Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
ERIC Educational Resources Information Center
Helmreich, James E.; Krog, K. Peter
2018-01-01
We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…
Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting
NASA Astrophysics Data System (ADS)
Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen
2017-06-01
The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.
NASA Astrophysics Data System (ADS)
Wang, Yan-Jun; Liu, Qun
1999-03-01
Analysis of stock-recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD-based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.
Missing value imputation in DNA microarrays based on conjugate gradient method.
Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh
2012-02-01
Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
A simple method for processing data with least square method
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning
2017-08-01
The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.
A simple calculation method for determination of equivalent square field.
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-04-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.
Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun
2014-01-01
Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A simple calculation method for determination of equivalent square field
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-01-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801
Domain Decomposition Algorithms for First-Order System Least Squares Methods
NASA Technical Reports Server (NTRS)
Pavarino, Luca F.
1996-01-01
Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
Orthogonalizing EM: A design-based least squares algorithm.
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-25
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.
NASA Technical Reports Server (NTRS)
Chang, Ching L.; Jiang, Bo-Nan
1990-01-01
A theoretical proof of the optimal rate of convergence for the least-squares method is developed for the Stokes problem based on the velocity-pressure-vorticity formula. The 2D Stokes problem is analyzed to define the product space and its inner product, and the a priori estimates are derived to give the finite-element approximation. The least-squares method is found to converge at the optimal rate for equal-order interpolation.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
An improved partial least-squares regression method for Raman spectroscopy
NASA Astrophysics Data System (ADS)
Momenpour Tehran Monfared, Ali; Anis, Hanan
2017-10-01
It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
NASA Astrophysics Data System (ADS)
Liu, L. H.; Tan, J. Y.
2007-02-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.
NASA Astrophysics Data System (ADS)
Cheng, Jian; Zhang, Fan; Liu, Tiegang
2018-06-01
In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.
Orthogonalizing EM: A design-based least squares algorithm
Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.
2016-01-01
We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558
A study of autonomous satellite navigation methods using the global positioning satellite system
NASA Technical Reports Server (NTRS)
Tapley, B. D.
1980-01-01
Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.
Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin
2016-01-01
To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb’s test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R2 and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data. PMID:26821026
Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S
2016-03-01
Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.
Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty
Lu, Yang; Loizou, Philipos C.
2011-01-01
Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543
Tahmasebi Birgani, Mohamad J; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima
2014-01-01
Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field. © 2013 American Association of Medical Dosimetrists Published by American Association of Medical Dosimetrists All rights reserved.
Examinations of electron temperature calculation methods in Thomson scattering diagnostics.
Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin
2012-10-01
Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.
Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes
NASA Astrophysics Data System (ADS)
Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.
2016-06-01
A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.
Fitting a function to time-dependent ensemble averaged data.
Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias
2018-05-03
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
Inter-class sparsity based discriminative least square regression.
Wen, Jie; Xu, Yong; Li, Zuoyong; Ma, Zhongli; Xu, Yuanrong
2018-06-01
Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero-one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero-one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Han, Jubong; Lee, K B; Lee, Jong-Man; Park, Tae Soon; Oh, J S; Oh, Pil-Jei
2016-03-01
We discuss a new method to incorporate Type B uncertainty into least-squares procedures. The new method is based on an extension of the likelihood function from which a conventional least-squares function is derived. The extended likelihood function is the product of the original likelihood function with additional PDFs (Probability Density Functions) that characterize the Type B uncertainties. The PDFs are considered to describe one's incomplete knowledge on correction factors being called nuisance parameters. We use the extended likelihood function to make point and interval estimations of parameters in the basically same way as the least-squares function used in the conventional least-squares method is derived. Since the nuisance parameters are not of interest and should be prevented from appearing in the final result, we eliminate such nuisance parameters by using the profile likelihood. As an example, we present a case study for a linear regression analysis with a common component of Type B uncertainty. In this example we compare the analysis results obtained from using our procedure with those from conventional methods. Copyright © 2015. Published by Elsevier Ltd.
Oliveri, Paolo; López, M Isabel; Casolino, M Chiara; Ruisánchez, Itziar; Callao, M Pilar; Medini, Luca; Lanteri, Silvia
2014-12-03
A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Uncertainty based pressure reconstruction from velocity measurement with generalized least squares
NASA Astrophysics Data System (ADS)
Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos
2017-11-01
A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.
NASA Astrophysics Data System (ADS)
De Beuckeleer, Liene I.; Herrebout, Wouter A.
2016-02-01
To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before.
A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease
NASA Astrophysics Data System (ADS)
Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas
2017-08-01
The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.
Chi-square-based scoring function for categorization of MEDLINE citations.
Kastrin, A; Peterlin, B; Hristovski, D
2010-01-01
Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine-learning algorithms (support vector machines, decision trees, naïve Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine-learning algorithms. We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.
A least-squares finite element method for incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1992-01-01
A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented.
NASA Astrophysics Data System (ADS)
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Pan, Shuyang (Inventor); Prud'Homme, Robert K. (Inventor)
2016-01-01
A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.
Use of inequality constrained least squares estimation in small area estimation
NASA Astrophysics Data System (ADS)
Abeygunawardana, R. A. B.; Wickremasinghe, W. N.
2017-05-01
Traditional surveys provide estimates that are based only on the sample observations collected for the population characteristic of interest. However, these estimates may have unacceptably large variance for certain domains. Small Area Estimation (SAE) deals with determining precise and accurate estimates for population characteristics of interest for such domains. SAE usually uses least squares or maximum likelihood procedures incorporating prior information and current survey data. Many available methods in SAE use constraints in equality form. However there are practical situations where certain inequality restrictions on model parameters are more realistic. It will lead to Inequality Constrained Least Squares (ICLS) estimates if the method used is least squares. In this study ICLS estimation procedure is applied to many proposed small area estimates.
Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Coroneos, Rula M.
2007-01-01
Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.
NASA Technical Reports Server (NTRS)
Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro
1989-01-01
Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.
Huang, Chenyu
2014-01-01
Background: Joint scar contractures are characterized by tight bands of soft tissue that bridge the 2 ends of the joint like a web. Classical treatment methods such as Z-plasties are mainly based on 2-dimensional designs. Our square flap method is an alternative surgical method that restores the span of the web in a stereometric fashion, thereby reconstructing joint function. Methods: In total, 20 Japanese patients with joint scar contractures on the axillary (n = 10) or first digital web (n = 10) underwent square flap surgery. The maximum range of motion and commissure length were measured before and after surgery. A theoretical stereometric geometrical model of the square flap was established to compare it to the classical single (60 degree), 4-flap (45 degree), and 5-flap (60 degree) Z-plasties in terms of theoretical web reconstruction efficacy. Results: All cases achieved 100% contracture release. The maximum range of motion and web space improved after square flap surgery (P = 0.001). Stereometric geometrical modeling revealed that the standard square flap (α = 45 degree; β = 90 degree) yields a larger flap area, length/width ratio, and postsurgical commissure length than the Z-plasties. It can also be adapted by varying angles α and β, although certain angle thresholds must be met to obtain the stereometric advantages of this method. Conclusions: When used to treat joint scar contractures, the square flap method can fully span the web space in a stereometric manner, thus yielding a close-to-original shape and function. Compared with the classical Z-plasties, it also provides sufficient anatomical blood supply while imposing the least physiological tension on the adjacent skin. PMID:25289342
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Quantized kernel least mean square algorithm.
Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C
2012-01-01
In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.
Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao
2016-10-06
An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.
On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsieh, Shih-Fu
1990-01-01
In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.
NASA Astrophysics Data System (ADS)
Nirawati, R.
2018-04-01
This research was conducted to see whether the variation of the solution is acceptable and easy to understand by students with different level of ability so that it can be seen the difference of students ability in facilitating the quadratic form in the upper, middle and lower groups. This research used experimental method with factorial design. Based on the result of final test analysis, there were differences of students ability in upper group, medium group, and lower group in putting squared form based on the use certain variation of solution.
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
ERIC Educational Resources Information Center
Smith, J. McCree
Three methods for the preparation of maintenance budgets are discussed--(1) a traditional method, inconclusive and obsolete, based on gross square footage, (2) the formula approach method based on building classification (wood-frame, masonry-wood, masonry-concrete) with maintenance cost factors for each type plus custodial service rates by type of…
NASA Astrophysics Data System (ADS)
Klees, R.; Slobbe, D. C.; Farahani, H. H.
2018-03-01
The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, X.; Xiao, W.
2018-04-01
As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.
NASA Astrophysics Data System (ADS)
Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou
2013-10-01
A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.
On the accuracy of least squares methods in the presence of corner singularities
NASA Technical Reports Server (NTRS)
Cox, C. L.; Fix, G. J.
1985-01-01
Elliptic problems with corner singularities are discussed. Finite element approximations based on variational principles of the least squares type tend to display poor convergence properties in such contexts. Moreover, mesh refinement or the use of special singular elements do not appreciably improve matters. It is shown that if the least squares formulation is done in appropriately weighted space, then optimal convergence results in unweighted spaces like L(2).
Huang, Chenyu; Ogawa, Rei
2014-05-01
Joint scar contractures are characterized by tight bands of soft tissue that bridge the 2 ends of the joint like a web. Classical treatment methods such as Z-plasties are mainly based on 2-dimensional designs. Our square flap method is an alternative surgical method that restores the span of the web in a stereometric fashion, thereby reconstructing joint function. In total, 20 Japanese patients with joint scar contractures on the axillary (n = 10) or first digital web (n = 10) underwent square flap surgery. The maximum range of motion and commissure length were measured before and after surgery. A theoretical stereometric geometrical model of the square flap was established to compare it to the classical single (60 degree), 4-flap (45 degree), and 5-flap (60 degree) Z-plasties in terms of theoretical web reconstruction efficacy. All cases achieved 100% contracture release. The maximum range of motion and web space improved after square flap surgery (P = 0.001). Stereometric geometrical modeling revealed that the standard square flap (α = 45 degree; β = 90 degree) yields a larger flap area, length/width ratio, and postsurgical commissure length than the Z-plasties. It can also be adapted by varying angles α and β, although certain angle thresholds must be met to obtain the stereometric advantages of this method. When used to treat joint scar contractures, the square flap method can fully span the web space in a stereometric manner, thus yielding a close-to-original shape and function. Compared with the classical Z-plasties, it also provides sufficient anatomical blood supply while imposing the least physiological tension on the adjacent skin.
Zhou, Yan; Cao, Hui
2013-01-01
We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.
NASA Astrophysics Data System (ADS)
Wang, Jiajia; Ward, Steven N.; Xiao, Lili
2015-06-01
Flow-like landslides are rapidly moving fluid-solid mixtures that can cause significant destruction along paths that run far from their original sources. Existing models for run out prediction and motion simulation of flow-like landslides have many limitations. In this paper, we develop a new method named `Tsunami Squares' to simulate the generation, propagation and stoppage of flow-like landslides based on conservation of volume and momentum. Landslide materials in the new method form divisible squares that are displaced, then further fractured. The squares move under the influence of gravity-driven acceleration and suffer decelerations due to basal and dynamic frictions. Distinctively, this method takes into account solid and fluid mechanics, particle interactions and flow regime transitions. We apply this approach to simulate the 1982 El Picacho landslide in San Salvador, capital city of El Salvador. Landslide products from Tsunami Squares such as run out distance, velocities, erosion and deposition depths and impacted area agree well with field investigated and eyewitness data.
A KPI-based process monitoring and fault detection framework for large-scale processes.
Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Yang, Xu; Ding, Steven X; Peng, Kaixiang
2017-05-01
Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Weighted least squares phase unwrapping based on the wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Optical NOR logic gate design on square lattice photonic crystal platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in
We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.
Ozdemir, Durmus; Dinc, Erdal
2004-07-01
Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.
Huang, Jiyan; Zhang, Ying; Luo, Shan
2017-12-15
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars
Zhang, Ying; Luo, Shan
2017-01-01
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727
Wang, Hui; Qin, Feng; Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies.
Ruan, Liu; Wang, Rui; Liu, Qi; Ma, Zhanhong; Li, Xiaolong; Cheng, Pei; Wang, Haiguang
2016-01-01
It is important to implement detection and assessment of plant diseases based on remotely sensed data for disease monitoring and control. Hyperspectral data of healthy leaves, leaves in incubation period and leaves in diseased period of wheat stripe rust and wheat leaf rust were collected under in-field conditions using a black-paper-based measuring method developed in this study. After data preprocessing, the models to identify the diseases were built using distinguished partial least squares (DPLS) and support vector machine (SVM), and the disease severity inversion models of stripe rust and the disease severity inversion models of leaf rust were built using quantitative partial least squares (QPLS) and support vector regression (SVR). All the models were validated by using leave-one-out cross validation and external validation. The diseases could be discriminated using both distinguished partial least squares and support vector machine with the accuracies of more than 99%. For each wheat rust, disease severity levels were accurately retrieved using both the optimal QPLS models and the optimal SVR models with the coefficients of determination (R2) of more than 0.90 and the root mean square errors (RMSE) of less than 0.15. The results demonstrated that identification and severity evaluation of stripe rust and leaf rust at the leaf level could be implemented based on the hyperspectral data acquired using the developed method. A scientific basis was provided for implementing disease monitoring by using aerial and space remote sensing technologies. PMID:27128464
De Beuckeleer, Liene I; Herrebout, Wouter A
2016-02-05
To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before. Copyright © 2015 Elsevier B.V. All rights reserved.
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Geodesic least squares regression for scaling studies in magnetic confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdoolaege, Geert
In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority ofmore » the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices.« less
Parameter estimation using weighted total least squares in the two-compartment exchange model.
Garpebring, Anders; Löfstedt, Tommy
2018-01-01
The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
Boyen, Peter; Van Dyck, Dries; Neven, Frank; van Ham, Roeland C H J; van Dijk, Aalt D J
2011-01-01
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.
An Algorithm for Computing Matrix Square Roots with Application to Riccati Equation Implementation,
1977-01-01
pansion is compared to Euclid’s method. The apriori by Aerospace Medical Research Laboratory, Aero— upper and lower bounds are also calculated. The third ... space Medical Division , Air Force Systems Command , part of this paper extends the scalar square root al— Wright—Patterson Air Force Base, Ohio 45433
NASA Astrophysics Data System (ADS)
Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin
2018-05-01
Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.
Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.
Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu
2016-08-01
The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.
NASA Technical Reports Server (NTRS)
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.
Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting
NASA Technical Reports Server (NTRS)
Badavi, F. F.; Everhart, Joel L.
1987-01-01
This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.
Liu, Jiacai; Zhao, Wenjian
2016-11-08
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.
Combinatorics of least-squares trees.
Mihaescu, Radu; Pachter, Lior
2008-09-09
A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least-squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four-point condition that the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss-Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution, and the taxon-weighted variance model. They also provide a time-optimal algorithm for computation.
Augmented classical least squares multivariate spectral analysis
Haaland, David M.; Melgaard, David K.
2004-02-03
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-07-26
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Augmented Classical Least Squares Multivariate Spectral Analysis
Haaland, David M.; Melgaard, David K.
2005-01-11
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph
2010-01-01
Two new methods based on FTâRaman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...
NASA Astrophysics Data System (ADS)
Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.
2014-09-01
For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Li, Meng; Xu, Su-Ying; Gross, Andrew J; Hammond, Jules L; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D; Marken, Frank
2015-06-10
The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual-plate generator-collector micro-trench electrode (steady state) and 2) a square-wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding).
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares
Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai
2013-01-01
Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
2018-01-01
Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G‐computation. All methods resulted in essentially unbiased estimation of the population dose‐response function. However, GPS‐based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction. PMID:29508424
Austin, Peter C
2018-05-20
Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G-computation. All methods resulted in essentially unbiased estimation of the population dose-response function. However, GPS-based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Kinase Identification with Supervised Laplacian Regularized Least Squares
Zhang, He; Wang, Minghui
2015-01-01
Phosphorylation is catalyzed by protein kinases and is irreplaceable in regulating biological processes. Identification of phosphorylation sites with their corresponding kinases contributes to the understanding of molecular mechanisms. Mass spectrometry analysis of phosphor-proteomes generates a large number of phosphorylated sites. However, experimental methods are costly and time-consuming, and most phosphorylation sites determined by experimental methods lack kinase information. Therefore, computational methods are urgently needed to address the kinase identification problem. To this end, we propose a new kernel-based machine learning method called Supervised Laplacian Regularized Least Squares (SLapRLS), which adopts a new method to construct kernels based on the similarity matrix and minimizes both structure risk and overall inconsistency between labels and similarities. The results predicted using both Phospho.ELM and an additional independent test dataset indicate that SLapRLS can more effectively identify kinases compared to other existing algorithms. PMID:26448296
Kinase Identification with Supervised Laplacian Regularized Least Squares.
Li, Ao; Xu, Xiaoyi; Zhang, He; Wang, Minghui
2015-01-01
Phosphorylation is catalyzed by protein kinases and is irreplaceable in regulating biological processes. Identification of phosphorylation sites with their corresponding kinases contributes to the understanding of molecular mechanisms. Mass spectrometry analysis of phosphor-proteomes generates a large number of phosphorylated sites. However, experimental methods are costly and time-consuming, and most phosphorylation sites determined by experimental methods lack kinase information. Therefore, computational methods are urgently needed to address the kinase identification problem. To this end, we propose a new kernel-based machine learning method called Supervised Laplacian Regularized Least Squares (SLapRLS), which adopts a new method to construct kernels based on the similarity matrix and minimizes both structure risk and overall inconsistency between labels and similarities. The results predicted using both Phospho.ELM and an additional independent test dataset indicate that SLapRLS can more effectively identify kinases compared to other existing algorithms.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-07-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
NASA Technical Reports Server (NTRS)
Gill, Doron; Tadmor, Eitan
1988-01-01
An efficient method is proposed to solve the eigenproblem of N by N Symmetric Tridiagonal (ST) matrices. Unlike the standard eigensolvers which necessitate O(N cubed) operations to compute the eigenvectors of such ST matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N squared) operations. The method is based on serial implementation of the recently introduced Divide and Conquer (DC) algorithm. It exploits the fact that by O(N squared) of DC operations, one can compute the eigenvalues of N by N ST matrix and a finite number of pairs of successive rows of its eigenvector matrix. The rest of the eigenvectors--all of them or one at a time--are computed by linear three-term recurrence relations. Numerical examples are presented which demonstrate the superiority of the proposed method by saving an order of magnitude in execution time at the expense of sacrificing a few orders of accuracy.
Determination of cellulose I crystallinity by FT-Raman spectroscopy
Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph
2009-01-01
Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...
Jiang, Kuosheng; Xu, Guanghua; Liang, Lin; Tao, Tangfei; Gu, Fengshou
2014-07-29
In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test.
Validating Clusters with the Lower Bound for Sum-of-Squares Error
ERIC Educational Resources Information Center
Steinley, Douglas
2007-01-01
Given that a minor condition holds (e.g., the number of variables is greater than the number of clusters), a nontrivial lower bound for the sum-of-squares error criterion in K-means clustering is derived. By calculating the lower bound for several different situations, a method is developed to determine the adequacy of cluster solution based on…
Advances of the smooth variable structure filter: square-root and two-pass formulations
NASA Astrophysics Data System (ADS)
Gadsden, S. Andrew; Lee, Andrew S.
2017-01-01
The smooth variable structure filter (SVSF) has seen significant development and research activity in recent years. It is based on sliding mode concepts, which utilize a switching gain that brings an inherent amount of stability to the estimation process. In an effort to improve upon the numerical stability of the SVSF, a square-root formulation is derived. The square-root SVSF is based on Potter's algorithm. The proposed formulation is computationally more efficient and reduces the risks of failure due to numerical instability. The new strategy is applied on target tracking scenarios for the purposes of state estimation, and the results are compared with the popular Kalman filter. In addition, the SVSF is reformulated to present a two-pass smoother based on the SVSF gain. The proposed method is applied on an aerospace flight surface actuator, and the results are compared with the Kalman-based two-pass smoother.
NASA Astrophysics Data System (ADS)
Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling
2017-08-01
Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.
Repeatability of paired counts.
Alexander, Neal; Bethony, Jeff; Corrêa-Oliveira, Rodrigo; Rodrigues, Laura C; Hotez, Peter; Brooker, Simon
2007-08-30
The Bland and Altman technique is widely used to assess the variation between replicates of a method of clinical measurement. It yields the repeatability, i.e. the value within which 95 per cent of repeat measurements lie. The valid use of the technique requires that the variance is constant over the data range. This is not usually the case for counts of items such as CD4 cells or parasites, nor is the log transformation applicable to zero counts. We investigate the properties of generalized differences based on Box-Cox transformations. For an example, in a data set of hookworm eggs counted by the Kato-Katz method, the square root transformation is found to stabilize the variance. We show how to back-transform the repeatability on the square root scale to the repeatability of the counts themselves, as an increasing function of the square mean root egg count, i.e. the square of the average of square roots. As well as being more easily interpretable, the back-transformed results highlight the dependence of the repeatability on the sample volume used.
Weighted spline based integration for reconstruction of freeform wavefront.
Pant, Kamal K; Burada, Dali R; Bichra, Mohamed; Ghosh, Amitava; Khan, Gufran S; Sinzinger, Stefan; Shakher, Chandra
2018-02-10
In the present work, a spline-based integration technique for the reconstruction of a freeform wavefront from the slope data has been implemented. The slope data of a freeform surface contain noise due to their machining process and that introduces reconstruction error. We have proposed a weighted cubic spline based least square integration method (WCSLI) for the faithful reconstruction of a wavefront from noisy slope data. In the proposed method, the measured slope data are fitted into a piecewise polynomial. The fitted coefficients are determined by using a smoothing cubic spline fitting method. The smoothing parameter locally assigns relative weight to the fitted slope data. The fitted slope data are then integrated using the standard least squares technique to reconstruct the freeform wavefront. Simulation studies show the improved result using the proposed technique as compared to the existing cubic spline-based integration (CSLI) and the Southwell methods. The proposed reconstruction method has been experimentally implemented to a subaperture stitching-based measurement of a freeform wavefront using a scanning Shack-Hartmann sensor. The boundary artifacts are minimal in WCSLI which improves the subaperture stitching accuracy and demonstrates an improved Shack-Hartmann sensor for freeform metrology application.
Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J
2018-05-01
To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.
A fast least-squares algorithm for population inference
2013-01-01
Background Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual’s genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. Results We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. Conclusions The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate. PMID:23343408
A fast least-squares algorithm for population inference.
Parry, R Mitchell; Wang, May D
2013-01-23
Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual's genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate.
Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua
2015-01-01
In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model, combined with the consideration of sample state and the model indexes.
Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils
NASA Technical Reports Server (NTRS)
Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David
2016-01-01
Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.
NASA Astrophysics Data System (ADS)
Shen, Xiang; Liu, Bin; Li, Qing-Quan
2017-03-01
The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.
Least-squares model-based halftoning
NASA Astrophysics Data System (ADS)
Pappas, Thrasyvoulos N.; Neuhoff, David L.
1992-08-01
A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach permits the halftoner to be tuned to the individual printer, whose characteristics may vary considerably from those of other printers, for example, write-black vs. write-white laser printers.
Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen
2015-09-18
This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM model is tuned, trained and tested with different feature subsets to obtain the optimal model. In addition, a comparison is made between the partial least square (PLS) model and the LS-SVM model. Finally, the optimal LS-SVM model with the optimal feature subset is applied to inline measurement of particle concentrations in the mixing process. The results show that the proposed method is reliable and accurate for inline measuring the particle concentrations in multicomponent suspensions and the measurement accuracy is sufficiently high for industrial application. Furthermore, the proposed method is applicable to the modeling of the nonlinear system dynamically and provides a feasible way to monitor industrial processes.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games
Liu, Jiacai; Zhao, Wenjian
2016-01-01
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson
2015-01-01
A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
A nonlinear quality-related fault detection approach based on modified kernel partial least squares.
Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen
2017-01-01
In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2008-01-01
This research involved a detailed laboratory study of a new test method for evaluating road base materials based on : the strength of the soil binder. In this test method, small test specimens (5.0in length and 0.75in square cross : section) of binde...
Predictive Array Design. A method for sampling combinatorial chemistry library space.
Lipkin, M J; Rose, V S; Wood, J
2002-01-01
A method, Predictive Array Design, is presented for sampling combinatorial chemistry space and selecting a subarray for synthesis based on the experimental design method of Latin Squares. The method is appropriate for libraries with three sites of variation. Libraries with four sites of variation can be designed using the Graeco-Latin Square. Simulated annealing is used to optimise the physicochemical property profile of the sub-array. The sub-array can be used to make predictions of the activity of compounds in the all combinations array if we assume each monomer has a relatively constant contribution to activity and that the activity of a compound is composed of the sum of the activities of its constitutive monomers.
NASA Astrophysics Data System (ADS)
Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli
2016-10-01
Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.
Yilmaz, B.; Kaban, S.; Akcay, B. K.
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry methods were developed and validated for determination of etodolac in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of etodolac at platinum electrode in acetonitrile solution containing 0.1 M lithium perchlorate. The well-defined oxidation peak was observed at 1.03 V. The calibration curves were linear for etodolac at the concentration range of 2.5-50 μg/ml for linear sweep, square wave and differential pulse voltammetry methods, respectively. Intra- and inter-day precision values for etodolac were less than 4.69, and accuracy (relative error) was better than 2.00%. The mean recovery of etodolac was 100.6% for pharmaceutical preparations. No interference was found from three tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Etol, Tadolak and Etodin tablets as pharmaceutical preparation. PMID:26664057
Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan
2017-09-01
In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbamalu, G.A.N.; El-Hawary, M.E.
The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less
Are rapid population estimates accurate? A field trial of two different assessment methods.
Grais, Rebecca F; Coulombier, Denis; Ampuero, Julia; Lucas, Marcelino E S; Barretto, Avertino T; Jacquier, Guy; Diaz, Francisco; Balandine, Serge; Mahoudeau, Claude; Brown, Vincent
2006-09-01
Emergencies resulting in large-scale displacement often lead to populations resettling in areas where basic health services and sanitation are unavailable. To plan relief-related activities quickly, rapid population size estimates are needed. The currently recommended Quadrat method estimates total population by extrapolating the average population size living in square blocks of known area to the total site surface. An alternative approach, the T-Square, provides a population estimate based on analysis of the spatial distribution of housing units taken throughout a site. We field tested both methods and validated the results against a census in Esturro Bairro, Beira, Mozambique. Compared to the census (population: 9,479), the T-Square yielded a better population estimate (9,523) than the Quadrat method (7,681; 95% confidence interval: 6,160-9,201), but was more difficult for field survey teams to implement. Although applicable only to similar sites, several general conclusions can be drawn for emergency planning.
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu
2014-02-07
Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less
Wavelength calibration of an imaging spectrometer based on Savart interferometer
NASA Astrophysics Data System (ADS)
Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun
2017-09-01
The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.
Degradation trend estimation of slewing bearing based on LSSVM model
NASA Astrophysics Data System (ADS)
Lu, Chao; Chen, Jie; Hong, Rongjing; Feng, Yang; Li, Yuanyuan
2016-08-01
A novel prediction method is proposed based on least squares support vector machine (LSSVM) to estimate the slewing bearing's degradation trend with small sample data. This method chooses the vibration signal which contains rich state information as the object of the study. Principal component analysis (PCA) was applied to fuse multi-feature vectors which could reflect the health state of slewing bearing, such as root mean square, kurtosis, wavelet energy entropy, and intrinsic mode function (IMF) energy. The degradation indicator fused by PCA can reflect the degradation more comprehensively and effectively. Then the degradation trend of slewing bearing was predicted by using the LSSVM model optimized by particle swarm optimization (PSO). The proposed method was demonstrated to be more accurate and effective by the whole life experiment of slewing bearing. Therefore, it can be applied in engineering practice.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826
NASA Astrophysics Data System (ADS)
Shi, Jingzhi; Meng, Xiangying; Hao, Mengjian; Cao, Zhenzhu; He, Weiyan; Gao, Yanfang; Liu, Jinrong
2018-02-01
In this study, BiPO4/highly (001) facet exposed square BiOBr flake heterojunction photocatalysts with different molar ratios were fabricated via a two-step method. The synergetic effect of the heterojunction and facet engineering was systematically investigated. The physicochemical properties of the BiPO4/square BiOBr flake composites were characterized based on X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectra, photoluminescence, electrochemical impedance spectroscopy, and the photocurrent response. The BiPO4/square BiOBr flake heterojunction photocatalyst exhibited much higher photocatalytic performance compared with the individual BiPO4 and BiOBr. In particular, the BiPO4/BiOBr composite where P/Br = 1/3 exhibited the highest photocatalytic activity. The intensified separation of photoinduced charges at the p-n heterojunction between the BiPO4 nanoparticle and (001) facet of BiOBr was mainly responsible for the enhanced photoactivity.
A Study on the Stream Cipher Embedded Magic Square of Random Access Files
NASA Astrophysics Data System (ADS)
Liu, Chenglian; Zhao, Jian-Ming; Rafsanjani, Marjan Kuchaki; Shen, Yijuan
2011-09-01
Magic square and stream cipher issues are both interesting and well-tried topics. In this paper, we are proposing a new scheme which streams cipher applications for random access files based on the magic square method. There are two thresholds required to secure our data, if using only decrypts by the stream cipher. It isn't to recovery original source. On other hand, we improve the model of cipher stream to strengthen and defend efficiently; it also was its own high speed and calculates to most parts of the key stream generator.
ERIC Educational Resources Information Center
Lyon, Betty Clayton
1990-01-01
One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)
Christopher, David; Adams, Wallace P; Lee, Douglas S; Morgan, Beth; Pan, Ziqing; Singh, Gur Jai Pal; Tsong, Yi; Lyapustina, Svetlana
2007-01-19
The purpose of this article is to present the thought process, methods, and interim results of a PQRI Working Group, which was charged with evaluating the chi-square ratio test as a potential method for determining in vitro equivalence of aerodynamic particle size distribution (APSD) profiles obtained from cascade impactor measurements. Because this test was designed with the intention of being used as a tool in regulatory review of drug applications, the capability of the test to detect differences in APSD profiles correctly and consistently was evaluated in a systematic way across a designed space of possible profiles. To establish a "base line," properties of the test in the simplest case of pairs of identical profiles were studied. Next, the test's performance was studied with pairs of profiles, where some difference was simulated in a systematic way on a single deposition site using realistic product profiles. The results obtained in these studies, which are presented in detail here, suggest that the chi-square ratio test in itself is not sufficient to determine equivalence of particle size distributions. This article, therefore, introduces the proposal to combine the chi-square ratio test with a test for impactor-sized mass based on Population Bioequivalence and describes methods for evaluating discrimination capabilities of the combined test. The approaches and results described in this article elucidate some of the capabilities and limitations of the original chi-square ratio test and provide rationale for development of additional tests capable of comparing APSD profiles of pharmaceutical aerosols.
Divya, O; Mishra, Ashok K
2007-05-29
Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.
Cota-Ruiz, Juan; Rosiles, Jose-Gerardo; Sifuentes, Ernesto; Rivas-Perea, Pablo
2012-01-01
This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg-Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms.
NASA Astrophysics Data System (ADS)
Kanisch, G.
2017-05-01
The concepts of ISO 11929 (2010) are applied to evaluation of radionuclide activities from more complex multi-nuclide gamma-ray spectra. From net peak areas estimated by peak fitting, activities and their standard uncertainties are calculated by weighted linear least-squares method with an additional step, where uncertainties of the design matrix elements are taken into account. A numerical treatment of the standard's uncertainty function, based on ISO 11929 Annex C.5, leads to a procedure for deriving decision threshold and detection limit values. The methods shown allow resolving interferences between radionuclide activities also in case of calculating detection limits where they can improve the latter by including more than one gamma line per radionuclide. The co"mmon single nuclide weighted mean is extended to an interference-corrected (generalized) weighted mean, which, combined with the least-squares method, allows faster detection limit calculations. In addition, a new grouped uncertainty budget was inferred, which for each radionuclide gives uncertainty budgets from seven main variables, such as net count rates, peak efficiencies, gamma emission intensities and others; grouping refers to summation over lists of peaks per radionuclide.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.
Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping
2005-03-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*
Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping
2005-01-01
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498
Faraday rotation data analysis with least-squares elliptical fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Adam D.; McHale, G. Brent; Goerz, David A.
2010-10-15
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less
Prediction of protein subcellular localization by weighted gene ontology terms.
Chi, Sang-Mun
2010-08-27
We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.
1991-01-01
A finite element method for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for four test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.
NASA Astrophysics Data System (ADS)
Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza
2017-07-01
In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.
Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.
2012-01-01
The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 13.0 to 5.3 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.80 to 0.40. Percent-bias values ranged from 25.4 to 4.0 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.35. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.86 to 0.56. For the streamgage with the best agreement between observed and estimated streamflow, higher streamflows appear to be underestimated. For the streamgage with the worst agreement between observed and estimated streamflow, low flows appear to be overestimated whereas higher flows seem to be underestimated. Estimated cumulative streamflows for the period October 1, 2004, to September 30, 2009, are underestimated by -25.8 and -7.4 percent for the closest and poorest comparisons, respectively. For the Flow Duration Curve Transfer method, results of the validation study conducted by using the same six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 437 to 93.9 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 906 to 169 ft3/s. Values of the percent root-mean-square-error ranged from 67.0 to 25.6 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 12.5 to 4.4 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.79 to 0.40. Percent-bias values ranged from 22.7 to 0.94 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.38. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.89 to 0.48. For the streamgage with the closest agreement between observed and estimated streamflow, there is relatively good agreement between observed and estimated streamflows. For the streamgage with the poorest agreement between observed and estimated streamflow, streamflows appear to be substantially underestimated for much of the time period. Estimated cumulative streamflow for the period October 1, 2004, to September 30, 2009, are underestimated by -9.3 and -22.7 percent for the closest and poorest comparisons, respectively.
Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.
2016-08-04
In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.
NASA Astrophysics Data System (ADS)
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan
2005-01-01
Response construction methods using Moving Least Squares (MLS), Kriging and Radial Basis Functions (RBF) are compared with the Global Least Squares (GLS) method in three numerical examples for derivative generation capability. Also, a new Interpolating Moving Least Squares (IMLS) method adopted from the meshless method is presented. It is found that the response surface construction methods using the Kriging and RBF interpolation yields more accurate results compared with MLS and GLS methods. Several computational aspects of the response surface construction methods also discussed.
Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi
2013-06-01
Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.
Complete band gaps of phononic crystal plates with square rods.
El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H
2012-04-01
Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebrahimian, Ali; Wilson, Bruce N.; Gulliver, John S.
2016-05-01
Impervious surfaces are useful indicators of the urbanization impacts on water resources. Effective impervious area (EIA), which is the portion of total impervious area (TIA) that is hydraulically connected to the drainage system, is a better catchment parameter in the determination of actual urban runoff. Development of reliable methods for quantifying EIA rather than TIA is currently one of the knowledge gaps in the rainfall-runoff modeling context. The objective of this study is to improve the rainfall-runoff data analysis method for estimating EIA fraction in urban catchments by eliminating the subjective part of the existing method and by reducing the uncertainty of EIA estimates. First, the theoretical framework is generalized using a general linear least square model and using a general criterion for categorizing runoff events. Issues with the existing method that reduce the precision of the EIA fraction estimates are then identified and discussed. Two improved methods, based on ordinary least square (OLS) and weighted least square (WLS) estimates, are proposed to address these issues. The proposed weighted least squares method is then applied to eleven urban catchments in Europe, Canada, and Australia. The results are compared to map measured directly connected impervious area (DCIA) and are shown to be consistent with DCIA values. In addition, both of the improved methods are applied to nine urban catchments in Minnesota, USA. Both methods were successful in removing the subjective component inherent in the analysis of rainfall-runoff data of the current method. The WLS method is more robust than the OLS method and generates results that are different and more precise than the OLS method in the presence of heteroscedastic residuals in our rainfall-runoff data.
NASA Astrophysics Data System (ADS)
Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.
2011-02-01
Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.
Channel estimation based on quantized MMP for FDD massive MIMO downlink
NASA Astrophysics Data System (ADS)
Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie
2016-10-01
In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.
Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors
NASA Astrophysics Data System (ADS)
Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc
2015-08-01
Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.
Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W
2017-05-09
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
NASA Astrophysics Data System (ADS)
Gogu, C.; Haftka, R.; LeRiche, R.; Molimard, J.; Vautrin, A.; Sankar, B.
2008-11-01
The basic formulation of the least squares method, based on the L2 norm of the misfit, is still widely used today for identifying elastic material properties from experimental data. An alternative statistical approach is the Bayesian method. We seek here situations with significant difference between the material properties found by the two methods. For a simple three bar truss example we illustrate three such situations in which the Bayesian approach leads to more accurate results: different magnitude of the measurements, different uncertainty in the measurements and correlation among measurements. When all three effects add up, the Bayesian approach can have a large advantage. We then compared the two methods for identification of elastic constants from plate vibration natural frequencies.
Quantitative Modelling of Trace Elements in Hard Coal.
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.
Quantitative Modelling of Trace Elements in Hard Coal
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794
NASA Astrophysics Data System (ADS)
Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong
2018-06-01
An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.
Li, Yankun; Shao, Xueguang; Cai, Wensheng
2007-04-15
Consensus modeling of combining the results of multiple independent models to produce a single prediction avoids the instability of single model. Based on the principle of consensus modeling, a consensus least squares support vector regression (LS-SVR) method for calibrating the near-infrared (NIR) spectra was proposed. In the proposed approach, NIR spectra of plant samples were firstly preprocessed using discrete wavelet transform (DWT) for filtering the spectral background and noise, then, consensus LS-SVR technique was used for building the calibration model. With an optimization of the parameters involved in the modeling, a satisfied model was achieved for predicting the content of reducing sugar in plant samples. The predicted results show that consensus LS-SVR model is more robust and reliable than the conventional partial least squares (PLS) and LS-SVR methods.
Carpani, Irene; Conti, Paolo; Lanteri, Silvia; Legnani, Pier Paolo; Leoni, Erica; Tonelli, Domenica
2008-02-28
A home-made microelectrode array, based on reticulated vitreous carbon, was used as working electrode in square wave voltammetry experiments to quantify the bacterial load of Escherichia coli ATCC 13706 and Pseudomonas aeruginosa ATCC 27853, chosen as test microorganisms, in synthetic samples similar to drinking water (phosphate buffer). Raw electrochemical signals were analysed with partial least squares regression coupled to variable selection in order to correlate these values with the bacterial load estimated by aerobic plate counting. The results demonstrated the ability of the method to detect even low loads of microorganisms in synthetic water samples. In particular, the model detects the bacterial load in the range 3-2,020 CFU ml(-1) for E. coli and in the range 76-155,556 CFU ml(-1) for P. aeruginosa.
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
NASA Astrophysics Data System (ADS)
Grigorie, Teodor Lucian; Corcau, Ileana Jenica; Tudosie, Alexandru Nicolae
2017-06-01
The paper presents a way to obtain an intelligent miniaturized three-axial accelerometric sensor, based on the on-line estimation and compensation of the sensor errors generated by the environmental temperature variation. Taking into account that this error's value is a strongly nonlinear complex function of the values of environmental temperature and of the acceleration exciting the sensor, its correction may not be done off-line and it requires the presence of an additional temperature sensor. The proposed identification methodology for the error model is based on the least square method which process off-line the numerical values obtained from the accelerometer experimental testing for different values of acceleration applied to its axes of sensitivity and for different values of operating temperature. A final analysis of the error level after the compensation highlights the best variant for the matrix in the error model. In the sections of the paper are shown the results of the experimental testing of the accelerometer on all the three sensitivity axes, the identification of the error models on each axis by using the least square method, and the validation of the obtained models with experimental values. For all of the three detection channels was obtained a reduction by almost two orders of magnitude of the acceleration absolute maximum error due to environmental temperature variation.
Power strain imaging based on vibro-elastography techniques
NASA Astrophysics Data System (ADS)
Wen, Xu; Salcudean, S. E.
2007-03-01
This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Youngsoo; Carlberg, Kevin Thomas
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less
PLS-LS-SVM based modeling of ATR-IR as a robust method in detection and qualification of alprazolam
NASA Astrophysics Data System (ADS)
Parhizkar, Elahehnaz; Ghazali, Mohammad; Ahmadi, Fatemeh; Sakhteman, Amirhossein
2017-02-01
According to the United States pharmacopeia (USP), Gold standard technique for Alprazolam determination in dosage forms is HPLC, an expensive and time-consuming method that is not easy to approach. In this study chemometrics assisted ATR-IR was introduced as an alternative method that produce similar results in fewer time and energy consumed manner. Fifty-eight samples containing different concentrations of commercial alprazolam were evaluated by HPLC and ATR-IR method. A preprocessing approach was applied to convert raw data obtained from ATR-IR spectra to normal matrix. Finally, a relationship between alprazolam concentrations achieved by HPLC and ATR-IR data was established using PLS-LS-SVM (partial least squares least squares support vector machines). Consequently, validity of the method was verified to yield a model with low error values (root mean square error of cross validation equal to 0.98). The model was able to predict about 99% of the samples according to R2 of prediction set. Response permutation test was also applied to affirm that the model was not assessed by chance correlations. At conclusion, ATR-IR can be a reliable method in manufacturing process in detection and qualification of alprazolam content.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qishi; Berry, M. L..; Grieme, M.
We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.
Makkai, Géza; Buzády, Andrea; Erostyák, János
2010-01-01
Determination of concentrations of spectrally overlapping compounds has special difficulties. Several methods are available to calculate the constituents' concentrations in moderately complex mixtures. A method which can provide information about spectrally hidden components in mixtures is very useful. Two methods powerful in resolving spectral components are compared in this paper. The first method tested is the Derivative Matrix Isopotential Synchronous Fluorimetry (DMISF). It is based on derivative analysis of MISF spectra, which are constructed using isopotential trajectories in the Excitation-Emission Matrix (EEM) of background solution. For DMISF method, a mathematical routine fitting the 3D data of EEMs was developed. The other method tested uses classical Least Squares Fitting (LSF) algorithm, wherein Rayleigh- and Raman-scattering bands may lead to complications. Both methods give excellent sensitivity and have advantages against each other. Detection limits of DMISF and LSF have been determined at very different concentration and noise levels.
Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena
2015-04-15
It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Christ, Theodore J.; Desjardins, Christopher David
2018-01-01
Curriculum-Based Measurement of Oral Reading (CBM-R) is often used to monitor student progress and guide educational decisions. Ordinary least squares regression (OLSR) is the most widely used method to estimate the slope, or rate of improvement (ROI), even though published research demonstrates OLSR's lack of validity and reliability, and…
Filter Tuning Using the Chi-Squared Statistic
NASA Technical Reports Server (NTRS)
Lilly-Salkowski, Tyler B.
2017-01-01
This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The goal of the process is to characterize the filter performance in the metric of covariance realism. The Chi-squared statistic is the value calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance. The process of tuning an Extended Kalman Filter (EKF) for Aqua and Aura support is described, including examination of the measurement errors of available observation types, and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-squared statistic, calculated from EKF solutions, are assessed.
[Locally weighted least squares estimation of DPOAE evoked by continuously sweeping primaries].
Han, Xiaoli; Fu, Xinxing; Cui, Jie; Xiao, Ling
2013-12-01
Distortion product otoacoustic emission (DPOAE) signal can be used for diagnosis of hearing loss so that it has an important clinical value. Continuously using sweeping primaries to measure DPOAE provides an efficient tool to record DPOAE data rapidly when DPOAE is measured in a large frequency range. In this paper, locally weighted least squares estimation (LWLSE) of 2f1-f2 DPOAE is presented based on least-squares-fit (LSF) algorithm, in which DPOAE is evoked by continuously sweeping tones. In our study, we used a weighted error function as the loss function and the weighting matrixes in the local sense to obtain a smaller estimated variance. Firstly, ordinary least squares estimation of the DPOAE parameters was obtained. Then the error vectors were grouped and the different local weighting matrixes were calculated in each group. And finally, the parameters of the DPOAE signal were estimated based on least squares estimation principle using the local weighting matrixes. The simulation results showed that the estimate variance and fluctuation errors were reduced, so the method estimates DPOAE and stimuli more accurately and stably, which facilitates extraction of clearer DPOAE fine structure.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Analysis of the multigroup model for muon tomography based threat detection
NASA Astrophysics Data System (ADS)
Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.
2014-02-01
We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.
NASA Astrophysics Data System (ADS)
Li, Xuxu; Li, Xinyang; wang, Caixia
2018-03-01
This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.
a New Method for Calculating the Fractal Dimension of Surface Topography
NASA Astrophysics Data System (ADS)
Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan
2015-06-01
A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.
NASA Astrophysics Data System (ADS)
Aldossari, M.; Alfalou, A.; Brosseau, C.
2017-08-01
In an earlier study [Opt. Express 22, 22349-22368 (2014)], a compression and encryption method that simultaneous compress and encrypt closely resembling images was proposed and validated. This multiple-image optical compression and encryption (MIOCE) method is based on a special fusion of the different target images spectra in the spectral domain. Now for the purpose of assessing the capacity of the MIOCE method, we would like to evaluate and determine the influence of the number of target images. This analysis allows us to evaluate the performance limitation of this method. To achieve this goal, we use a criterion based on the root-mean-square (RMS) [Opt. Lett. 35, 1914-1916 (2010)] and compression ratio to determine the spectral plane area. Then, the different spectral areas are merged in a single spectrum plane. By choosing specific areas, we can compress together 38 images instead of 26 using the classical MIOCE method. The quality of the reconstructed image is evaluated by making use of the mean-square-error criterion (MSE).
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
Elastic least-squares reverse time migration with velocities and density perturbation
NASA Astrophysics Data System (ADS)
Qu, Yingming; Li, Jinli; Huang, Jianping; Li, Zhenchun
2018-02-01
Elastic least-squares reverse time migration (LSRTM) based on the non-density-perturbation assumption can generate false-migrated interfaces caused by density variations. We perform an elastic LSRTM scheme with density variations for multicomponent seismic data to produce high-quality images in Vp, Vs and ρ components. However, the migrated images may suffer from crosstalk artefacts caused by P- and S-waves coupling in elastic LSRTM no matter what model parametrizations used. We have proposed an elastic LSRTM with density variations method based on wave modes separation to reduce these crosstalk artefacts by using P- and S-wave decoupled elastic velocity-stress equations to derive demigration equations and gradient formulae with respect to Vp, Vs and ρ. Numerical experiments with synthetic data demonstrate the capability and superiority of the proposed method. The imaging results suggest that our method promises imaging results with higher quality and has a faster residual convergence rate. Sensitivity analysis of migration velocity, migration density and stochastic noise verifies the robustness of the proposed method for field data.
Dealing with gene expression missing data.
Brás, L P; Menezes, J C
2006-05-01
Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.
Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland
NASA Astrophysics Data System (ADS)
Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.
2017-02-01
The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.
Spline based least squares integration for two-dimensional shape or wavefront reconstruction
Huang, Lei; Xue, Junpeng; Gao, Bo; ...
2016-12-21
In this paper, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its slopes. The proposed integration method employs splines to fit the measured slope data with piecewise polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than two other existing methods used for comparison. Especially at the boundaries, the proposed method has better performance. Themore » noise influence is studied by adding white Gaussian noise to the slope data. Finally, experimental data from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical measurement.« less
Spline based least squares integration for two-dimensional shape or wavefront reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
In this paper, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its slopes. The proposed integration method employs splines to fit the measured slope data with piecewise polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than two other existing methods used for comparison. Especially at the boundaries, the proposed method has better performance. Themore » noise influence is studied by adding white Gaussian noise to the slope data. Finally, experimental data from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical measurement.« less
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah
2015-01-01
Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.
2012-04-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less
A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1993-01-01
A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.
Adeniyi, D A; Wei, Z; Yang, Y
2018-01-30
A wealth of data are available within the health care system, however, effective analysis tools for exploring the hidden patterns in these datasets are lacking. To alleviate this limitation, this paper proposes a simple but promising hybrid predictive model by suitably combining the Chi-square distance measurement with case-based reasoning technique. The study presents the realization of an automated risk calculator and death prediction in some life-threatening ailments using Chi-square case-based reasoning (χ 2 CBR) model. The proposed predictive engine is capable of reducing runtime and speeds up execution process through the use of critical χ 2 distribution value. This work also showcases the development of a novel feature selection method referred to as frequent item based rule (FIBR) method. This FIBR method is used for selecting the best feature for the proposed χ 2 CBR model at the preprocessing stage of the predictive procedures. The implementation of the proposed risk calculator is achieved through the use of an in-house developed PHP program experimented with XAMP/Apache HTTP server as hosting server. The process of data acquisition and case-based development is implemented using the MySQL application. Performance comparison between our system, the NBY, the ED-KNN, the ANN, the SVM, the Random Forest and the traditional CBR techniques shows that the quality of predictions produced by our system outperformed the baseline methods studied. The result of our experiment shows that the precision rate and predictive quality of our system in most cases are equal to or greater than 70%. Our result also shows that the proposed system executes faster than the baseline methods studied. Therefore, the proposed risk calculator is capable of providing useful, consistent, faster, accurate and efficient risk level prediction to both the patients and the physicians at any time, online and on a real-time basis.
Temporal gravity field modeling based on least square collocation with short-arc approach
NASA Astrophysics Data System (ADS)
ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet
2014-05-01
After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.
NASA Astrophysics Data System (ADS)
Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol
2017-11-01
Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.
Mapping Fire Scars in the Brazilian Cerrado Using AVHRR Imagery
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Ambrosia, V. G.; Brass, J. A.; Rezendez, A.; Alexander, S.; Guild, L. S.; Peterson, David L. (Technical Monitor)
1995-01-01
The Brazilian cerrado, or savanna, spans an area of 1,800,000 square kilometers on the great plateau of Central Brazil. Large fires covering hundreds of square kilometers, frequently occur in wildland areas of the cerrado, dominated by grasslands or grasslands mixed with shrubs and small trees, and also within area in the cerrado used for agricultural purposes, particularly for grazing. Smaller fires, typically extending over arm of a few square kilometers or less, are associated with the clewing of crops, such as dry land rice. A method for mapping fire scars and differentiating them from extensive areas of bare sod with AVHRR bands 1 (.55 -.68 micrometer) and 3 (3.5 - 3.9 micrometers) and measures of performance based on comparison with maps of fires with Landsat imagery will be presented. Methods of estimating total area burned from the AVHRR fire scar map will be discussed and related to land use and scar size.
Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M
2017-05-01
Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.
Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang
2014-04-01
In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The overall results demonstrate that the discrimination method proposed in the present paper can rapidly and nondestructively discriminate the different types of Polyacrylamide and the adulterated Polyacrylamide samples, and offered a new approach to discriminate the types of Polyacrylamide.
Measures of precision for dissimilarity-based multivariate analysis of ecological communities.
Anderson, Marti J; Santana-Garcon, Julia
2015-01-01
Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Exact least squares adaptive beamforming using an orthogonalization network
NASA Astrophysics Data System (ADS)
Yuen, Stanley M.
1991-03-01
The pros and cons of various classical and state-of-the-art methods in adaptive array processing are discussed, and the relevant concepts and historical developments are pointed out. A set of easy-to-understand equations for facilitating derivation of any least-squares-based algorithm is derived. Using this set of equations and incorporating all of the useful properties associated with various techniques, an efficient solution to the real-time adaptive beamforming problem is developed.
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine
Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander
2007-01-01
Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.
Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor
NASA Astrophysics Data System (ADS)
Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping
2017-12-01
Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10-5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.
Jiang, Jie; Yu, Wenbo; Zhang, Guangjun
2017-01-01
Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179
Challenge Based Innovation: Translating Fundamental Research into Societal Applications
ERIC Educational Resources Information Center
Kurikka, Joona; Utriainen, Tuuli; Repokari, Lauri
2016-01-01
This paper is based on work done at IdeaSquare, a new innovation experiment at CERN, the European Organization for Nuclear Research. The paper explores the translation of fundamental research into societal applications with the help of multidisciplinary student teams, project- and problem-based learning and design thinking methods. The theme is…
Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou
2018-02-08
The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.
Diao, Jiayin; Xu, Can; Zheng, Huiting; He, Siyi; Wang, Shumei
2018-06-21
Viticis Fructus is a traditional Chinese herbal drug processed by various methods to achieve different clinical purposes. Thermal treatment potentially alters chemical composition, which may impact on effectiveness and toxicity. In order to interpret the constituent discrepancies of raw versus processed (stir-fried) Viticis Fructus, a multivariate detection method (NIR, HPLC, and UPLC-MS) based on metabonomics and chemometrics was developed. Firstly, synergy interval partial least squares and partial least squares-discriminant analysis were employed to screen the distinctive wavebands (4319 - 5459 cm -1 ) based on preprocessed near-infrared spectra. Then, HPLC with principal component analysis was performed to characterize the distinction. Subsequently, a total of 49 compounds were identified by UPLC-MS, among which 42 compounds were eventually characterized as having a significant change during processing via the semiquantitative volcano plot analysis. Moreover, based on the partial least squares-discriminant analysis, 16 compounds were chosen as characteristic markers that could be in close correlation with the discriminatory near-infrared wavebands. Together, all of these characterization techniques effectively discriminated raw and processed products of Viticis Fructus. In general, our work provides an integrated way of classifying Viticis Fructus, and a strategy to explore discriminatory chemical markers for other traditional Chinese herbs, thus ensuring safety and efficacy for consumers. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li
2014-09-01
This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.
Sound field simulation and acoustic animation in urban squares
NASA Astrophysics Data System (ADS)
Kang, Jian; Meng, Yan
2005-04-01
Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.
ERIC Educational Resources Information Center
Rule, David L.
Several regression methods were examined within the framework of weighted structural regression (WSR), comparing their regression weight stability and score estimation accuracy in the presence of outlier contamination. The methods compared are: (1) ordinary least squares; (2) WSR ridge regression; (3) minimum risk regression; (4) minimum risk 2;…
A new method is described for determining total gasoline-range organics
(TGRO) in water that combines solid-phase microextraction (SPME) and infrared
(IR) spectroscopy. In this method, the organic compounds are extracted from
250-mL of water into a small square (3....
A new method is described for determining nitroaromatic compounds in water
that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the compounds are extracted from a 250-mL volume of water into a small square (3.2 cm ? 3.2 cm ? 61.2...
ERIC Educational Resources Information Center
Igra, Amnon
1980-01-01
Three methods of estimating a model of school effects are compared: ordinary least squares; an approach based on the analysis of covariance; and, a residualized input-output approach. Results are presented using a matrix algebra formulation, and advantages of the first two methods are considered. (Author/GK)
A Study of Impact Point Detecting Method Based on Seismic Signal
NASA Astrophysics Data System (ADS)
Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong
The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.
Beyond maximum entropy: Fractal pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, R. C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other methods, including Goodness-of-Fit (e.g. Least-Squares and Lucy-Richardson) and Maximum Entropy (ME). Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME.
Clustering "N" Objects into "K" Groups under Optimal Scaling of Variables.
ERIC Educational Resources Information Center
van Buuren, Stef; Heiser, Willem J.
1989-01-01
A method based on homogeneity analysis (multiple correspondence analysis or multiple scaling) is proposed to reduce many categorical variables to one variable with "k" categories. The method is a generalization of the sum of squared distances cluster analysis problem to the case of mixed measurement level variables. (SLD)
USDA-ARS?s Scientific Manuscript database
The beard testing method for measuring cotton fiber length is based on the fibrogram theory. However, in the instrumental implementations, the engineering complexity alters the original fiber length distribution observed by the instrument. This causes challenges in obtaining the entire original le...
The High School & Beyond Data Set: Academic Self-Concept Measures.
ERIC Educational Resources Information Center
Strein, William
A series of confirmatory factor analyses using both LISREL VI (maximum likelihood method) and LISCOMP (weighted least squares method using covariance matrix based on polychoric correlations) and including cross-validation on independent samples were applied to items from the High School and Beyond data set to explore the measurement…
Estimating School Efficiency: A Comparison of Methods Using Simulated Data.
ERIC Educational Resources Information Center
Bifulco, Robert; Bretschneider, Stuart
2001-01-01
Uses simulated data to assess the adequacy of two econometric and linear-programming techniques (data-envelopment analysis and corrected ordinary least squares) for measuring performance-based school reform. In complex data sets (simulated to contain measurement error and endogeneity), these methods are inadequate efficiency measures. (Contains 40…
NASA Astrophysics Data System (ADS)
Zavvari, Mahdi; Taleb Hesami Azar, Milad; Arashmehr, Armin
2017-11-01
A novel high-performance plasmonic filter based on a metal-insulator-metal structure is analysed for band-rejection applications. A square ring is used in proximity to the waveguide in order to resonate with some transmitted wavelengths and drop them to prevent from propagation towards the output. The effect of the structural parameters of square ring resonator is studied deploying the finite difference time domain method and the possibility of tuning the rejected wavelength is investigated in detail. The simulation results demonstrate that the rejected wavelength has a red-shift with increase in the size of the ring's dimensions. A further study is carried out considering narrowing the bandwidth. To improve the quality factor of the proposed filter, a small ring within the resonator is introduced that considerably decreases the bandwidth of the peak with respect to its central wavelength.
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-11-01
The excellent propagation properties of square-lattice microstructured optical fibers (MOFs) have been widely recognized. We generalized our recently developed analytical field model (Sharma and Sharma, 2016), for index-guiding MOFs with square-lattice of circular air-holes in the photonic crystal cladding. Using the field model, we have studied the propagation properties of the fundamental mode of index-guiding square-lattice MOFs with different hole-to-hole spacing and the air-hole diameter. Results for the modal effective index, near and the far-field patterns and the group-velocity dispersion have been included. The evolution of the mode shape has been investigated in transition from the near to the far-field domain. We have also studied the splice losses between two identical square-lattice MOFs and also between an MOF and a traditional step-index single-mode fiber. Comparisons with available numerical simulation results, e.g., those based on the full-vector finite element method have also been included.
Lin, Jyh-Jiuan; Chang, Ching-Hui; Pal, Nabendu
2015-01-01
To test the mutual independence of two qualitative variables (or attributes), it is a common practice to follow the Chi-square tests (Pearson's as well as likelihood ratio test) based on data in the form of a contingency table. However, it should be noted that these popular Chi-square tests are asymptotic in nature and are useful when the cell frequencies are "not too small." In this article, we explore the accuracy of the Chi-square tests through an extensive simulation study and then propose their bootstrap versions that appear to work better than the asymptotic Chi-square tests. The bootstrap tests are useful even for small-cell frequencies as they maintain the nominal level quite accurately. Also, the proposed bootstrap tests are more convenient than the Fisher's exact test which is often criticized for being too conservative. Finally, all test methods are applied to a few real-life datasets for demonstration purposes.
ERIC Educational Resources Information Center
Williams, Horace E.
1974-01-01
A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)
A Partial Least Squares Based Procedure for Upstream Sequence Classification in Prokaryotes.
Mehmood, Tahir; Bohlin, Jon; Snipen, Lars
2015-01-01
The upstream region of coding genes is important for several reasons, for instance locating transcription factor, binding sites, and start site initiation in genomic DNA. Motivated by a recently conducted study, where multivariate approach was successfully applied to coding sequence modeling, we have introduced a partial least squares (PLS) based procedure for the classification of true upstream prokaryotic sequence from background upstream sequence. The upstream sequences of conserved coding genes over genomes were considered in analysis, where conserved coding genes were found by using pan-genomics concept for each considered prokaryotic species. PLS uses position specific scoring matrix (PSSM) to study the characteristics of upstream region. Results obtained by PLS based method were compared with Gini importance of random forest (RF) and support vector machine (SVM), which is much used method for sequence classification. The upstream sequence classification performance was evaluated by using cross validation, and suggested approach identifies prokaryotic upstream region significantly better to RF (p-value < 0.01) and SVM (p-value < 0.01). Further, the proposed method also produced results that concurred with known biological characteristics of the upstream region.
An optimization approach for fitting canonical tensor decompositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methodsmore » have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.« less
NASA Astrophysics Data System (ADS)
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
2015-06-01
cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator
Least-squares finite element solutions for three-dimensional backward-facing step flow
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang
1993-01-01
Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
Efficacy of micronized acellular dermal graft for use in interproximal papillae regeneration.
Geurs, Nico C; Romanos, Alain H; Vassilopoulos, Philip J; Reddy, Michael S
2012-02-01
The aim of this study was to evaluate interdental papillary reconstruction based on a micronized acellular dermal matrix allograft technique. Thirty-eight papillae in 12 patients with esthetic complaints of insufficient papillae were evaluated. Decreased gingival recession values were found postoperatively (P < .001). Chi-square analysis showed significantly higher postoperative Papilla Index values (chi-square = 43, P < .001), further supported by positive symmetry statistical analysis values (positive kappa and weighted kappa values). This procedure shows promise as a method for papillary reconstruction.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot
NASA Astrophysics Data System (ADS)
Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim
2018-04-01
A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.
Implementation of an Improved Adaptive Testing Theory
ERIC Educational Resources Information Center
Al-A'ali, Mansoor
2007-01-01
Computer adaptive testing is the study of scoring tests and questions based on assumptions concerning the mathematical relationship between examinees' ability and the examinees' responses. Adaptive student tests, which are based on item response theory (IRT), have many advantages over conventional tests. We use the least square method, a…
A study of various methods for calculating locations of lightning events
NASA Technical Reports Server (NTRS)
Cannon, John R.
1995-01-01
This article reports on the results of numerical experiments on finding the location of lightning events using different numerical methods. The methods include linear least squares, nonlinear least squares, statistical estimations, cluster analysis and angular filters and combinations of such techniques. The experiments involved investigations of methods for excluding fake solutions which are solutions that appear to be reasonable but are in fact several kilometers distant from the actual location. Some of the conclusions derived from the study are that bad data produces fakes, that no fool-proof method of excluding fakes was found, that a short base-line interferometer under development at Kennedy Space Center to measure the direction cosines of an event shows promise as a filter for excluding fakes. The experiments generated a number of open questions, some of which are discussed at the end of the report.
A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems
NASA Astrophysics Data System (ADS)
Chan, Tony; Szeto, Tedd
1994-03-01
We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods
NASA Astrophysics Data System (ADS)
Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric
2018-03-01
Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.
NASA Astrophysics Data System (ADS)
Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.
2018-03-01
In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.
Lee, Sang-Yeol
2016-09-01
[Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data.
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-09-18
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-01-01
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors. PMID:24051521
Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K
2010-09-01
Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption
2015-01-01
Background The increasing availability of genome data motivates massive research studies in personalized treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been widely concerned when sharing the sensitive information in a cloud environment. Methods We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and accuracy in computing chi-square statistics. Results The proposed framework was evaluated for the task of chi-square statistic computation with two case-control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation. Remarkably, the secure approximation division provides significant performance gain, but without missing any significance SNPs in the chi-square association test using the aforementioned datasets. Conclusions Unlike many existing HME based studies, in which final results need to be computed by the data owner due to the lack of the secure division operation, the proposed FORESEE framework support complete outsourcing to the cloud and output the final encrypted chi-square statistics. PMID:26733391
NASA Astrophysics Data System (ADS)
Maki, Toshihiro; Ura, Tamaki; Singh, Hanumant; Sakamaki, Takashi
Large-area seafloor imaging will bring significant benefits to various fields such as academics, resource survey, marine development, security, and search-and-rescue. The authors have proposed a navigation method of an autonomous underwater vehicle for seafloor imaging, and verified its performance through mapping tubeworm colonies with the area of 3,000 square meters using the AUV Tri-Dog 1 at Tagiri vent field, Kagoshima bay in Japan (Maki et al., 2008, 2009). This paper proposes a post-processing method to build a natural photo mosaic from a number of pictures taken by an underwater platform. The method firstly removes lens distortion, invariances of color and lighting from each image, and then ortho-rectification is performed based on camera pose and seafloor estimated by navigation data. The image alignment is based on both navigation data and visual characteristics, implemented as an expansion of the image based method (Pizarro et al., 2003). Using the two types of information realizes an image alignment that is consistent both globally and locally, as well as making the method applicable to data sets with little visual keys. The method was evaluated using a data set obtained by the AUV Tri-Dog 1 at the vent field in Sep. 2009. A seamless, uniformly illuminated photo mosaic covering the area of around 500 square meters was created from 391 pictures, which covers unique features of the field such as bacteria mats and tubeworm colonies.
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2018-06-01
To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.
2014-12-01
This study investigated the performance of the Lee-Carter (LC) method and it variants in modeling and forecasting Malaysia mortality. These include the original LC, the Lee-Miller (LM) variant and the Booth-Maindonald-Smith (BMS) variant. These methods were evaluated using Malaysia's mortality data which was measured based on age specific death rates (ASDR) for 1971 to 2009 for overall population while those for 1980-2009 were used in separate models for male and female population. The performance of the variants has been examined in term of the goodness of fit of the models and forecasting accuracy. Comparison was made based on several criteria namely, mean square error (MSE), root mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The results indicate that BMS method was outperformed in in-sample fitting for overall population and when the models were fitted separately for male and female population. However, in the case of out-sample forecast accuracy, BMS method only best when the data were fitted to overall population. When the data were fitted separately for male and female, LCnone performed better for male population and LM method is good for female population.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang
2018-01-25
Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.
New methods of testing nonlinear hypothesis using iterative NLLS estimator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.
NASA Astrophysics Data System (ADS)
Adeniyi, D. A.; Wei, Z.; Yang, Y.
2017-10-01
Recommendation problem has been extensively studied by researchers in the field of data mining, database and information retrieval. This study presents the design and realisation of an automated, personalised news recommendations system based on Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model. The proposed χ2SB-KNN model has the potential to overcome computational complexity and information overloading problems, reduces runtime and speeds up execution process through the use of critical value of χ2 distribution. The proposed recommendation engine can alleviate scalability challenges through combined online pattern discovery and pattern matching for real-time recommendations. This work also showcases the development of a novel method of feature selection referred to as Data Discretisation-Based feature selection method. This is used for selecting the best features for the proposed χ2SB-KNN algorithm at the preprocessing stage of the classification procedures. The implementation of the proposed χ2SB-KNN model is achieved through the use of a developed in-house Java program on an experimental website called OUC newsreaders' website. Finally, we compared the performance of our system with two baseline methods which are traditional Euclidean distance K-nearest neighbour and Naive Bayesian techniques. The result shows a significant improvement of our method over the baseline methods studied.
A Probability Based Framework for Testing the Missing Data Mechanism
ERIC Educational Resources Information Center
Lin, Johnny Cheng-Han
2013-01-01
Many methods exist for imputing missing data but fewer methods have been proposed to test the missing data mechanism. Little (1988) introduced a multivariate chi-square test for the missing completely at random data mechanism (MCAR) that compares observed means for each pattern with expectation-maximization (EM) estimated means. As an alternative,…
Least Squares Approach to the Alignment of the Generic High Precision Tracking System
NASA Astrophysics Data System (ADS)
de Renstrom, Pawel Brückman; Haywood, Stephen
2006-04-01
A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.
Modeling PSInSAR time series without phase unwrapping
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.
Large-eddy simulation of a backward facing step flow using a least-squares spectral element method
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Mittal, Rajat
1996-01-01
We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Sonnad, Vijay
1991-01-01
A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.
Cortical dipole imaging using truncated total least squares considering transfer matrix error.
Hori, Junichi; Takeuchi, Kosuke
2013-01-01
Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.
Battery state-of-charge estimation using approximate least squares
NASA Astrophysics Data System (ADS)
Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.
2015-03-01
In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulation. The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
Penrose high-dynamic-range imaging
NASA Astrophysics Data System (ADS)
Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian
2016-05-01
High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.
Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration
NASA Astrophysics Data System (ADS)
Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu
2015-08-01
Least-squares migration (LSM) is a linearized inversion technique for subsurface reflectivity estimation. Compared to conventional migration algorithms, it can improve spatial resolution significantly with a few iterative calculations. There are three key steps in LSM, (1) calculate data residuals between observed data and demigrated data using the inverted reflectivity model; (2) migrate data residuals to form reflectivity gradient and (3) update reflectivity model using optimization methods. In order to obtain an accurate and high-resolution inversion result, the good estimation of inverse Hessian matrix plays a crucial role. However, due to the large size of Hessian matrix, the inverse matrix calculation is always a tough task. The limited-memory BFGS (L-BFGS) method can evaluate the Hessian matrix indirectly using a limited amount of computer memory which only maintains a history of the past m gradients (often m < 10). We combine the L-BFGS method with least-squares pre-stack Kirchhoff depth migration. Then, we validate the introduced approach by the 2-D Marmousi synthetic data set and a 2-D marine data set. The results show that the introduced method can effectively obtain reflectivity model and has a faster convergence rate with two comparison gradient methods. It might be significant for general complex subsurface imaging.
Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun
2015-11-04
There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
New robust bilinear least squares method for the analysis of spectral-pH matrix data.
Goicoechea, Héctor C; Olivieri, Alejandro C
2005-07-01
A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.
NASA Astrophysics Data System (ADS)
Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.
1997-02-01
We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.
The covariance matrix for the solution vector of an equality-constrained least-squares problem
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1976-01-01
Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'
Image Restoration in Cryo-electron Microscopy
Penczek, Pawel A.
2011-01-01
Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
Comparison of Methods for Estimating Low Flow Characteristics of Streams
Tasker, Gary D.
1987-01-01
Four methods for estimating the 7-day, 10-year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distribution (Log-Pearson III and Weibull) had lower mean square errors than did the G. E. P. Box-D. R. Cox transformation method or the Log-W. C. Boughton method which is based on a fit of plotting positions.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Bergh, Daniel
2015-01-01
Chi-square statistics are commonly used for tests of fit of measurement models. Chi-square is also sensitive to sample size, which is why several approaches to handle large samples in test of fit analysis have been developed. One strategy to handle the sample size problem may be to adjust the sample size in the analysis of fit. An alternative is to adopt a random sample approach. The purpose of this study was to analyze and to compare these two strategies using simulated data. Given an original sample size of 21,000, for reductions of sample sizes down to the order of 5,000 the adjusted sample size function works as good as the random sample approach. In contrast, when applying adjustments to sample sizes of lower order the adjustment function is less effective at approximating the chi-square value for an actual random sample of the relevant size. Hence, the fit is exaggerated and misfit under-estimated using the adjusted sample size function. Although there are big differences in chi-square values between the two approaches at lower sample sizes, the inferences based on the p-values may be the same.
Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Bryanton, Janet; Bigsby, Kathryn; Shaw, R Anthony
2018-02-20
Attenuated total reflectance infrared (ATR-IR) spectroscopy is a simple, rapid and cost-effective method for the analysis of serum. However, the complex nature of serum remains a limiting factor to the reliability of this method. We investigated the benefits of coupling the centrifugal ultrafiltration with ATR-IR spectroscopy for quantification of human serum IgA concentration. Human serum samples (n = 196) were analyzed for IgA using an immunoturbidimetric assay. ATR-IR spectra were acquired for whole serum samples and for the retentate (residue) reconstituted with saline following 300 kDa centrifugal ultrafiltration. IR-based analytical methods were developed for each of the two spectroscopic datasets, and the accuracy of each of the two methods compared. Analytical methods were based upon partial least squares regression (PLSR) calibration models - one with 5-PLS factors (for whole serum) and the second with 9-PLS factors (for the reconstituted retentate). Comparison of the two sets of IR-based analytical results to reference IgA values revealed improvements in the Pearson correlation coefficient (from 0.66 to 0.76), and the root mean squared error of prediction in IR-based IgA concentrations (from 102 to 79 mg/dL) for the ultrafiltration retentate-based method as compared to the method built upon whole serum spectra. Depleting human serum low molecular weight proteins using a 300 kDa centrifugal filter thus enhances the accuracy IgA quantification by ATR-IR spectroscopy. Further evaluation and optimization of this general approach may ultimately lead to routine analysis of a range of high molecular-weight analytical targets that are otherwise unsuitable for IR-based analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Wen-juan; Yang, Ming; He, Guo-quan; Qin, Lin; Li, Gang
2014-11-01
In order to identify the diabetic patients by using tongue near-infrared (NIR) spectrum - a spectral classification model of the NIR reflectivity of the tongue tip is proposed, based on the partial least square (PLS) method. 39sample data of tongue tip's NIR spectra are harvested from healthy people and diabetic patients , respectively. After pretreatment of the reflectivity, the spectral data are set as the independent variable matrix, and information of classification as the dependent variables matrix, Samples were divided into two groups - i.e. 53 samples as calibration set and 25 as prediction set - then the PLS is used to build the classification model The constructed modelfrom the 53 samples has the correlation of 0.9614 and the root mean square error of cross-validation (RMSECV) of 0.1387.The predictions for the 25 samples have the correlation of 0.9146 and the RMSECV of 0.2122.The experimental result shows that the PLS method can achieve good classification on features of healthy people and diabetic patients.
Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring
ERIC Educational Resources Information Center
Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.
2015-01-01
Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…
USDA-ARS?s Scientific Manuscript database
Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...
Least squares regression methods for clustered ROC data with discrete covariates.
Tang, Liansheng Larry; Zhang, Wei; Li, Qizhai; Ye, Xuan; Chan, Leighton
2016-07-01
The receiver operating characteristic (ROC) curve is a popular tool to evaluate and compare the accuracy of diagnostic tests to distinguish the diseased group from the nondiseased group when test results from tests are continuous or ordinal. A complicated data setting occurs when multiple tests are measured on abnormal and normal locations from the same subject and the measurements are clustered within the subject. Although least squares regression methods can be used for the estimation of ROC curve from correlated data, how to develop the least squares methods to estimate the ROC curve from the clustered data has not been studied. Also, the statistical properties of the least squares methods under the clustering setting are unknown. In this article, we develop the least squares ROC methods to allow the baseline and link functions to differ, and more importantly, to accommodate clustered data with discrete covariates. The methods can generate smooth ROC curves that satisfy the inherent continuous property of the true underlying curve. The least squares methods are shown to be more efficient than the existing nonparametric ROC methods under appropriate model assumptions in simulation studies. We apply the methods to a real example in the detection of glaucomatous deterioration. We also derive the asymptotic properties of the proposed methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
On Theoretical Limits of Dynamic Model Updating Using a Sensitivity-Based Approach
NASA Astrophysics Data System (ADS)
GOLA, M. M.; SOMÀ, A.; BOTTO, D.
2001-07-01
The present work deals with the determination of the newly discovered conditions necessary for model updating with the eigensensitivity approach. The treatment concerns the maximum number of identifiable parameters regarding the structure of the eigenvectors derivatives. A mathematical demonstration is based on the evaluation of the rank of the least-squares matrix and produces the algebraic limiting conditions. Numerical application to a lumped parameter structure is employed to validate the mathematical limits taking into account different subsets of mode shapes. The demonstration is extended to the calculation of the eigenvector derivatives with both the Fox and Kapoor, and Nelson methods. III conditioning of the least-squares sensitivity matrix is revealed through the covariance jump.
Methods of Fitting a Straight Line to Data: Examples in Water Resources
Hirsch, Robert M.; Gilroy, Edward J.
1984-01-01
Three methods of fitting straight lines to data are described and their purposes are discussed and contrasted in terms of their applicability in various water resources contexts. The three methods are ordinary least squares (OLS), least normal squares (LNS), and the line of organic correlation (OC). In all three methods the parameters are based on moment statistics of the data. When estimation of an individual value is the objective, OLS is the most appropriate. When estimation of many values is the objective and one wants the set of estimates to have the appropriate variance, then OC is most appropriate. When one wishes to describe the relationship between two variables and measurement error is unimportant, then OC is most appropriate. Where the error is important in descriptive problems or in calibration problems, then structural analysis techniques may be most appropriate. Finally, if the problem is one of describing some geographic trajectory, then LNS is most appropriate.
NASA Astrophysics Data System (ADS)
Qing, Zhou; Weili, Jiao; Tengfei, Long
2014-03-01
The Rational Function Model (RFM) is a new generalized sensor model. It does not need the physical parameters of sensors to achieve a high accuracy that is compatible to the rigorous sensor models. At present, the main method to solve RPCs is the Least Squares Estimation. But when coefficients has a large number or the distribution of the control points is not even, the classical least square method loses its superiority due to the ill-conditioning problem of design matrix. Condition Index and Variance Decomposition Proportion (CIVDP) is a reliable method for diagnosing the multicollinearity among the design matrix. It can not only detect the multicollinearity, but also can locate the parameters and show the corresponding columns in the design matrix. In this paper, the CIVDP method is used to diagnose the ill-condition problem of the RFM and to find the multicollinearity in the normal matrix.
Pressure filtration of ceramic pastes. 4: Treatment of experimental data
NASA Technical Reports Server (NTRS)
Torrecillas, A. S.; Polo, J. F.; Perez, A. A.
1984-01-01
The use of data processing method based on the algorithm proposed by Kalman and its application to the filtration process at constant pressure are described, as well as the advantages of this method. This technique is compared to the least squares method. The operation allows the precise parameter adjustment of the equation in direct relationship to the specific resistance of the cake.
Highly Efficient Compression Algorithms for Multichannel EEG.
Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda
2018-05-01
The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.
Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.
Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick
2009-08-17
In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei
2014-06-21
As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.
Li, Kaiyue; Wang, Weiying; Liu, Yanping; Jiang, Su; Huang, Guo; Ye, Liming
2017-01-01
The active ingredients and thus pharmacological efficacy of traditional Chinese medicine (TCM) at different degrees of parching process vary greatly. Near-infrared spectroscopy (NIR) was used to develop a new method for rapid online analysis of TCM parching process, using two kinds of chemical indicators (5-(hydroxymethyl) furfural [5-HMF] content and 420 nm absorbance) as reference values which were obviously observed and changed in most TCM parching process. Three representative TCMs, Areca ( Areca catechu L.), Malt ( Hordeum Vulgare L.), and Hawthorn ( Crataegus pinnatifida Bge.), were used in this study. With partial least squares regression, calibration models of NIR were generated based on two kinds of reference values, i.e. 5-HMF contents measured by high-performance liquid chromatography (HPLC) and 420 nm absorbance measured by ultraviolet-visible spectroscopy (UV/Vis), respectively. In the optimized models for 5-HMF, the root mean square errors of prediction (RMSEP) for Areca, Malt, and Hawthorn was 0.0192, 0.0301, and 0.2600 and correlation coefficients ( R cal ) were 99.86%, 99.88%, and 99.88%, respectively. Moreover, in the optimized models using 420 nm absorbance as reference values, the RMSEP for Areca, Malt, and Hawthorn was 0.0229, 0.0096, and 0.0409 and R cal were 99.69%, 99.81%, and 99.62%, respectively. NIR models with 5-HMF content and 420 nm absorbance as reference values can rapidly and effectively identify three kinds of TCM in different parching processes. This method has great promise to replace current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online analysis and quality control in TCM industrial manufacturing process. Near-infrared spectroscopy.(NIR) was used to develop a new method for online analysis of traditional Chinese medicine.(TCM) parching processCalibration and validation models of Areca, Malt, and Hawthorn were generated by partial least squares regression using 5.(hydroxymethyl) furfural contents and 420.nm absorbance as reference values, respectively, which were main indicator components during parching process of most TCMThe established NIR models of three TCMs had low root mean square errors of prediction and high correlation coefficientsThe NIR method has great promise for use in TCM industrial manufacturing processes for rapid online analysis and quality control. Abbreviations used: NIR: Near-infrared Spectroscopy; TCM: Traditional Chinese medicine; Areca: Areca catechu L.; Hawthorn: Crataegus pinnatifida Bge.; Malt: Hordeum vulgare L.; 5-HMF: 5-(hydroxymethyl) furfural; PLS: Partial least squares; D: Dimension faction; SLS: Straight line subtraction, MSC: Multiplicative scatter correction; VN: Vector normalization; RMSECV: Root mean square errors of cross-validation; RMSEP: Root mean square errors of validation; R cal : Correlation coefficients; RPD: Residual predictive deviation; PAT: Process analytical technology; FDA: Food and Drug Administration; ICH: International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Analytic Method for Computing Instrument Pointing Jitter
NASA Technical Reports Server (NTRS)
Bayard, David
2003-01-01
A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.
NASA Astrophysics Data System (ADS)
Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong
2018-05-01
In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.
Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model
Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz
2014-01-01
Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915
The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink
NASA Astrophysics Data System (ADS)
Song, Dalei; Zheng, Lidan; Wang, Li; Qi, Weiwei; Li, Yanli
A simulation method of adaptive controller is proposed for the humanoid robot system based on co-simulation of Solidworks, ADAMS and Simulink. A complex mathematical modeling process is avoided by this method, and the real time dynamic simulating function of Simulink would be exerted adequately. This method could be generalized to other complicated control system. This method is adopted to build and analyse the model of humanoid robot. The trajectory tracking and adaptive controller design also proceed based on it. The effect of trajectory tracking is evaluated by fitting-curve theory of least squares method. The anti-interference capability of the robot is improved a lot through comparative analysis.
Video-based noncooperative iris image segmentation.
Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig
2011-02-01
In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.
NASA Astrophysics Data System (ADS)
Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman
2016-05-01
Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.
Yu, Shaohui; Xiao, Xue; Ding, Hong; Xu, Ge; Li, Haixia; Liu, Jing
2017-08-05
The quantitative analysis is very difficult for the emission-excitation fluorescence spectroscopy of multi-component mixtures whose fluorescence peaks are serious overlapping. As an effective method for the quantitative analysis, partial least squares can extract the latent variables from both the independent variables and the dependent variables, so it can model for multiple correlations between variables. However, there are some factors that usually affect the prediction results of partial least squares, such as the noise, the distribution and amount of the samples in calibration set etc. This work focuses on the problems in the calibration set that are mentioned above. Firstly, the outliers in the calibration set are removed by leave-one-out cross-validation. Then, according to two different prediction requirements, the EWPLS method and the VWPLS method are proposed. The independent variables and dependent variables are weighted in the EWPLS method by the maximum error of the recovery rate and weighted in the VWPLS method by the maximum variance of the recovery rate. Three organic matters with serious overlapping excitation-emission fluorescence spectroscopy are selected for the experiments. The step adjustment parameter, the iteration number and the sample amount in the calibration set are discussed. The results show the EWPLS method and the VWPLS method are superior to the PLS method especially for the case of small samples in the calibration set. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase-unwrapping algorithm by a rounding-least-squares approach
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin
2014-02-01
A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.
The origin of spurious solutions in computational electromagnetics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.
1995-01-01
The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhao, Jianlin; Sun, Weiwei; Jiang, Hongzhen; Yan, Xiaobo
2009-10-01
Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.
Least-squares finite element solution of 3D incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.
1992-01-01
Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.
Non-stationary least-squares complex decomposition for microseismic noise attenuation
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-06-01
Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.
Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Calibration of resistance factors needed in the LRFD design of driven piles.
DOT National Transportation Integrated Search
2009-05-01
This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...
Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles
DOT National Transportation Integrated Search
2009-05-01
This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...
M-estimation for robust sparse unmixing of hyperspectral images
NASA Astrophysics Data System (ADS)
Toomik, Maria; Lu, Shijian; Nelson, James D. B.
2016-10-01
Hyperspectral unmixing methods often use a conventional least squares based lasso which assumes that the data follows the Gaussian distribution. The normality assumption is an approximation which is generally invalid for real imagery data. We consider a robust (non-Gaussian) approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers and relaxes the linearity assumption. The method consists of several appropriate penalties. We propose to use an lp norm with 0 < p < 1 in the sparse regression problem, which induces more sparsity in the results, but makes the problem non-convex. On the other hand, the problem, though non-convex, can be solved quite straightforwardly with an extensible algorithm based on iteratively reweighted least squares. To deal with the huge size of modern spectral libraries we introduce a library reduction step, similar to the multiple signal classification (MUSIC) array processing algorithm, which not only speeds up unmixing but also yields superior results. In the hyperspectral setting we extend the traditional least squares method to the robust heavy-tailed case and propose a generalised M-lasso solution. M-estimation replaces the Gaussian likelihood with a fixed function ρ(e) that restrains outliers. The M-estimate function reduces the effect of errors with large amplitudes or even assigns the outliers zero weights. Our experimental results on real hyperspectral data show that noise with large amplitudes (outliers) often exists in the data. This ability to mitigate the influence of such outliers can therefore offer greater robustness. Qualitative hyperspectral unmixing results on real hyperspectral image data corroborate the efficacy of the proposed method.
Liu, Xue-Mei; Zhang, Hai-Liang
2014-10-01
Ultraviolet/visible (UV/Vis) spectroscopy was studied for the rapid determination of chemical oxygen demand (COD), which was an indicator to measure the concentration of organic matter in aquaculture water. In order to reduce the influence of the absolute noises of the spectra, the extracted 135 absorbance spectra were preprocessed by Savitzky-Golay smoothing (SG), EMD, and wavelet transform (WT) methods. The preprocessed spectra were then used to select latent variables (LVs) by partial least squares (PLS) methods. Partial least squares (PLS) was used to build models with the full spectra, and back- propagation neural network (BPNN) and least square support vector machine (LS-SVM) were applied to build models with the selected LVs. The overall results showed that BPNN and LS-SVM models performed better than PLS models, and the LS-SVM models with LVs based on WT preprocessed spectra obtained the best results with the determination coefficient (r2) and RMSE being 0. 83 and 14. 78 mg · L(-1) for calibration set, and 0.82 and 14.82 mg · L(-1) for the prediction set respectively. The method showed the best performance in LS-SVM model. The results indicated that it was feasible to use UV/Vis with LVs which were obtained by PLS method, combined with LS-SVM calibration could be applied to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.
Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.
Cheng, Jian; Jiang, Tianzi; Deriche, Rachid
2012-01-01
In High Angular Resolution Diffusion Imaging (HARDI), Orientation Distribution Function (ODF) and Ensemble Average Propagator (EAP) are two important Probability Density Functions (PDFs) which reflect the water diffusion and fiber orientations. Spherical Polar Fourier Imaging (SPFI) is a recent model-free multi-shell HARDI method which estimates both EAP and ODF from the diffusion signals with multiple b values. As physical PDFs, ODFs and EAPs are nonnegative definite respectively in their domains S2 and R3. However, existing ODF/EAP estimation methods like SPFI seldom consider this natural constraint. Although some works considered the nonnegative constraint on the given discrete samples of ODF/EAP, the estimated ODF/EAP is not guaranteed to be nonnegative definite in the whole continuous domain. The Riemannian framework for ODFs and EAPs has been proposed via the square root parameterization based on pre-estimated ODFs and EAPs by other methods like SPFI. However, there is no work on how to estimate the square root of ODF/EAP called as the wavefuntion directly from diffusion signals. In this paper, based on the Riemannian framework for ODFs/EAPs and Spherical Polar Fourier (SPF) basis representation, we propose a unified model-free multi-shell HARDI method, named as Square Root Parameterized Estimation (SRPE), to simultaneously estimate both the wavefunction of EAPs and the nonnegative definite ODFs and EAPs from diffusion signals. The experiments on synthetic data and real data showed SRPE is more robust to noise and has better EAP reconstruction than SPFI, especially for EAP profiles at large radius.
Quantification of tumor mobility during the breathing cycle using 3D dynamic MRI
NASA Astrophysics Data System (ADS)
Schoebinger, Max; Plathow, Christian; Wolf, Ivo; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter
2006-03-01
Respiration causes movement and shape changes in thoracic tumors, which has a direct influence on the radio-therapy planning process. Current methods for the estimation of tumor mobility are either two-dimensional (fluoroscopy, 2D dynamic MRI) or based on radiation (3D (+t) CT, implanted gold markers). With current advances in dynamic MRI acquisition, 3D+t image sequences of the thorax can be acquired covering the thorax over the whole breathing cycle. In this work, methods are presented for the interactive segmentation of tumors in dynamic images, the calculation of tumor trajectories, dynamic tumor volumetry and dynamic tumor rotation/deformation based on 3D dynamic MRI. For volumetry calculation, a set of 21 related partial volume correcting volumetry algorithms has been evaluated based on tumor surrogates. Conventional volumetry based on voxel counting yielded a root mean square error of 29% compared to a root mean square error of 11% achieved by the algorithm performing best among the different volumetry methods. The new workflow has been applied to a set of 26 patients. Preliminary results indicate, that 3D dynamic MRI reveals important aspects of tumor behavior during the breathing cycle. This might imply the possibility to further improve high-precision radiotherapy techniques.
Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, T; Chromy, B
2009-11-10
Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms ofmore » counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood estimator (MLE) for the Poisson distribution is also well known, but has not become generally used. This is primarily because, in contrast to non-linear least squares fitting, there has been no quick, robust, and general fitting method. In the field of fluorescence lifetime spectroscopy and imaging, there have been some efforts to use this estimator through minimization routines such as Nelder-Mead optimization, exhaustive line searches, and Gauss-Newton minimization. Minimization based on specific one- or multi-exponential models has been used to obtain quick results, but this procedure does not allow the incorporation of the instrument response, and is not generally applicable to models found in other fields. Methods for using the MLE for Poisson-distributed data have been published by the wider spectroscopic community, including iterative minimization schemes based on Gauss-Newton minimization. The slow acceptance of these procedures for fitting event counting histograms may also be explained by the use of the ubiquitous, fast Levenberg-Marquardt (L-M) fitting procedure for fitting non-linear models using least squares fitting (simple searches obtain {approx}10000 references - this doesn't include those who use it, but don't know they are using it). The benefits of L-M include a seamless transition between Gauss-Newton minimization and downward gradient minimization through the use of a regularization parameter. This transition is desirable because Gauss-Newton methods converge quickly, but only within a limited domain of convergence; on the other hand the downward gradient methods have a much wider domain of convergence, but converge extremely slowly nearer the minimum. L-M has the advantages of both procedures: relative insensitivity to initial parameters and rapid convergence. Scientists, when wanting an answer quickly, will fit data using L-M, get an answer, and move on. Only those that are aware of the bias issues will bother to fit using the more appropriate MLE for Poisson deviates. However, since there is a simple, analytical formula for the appropriate MLE measure for Poisson deviates, it is inexcusable that least squares estimators are used almost exclusively when fitting event counting histograms. There have been ways found to use successive non-linear least squares fitting to obtain similarly unbiased results, but this procedure is justified by simulation, must be re-tested when conditions change significantly, and requires two successive fits. There is a great need for a fitting routine for the MLE estimator for Poisson deviates that has convergence domains and rates comparable to the non-linear least squares L-M fitting. We show in this report that a simple way to achieve that goal is to use the L-M fitting procedure not to minimize the least squares measure, but the MLE for Poisson deviates.« less
NASA Astrophysics Data System (ADS)
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.
Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C
2009-10-05
In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.
Research on the attitude of small UAV based on MEMS devices
NASA Astrophysics Data System (ADS)
Shi, Xiaojie; Lu, Libin; Jin, Guodong; Tan, Lining
2017-05-01
This paper mainly introduces the research principle and implementation method of the small UAV navigation attitude system based on MEMS devices. The Gauss - Newton method based on least squares is used to calibrate the MEMS accelerometer and gyroscope for calibration. Improve the accuracy of the attitude by using the modified complementary filtering to correct the attitude angle error. The experimental data show that the design of the attitude and attitude system in this paper to meet the requirements of small UAV attitude accuracy to achieve a small, low cost.
NASA Technical Reports Server (NTRS)
Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.
1996-01-01
In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.
Least Square Regression Method for Estimating Gas Concentration in an Electronic Nose System
Khalaf, Walaa; Pace, Calogero; Gaudioso, Manlio
2009-01-01
We describe an Electronic Nose (ENose) system which is able to identify the type of analyte and to estimate its concentration. The system consists of seven sensors, five of them being gas sensors (supplied with different heater voltage values), the remainder being a temperature and a humidity sensor, respectively. To identify a new analyte sample and then to estimate its concentration, we use both some machine learning techniques and the least square regression principle. In fact, we apply two different training models; the first one is based on the Support Vector Machine (SVM) approach and is aimed at teaching the system how to discriminate among different gases, while the second one uses the least squares regression approach to predict the concentration of each type of analyte. PMID:22573980
Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar
2018-06-07
Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.
A motion compensation technique using sliced blocks and its application to hybrid video coding
NASA Astrophysics Data System (ADS)
Kondo, Satoshi; Sasai, Hisao
2005-07-01
This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.
Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N
2017-07-01
Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant role in the calibration while wavelength selection plays a marginal role and the combination of certain pre-processing, wavelength selection, and nonlinear regression methods can achieve superior performance over traditional linear regression-based calibration.
A spectral mimetic least-squares method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochev, Pavel; Gerritsma, Marc
We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less
A spectral mimetic least-squares method
Bochev, Pavel; Gerritsma, Marc
2014-09-01
We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less
Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang
2016-04-10
Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.
A robust nonparametric framework for reconstruction of stochastic differential equation models
NASA Astrophysics Data System (ADS)
Rajabzadeh, Yalda; Rezaie, Amir Hossein; Amindavar, Hamidreza
2016-05-01
In this paper, we employ a nonparametric framework to robustly estimate the functional forms of drift and diffusion terms from discrete stationary time series. The proposed method significantly improves the accuracy of the parameter estimation. In this framework, drift and diffusion coefficients are modeled through orthogonal Legendre polynomials. We employ the least squares regression approach along with the Euler-Maruyama approximation method to learn coefficients of stochastic model. Next, a numerical discrete construction of mean squared prediction error (MSPE) is established to calculate the order of Legendre polynomials in drift and diffusion terms. We show numerically that the new method is robust against the variation in sample size and sampling rate. The performance of our method in comparison with the kernel-based regression (KBR) method is demonstrated through simulation and real data. In case of real dataset, we test our method for discriminating healthy electroencephalogram (EEG) signals from epilepsy ones. We also demonstrate the efficiency of the method through prediction in the financial data. In both simulation and real data, our algorithm outperforms the KBR method.
On the reliability and limitations of the SPAC method with a directional wavefield
NASA Astrophysics Data System (ADS)
Luo, Song; Luo, Yinhe; Zhu, Lupei; Xu, Yixian
2016-03-01
The spatial autocorrelation (SPAC) method is one of the most efficient ways to extract phase velocities of surface waves from ambient seismic noise. Most studies apply the method based on the assumption that the wavefield of ambient noise is diffuse. However, the actual distribution of sources is neither diffuse nor stationary. In this study, we examined the reliability and limitations of the SPAC method with a directional wavefield. We calculated the SPAC coefficients and phase velocities from a directional wavefield for a four-layer model and characterized the limitations of the SPAC. We then applied the SPAC method to real data in Karamay, China. Our results show that, 1) the SPAC method can accurately measure surface wave phase velocities from a square array with a directional wavefield down to a wavelength of twice the shortest interstation distance; and 2) phase velocities obtained from real data by the SPAC method are stable and reliable, which demonstrates that this method can be applied to measure phase velocities in a square array with a directional wavefield.
NASA Astrophysics Data System (ADS)
Patra, Rusha; Dutta, Pranab K.
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
Numerical methods for comparing fresh and weathered oils by their FTIR spectra.
Li, Jianfeng; Hibbert, D Brynn; Fuller, Stephen
2007-08-01
Four comparison statistics ('similarity indices') for the identification of the source of a petroleum oil spill based on the ASTM standard test method D3414 were investigated. Namely, (1) first difference correlation coefficient squared and (2) correlation coefficient squared, (3) first difference Euclidean cosine squared and (4) Euclidean cosine squared. For numerical comparison, an FTIR spectrum is divided into three regions, described as: fingerprint (900-700 cm(-1)), generic (1350-900 cm(-1)) and supplementary (1770-1685 cm(-1)), which are the same as the three major regions recommended by the ASTM standard. For fresh oil samples, each similarity index was able to distinguish between replicate independent spectra of the same sample and between different samples. In general, the two first difference-based indices worked better than their parent indices. To provide samples to reveal relationships between weathered and fresh oils, a simple artificial weathering procedure was carried out. Euclidean cosine and correlation coefficients both worked well to maintain identification of a match in the fingerprint region and the two first difference indices were better in the generic region. Receiver operating characteristic curves (true positive rate versus false positive rate) for decisions on matching using the fingerprint region showed two samples could be matched when the difference in weathering time was up to 7 days. Beyond this time the true positive rate falls and samples cannot be reliably matched. However, artificial weathering of a fresh source sample can aid the matching of a weathered sample to its real source from a pool of very similar candidates.
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Barimani, Shirin; Kleinebudde, Peter
2017-10-01
A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less
Epidermal segmentation in high-definition optical coherence tomography.
Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang
2015-01-01
Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.
An atlas-based multimodal registration method for 2D images with discrepancy structures.
Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng
2018-06-04
An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.
Coherent Anomaly Method Calculation on the Cluster Variation Method. II.
NASA Astrophysics Data System (ADS)
Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya
The critical exponents of the bond percolation model are calculated in the D(= 2,3,…)-dimensional simple cubic lattice on the basis of Suzuki's coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.
Comparing least-squares and quantile regression approaches to analyzing median hospital charges.
Olsen, Cody S; Clark, Amy E; Thomas, Andrea M; Cook, Lawrence J
2012-07-01
Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least-squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. The objective was to compare the log-transformation least-squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least-squares and quantile regression methods. Performance of the two methods was evaluated. In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least-squares method assumptions. When the data did not follow the assumed distribution, least-squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Quantile regression analyses of hospital charges provide unbiased estimates even when lognormal and equal variance assumptions are violated. These methods may be particularly useful in describing and analyzing hospital charges from administrative data sets. © 2012 by the Society for Academic Emergency Medicine.
K.P. Poudel; H. Temesgen
2016-01-01
Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that...
Optimum SNR data compression in hardware using an Eigencoil array.
King, Scott B; Varosi, Steve M; Duensing, G Randy
2010-05-01
With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.
A simple test of association for contingency tables with multiple column responses.
Decady, Y J; Thomas, D R
2000-09-01
Loughin and Scherer (1998, Biometrics 54, 630-637) investigated tests of association in two-way tables when one of the categorical variables allows for multiple-category responses from individual respondents. Standard chi-squared tests are invalid in this case, and they developed a bootstrap test procedure that provides good control of test levels under the null hypothesis. This procedure and some others that have been proposed are computationally involved and are based on techniques that are relatively unfamiliar to many practitioners. In this paper, the methods introduced by Rao and Scott (1981, Journal of the American Statistical Association 76, 221-230) for analyzing complex survey data are used to develop a simple test based on a corrected chi-squared statistic.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
NASA Astrophysics Data System (ADS)
Magdy, Nancy; Ayad, Miriam F.
2015-02-01
Two simple, accurate, precise, sensitive and economic spectrophotometric methods were developed for the simultaneous determination of Simvastatin and Ezetimibe in fixed dose combination products without prior separation. The first method depends on a new chemometrics-assisted ratio spectra derivative method using moving window polynomial least square fitting method (Savitzky-Golay filters). The second method is based on a simple modification for the ratio subtraction method. The suggested methods were validated according to USP guidelines and can be applied for routine quality control testing.
A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang
2009-11-01
Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.
Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit
2010-11-22
For 1143 organic compounds comprising 580 oxygen acids and 563 nitrogen bases that cover more than 17 orders of experimental pK(a) (from -5.00 to 12.23), the pK(a) prediction performances of ACD, SPARC, and two calibrations of a semiempirical quantum chemical (QC) AM1 approach have been analyzed. The overall root-mean-square errors (rms) for the acids are 0.41, 0.58 (0.42 without ortho-substituted phenols with intramolecular H-bonding), and 0.55 and for the bases are 0.65, 0.70, 1.17, and 1.27 for ACD, SPARC, and both QC methods, respectively. Method-specific performances are discussed in detail for six acid subsets (phenols and aromatic and aliphatic carboxylic acids with different substitution patterns) and nine base subsets (anilines, primary, secondary and tertiary amines, meta/para-substituted and ortho-substituted pyridines, pyrimidines, imidazoles, and quinolines). The results demonstrate an overall better performance for acids than for bases but also a substantial variation across subsets. For the overall best-performing ACD, rms ranges from 0.12 to 1.11 and 0.40 to 1.21 pK(a) units for the acid and base subsets, respectively. With regard to the squared correlation coefficient r², the results are 0.86 to 0.96 (acids) and 0.79 to 0.95 (bases) for ACD, 0.77 to 0.95 (acids) and 0.85 to 0.97 (bases) for SPARC, and 0.64 to 0.87 (acids) and 0.43 to 0.83 (bases) for the QC methods, respectively. Attention is paid to structural and method-specific causes for observed pitfalls. The significant subset dependence of the prediction performances suggests a consensus modeling approach.
A powerful score-based test statistic for detecting gene-gene co-association.
Xu, Jing; Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Li, Hongkai; Wu, Xuesen; Xue, Fuzhong; Liu, Yanxun
2016-01-29
The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.
Easmin, Sabina; Sarker, Md Zaidul Islam; Ghafoor, Kashif; Ferdosh, Sahena; Jaffri, Juliana; Ali, Md Eaqub; Mirhosseini, Hamed; Al-Juhaimi, Fahad Y; Perumal, Vikneswari; Khatib, Alfi
2017-04-01
Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm -1 frequency region and resolution of 4 cm -1 . The OPLS model generated the highest regression coefficient with R 2 Y = 0.98 and Q 2 Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu
2018-02-01
A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.
Xia, Youshen; Kamel, Mohamed S
2007-06-01
Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.
Zeelenberg, René; Pecher, Diane
2015-03-01
Counterbalanced designs are frequently used in the behavioral sciences. Studies often counterbalance either the order in which conditions are presented in the experiment or the assignment of stimulus materials to conditions. Occasionally, researchers need to simultaneously counterbalance both condition order and stimulus assignment to conditions. Lewis (1989; Behavior Research Methods, Instruments, & Computers 25:414-415, 1993) presented a method for constructing Latin squares that fulfill these requirements. The resulting Latin squares counterbalance immediate sequential effects, but not remote sequential effects. Here, we present a new method for generating Latin squares that simultaneously counterbalance both immediate and remote sequential effects and assignment of stimuli to conditions. An Appendix is provided to facilitate implementation of these Latin square designs.
Evaluation of fuzzy inference systems using fuzzy least squares
NASA Technical Reports Server (NTRS)
Barone, Joseph M.
1992-01-01
Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
NASA Technical Reports Server (NTRS)
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2014-01-01
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289
Superpixel Based Factor Analysis and Target Transformation Method for Martian Minerals Detection
NASA Astrophysics Data System (ADS)
Wu, X.; Zhang, X.; Lin, H.
2018-04-01
The Factor analysis and target transformation (FATT) is an effective method to test for the presence of particular mineral on Martian surface. It has been used both in thermal infrared (Thermal Emission Spectrometer, TES) and near-infrared (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM) hyperspectral data. FATT derived a set of orthogonal eigenvectors from a mixed system and typically selected first 10 eigenvectors to least square fit the library mineral spectra. However, minerals present only in a limited pixels will be ignored because its weak spectral features compared with full image signatures. Here, we proposed a superpixel based FATT method to detect the mineral distributions on Mars. The simple linear iterative clustering (SLIC) algorithm was used to partition the CRISM image into multiple connected image regions with spectral homogeneous to enhance the weak signatures by increasing their proportion in a mixed system. A least square fitting was used in target transformation and performed to each region iteratively. Finally, the distribution of the specific minerals in image was obtained, where fitting residual less than a threshold represent presence and otherwise absence. We validate our method by identifying carbonates in a well analysed CRISM image in Nili Fossae on Mars. Our experimental results indicate that the proposed method work well both in simulated and real data sets.
Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio
2015-08-15
In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Xi, Xiuxiu
2015-07-23
The measurement of soil total nitrogen (TN) by hyperspectral remote sensing provides an important tool for soil restoration programs in areas with subsided land caused by the extraction of natural resources. This study used the local correlation maximization-complementary superiority method (LCMCS) to establish TN prediction models by considering the relationship between spectral reflectance (measured by an ASD FieldSpec 3 spectroradiometer) and TN based on spectral reflectance curves of soil samples collected from subsided land which is determined by synthetic aperture radar interferometry (InSAR) technology. Based on the 1655 selected effective bands of the optimal spectrum (OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]'), (correlation coefficients, p < 0.01), the optimal model of LCMCS method was obtained to determine the final model, which produced lower prediction errors (root mean square error of validation [RMSEV] = 0.89, mean relative error of validation [MREV] = 5.93%) when compared with models built by the local correlation maximization (LCM), complementary superiority (CS) and partial least squares regression (PLS) methods. The predictive effect of LCMCS model was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS method has great potential to monitor TN in subsided lands caused by the extraction of natural resources including groundwater, oil and coal.
NASA Astrophysics Data System (ADS)
Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya
1991-10-01
The critical exponents of the bond percolation model are calculated in the D(=2, 3, \\cdots)-dimensional simple cubic lattice on the basis of Suzuki’s coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.
Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares
NASA Astrophysics Data System (ADS)
Heidari, Manoutchehr; Wench, Allen
1997-05-01
Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.
Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares
Heidari, M.; Moench, A.
1997-01-01
Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.
NASA Astrophysics Data System (ADS)
Sohrabi, Mahmoud Reza; Darabi, Golnaz
2016-01-01
Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.
Sohrabi, Mahmoud Reza; Darabi, Golnaz
2016-01-05
Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby
2017-01-01
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
Properties of wavelet discretization of Black-Scholes equation
NASA Astrophysics Data System (ADS)
Finěk, Václav
2017-07-01
Using wavelet methods, the continuous problem is transformed into a well-conditioned discrete problem. And once a non-symmetric problem is given, squaring yields a symmetric positive definite formulation. However squaring usually makes the condition number of discrete problems substantially worse. This note is concerned with a wavelet based numerical solution of the Black-Scholes equation for pricing European options. We show here that in wavelet coordinates a symmetric part of the discretized equation dominates over an unsymmetric part in the standard economic environment with low interest rates. It provides some justification for using a fractional step method with implicit treatment of the symmetric part of the weak form of the Black-Scholes operator and with explicit treatment of its unsymmetric part. Then a well-conditioned discrete problem is obtained.
Ding, A Adam; Wu, Hulin
2014-10-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.
Ding, A. Adam; Wu, Hulin
2015-01-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093
A channel estimation scheme for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen
2017-08-01
In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.
Development of Botanical Composition in Maribaya Pasture, Brebes, Central Java
NASA Astrophysics Data System (ADS)
Umami, N.; Ngadiyono, N.; Panjono; Agus, F. N.; Shirothul, H. M.; Budisatria, I. G. S.; Hendrawati, Y.; Subroto, I.
2018-02-01
The research was aimed to observe the development of botanical composition in Maribaya pastures. The sampling method was cluster random sampling. The observed variables were the type of forages and the botanical composition in the pasture. Botanical composition was measured by using Line Intercept method and the production was measured by the estimation of botany production for each square meter using its dry matter measurement. The botani sampling was performed using square with size of 1×1 m2. The observation was performed before the pasture made (at 2015) and after the pasture made (at 2017). Based on the research result, it was found that there was significant difference between the forage type in the pasture at 2015 and at 2017. It happens due to the adjustment for the Jabres cattle feed.
NASA Astrophysics Data System (ADS)
Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong
2018-01-01
Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.
Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong
2009-08-01
The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.
Richards, Selena; Miller, Robert; Gemperline, Paul
2008-02-01
An extension to the penalty alternating least squares (P-ALS) method, called multi-way penalty alternating least squares (NWAY P-ALS), is presented. Optionally, hard constraints (no deviation from predefined constraints) or soft constraints (small deviations from predefined constraints) were applied through the application of a row-wise penalty least squares function. NWAY P-ALS was applied to the multi-batch near-infrared (NIR) data acquired from the base catalyzed esterification reaction of acetic anhydride in order to resolve the concentration and spectral profiles of l-butanol with the reaction constituents. Application of the NWAY P-ALS approach resulted in the reduction of the number of active constraints at the solution point, while the batch column-wise augmentation allowed hard constraints in the spectral profiles and resolved rank deficiency problems of the measurement matrix. The results were compared with the multi-way multivariate curve resolution (MCR)-ALS results using hard and soft constraints to determine whether any advantages had been gained through using the weighted least squares function of NWAY P-ALS over the MCR-ALS resolution.
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
ERIC Educational Resources Information Center
Coskuntuncel, Orkun
2013-01-01
The purpose of this study is two-fold; the first aim being to show the effect of outliers on the widely used least squares regression estimator in social sciences. The second aim is to compare the classical method of least squares with the robust M-estimator using the "determination of coefficient" (R[superscript 2]). For this purpose,…
Simplified Least Squares Shadowing sensitivity analysis for chaotic ODEs and PDEs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chater, Mario, E-mail: chaterm@mit.edu; Ni, Angxiu, E-mail: niangxiu@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu
This paper develops a variant of the Least Squares Shadowing (LSS) method, which has successfully computed the derivative for several chaotic ODEs and PDEs. The development in this paper aims to simplify Least Squares Shadowing method by improving how time dilation is treated. Instead of adding an explicit time dilation term as in the original method, the new variant uses windowing, which can be more efficient and simpler to implement, especially for PDEs.
Unified Least Squares Methods for the Evaluation of Diagnostic Tests With the Gold Standard
Tang, Liansheng Larry; Yuan, Ao; Collins, John; Che, Xuan; Chan, Leighton
2017-01-01
The article proposes a unified least squares method to estimate the receiver operating characteristic (ROC) parameters for continuous and ordinal diagnostic tests, such as cancer biomarkers. The method is based on a linear model framework using the empirically estimated sensitivities and specificities as input “data.” It gives consistent estimates for regression and accuracy parameters when the underlying continuous test results are normally distributed after some monotonic transformation. The key difference between the proposed method and the method of Tang and Zhou lies in the response variable. The response variable in the latter is transformed empirical ROC curves at different thresholds. It takes on many values for continuous test results, but few values for ordinal test results. The limited number of values for the response variable makes it impractical for ordinal data. However, the response variable in the proposed method takes on many more distinct values so that the method yields valid estimates for ordinal data. Extensive simulation studies are conducted to investigate and compare the finite sample performance of the proposed method with an existing method, and the method is then used to analyze 2 real cancer diagnostic example as an illustration. PMID:28469385
Model-based multi-fringe interferometry using Zernike polynomials
NASA Astrophysics Data System (ADS)
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-04-18
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-01-01
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215
A method of predicting the energy-absorption capability of composite subfloor beams
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1987-01-01
A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Wu, C. F. Jeff
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Maggin, Daniel M; Swaminathan, Hariharan; Rogers, Helen J; O'Keeffe, Breda V; Sugai, George; Horner, Robert H
2011-06-01
A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of treatment effect from baseline to treatment phases in standard deviation units. In this paper, the method is applied to two published examples using common single case designs (i.e., withdrawal and multiple-baseline). The results from these studies are described, and the method is compared to ten desirable criteria for single-case effect sizes. Based on the results of this application, we conclude with observations about the use of GLS as a support to visual analysis, provide recommendations for future research, and describe implications for practice. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.
2017-04-01
To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.
Least squares polynomial chaos expansion: A review of sampling strategies
NASA Astrophysics Data System (ADS)
Hadigol, Mohammad; Doostan, Alireza
2018-04-01
As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.
Nam, Jaewook
2011-01-01
We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752
Ghasemi, Jahan B; Zolfonoun, E
2010-01-15
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.
Similarity Measures for Protein Ensembles
Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper
2009-01-01
Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations. However, instead of examining individual conformations it is in many cases more relevant to analyse ensembles of conformations that have been obtained either through experiments or from methods such as molecular dynamics simulations. We here present three approaches that can be used to compare conformational ensembles in the same way as the root mean square deviation is used to compare individual pairs of structures. The methods are based on the estimation of the probability distributions underlying the ensembles and subsequent comparison of these distributions. We first validate the methods using a synthetic example from molecular dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of conformations better than standard single-molecule refinement. PMID:19145244
Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke
2015-01-01
In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.
Gao, Zhong-Ke
2015-01-01
In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556
Entropy and generalized least square methods in assessment of the regional value of streamgages
Markus, M.; Vernon, Knapp H.; Tasker, Gary D.
2003-01-01
The Illinois State Water Survey performed a study to assess the streamgaging network in the State of Illinois. One of the important aspects of the study was to assess the regional value of each station through an assessment of the information transfer among gaging records for low, average, and high flow conditions. This analysis was performed for the main hydrologic regions in the State, and the stations were initially evaluated using a new approach based on entropy analysis. To determine the regional value of each station within a region, several information parameters, including total net information, were defined based on entropy. Stations were ranked based on the total net information. For comparison, the regional value of the same stations was assessed using the generalized least square regression (GLS) method, developed by the US Geological Survey. Finally, a hybrid combination of GLS and entropy was created by including a function of the negative net information as a penalty function in the GLS. The weights of the combined model were determined to maximize the average correlation with the results of GLS and entropy. The entropy and GLS methods were evaluated using the high-flow data from southern Illinois stations. The combined method was compared with the entropy and GLS approaches using the high-flow data from eastern Illinois stations. ?? 2003 Elsevier B.V. All rights reserved.
Geng, Xiaobing; Xie, Zhenghui; Zhang, Lijun; Xu, Mei; Jia, Binghao
2018-03-01
An inverse source estimation method is proposed to reconstruct emission rates using local air concentration sampling data. It involves the nonlinear least squares-based ensemble four-dimensional variational data assimilation (NLS-4DVar) algorithm and a transfer coefficient matrix (TCM) created using FLEXPART, a Lagrangian atmospheric dispersion model. The method was tested by twin experiments and experiments with actual Cs-137 concentrations measured around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Emission rates can be reconstructed sequentially with the progression of a nuclear accident, which is important in the response to a nuclear emergency. With pseudo observations generated continuously, most of the emission rates were estimated accurately, except under conditions when the wind blew off land toward the sea and at extremely slow wind speeds near the FDNPP. Because of the long duration of accidents and variability in meteorological fields, monitoring networks composed of land stations only in a local area are unable to provide enough information to support an emergency response. The errors in the estimation compared to the real observations from the FDNPP nuclear accident stemmed from a shortage of observations, lack of data control, and an inadequate atmospheric dispersion model without improvement and appropriate meteorological data. The proposed method should be developed further to meet the requirements of a nuclear emergency response. Copyright © 2017 Elsevier Ltd. All rights reserved.
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
Avian leucocyte counting using the hemocytometer
Dein, F.J.; Wilson, A.; Fischer, D.; Langenberg, P.
1994-01-01
Automated methods for counting leucocytes in avian blood are not available because of the presence of nucleated erythrocytes and thrombocytes. Therefore, total white blood cell counts are performed by hand using a hemocytometer. The Natt and Herrick and the Unopette methods are the most common stain and diluent preparations for this procedure. Replicate hemocytometer counts using these two methods were performed on blood from four birds of different species. Cells present in each square of the hemocytometer were counted. Counting cells in the corner, side, or center hemocytometer squares produced statistically equivalent results; counting four squares per chamber provided a result similar to that obtained by counting nine squares; and the Unopette method was more precise for hemocytometer counting than was the Natt and Herrick method. The Unopette method is easier to learn and perform but is an indirect process, utilizing the differential count from a stained smear. The Natt and Herrick method is a direct total count, but cell identification is more difficult.
A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong
Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.
NASA Astrophysics Data System (ADS)
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
NASA Technical Reports Server (NTRS)
Choe, C. Y.; Tapley, B. D.
1975-01-01
A method proposed by Potter of applying the Kalman-Bucy filter to the problem of estimating the state of a dynamic system is described, in which the square root of the state error covariance matrix is used to process the observations. A new technique which propagates the covariance square root matrix in lower triangular form is given for the discrete observation case. The technique is faster than previously proposed algorithms and is well-adapted for use with the Carlson square root measurement algorithm.
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2011-07-01
The method of NEO's impact orbits search based on two target functions product minimization is presented. These functions are: a square of asteroid-Earth distance at the moment of close approach and a sum of squares of angular residuals. Besides, the method includes a minimization of asteroid-Earth distance's square in function of time alone when initial motion parameters are fixed. Both minimizations are carrying out in turn each by another. The testing of method has been made on the problem of Apophis's impact orbit search. The results of the testing have depicted an effectivity of presented method in searching of impact orbits for the Apophis's Earth encounters in 2036 and 2037.
NASA Astrophysics Data System (ADS)
Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin
2014-06-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.
Froud, Robert; Abel, Gary
2014-01-01
Background Receiver Operator Characteristic (ROC) curves are being used to identify Minimally Important Change (MIC) thresholds on scales that measure a change in health status. In quasi-continuous patient reported outcome measures, such as those that measure changes in chronic diseases with variable clinical trajectories, sensitivity and specificity are often valued equally. Notwithstanding methodologists agreeing that these should be valued equally, different approaches have been taken to estimating MIC thresholds using ROC curves. Aims and objectives We aimed to compare the different approaches used with a new approach, exploring the extent to which the methods choose different thresholds, and considering the effect of differences on conclusions in responder analyses. Methods Using graphical methods, hypothetical data, and data from a large randomised controlled trial of manual therapy for low back pain, we compared two existing approaches with a new approach that is based on the addition of the sums of squares of 1-sensitivity and 1-specificity. Results There can be divergence in the thresholds chosen by different estimators. The cut-point selected by different estimators is dependent on the relationship between the cut-points in ROC space and the different contours described by the estimators. In particular, asymmetry and the number of possible cut-points affects threshold selection. Conclusion Choice of MIC estimator is important. Different methods for choosing cut-points can lead to materially different MIC thresholds and thus affect results of responder analyses and trial conclusions. An estimator based on the smallest sum of squares of 1-sensitivity and 1-specificity is preferable when sensitivity and specificity are valued equally. Unlike other methods currently in use, the cut-point chosen by the sum of squares method always and efficiently chooses the cut-point closest to the top-left corner of ROC space, regardless of the shape of the ROC curve. PMID:25474472
Controlling Tensegrity Robots through Evolution using Friction based Actuation
NASA Technical Reports Server (NTRS)
Kothapalli, Tejasvi; Agogino, Adrian K.
2017-01-01
Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir
2017-10-01
In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).
Pedigree data analysis with crossover interference.
Browning, Sharon
2003-01-01
We propose a new method for calculating probabilities for pedigree genetic data that incorporates crossover interference using the chi-square models. Applications include relationship inference, genetic map construction, and linkage analysis. The method is based on importance sampling of unobserved inheritance patterns conditional on the observed genotype data and takes advantage of fast algorithms for no-interference models while using reweighting to allow for interference. We show that the method is effective for arbitrarily many markers with small pedigrees. PMID:12930760
NASA Astrophysics Data System (ADS)
Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2018-01-01
Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.
A Generalized Approach for Measuring Relationships Among Genes.
Wang, Lijun; Ahsan, Md Asif; Chen, Ming
2017-07-21
Several methods for identifying relationships among pairs of genes have been developed. In this article, we present a generalized approach for measuring relationships between any pairs of genes, which is based on statistical prediction. We derive two particular versions of the generalized approach, least squares estimation (LSE) and nearest neighbors prediction (NNP). According to mathematical proof, LSE is equivalent to the methods based on correlation; and NNP is approximate to one popular method called the maximal information coefficient (MIC) according to the performances in simulations and real dataset. Moreover, the approach based on statistical prediction can be extended from two-genes relationships to multi-genes relationships. This application would help to identify relationships among multi-genes.
NASA Astrophysics Data System (ADS)
Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying
2006-01-01
A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.
NASA Astrophysics Data System (ADS)
Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed
2009-06-01
This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; de Azevedo Mello, Paola; Ferrão, Marco Flores; de Fátima Pereira dos Santos, Maria; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm(-1)). This model produced a RMSECV of 400 mg kg(-1) S and RMSEP of 420 mg kg(-1) S, showing a correlation coefficient of 0.990. Copyright © 2011 Elsevier B.V. All rights reserved.
Kottner, Jan; Halfens, Ruud
2010-05-01
Institutionally acquired pressure ulcers are used as outcome indicators to assess the quality of pressure ulcer prevention programs. Determining whether quality improvement projects that aim to decrease the proportions of institutionally acquired pressure ulcers lead to real changes in clinical practice depends on the measurement method and statistical analysis used. To examine whether nosocomial pressure ulcer prevalence rates in hospitals in the Netherlands changed, a secondary data analysis using different statistical approaches was conducted of annual (1998-2008) nationwide nursing-sensitive health problem prevalence studies in the Netherlands. Institutions that participated regularly in all survey years were identified. Risk-adjusted nosocomial pressure ulcers prevalence rates, grade 2 to 4 (European Pressure Ulcer Advisory Panel system) were calculated per year and hospital. Descriptive statistics, chi-square trend tests, and P charts based on statistical process control (SPC) were applied and compared. Six of the 905 healthcare institutions participated in every survey year and 11,444 patients in these six hospitals were identified as being at risk for pressure ulcers. Prevalence rates per year ranged from 0.05 to 0.22. Chi-square trend tests revealed statistically significant downward trends in four hospitals but based on SPC methods, prevalence rates of five hospitals varied by chance only. Results of chi-square trend tests and SPC methods were not comparable, making it impossible to decide which approach is more appropriate. P charts provide more valuable information than single P values and are more helpful for monitoring institutional performance. Empirical evidence about the decrease of nosocomial pressure ulcer prevalence rates in the Netherlands is contradictory and limited.
SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qayyum, F; Armato, S; Straus, C
Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volumemore » of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.« less
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
Least Squares Moving-Window Spectral Analysis.
Lee, Young Jong
2017-08-01
Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.
Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).
Bevilacqua, Marta; Marini, Federico
2014-08-01
The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.
Yalavarthy, Phaneendra K; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D
2007-06-01
Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction procedure have a long history, there is less direct evidence on the optimal regularization methods, or exploring a common theoretical framework for techniques which uses least-squares (LS) minimization. A generalized least-squares (GLS) method is discussed here, which takes into account the variances and covariances among the individual data points and optical properties in the image into a structured weight matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as special cases of this more generalized LS approach. The performance of three minimization techniques using the same implementation scheme is compared using test problems with increasing noise level and increasing complexity within the imaging field. Techniques that use spatial-prior information as constraints can be also incorporated into the GLS formalism. It is also illustrated that inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of GLS minimization is even more apparent when the noise level in the data is high (as high as 10%), indicating that the benefits of this approach are important for reconstruction of data in a routine setting where the data variance can be known based upon the signal to noise properties of the instruments.
Theresa Marquardt; Hailemariam Temesgen; Paul D. Anderson; Bianca Eskelson
2012-01-01
Six sampling alternatives were examined for their ability to quantify selected attributes of snags and hardwoods in conifer-dominated riparian areas of managed headwater forests in western Oregon. Each alternative was simulated 500 times at eight headwater forest locations based on a 0.52-ha square stem map. The alternatives were evaluated based on how well they...
Koláčková, Pavla; Růžičková, Gabriela; Gregor, Tomáš; Šišperová, Eliška
2015-08-30
Calibration models for the Fourier transform-near infrared (FT-NIR) instrument were developed for quick and non-destructive determination of oil and fatty acids in whole achenes of milk thistle. Samples with a range of oil and fatty acid levels were collected and their transmittance spectra were obtained by the FT-NIR instrument. Based on these spectra and data gained by the means of the reference method - Soxhlet extraction and gas chromatography (GC) - calibration models were created by means of partial least square (PLS) regression analysis. Precision and accuracy of the calibration models was verified via the cross-validation of validation samples whose spectra were not part of the calibration model and also according to the root mean square error of prediction (RMSEP), root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV) and the validation coefficient of determination (R(2) ). R(2) for whole seeds were 0.96, 0.96, 0.83 and 0.67 and the RMSEP values were 0.76, 1.68, 1.24, 0.54 for oil, linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) acids, respectively. The calibration models are appropriate for the non-destructive determination of oil and fatty acids levels in whole seeds of milk thistle. © 2014 Society of Chemical Industry.
Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic
ERIC Educational Resources Information Center
O'Brien, Thomas D.
2006-01-01
Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.
Sasaki, Miho; Sumi, Misa; Eida, Sato; Katayama, Ikuo; Hotokezaka, Yuka; Nakamura, Takashi
2014-01-01
Intravoxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of normal and diseased tissues, and IVIM parameters are authentically determined by using cumbersome least-squares method. We evaluated a simple technique for the determination of IVIM parameters using geometric analysis of the multiexponential signal decay curve as an alternative to the least-squares method for the diagnosis of head and neck tumors. Pure diffusion coefficients (D), microvascular volume fraction (f), perfusion-related incoherent microcirculation (D*), and perfusion parameter that is heavily weighted towards extravascular space (P) were determined geometrically (Geo D, Geo f, and Geo P) or by least-squares method (Fit D, Fit f, and Fit D*) in normal structures and 105 head and neck tumors. The IVIM parameters were compared for their levels and diagnostic abilities between the 2 techniques. The IVIM parameters were not able to determine in 14 tumors with the least-squares method alone and in 4 tumors with the geometric and least-squares methods. The geometric IVIM values were significantly different (p<0.001) from Fit values (+2±4% and −7±24% for D and f values, respectively). Geo D and Fit D differentiated between lymphomas and SCCs with similar efficacy (78% and 80% accuracy, respectively). Stepwise approaches using combinations of Geo D and Geo P, Geo D and Geo f, or Fit D and Fit D* differentiated between pleomorphic adenomas, Warthin tumors, and malignant salivary gland tumors with the same efficacy (91% accuracy = 21/23). However, a stepwise differentiation using Fit D and Fit f was less effective (83% accuracy = 19/23). Considering cumbersome procedures with the least squares method compared with the geometric method, we concluded that the geometric determination of IVIM parameters can be an alternative to least-squares method in the diagnosis of head and neck tumors. PMID:25402436
Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms
NASA Astrophysics Data System (ADS)
Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.
2017-09-01
Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.
Segmentation of nuclear images in automated cervical cancer screening
NASA Astrophysics Data System (ADS)
Dadeshidze, Vladimir; Olsson, Lars J.; Domanik, Richard A.
1995-08-01
This paper describes an efficient method of segmenting cell nuclei from complex scenes based upon the use of adaptive region growing in conjuction with nucleus-specific filters. Results of segmenting potentially abnormal (cancer or neoplastic) cell nuclei in Papanicolaou smears from 0.8 square micrometers resolution images are also presented.
ERIC Educational Resources Information Center
Henry, Gary T.; And Others
1992-01-01
A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)
Factor Analysis for Clustered Observations.
ERIC Educational Resources Information Center
Longford, N. T.; Muthen, B. O.
1992-01-01
A two-level model for factor analysis is defined, and formulas for a scoring algorithm for this model are derived. A simple noniterative method based on decomposition of total sums of the squares and cross-products is discussed and illustrated with simulated data and data from the Second International Mathematics Study. (SLD)
What Do Teachers Need to Support English Learners?
ERIC Educational Resources Information Center
Gomez, Marjorie N.; Diarrassouba, Nagnon
2014-01-01
This study explored K-8 teachers' perceptions of their preparation and the challenges they encountered in delivering instruction to culturally and linguistically diverse learners. Using a mixed method research design, data were collected through a web-based survey from teachers in the state of Michigan. Researchers used chi-square tests to…
Error analysis on squareness of multi-sensor integrated CMM for the multistep registration method
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Yiwen; Ye, Xiuling; Wang, Zhong; Fu, Luhua
2018-01-01
The multistep registration(MSR) method in [1] is to register two different classes of sensors deployed on z-arm of CMM(coordinate measuring machine): a video camera and a tactile probe sensor. In general, it is difficult to obtain a very precise registration result with a single common standard, instead, this method is achieved by measuring two different standards with a constant distance between them two which are fixed on a steel plate. Although many factors have been considered such as the measuring ability of sensors, the uncertainty of the machine and the number of data pairs, there is no exact analysis on the squareness between the x-axis and the y-axis on the xy plane. For this sake, error analysis on the squareness of multi-sensor integrated CMM for the multistep registration method will be made to examine the validation of the MSR method. Synthetic experiments on the squareness on the xy plane for the simplified MSR with an inclination rotation are simulated, which will lead to a regular result. Experiments have been carried out with the multi-standard device designed also in [1], meanwhile, inspections with the help of a laser interferometer on the xy plane have been carried out. The final results are conformed to the simulations, and the squareness errors of the MSR method are also similar to the results of interferometer. In other word, the MSR can also adopted/utilized to verify the squareness of a CMM.
Study on Parameter Identification of Assembly Robot based on Screw Theory
NASA Astrophysics Data System (ADS)
Yun, Shi; Xiaodong, Zhang
2017-11-01
The kinematic model of assembly robot is one of the most important factors affecting repetitive precision. In order to improve the accuracy of model positioning, this paper first establishes the exponential product model of ER16-1600 assembly robot on the basis of screw theory, and then based on iterative least squares method, using ER16-1600 model robot parameter identification. By comparing the experiment before and after the calibration, it is proved that the method has obvious improvement on the positioning accuracy of the assembly robot.
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151
Accurate motion parameter estimation for colonoscopy tracking using a regression method
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2010-03-01
Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.
NASA Astrophysics Data System (ADS)
Ophaug, Vegard; Gerlach, Christian
2017-11-01
This work is an investigation of three methods for regional geoid computation: Stokes's formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223-232, 1995. doi: 10.1007/BF00806734) that the equivalence of Stokes's formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes's formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level.
Efficient sensitivity analysis method for chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Liao, Haitao
2016-05-01
The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.
Atila, Alptug; Yilmaz, Bilal
2015-01-01
In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation.
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2017-06-01
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.
Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
NASA Astrophysics Data System (ADS)
Zou, Cuiming; Kou, Kit Ian
2018-05-01
Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.
a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Li, J.; Wan, Y.; Gao, X.
2012-07-01
With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Gu, Xinzhe; Wang, Zhenjie; Huang, Yangmin; Wei, Yingying; Zhang, Miaomiao; Tu, Kang
2015-01-01
This research aimed to develop a rapid and nondestructive method to model the growth and discrimination of spoilage fungi, like Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum, based on hyperspectral imaging system (HIS). A hyperspectral imaging system was used to measure the spectral response of fungi inoculated on potato dextrose agar plates and stored at 28°C and 85% RH. The fungi were analyzed every 12 h over two days during growth, and optimal simulation models were built based on HIS parameters. The results showed that the coefficients of determination (R2) of simulation models for testing datasets were 0.7223 to 0.9914, and the sum square error (SSE) and root mean square error (RMSE) were in a range of 2.03–53.40×10−4 and 0.011–0.756, respectively. The correlation coefficients between the HIS parameters and colony forming units of fungi were high from 0.887 to 0.957. In addition, fungi species was discriminated by partial least squares discrimination analysis (PLSDA), with the classification accuracy of 97.5% for the test dataset at 36 h. The application of this method in real food has been addressed through the analysis of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum inoculated in peaches, demonstrating that the HIS technique was effective for simulation of fungal infection in real food. This paper supplied a new technique and useful information for further study into modeling the growth of fungi and detecting fruit spoilage caused by fungi based on HIS. PMID:26642054
A general rough-surface inversion algorithm: Theory and application to SAR data
NASA Technical Reports Server (NTRS)
Moghaddam, M.
1993-01-01
Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.
Maslia, M.L.; Randolph, R.B.
1986-01-01
The theory of anisotropic aquifer hydraulic properties and a computer program, written in Fortran 77, developed to compute the components of the anisotropic transmissivity tensor of two-dimensional groundwater flow are described. To determine the tensor components using one pumping well and three observation wells, the type-curve and straight-line approximation methods are developed. These methods are based on the equation of drawdown developed for two-dimensional nonsteady flow in an infinite anisotropic aquifer. To determine tensor components using more than three observation wells, a weighted least squares optimization procedure is described for use with the type-curve and straight-line approximation methods. The computer program described in this report allows the type-curve, straight-line approximation, and weighted least squares optimization methods to be used in conjunction with data from observation and pumping wells. Three example applications using the computer program and field data gathered during geohydrologic investigations at a site near Dawsonville, Georgia , are provided to illustrate the use of the computer program. The example applications demonstrate the use of the type-curve method using three observation wells, the weighted least squares optimization method using eight observation wells and equal weighting, and the weighted least squares optimization method using eight observation wells and unequal weighting. Results obtained using the computer program indicate major transmissivity in the range of 347-296 sq ft/day, minor transmissivity in the range of 139-99 sq ft/day, aquifer anisotropy in the range of 3.54 to 2.14, principal direction of flow in the range of N. 45.9 degrees E. to N. 58.7 degrees E., and storage coefficient in the range of 0.0063 to 0.0037. The numerical results are in good agreement with field data gathered on the weathered crystalline rocks underlying the investigation site. Supplemental material provides definitions of variables, data requirements and corresponding formats, input data and output results for the example applications, and a listing of the Fortran 77 computer code. (Author 's abstract)
Smeers, Inge; Decorte, Ronny; Van de Voorde, Wim; Bekaert, Bram
2018-05-01
DNA methylation is a promising biomarker for forensic age prediction. A challenge that has emerged in recent studies is the fact that prediction errors become larger with increasing age due to interindividual differences in epigenetic ageing rates. This phenomenon of non-constant variance or heteroscedasticity violates an assumption of the often used method of ordinary least squares (OLS) regression. The aim of this study was to evaluate alternative statistical methods that do take heteroscedasticity into account in order to provide more accurate, age-dependent prediction intervals. A weighted least squares (WLS) regression is proposed as well as a quantile regression model. Their performances were compared against an OLS regression model based on the same dataset. Both models provided age-dependent prediction intervals which account for the increasing variance with age, but WLS regression performed better in terms of success rate in the current dataset. However, quantile regression might be a preferred method when dealing with a variance that is not only non-constant, but also not normally distributed. Ultimately the choice of which model to use should depend on the observed characteristics of the data. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Emanouilidis, Emanuel
2005-01-01
Latin squares have existed for hundreds of years but it wasn't until rather recently that Latin squares were used in other areas such as statistics, graph theory, coding theory and the generation of random numbers as well as in the design and analysis of experiments. This note describes Latin and diagonal Latin squares, a method of constructing…
Radius of Curvature of Off-Axis Paraboloids
NASA Technical Reports Server (NTRS)
Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)
2002-01-01
We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Robust regression on noisy data for fusion scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdoolaege, Geert, E-mail: geert.verdoolaege@ugent.be; Laboratoire de Physique des Plasmas de l'ERM - Laboratorium voor Plasmafysica van de KMS
2014-11-15
We introduce the method of geodesic least squares (GLS) regression for estimating fusion scaling laws. Based on straightforward principles, the method is easily implemented, yet it clearly outperforms established regression techniques, particularly in cases of significant uncertainty on both the response and predictor variables. We apply GLS for estimating the scaling of the L-H power threshold, resulting in estimates for ITER that are somewhat higher than predicted earlier.
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.
Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A
2018-02-01
Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.
A library least-squares approach for scatter correction in gamma-ray tomography
NASA Astrophysics Data System (ADS)
Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro
2015-03-01
Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system.
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.
1991-01-01
The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.
NASA Astrophysics Data System (ADS)
Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong
2013-04-01
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.
NASA Astrophysics Data System (ADS)
Dash, S.; Satish, S.; Parida, B.; Satapathy, S.; Ipsita, N. S.; Joshi, R. S.
2018-04-01
We demonstrate the tailoring of anisotropy in magnetic nano-wire element using finite element method based micromagnetic simulation. We calculate the magentostatic properties for the structure by simulating hysteresis for these nano wire elements. The angular variation of remanence for the structures of different dimensions is used as the depiction to establish fourfold magnetic anisotropy. The change of anisotropy strength, which is the ratio of squareness of hysteresis loop in hard axis to easy axis, is demonstrated in this study which is one of the most important parameters to utilize these nanowire elements in multi state magnetic memory application.
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.
2013-01-01
In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
NASA Astrophysics Data System (ADS)
Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing
2015-06-01
In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
Multivariable frequency domain identification via 2-norm minimization
NASA Technical Reports Server (NTRS)
Bayard, David S.
1992-01-01
The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.
Unweighted least squares phase unwrapping by means of multigrid techniques
NASA Astrophysics Data System (ADS)
Pritt, Mark D.
1995-11-01
We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.
Preparation of Regular Specimens for Atom Probes
NASA Technical Reports Server (NTRS)
Kuhlman, Kim; Wishard, James
2003-01-01
A method of preparation of specimens of non-electropolishable materials for analysis by atom probes is being developed as a superior alternative to a prior method. In comparison with the prior method, the present method involves less processing time. Also, whereas the prior method yields irregularly shaped and sized specimens, the present developmental method offers the potential to prepare specimens of regular shape and size. The prior method is called the method of sharp shards because it involves crushing the material of interest and selecting microscopic sharp shards of the material for use as specimens. Each selected shard is oriented with its sharp tip facing away from the tip of a stainless-steel pin and is glued to the tip of the pin by use of silver epoxy. Then the shard is milled by use of a focused ion beam (FIB) to make the shard very thin (relative to its length) and to make its tip sharp enough for atom-probe analysis. The method of sharp shards is extremely time-consuming because the selection of shards must be performed with the help of a microscope, the shards must be positioned on the pins by use of micromanipulators, and the irregularity of size and shape necessitates many hours of FIB milling to sharpen each shard. In the present method, a flat slab of the material of interest (e.g., a polished sample of rock or a coated semiconductor wafer) is mounted in the sample holder of a dicing saw of the type conventionally used to cut individual integrated circuits out of the wafers on which they are fabricated in batches. A saw blade appropriate to the material of interest is selected. The depth of cut and the distance between successive parallel cuts is made such that what is left after the cuts is a series of thin, parallel ridges on a solid base. Then the workpiece is rotated 90 and the pattern of cuts is repeated, leaving behind a square array of square posts on the solid base. The posts can be made regular, long, and thin, as required for samples for atom-probe analysis. Because of their small volume and regularity, the amount of FIB-milling time can be much less than that of the method of sharp shards. Individual posts can be broken off for mounting in a manner similar to that of the method of sharp shards. Alternatively, the posts can be left intact on the base and the base can be cut to a small square (e.g., 3 by 3 mm) suitable for mounting in an atom probe of a type capable of accepting multiple-tip specimens. The advantage of multiple-tip specimens is the possibility of analyzing many tips without the time-consuming interchange of specimens.
Analysis of Nonlinear Dynamics by Square Matrix Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li Hua
The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. Andmore » more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.« less
Android malware detection based on evolutionary super-network
NASA Astrophysics Data System (ADS)
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
Understanding Least Squares through Monte Carlo Calculations
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2005-01-01
The method of least squares (LS) is considered as an important data analysis tool available to physical scientists. The mathematics of linear least squares(LLS) is summarized in a very compact matrix rotation that renders it practically "formulaic".
Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping
NASA Technical Reports Server (NTRS)
Leberl, F.
1975-01-01
Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.
Linear least-squares method for global luminescent oil film skin friction field analysis
NASA Astrophysics Data System (ADS)
Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu
2018-06-01
A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.
NASA Astrophysics Data System (ADS)
El-Diasty, M.; El-Rabbany, A.; Pagiatakis, S.
2007-11-01
We examine the effect of varying the temperature points on MEMS inertial sensors' noise models using Allan variance and least-squares spectral analysis (LSSA). Allan variance is a method of representing root-mean-square random drift error as a function of averaging times. LSSA is an alternative to the classical Fourier methods and has been applied successfully by a number of researchers in the study of the noise characteristics of experimental series. Static data sets are collected at different temperature points using two MEMS-based IMUs, namely MotionPakII and Crossbow AHRS300CC. The performance of the two MEMS inertial sensors is predicted from the Allan variance estimation results at different temperature points and the LSSA is used to study the noise characteristics and define the sensors' stochastic model parameters. It is shown that the stochastic characteristics of MEMS-based inertial sensors can be identified using Allan variance estimation and LSSA and the sensors' stochastic model parameters are temperature dependent. Also, the Kaiser window FIR low-pass filter is used to investigate the effect of de-noising stage on the stochastic model. It is shown that the stochastic model is also dependent on the chosen cut-off frequency.
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data.
Wei, Runmin; Wang, Jingye; Su, Mingming; Jia, Erik; Chen, Shaoqiu; Chen, Tianlu; Ni, Yan
2018-01-12
Missing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection can significantly affect following data analyses. Typically, there are three types of missing values, missing not at random (MNAR), missing at random (MAR), and missing completely at random (MCAR). Our study comprehensively compared eight imputation methods (zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC)) for different types of missing values using four metabolomics datasets. Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate imputation accuracy. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes analysis were used to evaluate the overall sample distribution. Student's t-test followed by correlation analysis was conducted to evaluate the effects on univariate statistics. Our findings demonstrated that RF performed the best for MCAR/MAR and QRILC was the favored one for left-censored MNAR. Finally, we proposed a comprehensive strategy and developed a public-accessible web-tool for the application of missing value imputation in metabolomics ( https://metabolomics.cc.hawaii.edu/software/MetImp/ ).
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Gradient-based interpolation method for division-of-focal-plane polarimeters.
Gao, Shengkui; Gruev, Viktor
2013-01-14
Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.
Landsat-4 (TDRSS-user) orbit determination using batch least-squares and sequential methods
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1992-01-01
TDRSS user orbit determination is analyzed using a batch least-squares method and a sequential estimation method. It was found that in the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was heavily tracked by TDRSS during January 1991, was about 4 meters in the rms overlap comparisons and about 6 meters in the maximum position differences in overlap comparisons. The consistency was about 10 to 30 meters in the 3 sigma state error covariance function in the sequential method analysis. As a measure of consistency, the first residual of each pass was within the 3 sigma bound in the residual space.
Efficient approach to the free energy of crystals via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Navascués, G.; Velasco, E.
2015-08-01
We present a general approach to compute the absolute free energy of a system of particles with constrained center of mass based on the Monte Carlo thermodynamic coupling integral method. The version of the Frenkel-Ladd approach [J. Chem. Phys. 81, 3188 (1984)], 10.1063/1.448024, which uses a harmonic coupling potential, is recovered. Also, we propose a different choice, based on one-particle square-well coupling potentials, which is much simpler, more accurate, and free from some of the difficulties of the Frenkel-Ladd method. We apply our approach to hard spheres and compare with the standard harmonic method.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...
2016-12-15
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Total variation superiorized conjugate gradient method for image reconstruction
NASA Astrophysics Data System (ADS)
Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.
2018-03-01
The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Xi, Xiuxiu
2015-01-01
The measurement of soil total nitrogen (TN) by hyperspectral remote sensing provides an important tool for soil restoration programs in areas with subsided land caused by the extraction of natural resources. This study used the local correlation maximization-complementary superiority method (LCMCS) to establish TN prediction models by considering the relationship between spectral reflectance (measured by an ASD FieldSpec 3 spectroradiometer) and TN based on spectral reflectance curves of soil samples collected from subsided land which is determined by synthetic aperture radar interferometry (InSAR) technology. Based on the 1655 selected effective bands of the optimal spectrum (OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]′), (correlation coefficients, p < 0.01), the optimal model of LCMCS method was obtained to determine the final model, which produced lower prediction errors (root mean square error of validation [RMSEV] = 0.89, mean relative error of validation [MREV] = 5.93%) when compared with models built by the local correlation maximization (LCM), complementary superiority (CS) and partial least squares regression (PLS) methods. The predictive effect of LCMCS model was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS method has great potential to monitor TN in subsided lands caused by the extraction of natural resources including groundwater, oil and coal. PMID:26213935
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
NASA Astrophysics Data System (ADS)
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
Zhonggang, Liang; Hong, Yan
2006-10-01
A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.
Using Least Squares for Error Propagation
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2015-01-01
The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…
a Unified Matrix Polynomial Approach to Modal Identification
NASA Astrophysics Data System (ADS)
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Yang, X; Le, D; Zhang, Y L; Liang, L Z; Yang, G; Hu, W J
2016-10-18
To explore a crown form classification method for upper central incisor which is more objective and scientific than traditional classification method based on the standardized photography technique. To analyze the relationship between crown form of upper central incisors and papilla filling in periodontally healthy Chinese Han-nationality youth. In the study, 180 periodontally healthy Chinese youth ( 75 males, and 105 females ) aged 20-30 (24.3±4.5) years were included. With the standardized upper central incisor photography technique, pictures of 360 upper central incisors were obtained. Each tooth was classified as triangular, ovoid or square by 13 experienced specialist majors in prothodontics independently and the final classification result was decided by most evaluators in order to ensure objectivity. The standardized digital photo was also used to evaluate the gingival papilla filling situation. The papilla filling result was recorded as present or absent according to naked eye observation. The papilla filling rates of different crown forms were analyzed. Statistical analyses were performed with SPSS 19.0. The proportions of triangle, ovoid and square forms of upper central incisor in Chinese Han-nationality youth were 31.4% (113/360), 37.2% (134/360) and 31.4% (113/360 ), respectively, and no statistical difference was found between the males and females. Average κ value between each two evaluators was 0.381. Average κ value was raised up to 0.563 when compared with the final classification result. In the study, 24 upper central incisors without contact were excluded, and the papilla filling rates of triangle, ovoid and square crown were 56.4% (62/110), 69.6% (87/125), 76.2% (77/101) separately. The papilla filling rate of square form was higher (P=0.007). The proportion of clinical crown form of upper central incisor in Chinese Han-nationality youth is obtained. Compared with triangle form, square form is found to favor a gingival papilla that fills the interproximal embrasure space. The consistency of the present classification method for upper central incisor is not satisfying, which indicates that a new classification method, more scientific and objective than the present one, is to be found.
Analysis and computation of a least-squares method for consistent mesh tying
Day, David; Bochev, Pavel
2007-07-10
We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less
NASA Astrophysics Data System (ADS)
Jeon, Dae-Young; Park, So Jeong; Mouis, Mireille; Barraud, Sylvain; Kim, Gyu-Tae; Ghibaudo, Gérard
2013-11-01
A new and simple method for the extraction of electrical parameters in junctionless transistors (JLTs) is presented. The bulk channel mobility (μbulk) and flat-band voltage (Vfb) were successfully extracted from the new method, based on a linear dependence between the inverse of transconductance squared (1/gm2) vs gate voltage in the partially depleted operation regime (Vth < Vg < Vfb). The validity of the new method is also proved by 2D numerical simulation and newly defined Maserjian's-like function for gm of JLT devices.
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Deriving the Work Done by an Inverse Square Force in Non-Calculus-Based Introductory Physics Courses
ERIC Educational Resources Information Center
Hu, Ben Yu-Kuang
2012-01-01
I describe a method of evaluating the integral of 1/r[superscript 2] with respect to r that uses only algebra and the concept of area underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory physics classes (where the use of calculus is forbidden) to derive the work done by the force of one…
NASA Astrophysics Data System (ADS)
Li, Zhong-xiao; Li, Zhen-chun
2016-09-01
The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.
Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin
2012-01-01
Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351
Measurement System Characterization in the Presence of Measurement Errors
NASA Technical Reports Server (NTRS)
Commo, Sean A.
2012-01-01
In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Gengsheng Qin; Davis, Angela E; Jing, Bing-Yi
2011-06-01
For a continuous-scale diagnostic test, it is often of interest to find the range of the sensitivity of the test at the cut-off that yields a desired specificity. In this article, we first define a profile empirical likelihood ratio for the sensitivity of a continuous-scale diagnostic test and show that its limiting distribution is a scaled chi-square distribution. We then propose two new empirical likelihood-based confidence intervals for the sensitivity of the test at a fixed level of specificity by using the scaled chi-square distribution. Simulation studies are conducted to compare the finite sample performance of the newly proposed intervals with the existing intervals for the sensitivity in terms of coverage probability. A real example is used to illustrate the application of the recommended methods.
NASA Astrophysics Data System (ADS)
Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang
2016-01-01
In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.
System and Method for Determining Rate of Rotation Using Brushless DC Motor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2000-01-01
A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.
William T. Simpson
2005-01-01
To use small-diameter trees effectively as square timbers, we need to be able to estimate the amount of time it takes for these timbers to air-dry. Since experimental data on estimating air-drying time for small-diameter logs have been developed, this study looked at a way to relate that method to square timbers. Drying times were determined for a group of round cross-...
Estimating monthly temperature using point based interpolation techniques
NASA Astrophysics Data System (ADS)
Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi
2013-04-01
This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.
Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes
NASA Astrophysics Data System (ADS)
Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.
2017-09-01
Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.
NASA Astrophysics Data System (ADS)
Lawi, Armin; Adhitya, Yudhi
2018-03-01
The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Comparison of beam position calculation methods for application in digital acquisition systems
NASA Astrophysics Data System (ADS)
Reiter, A.; Singh, R.
2018-05-01
Different approaches to the data analysis of beam position monitors in hadron accelerators are compared adopting the perspective of an analog-to-digital converter in a sampling acquisition system. Special emphasis is given to position uncertainty and robustness against bias and interference that may be encountered in an accelerator environment. In a time-domain analysis of data in the presence of statistical noise, the position calculation based on the difference-over-sum method with algorithms like signal integral or power can be interpreted as a least-squares analysis of a corresponding fit function. This link to the least-squares method is exploited in the evaluation of analysis properties and in the calculation of position uncertainty. In an analytical model and experimental evaluations the positions derived from a straight line fit or equivalently the standard deviation are found to be the most robust and to offer the least variance. The measured position uncertainty is consistent with the model prediction in our experiment, and the results of tune measurements improve significantly.
Ni, Yongnian; Wei, Min; Kokot, Serge
2011-11-01
Interaction of isoprenaline (ISO) with calf-thymus DNA was studied by spectroscopic and electrochemical methods. The behavior of ISO was investigated at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV); ISO was oxidized and an irreversible oxidation peak was observed. The binding constant K and the stoichiometric coefficient m of ISO with DNA were evaluated. Also, with the addition of DNA, hyperchromicity of the UV-vis absorption spectra of ISO was noted, while the fluorescence intensity decreased significantly. Multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics method was applied to resolve the combined spectroscopic data matrix, which was obtained by the UV-vis and fluorescence methods. Pure spectra of ISO, DNA and ISO-DNA complex, and their concentration profiles were then successfully obtained. The results indicated that the ISO molecule intercalated into the base-pairs of DNA, and the complex of ISO-DNA was formed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
NASA Astrophysics Data System (ADS)
Dai, Xiaoqian; Tian, Jie; Chen, Zhe
2010-03-01
Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.
GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition
2011-01-01
Background Calculation of the root mean square deviation (RMSD) between the atomic coordinates of two optimally superposed structures is a basic component of structural comparison techniques. We describe a quaternion based method, GPU-Q-J, that is stable with single precision calculations and suitable for graphics processor units (GPUs). The application was implemented on an ATI 4770 graphics card in C/C++ and Brook+ in Linux where it was 260 to 760 times faster than existing unoptimized CPU methods. Source code is available from the Compbio website http://software.compbio.washington.edu/misc/downloads/st_gpu_fit/ or from the author LHH. Findings The Nutritious Rice for the World Project (NRW) on World Community Grid predicted de novo, the structures of over 62,000 small proteins and protein domains returning a total of 10 billion candidate structures. Clustering ensembles of structures on this scale requires calculation of large similarity matrices consisting of RMSDs between each pair of structures in the set. As a real-world test, we calculated the matrices for 6 different ensembles from NRW. The GPU method was 260 times faster that the fastest existing CPU based method and over 500 times faster than the method that had been previously used. Conclusions GPU-Q-J is a significant advance over previous CPU methods. It relieves a major bottleneck in the clustering of large numbers of structures for NRW. It also has applications in structure comparison methods that involve multiple superposition and RMSD determination steps, particularly when such methods are applied on a proteome and genome wide scale. PMID:21453553