our results indicate that the use of P-wave lasers at the Brewster angle (as the angle of incidence) and the above specified wavelengths for the prediction set measurement of the SSC of apples obtained an rp2 of 0.88 and an RMSEP of 0.47°Brix. These rp2 are 6% higher, and the RMSEPs are 9% lower, than those obtained using non-polarized lasers.
High speed point derivative microseismic detector
Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.
1998-06-30
A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.
High speed point derivative microseismic detector
Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne
1998-01-01
A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.
ERIC Educational Resources Information Center
Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.
2009-01-01
Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…
Volume fraction instability in an oscillating non-Brownian iso-dense suspension.
NASA Astrophysics Data System (ADS)
Roht, Y. L.; Gauthier, G.; Hulin, J. P.; Salin, D.; Chertcoff, R.; Auradou, H.; Ippolito, I.
2017-06-01
The instability of an iso-dense non-Brownian suspension of polystyrene beads of diameter 40 μm dispersed in a water-glycerol mixture submitted to a periodic square wave oscillating flow in a Hele-Shaw cell is studied experimentally. The instability gives rise to stationary bead concentration waves transverse to the flow. It has been observed for average particle volume fractions between 0.25 and 0.4, for periods of the square wave flow variation between 0.4 and 10 s and in finite intervals of the amplitude of the fluid displacement. The study shows that the wavelength λ increases roughly linearly with the amplitude of the oscillatory flow; on the other hand, λ is independent of the particle concentration and of the period of oscillation of the flow although the minimum threshold amplitude for observing the instability increases with the period.
Luo, Jianfeng; Tian, Fengjun; Qu, Hongkun; Li, Li; Zhang, Jianzhong; Yang, Xinhua; Yuan, Libo
2017-08-20
We propose a kind of square porous-core photonic crystal fiber (PCF) for polarization-maintaining terahertz (THz) wave guidance. An asymmetry is introduced by implementing rectangular array air holes in the porous core of the PCF, and ultrahigh birefringence and low effective material loss (EML) can be achieved simultaneously. The properties of THz wave propagation are analyzed numerically in detail. The numerical results indicate that the proposed fiber offers a high birefringence of 0.063 and a low EML of 0.081 cm -1 at 1 THz. Moreover, a very low flattened dispersion profile is observed over a wide frequency domain of 0.85-1.9 THz. The zero flattened dispersion can be controlled. It is predicted that this PCF would be used potentially in polarization maintaining and dispersion management of THz waves.
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
Terahertz emission from thermally-managed square intrinsic Josephson junction microstrip antennas
NASA Astrophysics Data System (ADS)
Klemm, Richard; Davis, Andrew; Wang, Qing
We show for thin square microstrip antennas that the transverse magnetic electromagnetic cavity modes are greatly restricted in number due to the point group symmetry of a square. For the ten lowest frequency emissions, we present plots of the orthonormal wave functions and of the angular distributions of the emission power obtained from the uniform Josephson current source and from the excitation of an electromagnetic cavity mode excited in the intrinsic Josephson junctions between the layers of a highly anisotropic layered superconductor.
NASA Astrophysics Data System (ADS)
Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.
2018-01-01
A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.
Investigating the mechanism of aggregation of colloidal particles during electrophoretic deposition
NASA Astrophysics Data System (ADS)
Guelcher, Scott Arthur
Charged particles deposited near an electrode aggregate to form ordered clusters in the presence of both dc and ac applied electric fields. The aggregation process could have important applications in areas such as coatings technology and ceramics processing. This thesis has sought to identify the phenomena driving the aggregation process. According to the electroosmotic flow developed by Solomentsev et al. (1997), aggregation in dc electric fields is caused by convection in the electroosmotic flow about deposited particles, and it is therefore an electrokinetic phenomenon which scales linearly with the electric field and the zeta-potential of the particles. Trajectories of pairs of particles aggregating to form doublets have been shown to scale linearly with the electric field and the zeta-potential of the particles, as predicted by the electroosmotic flow model. Furthermore, quantitative agreement has been demonstrated between the experimental and calculated trajectories for surface-to-surface separation distances between the particles ranging from one to two radii. The trajectories were calculated from the electroosmotic flow model with no fitting parameters; the only inputs to the model were the mobility of the deposited particles, the zeta- potential of the particles, and the applied electric field, all of which were measured independently. Clustering of colloidal particles deposited near an electrode in ac fields has also been observed, but a suitable model for the aggregation process has not been proposed and quantitative data in the literature are scarce. Trajectories of pairs of particles aggregating to form doublets in an ac field have been shown to scale with the root-mean-square (rms) electric field raised to the power 1.4 over the range of electric fields 10-35 V/cm (100-Hz sine and square waves). The aggregation is also frequency dependent; the doublets aggregate fastest at 30 Hz (square wave) and slowest at 500 Hz (square wave), while the interaction is repulsive at 1 kHz (square wave). The advantage of ac fields is that the process can operated at frequencies sufficiently high to avoid the negative effects of electrochemical reactions.
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
Ultrasonic tracking of shear waves using a particle filter
Ingle, Atul N.; Ma, Chi; Varghese, Tomy
2015-01-01
Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Results: Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. Conclusions: The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques. PMID:26520761
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
Martín-Yerga, Daniel; Álvarez-Martos, Isabel; Blanco-López, M Carmen; Henry, Charles S; Fernández-Abedul, M Teresa
2017-08-15
In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 μg/L for both metals, sensitivity of analysis of 0.22 and 0.087 μA/ppb and limits of detection of 0.2 and 0.3 μg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results. Copyright © 2017 Elsevier B.V. All rights reserved.
Martínez, Noelia A; Pereira, Sirley V; Bertolino, Franco A; Schneider, Rudolf J; Messina, Germán A; Raba, Julio
2012-04-20
The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L(-1) with a detection limit (LOD) of 0.01 ng L(-1) and R.S.D.<4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roychoudhury, Appan; Prateek, Arneish; Basu, Suddhasatwa; Jha, Sandeep Kumar
2018-03-01
A nanostructured composite film comprising reduced graphene oxide (rGO) and nickel oxide (NiO) nanoparticles (NPs) has been prepared and utilized for development of a simple yet efficient sensor for detection of dopamine and epinephrine in a single run. The hybrid material rGO-NiO nanocomposite was synthesized chemically, and the formation of nanocomposite was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, UV-Vis, and Fourier transform infrared (FTIR) spectroscopic techniques. The incorporation of NiO NPs on rGO support was found to provide improved sensing characteristics at electrode interface due to enhanced electron mobility on rGO sheet and high catalytic activity of NiO NPs. Subsequently, the synthesized rGO-NiO nanocomposite was deposited onto indium tin oxide (ITO)-coated glass substrate by simple drop-casting method, and the electrode was characterized through atomic force microscopy (AFM) and scanning electron microscopic (SEM) studies. After optimization of experimental conditions electrochemically for its high sensitivity, the fabricated rGO-NiO/ITO electrode was used for simultaneous detection of dopamine and epinephrine by square wave voltammetry (SWV) method. The results showed high sensitivity of 0.545 and 0.638 μA/μM for dopamine and epinephrine respectively in a broad linear range of 0.5-50 μM. Moreover, remarkable detection limits of 0.495 and 0.423 μM were found for dopamine and epinephrine, and the developed sensor exhibited a wide separation of 380 mV between the respective detection peaks of dopamine and epinephrine. Beside this, the proposed sensor was successfully applied in presence of high concentration of interfering agents, ascorbic acid and uric acid, and validated with real serum samples.
Zhang, Bing; Liu, Bingqian; Liao, Jiayao; Chen, Guonan; Tang, Dianping
2013-10-01
A novel homogeneous immunoassay protocol was designed for quantitative monitoring of small molecular biotoxin (brevetoxin B, PbTx-2, as a model) by using target-responsive cargo release from polystyrene microsphere-gated mesoporous silica nanocontainer (MSN). Initially, monoclonal mouse anti-PbTx-2 capture antibody was covalently conjugated onto the surface of MSN (mAb-MSN), and the electroactive cargo (methylene blue, MB) was then trapped in the pores of mAb-MSN by using aminated polystyrene microspheres (APSM) based on the electrostatic interaction. Upon addition of target PbTx-2, the positively charged APSM was displaced from the negatively charged mAb-MSN because of the specific antigen-antibody reaction. Thereafter, the molecular gate was opened, and the trapped methylene blue was released from the pores. The released methylene blue could be monitored by using a square wave voltammetry (SWV) in a homemade microelectrochemical detection cell. Under optimal conditions, the SWV peak current increased with the increasing of PbTx-2 concentration in the range from 0.01 to 3.5 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1) PbTx-2 at the 3Sblank criterion. Intra- and interassay coefficients of variation with identical batches were ≤6% and 9.5%, respectively. The specificity and sample matrix interfering effects were acceptable. The analysis in 12 spiked seafood samples showed good accordance between results obtained by the developed immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) method. Importantly, the target-responsive controlled release system-based electrochemical immunoassay (CRECIA) offers a promising scheme for the development of advanced homogeneous immunoassay without the sample separation and washing procedure.
Effects of Nano-CeO₂ with Different Nanocrystal Morphologies on Cytotoxicity in HepG2 Cells.
Wang, Lili; Ai, Wenchao; Zhai, Yanwu; Li, Haishan; Zhou, Kebin; Chen, Huiming
2015-09-02
Cerium oxide nanoparticles (nano-CeO₂) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO₂ with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO₂ at various concentrations (6.25, 12.5, 25, 50, 100 μg/mL). The crystal structure, size and morphology of nano-CeO₂ were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO₂ were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO₂ entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO₂ with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO₂, the rod-like nano-CeO₂ has lowest toxicity to HepG2 cells owing to its larger specific surface areas.
Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.
Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent
2017-10-15
Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.
2004-04-01
There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. Themore » system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk.« less
Baccarin, Marina; Cervini, Priscila; Cavalheiro, Eder Tadeu Gomes
2018-02-01
A bare composite graphite-polyurethane electrode (EGPU) and two other modified with graphene (EGPU-GR) and functionalized multi-walled carbon nanotubes (EGPU-CNTs) were prepared and compared regarding their voltammetric response to escitalopran (EST). The modifiers were characterized by Raman spectroscopy and the resulting electrode materials by contact angle measurements with a hydrophilicity character in the ascending order for the composites: GPU > GPU-GR > GPU-CNTs and scanning electron microscopy (SEM). The electroactive areas of the EGPU, EGPU-GR, and EGPU-CNTs were 0.065, 0.080, and 0.092cm 2 , respectively, calculated from the chronocoulometry using K 3 [Fe(CN) 6 ] as a probe and the Cottrell equation. The cyclic voltammograms obtained for EST indicated irreversible electrochemical behavior, with an anodic peak at ca. +0.80V (νs. SCE). These measurements were carried out with the three electrodes, and comparison of the analytical responses led to the EGPU-GR electrode being selected for use in the subsequent experiments. Under optimal conditions, square wave and differential pulse voltammetry at EGPU-GR presented linear dynamic ranges between 1.5 × 10 -6 and 1.2 × 10 -5 mol L -1 , with a detection limit of 2.5 × 10 -7 molL -1 (SWV) and 1.5 × 10 -6 and 1.2 × 10 -5 molL -1 , with a detection limit of 3.2 × 10 -7 molL -1 (DPV) for EST. The proposed method was applied for the quantification of EST in synthetic urine and cerebrospinal fluid samples, offering advantages including simplicity of fabrication, no requirement for analyte preconcentration and surface renewal, fast response, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Colozza, Noemi; Gravina, Maria Flavia; Amendola, Luca; Rosati, Modesto; Akretche, Djamal Eddine; Moscone, Danila; Arduini, Fabiana
2017-04-15
Cadmium and lead are highly toxic heavy metals which cause a severe worldwide pollution. In addition to the toxic effect produced by the direct exposure, they can be bioconcentrated and accumulated in living organisms, including humans. Herein, a miniaturized and disposable electrochemical sensor was improved for the simultaneous detection of cadmium and lead ions to study the bioremediation of polluted seawater in presence of the filter-feeding marine organism Styela plicata. A screen-printed electrode modified in situ with a bismuth film was selected using the anodic stripping analysis as detection technique. This sensor was coupled with a portable potentiostat and the detection of cadmium and lead ions was carried out by Square Wave Anodic Stripping Voltammetry, allowing the simultaneous detection of both heavy metals at ppb level (LOD=0.3ppb for lead, 1.5ppb for cadmium). This analytical tool was then applied to assess the bioremediation capacity of S. plicata through a bioremediation experiment, in which the organism has been exposed to seawater artificially polluted with 1000ppb of Cd 2+ and Pb 2+ . The matrix effect of both seawater and acid digested biological samples was evaluated. A bioconcentration phenomenon was observed for both heavy metals through the analysis of S. plicata tissues. In details, Pb 2+ resulted to be about 2.5 times more bioconcentrated than Cd 2+ , giving an effective bioremediation level in seawater of 13% and 40% for Cd 2+ and Pb 2+ , respectively. Thus, our results demonstrate the capability of S. plicata to bioremediate Cd 2+ and Pb 2+ polluted seawater as well as the suitability of the electrochemical sensor for contaminated marine environment monitoring and bioremediation evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing
2018-09-26
A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg + on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg + may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg + are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg + ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet
2016-09-01
An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y2O3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y2O3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔEp) for ACT were 552mV, 24mV and 10mV at ba4re GCE, CNTs/GCE and Y2O3NPs/CNTs/GCE, respectively. The observation of only 10mV of ΔEp for ACT at Y2O3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, l-ascorbic acid (l-AA) and l-tyrosine (l-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0×10(-10) to 1.8×10(-8)M with a detection limit of 3.0×10(-11)M (based on 3Sb/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. Copyright © 2016 Elsevier B.V. All rights reserved.
Distributional Tests for Gravitational Waves from Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Szczepanczyk, Marek; LIGO Collaboration
2017-01-01
Core-Collapse Supernovae (CCSN) are spectacular and violent deaths of massive stars. CCSN are some of the most interesting candidates for producing gravitational-waves (GW) transients. Current published results focus on methodologies to detect single GW unmodelled transients. The advantages of these tests are that they do not require a background for which we have an analytical model. Examples of non-parametric tests that will be compared are Kolmogorov-Smirnov, Mann-Whitney, chi squared, and asymmetric chi squared. I will present methodological results using publicly released LIGO-S6 data recolored to the design sensitivity of Advanced LIGO and that will be time lagged between interferometers sites so that the resulting coincident events are not GW.
NASA Astrophysics Data System (ADS)
Bezur, L.; Marshall, J.; Ottaway, J. M.
A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.
Making High-Pass Filters For Submillimeter Waves
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Lichtenberger, John A.
1991-01-01
Micromachining-and-electroforming process makes rigid metal meshes with cells ranging in size from 0.002 in. to 0.05 in. square. Series of steps involving cutting, grinding, vapor deposition, and electroforming creates self-supporting, electrically thick mesh. Width of holes typically 1.2 times cutoff wavelength of dominant waveguide mode in hole. To obtain sharp frequency-cutoff characteristic, thickness of mesh made greater than one-half of guide wavelength of mode in hole. Meshes used as high-pass filters (dichroic plates) for submillimeter electromagnetic waves. Process not limited to square silicon wafers. Round wafers also used, with slightly more complication in grinding periphery. Grid in any pattern produced in electroforming mandrel. Any platable metal or alloy used for mesh.
Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin
2018-06-01
We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.
Babinet's principle and the band structure of surface waves on patterned metal arrays
NASA Astrophysics Data System (ADS)
Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.
2010-05-01
The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].
Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.
2015-01-01
Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to sham stimulation (2.3± 2.2 S.D. correctly typed sequences)]. Conclusion In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. PMID:25795621
An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification
Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás
2016-01-01
Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317
Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K
2007-04-01
Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.
Walsh, Darren A; Lovelock, Kevin R J; Licence, Peter
2010-11-01
The high viscosity and unusual properties of room temperature ionic liquids (RTILs) present a number of challenges when performing steady-state voltammetry and scanning electrochemical microscopy in RTILs. These include difficulties in recording steady-state currents at ultramicroelectrode surfaces due to low diffusion coefficients of redox species and problems associated with unequal diffusion coefficients of oxidised and reduced species in RTILs. In this tutorial review, we highlight the recent progress in the use of RTILs as electrolytes for ultramicroelectrode voltammetry and SECM. We describe the basic principles of ultramicroelectrode voltammetry and SECM and, using examples from the recent literature, we discuss the conditions that must be met to perform steady-state voltammetry and SECM measurements in RTILs. Finally, we briefly discuss the electrochemical insights that can be obtained from such measurements.
Recent Advances in Voltammetry
Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela
2015-01-01
Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
A Practical Beginner's Guide to Cyclic Voltammetry
ERIC Educational Resources Information Center
Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L.
2018-01-01
Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and…
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe
2012-10-01
The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.
2013-01-01
Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration. PMID:23581570
Rapid testing of pulse transformers
NASA Technical Reports Server (NTRS)
Grillo, J.
1980-01-01
Quality-control testing of pulse transformers is speeded up by method for determining rise time and droop. Instead of using oscilloscope and square-wave generator to measure these characteristics directly, method uses voltmeter and sine-wave generator to measure them indirectly in about one-tenth time. Droop and rise time are determined by measuring input/output voltage ratio at just four frequencies.
NASA Technical Reports Server (NTRS)
Stocklin, F.
1973-01-01
The equations defining the amplitude of sidebands resulting from either frequency modulation or phase modulation by either square wave, sine wave, sawtooth or triangular modulating functions are presented. Spectral photographs and computer generated tables of modulation index vs. relative sideband amplitudes are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George T
2010-12-14
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less
Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials
NASA Astrophysics Data System (ADS)
Oltulu, Oral; Simsek, Sevket; Mamedov, Amirullah M.; Ozbay, Ekmel
2016-12-01
In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC) containing an organic ferroelectric (PVDF-polyvinylidene fluoride) and topological insulator (SnTe) was investigated by the plane-wave-expansion (PWE) method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k) for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave) were plotted vs. the wavevector k along the Г-X-M-Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103-106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of "topological phononics".
High speed point derivative microseismic detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.
A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event.more » The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.« less
Wave propagation in media having negative permittivity and permeability.
Ziolkowski, R W; Heyman, E
2001-11-01
Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with epsilon(omega)=mu(omega)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized beam field whose parameters depend on the values of epsilon and mu. This beam field is characterized with a paraxial approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electromagnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the Pendry perfect lens effect is not realizable with any realistic metamaterial.
Stability Criteria Analysis for Landing Craft Utility
2017-12-01
Square meter m/s Meters per Second m/s2 Meters per Second Squared n Vertical Displacement of Sea Water Free Surface n3 Ship’s Heave... Displacement n5 Ship’s Pitch Angle p(ξ) Rayleigh Distribution Probability Function POSSE Program of Ship Salvage Engineering pk...Spectrum Constant γ JONSWAP Wave Spectrum Peak Factor Γ(λ) Gamma Probability Function Δ Ship’s Displacement Δω Small Frequency
The Impact of Moisture on Mountain Waves During T-REX
2009-11-01
sensitivity to the upstream wind speed. After re- moving these three outliers, the linear least squares re- gression using the other 21 points yields W( U c )5...The wave amplitudes for the 24 flights normalized by the reference wave amplitude are plotted versus the upstream RH maxima in Fig. 3b. There are four...mountaintop level de- rived from the upwind sondes for 24 UWKA flights. The filled circles represent moist cases as defined in the text. The bold line
Observation of Wave Energy Evolution in Coastal Areas Using HF Radar
2009-09-01
the root-mean-square (RMS) wave height Hrms and mean wave period T as a function of the backscatter power ratio of the second- order to first-order...range Hrms $ 0.3/ko (Hs $ 2.26 m; Barrick 1977a), consideration of values outside this constraint did not change a significantly. Also, the apparent...propagation in the region (section 4c ). Analysis of the data showed that the wavelet filtering is consistent with other techniques (e.g., Fourier band
Square or sine: finding a waveform with high success rate of eliciting SSVEP.
Teng, Fei; Chen, Yixin; Choong, Aik Min; Gustafson, Scott; Reichley, Christopher; Lawhead, Pamela; Waddell, Dwight
2011-01-01
Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus.
Influence of modulation frequency in rubidium cell frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.
1983-01-01
The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.
Elastic least-squares reverse time migration with velocities and density perturbation
NASA Astrophysics Data System (ADS)
Qu, Yingming; Li, Jinli; Huang, Jianping; Li, Zhenchun
2018-02-01
Elastic least-squares reverse time migration (LSRTM) based on the non-density-perturbation assumption can generate false-migrated interfaces caused by density variations. We perform an elastic LSRTM scheme with density variations for multicomponent seismic data to produce high-quality images in Vp, Vs and ρ components. However, the migrated images may suffer from crosstalk artefacts caused by P- and S-waves coupling in elastic LSRTM no matter what model parametrizations used. We have proposed an elastic LSRTM with density variations method based on wave modes separation to reduce these crosstalk artefacts by using P- and S-wave decoupled elastic velocity-stress equations to derive demigration equations and gradient formulae with respect to Vp, Vs and ρ. Numerical experiments with synthetic data demonstrate the capability and superiority of the proposed method. The imaging results suggest that our method promises imaging results with higher quality and has a faster residual convergence rate. Sensitivity analysis of migration velocity, migration density and stochastic noise verifies the robustness of the proposed method for field data.
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, N.; Pereira, C.; Willit, J.
2016-07-29
The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations acrossmore » a wide range of adverse conditions.« less
Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro
2004-05-01
Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.
Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S
2015-01-01
A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed sequences)]. In this study, we failed to find improvements in declarative or performance memory and could not replicate an earlier study using nearly identical settings. Specifically we failed to find a beneficial effect on either overnight declarative or non-declarative memory consolidation via square-wave oscillating tDCS intervention applied bi-frontally during early NREM sleep. It is unclear if the morphology of the tDCS pulse is critical in any memory related improvements. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Brito, P. E.; Nazareno, H. N.
2012-09-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
A novel design for passive misscromixers based on topology optimization method.
Chen, Xueye; Li, Tiechuan
2016-08-01
In this paper, a series of novel passive micromixers, called topological micromixers with reversed flow (TMRFX), are proposed. The reversed flow in the microchannels can enhance chaotic advection and produce better mixing performance. Therefore the maximum of reversed flow is chosen as the objective function of the topology optimization problem. Because the square-wave unit is easier to fabricate and have better mixing performance than many other serpentine micromixers, square-wave structure becomes the original geometry structure. By simulating analysis, the series of TMRFX, namely TMRF, TMRF0.75, TMRF0.5, TMRF0.25, mix better than the square-wave micromixer at various Reynolds numbers (Re), but pressure drops of TMRFX are much higher. Lots of intensive numerical simulations are conducted to prove that TMRF and TMRF0.75 have remarkable advantages on mixing over other micromixers at various Re. The mixing performance of TMRF0.75 is similar to TMRF's. What's more, TMRF have a larger pressure drop than TMRF0.75, which means that TMRF have taken more energy than TMRF0.75. For a wide range of Re (Re ≤ 0.1 and Re ≥ 10), TMRF0.75 delivers a great performance and the mixing efficiency is greater than 95 %. Even in the range of 0.1-10 for the Re, the mixing efficiency of TMRF0.75 is higher than 85 %.
Differentially-charged and sequentially-switched square-wave pulse forming network
North, George G. [Stockton, CA; Vogilin, George E. [Livermore, CA
1980-04-01
A pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form.
Differentially-charged and sequentially-switched square-wave pulse forming network
North, G.G.; Vogilin, G.E.
1980-04-01
Disclosed is a pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form. 5 figs.
Biboum, Rosa N.; Keita, Bineta; Franger, Sylvain; Njiki, Charles P. Nanseu; Zhang, Guangjin; Zhang, Jie; Liu, Tianbo; Mbomekalle, Israel-Martyr; Nadjo, Louis
2010-01-01
Green-chemistry type procedures were used to synthesize Pd0 nanostructures encapsulated by a vanadium-substituted Wells-Dawson-type polyoxometalate (Pd0@POM). The cyclic voltammogram run with the Pd0@POM-modified glassy carbon electrode shows well-defined waves, associated with Pd0 nanostructures and the VV/VIV redox couple. The Pd0@POM-modified electrode displayed remarkably reproducible cyclic voltammetry patterns. The hydrogen evolution reaction (HER) was selected as an illustrative example to test the electrocatalytic behavior of the electrode. The kinetic parameters of the HER show the high efficiency of the Pd0@POM-modified electrode. This is the first example of electrochemical characterization of a modified electrode based on a vanado-tungstic POM and Pd0 nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Baer, C.D.; Camaioni-Neto, C.
1991-04-17
A new procedure is reported for the high-yield synthesis of fac-tris-ortho-metalated complexes of Ir(III) with 2-phenylpyridine (Hppy) and with substituted 2-phenylpyridine (R-Hppy) ligands. The reported procedure uses the Ir(III) starting material Ir(acac){sub 3} (acac = 2,4-pentanedionate) and typically produces the fac-tris-ortho-metalated complexes in yields of 40-75%. Each of the complexes formed with substituted phenylpyridines exhibited a luminescence lifetime of approximately 2-5 microseconds in nitrogen-saturated acetonitrile at room temperature, and each complex is characterized by a reversible oxidative wave in cyclic voltammetry in acetonitrile. 42 refs., 1 fig., 1 tab.
Energy-optimal electrical excitation of nerve fibers.
Jezernik, Saso; Morari, Manfred
2005-04-01
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
Screw withdrawal : a means to evaluate densities of in-situ wood members
Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis
2003-01-01
Dynamic modulus of elasticity (MOE) of a wood member is defined as the product of its density and square of stress wave speed. The dynamic MOE, which is highly correlated to the static MOE, is commonly used to estimate the load carrying capacity and serviceability of in-situ wood members. The stress wave speed can be estimated using ultrasonic, impact, or vibration...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morvan, B.; Tinel, A.; Sainidou, R.
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Imaging and control of interfering wave packets in a dissociating molecule.
Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik
2002-09-23
Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.
NASA Astrophysics Data System (ADS)
Tsyryulnikov, I. S.; Kirilovskiy, S. V.; Poplavskaya, T. V.
2016-10-01
In this paper, we describe a new method of mode decomposition of disturbances on the basis of specific features of interaction of long-wave free-stream disturbances with the shock wave and knowing the trends of changing of the conversion factors of various disturbance modes due to variations of the shock wave incidence angle. The range of admissible root-mean-square amplitudes of oscillations of vortex, entropy, and acoustic modes in the free stream generated in IT-302M was obtained by using the pressure fluctuations measured on the model surface and the calculated conversion factors.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongfeng; Qu, Shaobo; Wang, Jiafu
2014-06-02
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
NASA Astrophysics Data System (ADS)
Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.
2008-11-01
The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.
Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A
2011-01-01
Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.
NASA Astrophysics Data System (ADS)
Wan, Sheng; Li, Hui
2018-03-01
Though the test of blasting vibration, the blasting seismic wave propagation laws in southern granite pumped storage power project are studied. Attenuation coefficient of seismic wave and factors coefficient are acquired by the method of least squares regression analysis according to Sadaovsky empirical formula, and the empirical formula of seismic wave is obtained. This paper mainly discusses on the test of blasting vibration and the procedure of calculation. Our practice might as well serve as a reference for similar projects to come.
Observation and simulation of flow on soap film induced by concentration gradient
NASA Astrophysics Data System (ADS)
Ohnishi, Mitsuru; Yoshihara, Shoichi; Azuma, Hisao
The behavior of the flow and capillary wave induced on the film surface by the surfactant concentration difference is studied. Flat soap film is used as a model of thin film. The result is applicable to the case of flow by thermal gradient. The Schlieren method is used to observe the flow and the wave on the soap film. It is found that the wave velocities, in the case of a high surface tension difference, are linearly related to the square root of the surface tension difference.
The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics
NASA Technical Reports Server (NTRS)
Fedele, Renato; Miele, G.
1994-01-01
We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Zarrinkamar, S.; Eno, J. Ibanga; Maghsoodi, E.; Hassanabadi, H.
2014-01-01
We investigate the approximate solution of the Dirac equation for a combination of Möbius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.
2015-08-18
techniques of measuring energy loss due to enve- lope inefficiencies from the built environment. A multi-sensor hardware device attached to the roof of a...at this installa- tion, recommends specific energy conservation measures (ECMs), and quantifies significant potential return on investment. ERDC/CERL...to several thousand square feet, total building square feet was used as a metric to measure the cost effectiveness of handheld versus mobile
On the parameters influencing air-water gas exchange
NASA Astrophysics Data System (ADS)
JäHne, Bernd; Münnich, Karl Otto; BöSinger, Rainer; Dutzi, Alfred; Huber, Werner; Libner, Peter
1987-02-01
Detailed gas exchange measurements from two circular and one linear wind/wave tunnels are presented. Heat, He, CH4, CO2, Kr, and Xe have been used as tracers. The experiments show the central importance of waves for the water-side transfer process. With the onset of waves the Schmidt number dependence of the transfer velocity k changes from k ∝ Sc-⅔ to k ∝ Sc-½indicating a change in the boundary conditions at the surface. Moreover, energy put into the wave field by wind is transferred to near-surface turbulence enhancing gas transfer. The data show that the mean square slope of the waves is the best parameter to characterize the free wavy surface with respect to water-side transfer processes.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo
2015-01-28
A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.
A Voltammetric Electronic Tongue for the Resolution of Ternary Nitrophenol Mixtures
González-Calabuig, Andreu; Cetó, Xavier
2018-01-01
This work reports the applicability of a voltammetric sensor array able to quantify the content of 2,4-dinitrophenol, 4-nitrophenol, and picric acid in artificial samples using the electronic tongue (ET) principles. The ET is based on cyclic voltammetry signals, obtained from an array of metal disk electrodes and a graphite epoxy composite electrode, compressed using discrete wavelet transform with chemometric tools such as artificial neural networks (ANNs). ANNs were employed to build the quantitative prediction model. In this manner, a set of standards based on a full factorial design, ranging from 0 to 300 mg·L−1, was prepared to build the model; afterward, the model was validated with a completely independent set of standards. The model successfully predicted the concentration of the three considered phenols with a normalized root mean square error of 0.030 and 0.076 for the training and test subsets, respectively, and r ≥ 0.948. PMID:29342848
Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417
Highly compact circulators in square-lattice photonic crystal waveguides.
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional
NASA Astrophysics Data System (ADS)
Chacón, Enrique; Tarazona, Pedro
2016-06-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Modelling the vestibular head tilt response.
Heibert, D; Lithgow, B
2005-03-01
This paper attempts to verify the existence of potentially diagnostically significant periodic signals thought to exist in recordings of neural activity originating from the vestibular nerve, following a single tilt of the head. It then attempts to find the physiological basis of this signal, in particular focusing on the mechanical response of the vestibular system. Simple mechanical models of the semi circular canals having angular velocities applied to them were looked at. A simple single canal model was simulated using CFX software. Finally, a simple model of all three canals with elastic duct walls and a moving cupula was constructed. Pressure waves within the canals were simulated using water hammer or pressure transient theory. In particular, it was investigated whether pressure waves within the utricle following a square pulse angular velocity applied to the canal(s) may be responsible for quasi-periodic oscillatory signals. The simulations showed that there are no pressure waves resonating within the canals following a square pulse angular velocity applied to the canal(s). The results show that the oscillatory signals are most likely not mechanical in origin. It was concluded that further investigation is required.
Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
Modeling Surfzone/Inner-shelf Exchange
2013-09-30
goal here is the use a wave-resolving Boussinesq model to figure out how to parameterize the vorticity generation due to short-crested breaking of...individual waves. The Boussinesq model funwaveC used here, developed by the PI and distributed as open-source software, has been val- idated in ONR funded...shading of bottom bathymetry, mooring locations (green squares) and the local co-ordinate system (black arrows). Positive x is directed towards the
Noncoherent detection of periodic signals
NASA Technical Reports Server (NTRS)
Gagliardi, R. M.
1974-01-01
The optimal Bayes detector for a general periodic waveform having uniform delay and additive white Gaussian noise is examined. It is shown that the detector is much more complex than that for the well known cases of pure sine waves (i.e. classical noncoherent detection) and narrowband signals. An interpretation of the optimal processing is presented, and several implementations are discussed. The results have application to the noncoherent detection of optical square waves.
Affect of Brush Seals on Wave Rotor Performance Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G
2012-05-28
The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.
NASA Technical Reports Server (NTRS)
Eno, R. F.
1984-01-01
Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.
Feigelman, William; Joiner, Thomas; Rosen, Zohn; Silva, Caroline; Mueller, Anna S
2016-07-02
Utilizing Add Health longitudinal data, we compared 21 male suicide casualties to 10,101 living respondents identifying suicide correlates. 21 suicide decedents completed surveys in 1994/1995 (Wave 1) and 11 completed at Wave 3; responses were compared with Chi-square and oneway ANOVA tests. Suicide decedents were prone to higher delinquency and fighting at Wave 1, but not at Wave 3. At Wave 1 suicide decedents remained undistinguished from living respondents in depression, self-esteem, and drug uses. Yet, after Wave 3, the 11 respondents dying by suicide showed significantly higher depression, drug use and lower self-esteem. Delinquency trends can readily understood, but more complex causes are needed to account for unexpected changes in self-esteem, depression and drug uses.
Wave theory of turbulence in compressible media (acoustic theory of turbulence)
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.
Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion
NASA Technical Reports Server (NTRS)
Feria, Y.; Statman, J.
1993-01-01
This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.
Bifurcation and Firing Patterns of the Pancreatic β-Cell
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Shenquan; Liu, Xuanliang; Zeng, Yanjun
Using a model of individual isolated pancreatic β-cells, we investigated bifurcation diagrams of interspike intervals (ISIs) and largest Lyapunov exponents (LLE), which clearly demonstrated a wide range of transitions between different firing patterns. The numerical simulation results revealed the effect of different time constants and ion channels on the neuronal discharge rhythm. Furthermore, an individual cell exhibited tonic spiking, square-wave bursting, and tapered bursting. Additionally, several bifurcation phenomena can be observed in this paper, such as period-doubling, period-adding, inverse period-doubling and inverse period-adding scenarios. In addition, we researched the mechanisms underlying two kinds of bursting (tapered and square-wave bursting) by use of fast-slow dynamics analysis. Finally, we analyzed the codimension-two bifurcation of the fast subsystem and studied cusp bifurcation, generalized Hopf (or Bautin) bifurcation and Bogdanov-Takens bifurcation.
Waveguide-mode polarization gaps in square spiral photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan
2015-09-01
We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.
Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions
NASA Technical Reports Server (NTRS)
Reschke, Millard; Somers, Jeffrey T.; Leigh, R. John; Krnavek, Jody M.; Kornilova, Ludmila; Kozlovskaya, Inessa; Bloomberg, Jacob J.; Paloski, William H.
2004-01-01
Square-wave jerks (SWJs) are small, involuntary saccades that disrupt steady fixation. We report the case of an astronaut (approximately 140 d on orbit) who showed frequent SWJs, especially postflight, but who showed no impairment of vision or decrement of postflight performance. These data support the view that SWJs do not impair vision because they are paired movements, consisting of a small saccade away from the fixation position followed, within 200 ms, by a corrective saccade that brings the eye back on target. Since many returning astronauts show a decrement of dynamic visual function during postflight locomotion, it seems possible that frequent SWJs improved this astronaut's visual function by providing postsaccadic enhancement of visual fixation, which aided postflight performance. Certainly, frequent SWJs did not impair performance in this astronaut, who had no other neurological disorder.
Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Ratnayake, Nalin A.
2011-01-01
As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.
Complete band gaps of phononic crystal plates with square rods.
El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H
2012-04-01
Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan
2013-11-01
Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne
2014-12-01
Dive computers are used in some occupational diving sectors to manage decompression but there is little independent assessment of their performance. A significant proportion of occupational diving operations employ single square-wave pressure exposures in support of their work. Single examples of 43 models of dive computer were compressed to five simulated depths between 15 and 50 metres' sea water (msw) and maintained at those depths until they had registered over 30 minutes of decompression. At each depth, and for each model, downloaded data were used to collate the times at which the unit was still registering "no decompression" and the times at which various levels of decompression were indicated or exceeded. Each depth profile was replicated three times for most models. Decompression isopleths for no-stop dives indicated that computers tended to be more conservative than standard decompression tables at depths shallower than 30 msw but less conservative between 30-50 msw. For dives requiring decompression, computers were predominantly more conservative than tables across the whole depth range tested. There was considerable variation between models in the times permitted at all of the depth/decompression combinations. The present study would support the use of some dive computers for controlling single, square-wave diving by some occupational sectors. The choice of which makes and models to use would have to consider their specific dive management characteristics which may additionally be affected by the intended operational depth and whether staged decompression was permitted.
E-tongue 2 REDOX response to heavy metals
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Kuhlman, G. M.; Kounaves, S. P.
2002-01-01
E-Tongue 2 an array of electrochemical sensors including REDOX electrodes for Cylic Voltammetry and Anodic Stripping Voltammetry measurements, Galvanic cells for corrosion measurements, and Ion Selective Electrodes.
NASA Technical Reports Server (NTRS)
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.