Sample records for squeezing molecular thin

  1. Squeezing and de-wetting of a shear thinning fluid drop between plane parallel surfaces: capillary adhesion phenomenon

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2017-11-01

    The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.

  2. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.

    PubMed

    Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie

    2018-05-02

    Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.

  3. Toward a compact fibered squeezing parametric source.

    PubMed

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  4. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Phase of an optical wave as an additional degree of freedom in optical information processing systems based on optical bistability

    NASA Astrophysics Data System (ADS)

    Basharov, Askhat M.

    1995-10-01

    It is shown theoretically that additional illumination by a squeezed field of a thin layer of two-level atoms, which interact with a resonant coherent electromagnetic wave, results in bistable transmission/reflection of this wave. This bistability depends strongly on the difference between the phases of the coherent and squeezed fields.

  5. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  6. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  7. The spectral analysis of an aero-engine assembly incorporating a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dede, M. M.

    1989-01-01

    Aero-engine structures have very low inherent damping and so artificial damping is often introduced by pumping oil into annular gaps between the casings and the outer races of some or all of the rolling-element bearings supporting the rotors. The thin oil films so formed are called squeeze film dampers and they can be beneficial in reducing rotor vibration due to unbalance and keeping to reasonable limits the forces transmitted to the engine casing. However, squeeze-film dampers are notoriously non-linear and as a result can introduce into the assembly such phenomena as subharmonic oscillations, jumps and combination frequencies. The purpose of the research is to investigate such phenomena both theoretically and experimentally on a test facility reproducing the essential features of a medium-size aero engine. The forerunner of this work was published. It was concerned with the examination of a squeeze-film damper in series with housing flexibility when supporting a rotor. The structure represented to a limited extent the essentials of the projected Rolls Royce RB401 engine. That research demonstrated the ability to calculate the oil-film forces arising from the squeeze film from known motions of the bearing components and showed that the dynamics of a shaft fitted with a squeeze film bearing can be predicted reasonably accurately. An aero-engine will normally have at least two shafts and so in addition to the excitation forces which are synchronous with the rotation of one shaft, there will also be forces at other frequencies from other shafts operating on the squeeze-film damper. Theoretical and experimental work to consider severe loading of squeeze-film dampers and to include these additional effects are examined.

  8. Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Köprülü, Kahraman G.; Kumar, Prem

    2006-04-01

    We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a χ(3) nonlinear medium. The nonzero response time of the Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3) parametric amplification, as well as the limit on quadrature squeezing. This nonzero response time of the nonlinearity requires coupling of the parametric process to a molecular vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency nondegenerate and frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency nondegenerate quadrature squeezing. We show that our nondegenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.

  9. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi-phase matching was developed to overcome the limiting factor of both phase-mismatch and electric displacement walk off in second-harmonic generation. By using PPLN, the photorefractive damage threshold is the only limiting factor. For quantum noise squeezing with pulsed traveling-wave, the inhomogeneous nature of spatial and temporal modes are the constraining factors for further noise reduction.

  10. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  11. Expander for Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  12. Helical tape forming device

    NASA Technical Reports Server (NTRS)

    Bush, J. E.; Cole, P. T.

    1969-01-01

    Using a device that is not limited to a minimum thickness or width-to-thickness ratio, a very thin metal tape or ribbon is formed into a continuous flat wound helical coil. The device imparts the desired circular shape by squeeze rolling it with an unequal force across its width.

  13. A squeeze-type osmotic tablet for controlled delivery of nifedipine.

    PubMed

    Park, Jung Soo; Shin, Jun Hyun; Lee, Dong Hun; Kim, Moon Suk; Rhee, John M; Lee, Hai Bang; Khang, Gilson

    2008-01-01

    Osmotic delivery systems are based on osmotic driving force. Nifedipine tablets, available under the trade names Procardia XL (Pfizer) and Adalat (Bayer), are commercialized drug-delivery systems of an elemental osmotic pump that the push-pull osmotic tablet operates successfully in delivering water-insoluble drugs. For the improvement of the release pattern and the solubility of the drug, we developed a squeeze-type osmotic tablet (SQT) for nifedipine as a model drug. The SQT was composed of one or more ring type of squeeze-push layer (squeeze-disc) and a centered drug core. Squeeze-discs were stacked up with different physicochemical properties with gradient such as viscosity, swelling ratio and water absorption ratio using the osmotic agents from a disc of bottom to top. The present work investigated the effect of different preparation factors, such as hydrophilic polymers, the molecular weight of polymers, coating process, orifice size and types of excipient on release performance of nifedipine. With the purpose of delivering water-insoluble nifedipine at an approximate zero-order rate and step-function rate for 24 h, SQT has been successfully prepared, and significantly improved in the release rate and patterns in comparison with the Adalat push-pull system in vitro release features.

  14. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  15. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    PubMed

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  16. An Experimental and numerical Study for squeezing flow

    NASA Astrophysics Data System (ADS)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  17. 3,3’-(1-Oxopropane-1,3-diyl)bis(1,3-thiazolidine-2-thione) Chlorobenzene Hemisolvate

    DTIC Science & Technology

    2013-01-01

    2005). For the definition of amide twist angles, see: Yamada et al. (1993). For details of the use of SQUEEZE, see: van der Sluis & Spek (1990...the C4–N1 bond of 5.6 (1)° (calculated according to the definition given by Yamada 1993). Figure 2 shows the molecular packing for C9H12N2OS4...modified using the SQUEEZE function. The void in the center of the unit cell contains a disordered molecule of chlorobenzene, the recrystallization solvent

  18. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  19. Science, society, and the coastal groundwater squeeze

    NASA Astrophysics Data System (ADS)

    Michael, Holly A.; Post, Vincent E. A.; Wilson, Alicia M.; Werner, Adrian D.

    2017-04-01

    Coastal zones encompass the complex interface between land and sea. Understanding how water and solutes move within and across this interface is essential for managing resources for society. The increasingly dense human occupation of coastal zones disrupts natural groundwater flow patterns and degrades freshwater resources by both overuse and pollution. This pressure results in a "coastal groundwater squeeze," where the thin veneers of potable freshwater are threatened by contaminant sources at the land surface and saline groundwater at depth. Scientific advances in the field of coastal hydrogeology have enabled responsible management of water resources and protection of important ecosystems. To address the problems of the future, we must continue to make scientific advances, and groundwater hydrology needs to be firmly embedded in integrated coastal zone management. This will require interdisciplinary scientific collaboration, open communication between scientists and the public, and strong partnerships with policymakers.

  20. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor.

    PubMed

    Averbukh, I S; Arvieu, R

    2001-10-15

    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rainbowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold atoms by a standing light wave.

  1. Quantum Sensing Beyond the Shot-Noise Limit with Plasmonic Sensors

    NASA Astrophysics Data System (ADS)

    Dowran, Mohammadjavad; Kumar, Ashok; Lawrie, Benjamin; Pooser, Raphael; Marino, Alberto

    2017-04-01

    The use of quantum resources offers the possibility of enhancing the sensitivity of a device beyond the shot noise limit and promises to revolutionize the field of metrology through the development of quantum enhanced sensors. In particular, plasmonic sensors, which are widely used in bio-chemical sensing applications, provide a unique opportunity to bring such an enhancement to real-life devices. Resonance plasmonic sensors respond to changes in refractive index through a shift of their characteristic transmission spectrum. We show that the use of quantum squeezed states to probe plasmonic sensors can enhance their sensitivity by lowering the noise floor and allowing the detection of smaller changes in refractive index. In our experiment, we use one of the beams of a two-mode squeezed state generated via four-wave-mixing in Rb atoms to probe the sensor. A squeezing level of 4 dB is obtained after transduction through the plasmonic sensor, which consists of a triangular nano-hole array in a thin silver film and exhibits a sensitivity of the order of 10-10 RIU /√{ Hz} . The use of quantum states leads to 40 % enhancement in the sensitivity of the plasmonic sensor with respect to the shot noise limit. Work supported by the W.M. Keck Foundation.

  2. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    NASA Astrophysics Data System (ADS)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  3. Four modes of optical parametric operation for squeezed state generation

    NASA Astrophysics Data System (ADS)

    Andersen, U. L.; Buchler, B. C.; Lam, P. K.; Wu, J. W.; Gao, J. R.; Bachor, H.-A.

    2003-11-01

    We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments of the squeezed quadrature.

  4. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  5. Families of one-point interactions resulting from the squeezing limit of the sum of two- and three-delta-like potentials

    NASA Astrophysics Data System (ADS)

    Zolotaryuk, A. V.

    2017-06-01

    Several families of one-point interactions are derived from the system consisting of two and three δ-potentials which are regularized by piecewise constant functions. In physical terms such an approximating system represents two or three extremely thin layers separated by some distance. The two-scale squeezing of this heterostructure to one point as both the width of δ-approximating functions and the distance between these functions simultaneously tend to zero is studied using the power parameterization through a squeezing parameter \\varepsilon \\to 0 , so that the intensity of each δ-potential is cj =aj \\varepsilon1-μ , aj \\in {R} , j  =  1, 2, 3, the width of each layer l =\\varepsilon and the distance between the layers r = c\\varepsilon^τ , c  >  0. It is shown that at some values of the intensities a 1, a 2 and a 3, the transmission across the limit point potentials is non-zero, whereas outside these (resonance) values the one-point interactions are opaque splitting the system at the point of singularity into two independent subsystems. Within the interval 1 < μ < 2 , the resonance sets consist of two curves on the (a_1, a_2) -plane and three surfaces in the (a_1, a_2, a_3) -space. As the parameter μ approaches the value μ =2 , three types of splitting the one-point interactions into countable families are observed.

  6. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  7. Generation of polarization squeezed light with an optical parametric amplifier at 795 nm

    NASA Astrophysics Data System (ADS)

    Han, Yashuai; Wen, Xin; Liu, Jinyu; He, Jun; Wang, Junmin

    2018-06-01

    We report the experimental demonstration of polarization squeezed beam at 795 nm by combining a quadrature amplitude squeezed beam with an in-phase bright coherent beam. The quadrature amplitude squeezed beam is generated by a degenerate optical parametric amplifier based on a PPKTP crystal. Stokes operators Sˆ2 squeezing of -3.8 dB and Sˆ3 anti-squeezing of +5.0 dB have been observed. This polarization squeezed beam resonant to rubidium D1 line has potential applications in quantum information networks and precision measurement beyond the shot noise limit.

  8. BOOK REVIEW: Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Zubairy, Suhail

    2005-05-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the Langevin formalism for squeezing in lasing systems. In the last article of this part, Wiseman deals with squeezing systems when the system's environment can be deliberately engineered so that the feedback is important. The third part of the book includes four articles dealing with the applications of quantum squeezing. In the first article, Yuen presents a discussion of communications and measurement using squeezed states and discusses the advantages of using nonclassical light over classical light in communications and measurement. In the second article, Swain deals with the interaction of squeezed light with the atomic systems and presents a review of novel phenomena in spectroscopy. This chapter on two-level atomic system is followed by Ficek's article on squeezed-light based spectroscopy in three-level atomic systems. In the last article, Reid again addresses the advantages of squeezed light in communications, but her emphasis is different from that of Yuen's article. Here she discusses EPR correlations for squeezed light and presents squeezed-light based methods for quantum cryptography. All the authors are leading figures in the field of squeezed states who have made pioneering contributions to various aspects of the field over the years. This is reflected in the authoritative style with which all the articles are written. These articles are rich in content, easy to read and cover a broad base. The emphasis is however on the theoretical aspects with occasional references to experimental work. This book is an excellent collection of articles on quantum squeezing that are highly useful both for beginners who would like to learn about squeezing and its applications, as well as for experts who would like to learn about the frontiers.

  9. The Squeezing Operator and the Squeezing States of Superspace

    NASA Technical Reports Server (NTRS)

    Aiqun, Ma; Changzhi, Yan; Qiquang, Lu; Weichun, Shi

    1996-01-01

    In this paper ,the unitary squeezing operator of 'superspace' is introduced and by making this operator act on the supercoherent state, the squeezing supercoherent states are obtained, then come out the four orthonormalization eigenstates of the square of annihilation operator A of the supersymmetry harmonic oscillator, and their squeezing character is also studied.

  10. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum field modes are obtained through the mere coupling and hence the transfers of photons from the remaining coupled mode.

  11. Production of squeezed states for macroscopic mechanical oscillator

    NASA Technical Reports Server (NTRS)

    Kulagin, V. V.

    1994-01-01

    The possibility of squeezed states generation for macroscopic mechanical oscillator is discussed. It is shown that one can obtain mechanical oscillator in squeezed state via coupling it to electromagnetic oscillator (Fabry-Perot resonator) and pumping this Fabry-Perot resonator with a field in squeezed state. The degradation of squeezing due to mechanical and optical losses is also analyzed.

  12. The Second International Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  13. Generation of squeezing in a driven many-body system

    NASA Astrophysics Data System (ADS)

    Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    In a spin-1 Bose-Einstein condensate, the non-linear spin-dependent collisional interactions can create entanglement and squeezing. Typically, the condensate is initialized at an unstable fixed point of the phase space, and subsequent free evolution under a time-independent Hamiltonian creates the squeezed state. Alternatively, it is possible to generate squeezing by driving the system localized at a stable fixed point. Here, we demonstrate that periodic modulation of the Hamiltonian can generate highly squeezed states. Our measurements show -5 dB of squeezing, limited by the detection, but calculations indicate that a theoretical potential of -20 dB of squeezing. We discuss the advantages of this method compared with the typical techniques.

  14. Squeezing via two-photon transitions

    NASA Astrophysics Data System (ADS)

    Savage, C. M.; Walls, D. F.

    1986-05-01

    The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.

  15. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  16. Molecular vibrational states during a collision

    NASA Technical Reports Server (NTRS)

    Recamier, Jose A.; Jauregui, Rocio

    1995-01-01

    Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.

  17. A model of transluminal flow of an anti-HIV microbicide vehicle: Combined elastic squeezing and gravitational sliding

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.; Park, Su Chan; Verguet, Stéphane; Weiss, Aaron; Katz, David F.

    2008-08-01

    Elastohydrodynamic lubrication over soft substrates is of importance in a number of biomedical problems: From lubrication of the eye surface by the tear film, to lubrication of joints by synovial fluid, to lubrication between the pleural surfaces that protect the lungs and other organs. Such flows are also important for the drug delivery functions of vehicles for anti-HIV topical microbicides. These are intended to inhibit transmission into vulnerable mucosa, e.g., in the vagina. First generation prototype microbicides have gel vehicles, which spread after insertion and coat luminal surfaces. Effectiveness derives from potency of the active ingredients and completeness and durability of coating. Delivery vehicle rheology, luminal biomechanical properties, and the force due to gravity influence the coating mechanics. We develop a framework for understanding the relative importance of boundary squeezing and body forces on the extent and speed of the coating that results. A single dimensionless number, independent of viscosity, characterizes the relative influences of squeezing and gravitational acceleration on the shape of spreading in the Newtonian case. A second scale, involving viscosity, determines the spreading rate. In the case of a shear-thinning fluid, the Carreau number also plays a role. Numerical solutions were developed for a range of the dimensionless parameter and compared well with asymptotic theory in the limited case where such results can be obtained. Results were interpreted with respect to trade-offs between wall elasticity, longitudinal forces, bolus viscosity, and bolus volume. These provide initial insights of practical value for formulators of gel delivery vehicles for anti-HIV microbicidal formulations.

  18. Effect of surface roughness and size of beam on squeeze-film damping—Molecular dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hojin; Strachan, Alejandro

    2015-11-28

    We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less

  19. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  20. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  1. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics

    NASA Astrophysics Data System (ADS)

    Rashid, Muddassar; Tufarelli, Tommaso; Bateman, James; Vovrosh, Jamie; Hempston, David; Kim, M. S.; Ulbricht, Hendrik

    2016-12-01

    We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.

  2. Four-Mode Squeezing For Optical Communications

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1989-01-01

    Experiments demonstrated potential of four-mode squeezing for increasing immunity to noise in fiber-optical communication systems and interferometric devices. Four-mode squeezing reduces quantum noise more than ordinary squeezing and provides partial immunity to non-quantum-mechanical phase noise arising in such media as optical fibers.

  3. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.

    PubMed

    Mehmet, Moritz; Ast, Stefan; Eberle, Tobias; Steinlechner, Sebastian; Vahlbruch, Henning; Schnabel, Roman

    2011-12-05

    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.

  4. Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba An; Truong, Minh Duc

    We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.

  5. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.

    PubMed

    Ast, Stefan; Samblowski, Aiko; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman

    2012-06-15

    Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.

  6. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  7. Thin layer chromatography residue applicator sampler

    DOEpatents

    Nunes, Peter J [Danville, CA; Kelly, Fredrick R [Modesto, CA; Haas, Jeffrey S [San Ramon, CA; Andresen, Brian D [Livermore, CA

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  8. Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1992-01-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory.

  9. Verification of quantum entanglement of two-mode squeezed light source towards quantum radar and imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2017-08-01

    Two-mode squeezed light is an effective resource for quantum entanglement and shows a non-classical correlation between each optical mode. We are developing a two-mode squeezed light source to explore the possibility of quantum radar based on the quantum illumination theory. It is expected that the error probability for discrimination of target presence or absence is improved even in a lossy and noisy environment. We are also expecting to apply two-mode squeezed light source to quantum imaging. In this work we generated two-mode squeezed light and verify its quantum entanglement property towards quantum radar and imaging. Firstly we generated two independent single-mode squeezed light beams utilizing two sub-threshold optical parametric oscillators which include periodically-polled potassium titanyl phosphate crystals for the second order nonlinear interaction. Two single-mode squeezed light beams are combined using a half mirror with the relative optical phase of 90° between each optical field. Then entangled two-mode squeezed light beams can be generated. We observes correlation variances between quadrature phase amplitudes in entangled two-mode fields by balanced homodyne measurement. Finally we verified quantum entanglement property of two-mode squeezed light source based on Duan's and Simon's inseparability criterion.

  10. Entanglement, number fluctuations and optimized interferometric phase measurement

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Vaughan, T. G.; Drummond, P. D.; Reid, M. D.

    2012-09-01

    We derive a phase-entanglement criterion for two bosonic modes that is immune to number fluctuations, using the generalized Moore-Penrose inverse to normalize the phase-quadrature operator. We also obtain a phase-squeezing criterion that is immune to number fluctuations using similar techniques. These are used to obtain an operational definition of relative phase-measurement sensitivity via the analysis of phase measurement in interferometry. We show that these criteria are proportional to the enhanced phase-measurement sensitivity. The phase-entanglement criterion is the hallmark of a new type of quantum-squeezing, namely planar quantum-squeezing. This has the property that it squeezes simultaneously two orthogonal spin directions, which is possible owing to the fact that the SU(2) group that describes spin symmetry has a three-dimensional parameter space of higher dimension than the group for photonic quadratures. A practical advantage of planar quantum-squeezing is that, unlike conventional spin-squeezing, it allows noise reduction over all phase angles simultaneously. The application of this type of squeezing is to the quantum measurement of an unknown phase. We show that a completely unknown phase requires two orthogonal measurements and that with planar quantum-squeezing it is possible to reduce the measurement uncertainty independently of the unknown phase value. This is a different type of squeezing compared to the usual spin-squeezing interferometric criterion, which is applicable only when the measured phase is already known to a good approximation or can be measured iteratively. As an example, we calculate the phase entanglement of the ground state of a two-well, coupled Bose-Einstein condensate, similarly to recent experiments. This system demonstrates planar squeezing in both the attractive and the repulsive interaction regime.

  11. Production, deformation and mechanical investigation of magnetic alginate capsules

    NASA Astrophysics Data System (ADS)

    Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz

    2018-02-01

    In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.

  12. Mechanism for pumping lasers with squeezed light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haake, F.; Walls, D.F.; Collett, M.J.

    1989-03-15

    In this paper we demonstrate how the squeezed-pump-laser model of Marte and Walls (Phys. Rev. A 37, 1235 (1988)) may be realized in practice. We consider a three-level atomic medium interacting with two cavity modes pumped with squeezed light. We show that this pumping mechanism both achieves atomic inversion and squeezes the fluctuations on the lasing transition.

  13. Purification of photon subtraction from continuous squeezed light by filtering

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira

    2017-11-01

    Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.

  14. Enhanced squeezing of a collective spin via control of its qudit subsystems.

    PubMed

    Norris, Leigh M; Trail, Collin M; Jessen, Poul S; Deutsch, Ivan H

    2012-10-26

    Unitary control of qudits can improve the collective spin squeezing of an atomic ensemble. Preparing the atoms in a state with large quantum fluctuations in magnetization strengthens the entangling Faraday interaction. The resulting increase in interatomic entanglement can be converted into metrologically useful spin squeezing. Further control can squeeze the internal atomic spin without compromising entanglement, providing an overall multiplicative factor in the collective squeezing. We model the effects of optical pumping and study the tradeoffs between enhanced entanglement and decoherence. For realistic parameters we see improvements of ~10 dB.

  15. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    PubMed

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  16. New representation of n-mode squeezed state gained via n-partite entangled state [rapid communication

    NASA Astrophysics Data System (ADS)

    Jiang, Nian-Quan

    2005-10-01

    By virtue of the n-partite entangled state, we extend the way of Agarwal-Simon's presenting single-mode squeezed state to n-mode case and find a new representation of the n-mode squeezed state. This n-mode squeezed state is also an entangled state and can be a superposition of n-mode coherent states.

  17. New squeezed landau states

    NASA Technical Reports Server (NTRS)

    Aragone, C.

    1993-01-01

    We introduce a new set of squeezed states through the coupled two-mode squeezed operator. It is shown that their behavior is simpler than the correlated coherent states introduced by Dodonov, Kurmyshev, and Man'ko in order to quantum mechanically describe the Landau system, i.e., a planar charged particle in a uniform magnetic field. We compare results for both sets of squeezed states.

  18. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  19. Imaging non-Gaussian output fields produced by Josephson parametric amplifiers: experiments

    NASA Astrophysics Data System (ADS)

    Toyli, D. M.; Venkatramani, A. V.; Boutin, S.; Eddins, A.; Didier, N.; Clerk, A. A.; Blais, A.; Siddiqi, I.

    2015-03-01

    In recent years, squeezed microwave states have become the focus of intense research motivated by applications in continuous-variables quantum computation and precision qubit measurement. Despite numerous demonstrations of vacuum squeezing with superconducting parametric amplifiers such as the Josephson parametric amplifier (JPA), most experiments have also suggested that the squeezed output field becomes non-ideal at the large (> 10dB) signal gains required for low-noise qubit measurement. Here we describe a systematic experimental study of JPA squeezing performance in this regime for varying lumped-element device designs and pumping methods. We reconstruct the JPA output fields through homodyne detection of the field moments and quantify the deviations from an ideal squeezed state using maximal entropy techniques. These methods provide a powerful diagnostic tool to understand how effects such as gain compression impact JPA squeezing. Our results highlight the importance of weak device nonlinearity for generating highly squeezed states. This work is supported by ARO and ONR.

  20. Waveguide quantum electrodynamics in squeezed vacuum

    NASA Astrophysics Data System (ADS)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  1. Approximate analytical solutions of a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan; Öhberg, Patrik

    2015-02-01

    The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.

  2. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    NASA Astrophysics Data System (ADS)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  3. Nearly ideal binary communication in squeezed channels

    NASA Astrophysics Data System (ADS)

    Paris, Matteo G.

    2001-07-01

    We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy, actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against signal mixing, and largely improve the strategy power by comparison with coherent ones.

  4. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  5. Squeezed States and Particle Production in High Energy Collisions

    NASA Technical Reports Server (NTRS)

    Bambah, Bindu A.

    1996-01-01

    Using the 'quantum optical approach' we propose a model of multiplicity distributions in high energy collisions based on squeezed coherent states. We show that the k-mode squeezed coherent state is the most general one in describing hadronic multiplicity distributions in particle collision processes, describing not only p(bar-p) collisions but e(+)e(-), vp and diffractive collisions as well. The reason for this phenomenological fit has been gained by working out a microscopic theory in which the squeezed coherent sources arise naturally if one considers the Lorentz squeezing of hadrons and works in the covariant phase space formalism.

  6. The Quantum Phase-Dynamical Properties of the Squeezed Vacuum State Intensity-Couple Interacting with the Atom

    NASA Technical Reports Server (NTRS)

    Fan, An-Fu; Sun, Nian-Chun; Zhou, Xin

    1996-01-01

    The Phase-dynamical properties of the squeezed vacuum state intensity-couple interacting with the two-level atom in an ideal cavity are studied using the Hermitian phase operator formalism. Exact general expressions for the phase distribution and the associated expectation value and variance of the phase operator have been derived. we have also obtained the analytic results of the phase variance for two special cases-weakly and strongly squeezed vacuum. The results calculated numerically show that squeezing has a significant effect on the phase properties of squeezed vacuum.

  7. Experimental demonstration of quantum teleportation of broadband squeezing.

    PubMed

    Yonezawa, Hidehiro; Braunstein, Samuel L; Furusawa, Akira

    2007-09-14

    We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8+/-0.2 dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations.

  8. Distillation of the two-mode squeezed state.

    PubMed

    Kurochkin, Yury; Prasad, Adarsh S; Lvovsky, A I

    2014-02-21

    We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the fraction of the photon-pair component in the state, resulting in the increase of both squeezing and entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not experience significant loss of Gaussian character.

  9. Shoulder Blade Squeeze (Posture Exercise)

    MedlinePlus

    ... Weight Exercise at Home Shoulder Blade Squeeze Shoulder Blade Squeeze Make an Appointment Ask a Question Find ... it: Stand straight and tall. Pull your shoulder blades back and slightly downward to bring your elbows ...

  10. Generalized squeezing rotating-wave approximation to the isotropic and anisotropic Rabi model in the ultrastrong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu

    2016-12-01

    Generalized squeezing rotating-wave approximation (GSRWA) is proposed by employing both the displacement and the squeezing transformations. A solvable Hamiltonian is reformulated in the same form as the ordinary RWA ones. For a qubit coupled to oscillators experiment, a well-defined Schrödinger-cat-like entangled state is given by the displaced-squeezed oscillator state instead of the original displaced state. For the isotropic Rabi case, the mean photon number and the ground-state energy are expressed analytically with additional squeezing terms, exhibiting a substantial improvement of the GSRWA. And the ground-state energy in the anisotropic Rabi model confirms the effectiveness of the GSRWA. Due to the squeezing effect, the GSRWA improves the previous methods only with the displacement transformation in a wide range of coupling strengths even for large atom frequency.

  11. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  12. Photon statistics of a two-mode squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Schrade, Guenter; Akulin, V. M.; Schleich, W. P.; Manko, Vladimir I.

    1994-01-01

    We investigate the general case of the photon distribution of a two-mode squeezed vacuum and show that the distribution of photons among the two modes depends on four parameters: two squeezing parameters, the relative phase between the two oscillators and their spatial orientation. The distribution of the total number of photons depends only on the two squeezing parameters. We derive analytical expressions and present pictures for both distributions.

  13. Parabose Squeezed Operator and Its Applications

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Min; Jing, Si-Cong

    2001-03-01

    By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuum state are calculated, which generalize the relevant results from ordinary Bose statistics to the parabose case. The project supported by National Natural Science Foundation of China under Grant Nos 19771077, 10075042, and LWTZ 1298 of the Chinese Academy of Sciences

  14. Generation of squeezed microwave states by a dc-pumped degenerate parametric Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kaertner, Franz X.; Russer, Peter

    1990-11-01

    The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.

  15. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  16. Squeezing and its graphical representations in the anharmonic oscillator model

    NASA Astrophysics Data System (ADS)

    Tanaś, R.; Miranowicz, A.; Kielich, S.

    1991-04-01

    The problem of squeezing and its graphical representations in the anharmonic oscillator model is considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribution (QPD) function are given and illustrated graphically. Approximate analytical formulas for the variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and its graphical representations in the form of variance lemniscates and QPD contours are plotted. For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite regular ellipses are obtained.

  17. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  18. Q (Alpha) Function and Squeezing Effect

    NASA Technical Reports Server (NTRS)

    Yunjie, Xia; Xianghe, Kong; Kezhu, Yan; Wanping, Chen

    1996-01-01

    The relation of squeezing and Q(alpha) function is discussed in this paper. By means of Q function, the squeezing of field with gaussian Q(alpha) function or negative P(a)function is also discussed in detail.

  19. Continuous-variable quantum key distribution with a leakage from state preparation

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim

    2017-12-01

    We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.

  20. Measurement of incident molecular temperature in the formation of organic thin films

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Matsubara, Ryosuke; Hayakawa, Munetaka; Shimoyama, Akifumi; Tanaka, Takaaki; Tsuji, Akira; Takahashi, Yoshikazu; Kubono, Atsushi

    2018-03-01

    To investigate the effects of incident molecular temperature on organic-thin-film growth by vacuum evaporation, quantitative analysis of molecular temperature is required. In this study, we propose a method of determining molecular temperature based on the heat exchange between a platinum filament and molecular vapor. Molecular temperature is estimated from filament temperature, which remains unchanged even under molecular vapor supply. The results indicate that our method has sufficient sensitivity to evaluate the molecular temperature under the typical growth rate used for fabrication of functional organic thin films.

  1. Generalised squeezing and information theory approach to quantum entanglement

    NASA Technical Reports Server (NTRS)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  2. Observation of Squeezed Light in the 2 μ m Region

    NASA Astrophysics Data System (ADS)

    Mansell, Georgia L.; McRae, Terry G.; Altin, Paul A.; Yap, Min Jet; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2018-05-01

    We present the generation and detection of squeezed light in the 2 μ m wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity. The experiment uses a frequency stabilized 1984 nm thulium fiber laser, and squeezing is detected using balanced homodyne detection with extended InGaAs photodiodes. We have measured 4.0 ±0.1 dB of squeezing and 10.5 ±0.5 dB of antisqueezing relative to the shot noise level in the audio frequency band, limited by photodiode quantum efficiency. The inferred squeezing level directly after the optical parametric oscillator, after accounting for known losses and phase noise, is 10.7 dB.

  3. Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.

    2013-07-01

    In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.

  4. Force characteristics of a modular squeeze mode magneto-rheological element

    NASA Astrophysics Data System (ADS)

    Craft, Michael J.; Ahmadian, Mehdi; Farjoud, Alireza; Burke, William C. T.; Nagode, Clement

    2010-04-01

    While few publications exist on the behavior of Magneto-Rheological (MR) fluid in squeeze mode, devices using squeeze mode may take advantage of the very large range of adjustment that squeeze mode offers. Based on results obtained through modeling and testing MR fluid in a squeeze mode rheometer, a novel compression-adjustable element has been fabricated and tested, which utilizes MR fluid in squeeze mode. While shear and valve modes have been used exclusively for MR fluid damping applications, recent modeling and testing with MR fluid has revealed that much larger adjustment ranges are achievable in squeeze mode. Utilizing squeeze mode, a compression element, or MR Pouch, was developed consisting of a flexible cylindrical membrane with each end fastened to a steel endplate (pole plates). The silicone rubber pouch material was molded in the required shape for use in the squeeze mode rheometer. This flexible membrane allows for the complete self-containment of MR fluid and because the pouch compensates for volume changes, there is no need for dynamic seals and associated surface finish treatments on the steel components. An electromagnet incorporated in the rheometer passes an adjustable magnetic field axially through the pole plates and MR fluid. Test results show the device was capable of varying the compression force from less than 8lbs to greater than 1000lbs when the pole plates were 0.050" apart. Simulations were compared against test data with good correlation. Possible applications of this technology include primary suspension components, auxiliary suspension bump stops, and other vibration isolation components, as MR Pouches are scalable depending on the application and force requirements.

  5. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  6. Coherent light squeezing states within a modified microring system

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  7. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    PubMed

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  8. Quantum memory for squeezed light.

    PubMed

    Appel, Jürgen; Figueroa, Eden; Korystov, Dmitry; Lobino, M; Lvovsky, A I

    2008-03-07

    We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 mus using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+/-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.

  9. Proceedings of the Conference on the Stability and Dynamic Response of Rotors with Squeeze Film Bearings, 8-10 May 79.

    DTIC Science & Technology

    1979-01-01

    oil films, the effects of squeeze film bearings on the dynamic response of rotor-bearing systems , design techniques and methods of analyzing complicated...rotor-bearing systems including squeeze film bearings. The consensus of the participants was that further research is needed to more fully understand...176 BEARING PARAMETER IDENTIFICATION, E. Woomer, W. D. Pilkey .... 189 TRANSIENT DYNAMICS OF SQUEEZE FILM BEARING SYSTEMS , A. J

  10. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  11. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  12. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  13. Fifth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  14. Simultaneous two component squeezing in generalized q-coherent states

    NASA Technical Reports Server (NTRS)

    Mcdermott, Roger J.; Solomon, Allan I.

    1994-01-01

    Using a generalization of the q-commutation relations, we develop a formalism in which it is possible to define generalized q-bosonic operators. This formalism includes both types of the usual q-deformed bosons as special cases. The coherent states of these operators show interesting and novel noise reduction properties including simultaneous squeezing in both field components, unlike the conventional case in which squeezing is permitted in only one component. This also contrasts with the usual quantum group deformation which also only permits one component squeezing.

  15. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1.

    DTIC Science & Technology

    1986-03-01

    in Gunter’s work (13). The dynamics of a simple single mass rotor rigid shaft with squeeze film supported rolling element bearings was analysed using... Dynamics of a Rigid Rotor Supprted on Squeeze Film Bearings. Inst Mech Engrs Conf on Vibrations of Rotating Systems 1972, pp 213- 229. 23. Mohan, S., Hahn, E...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Bearing, Squeeze Film, Vibration, Rotors 19. ABSTRACT (Continue on

  16. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    NASA Astrophysics Data System (ADS)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  17. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.

    PubMed

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2018-01-28

    Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

  18. Experimental demonstration of quantum teleportation of a squeezed state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takei, Nobuyuki; Aoki, Takao; Yonezawa, Hidehiro

    2005-10-15

    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity and discuss the classical limit for the state. The measured fidelity for the input state is 0.85{+-}0.05, which is higher than the classical case of 0.73{+-}0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observemore » the smaller variance of the teleported squeezed state than that for the vacuum state input.« less

  19. Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid

    NASA Astrophysics Data System (ADS)

    Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.

    2018-04-01

    In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.

  20. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    NASA Astrophysics Data System (ADS)

    Jiang, Nian-Quan; Fan, Hong-Yi

    2008-01-01

    We show that the Agarwal Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  1. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  2. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  3. Social Support Networks and Quality of Life of Rural Men in a Context of Marriage Squeeze in China.

    PubMed

    Wang, Sasa; Yang, Xueyan; Attané, Isabelle

    2018-07-01

    A significant number of rural Chinese men are facing difficulties in finding a spouse and may fail to ever marry due to a relative scarcity of women in the adult population. Research has indicated that marriage squeeze is a stressful event which is harmful to men's quality of life, and also weakens their social support networks. Using data collected in rural Chaohu city, Anhui, China, this study explores the effects of social support networks on quality of life of rural men who experience a marriage squeeze. The results indicate that the size of social contact networks is directly and positively associated with the quality of life of marriage-squeezed men, and moderate the negative effect of age on quality of life. Having no or limited instrumental support network and social contact network are double-edged swords, which have direct negative associations with the quality of life of marriage-squeezed men, and have moderate effects on the relationship between marriage squeeze and quality of life.

  4. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    NASA Astrophysics Data System (ADS)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  5. Squeezing with a flux-driven Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2014-03-01

    Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.

  6. Pressure melting and ice skating

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  7. A comparison of processed and fresh squeezed ‘Hamlin’ orange juice - nutrients and phytonutrients

    USDA-ARS?s Scientific Manuscript database

    ‘Hamlin’ orange juices were extracted using one of following methods: 1) freshly squeezed with a commercial food service squeezer (fresh), 2) freshly squeezed + pasteurized (fresh/pasteurized), and 3) processed with industrial extractor and pasteurized (processed). Samples were taken directly after ...

  8. Damping capacity of a sealed squeeze film bearing

    NASA Technical Reports Server (NTRS)

    Dede, M. M.; Dogan, M.; Holmes, R.

    1984-01-01

    The advantages of incorporating an open-ended or weakly-sealed squeeze-film bearing in a flexible support structure simulating an aero-engine assembly were examined. Attention is given to empirically modelling the hydrodynamics of the more usual tightly-sealed squeeze-film bearing, with a view to assessing its damping performance.

  9. Distillation of squeezing from non-Gaussian quantum states.

    PubMed

    Heersink, J; Marquardt, Ch; Dong, R; Filip, R; Lorenz, S; Leuchs, G; Andersen, U L

    2006-06-30

    We show that single copy distillation of squeezing from continuous variable non-Gaussian states is possible using linear optics and conditional homodyne detection. A specific non-Gaussian noise source, corresponding to a random linear displacement, is investigated experimentally. Conditioning the signal on a tap measurement, we observe probabilistic recovery of squeezing.

  10. Spectral, noise and correlation properties of intense squeezed light generated by a coupling in two laser fields

    NASA Technical Reports Server (NTRS)

    Kryuchkyan, Gagik YU.; Kheruntsyan, Karen V.

    1994-01-01

    Two schemes of four-wave mixing oscillators with nondegenerate pumps are proposed for above-threehold generation of squeezed light with nonzero mean-field amplitudes. Noise and correlation properties and optical spectra of squeezed-light beams generated in these schemes are discussed.

  11. Squeezed pulsed light from a fiber ring interferometer

    NASA Technical Reports Server (NTRS)

    Bergman, K.; Haus, H. A.

    1992-01-01

    Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed.

  12. Effects of laser phase fluctuations on squeezing in intracavity second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, T. A. B.; Anderson, T. B.; Walls, D. F.

    1989-08-01

    Excellent squeezing in intracavity second-harmonic generation has been predicted to occur on cavity resonance in the output intensity fluctuations. Cavity detunings cause laser phase noise to couple in and reduce the squeezing observable. Here we consider the effects of laser phase fluctuations on the output-squeezing spectrum. Laser phase noise is modeled as an Ornstein-Uhlenbeck (colored-noise) Gaussian stochastic process and its effects are compared with the white-noise limit. This indicates that the white-noise model may qualitatively overestimate the deleterious effects of laser fluctuations on sideband squeezing. We compare our results with the recently reported experiment of Pereira /ital et/ /ital al/.more » (Phys. Rev. A 38, 4931 (1988)) and present an analysis of the empty cavity for comparison.« less

  13. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  14. Teleportation of squeezing: Optimization using non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2010-12-15

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. Demore » Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.« less

  15. Modeling Ponderomotive Squeezed Light in Gravitational-Wave Laser Interferometers

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Miao, Haixing; Töyrä, Daniel; Brown, Daniel; Freise, Andreas

    2018-01-01

    Earth-based gravitational wave detectors are plagued by many sources of noise. The sensitivity of these detectors is ultimately limited by Heisenberg’s Uncertainty Principle once all other noise sources (thermal, seismic, etc.) are mitigated. When varying laser power, the standard quantum limit of laser interferometric gravitational wave detectors is a trade-off between photon shot noise (due to statistical arrival times of photons) and radiation pressure noise. This project demonstrates a method of using squeezed states of light to lower noise levels below the standard quantum limit at certain frequencies. The squeezed state can be generated by either using nonlinear optics or the ponderomotive squeezer. The latter is the focus of this project. Ponderomotive squeezing occurs due to amplitude fluctuations in the laser being converted into phase fluctuations upon reflecting off of the interferometer’s end test masses. This correlated noise allows the standard quantum limit to be surpassed at certain frequencies. The ponderomotive generation of squeezed states is modeled using FINESSE, an open source interferometer modelling software. The project resulted in a stand-alone element to be implemented in the FINESSE code base that will allow users to model ponderomotive squeezing in their optical setups. Upcoming work will explore the effects of higher order modes of light and more realistic mirror surfaces on the ponderomotive squeezing of light.

  16. Is the price squeeze doctrine still viable in fully-regulated energy markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiwak, L.J.

    Simply stated, a price squeeze occurs when a firm with monopoly power on the primary, or wholesale, level engages in a prolonged price increase that drives competitors out of the secondary, or retail level, and thereby extends its monopoly power to the secondary market. A price squeeze will not be found, however, for any short-term exercise in market power. Rather, because anticompetitive effects of a price squeeze are indirect, the price squeeze must last long enough and be severe enough to produce effects on actual or potential competition in the secondary market. In regulated electric industries, a price squeeze claimmore » usually arises from the complex relationship between the supplier, the wholesale customer, the retail customer, and the federal and state regulators. The supplier sells electric power to both wholesale and retail customers. Wholesale transactions are regulated by federal regulators, and retail transactions are regulated at the state level. The wholesale customers in turn sell power to their retail customers. Over the last several years, there have been substantial developments in the application of the price squeeze doctrine to fully-regulated electric utilities. This article will examine the current developments in this area, and attempt to highlight the burdens potential litigants, both plaintiffs and defendants, must overcome to succeed.« less

  17. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    PubMed

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  18. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  19. Physical Activity Benefits Creativity: Squeezing a Ball for Enhancing Creativity

    ERIC Educational Resources Information Center

    Kim, JongHan

    2015-01-01

    Studies in embodied cognition show that physical sensations, such as touch and movement, influence cognitive processes. Two studies were conducted to test whether squeezing a soft versus a hard ball facilitates different types of creativity. Squeezing a malleable ball would increase divergent creativity by catalyzing multiple or alternative ideas,…

  20. On the Relationship Between the Marriage Squeeze and the Quality of Life of Rural Men in China.

    PubMed

    Yang, Xueyan; Li, Shuzhuo; Attané, Isabelle; Feldman, Marcus W

    2017-05-01

    China is facing a male marriage squeeze, as there are more men in the marriage market than potential female partners. As a consequence, some men may fail to ever marry. However, while some studies have suggested that most unmarried men affected by the marriage squeeze in rural China feel a sense of failure, the quality of life of the men who remain unmarried against their will remains largely unexplored. Using data collected in rural Hanbin district of Ankang City (Shaanxi, China), this study analyzes the relationship between the marriage squeeze and the quality of life among rural men. Descriptive analyses indicate that the quality of life of unmarried men aged 28 years and older tends to be worse than for both younger unmarried men and married men. Also, the quality of life of men who perceive the marriage squeeze appears to be worse than that of those who do not. Regression analyses reveal that the perceived marriage squeeze and age independently have a significant negative relationship with the quality of life of rural men.

  1. On the Relationship Between the Marriage Squeeze and the Quality of Life of Rural Men in China

    PubMed Central

    Yang, Xueyan; Li, Shuzhuo; Attané, Isabelle; Feldman, Marcus W.

    2016-01-01

    China is facing a male marriage squeeze, as there are more men in the marriage market than potential female partners. As a consequence, some men may fail to ever marry. However, while some studies have suggested that most unmarried men affected by the marriage squeeze in rural China feel a sense of failure, the quality of life of the men who remain unmarried against their will remains largely unexplored. Using data collected in rural Hanbin district of Ankang City (Shaanxi, China), this study analyzes the relationship between the marriage squeeze and the quality of life among rural men. Descriptive analyses indicate that the quality of life of unmarried men aged 28 years and older tends to be worse than for both younger unmarried men and married men. Also, the quality of life of men who perceive the marriage squeeze appears to be worse than that of those who do not. Regression analyses reveal that the perceived marriage squeeze and age independently have a significant negative relationship with the quality of life of rural men. PMID:27923964

  2. Quantum Jeffreys prior for displaced squeezed thermal states

    NASA Astrophysics Data System (ADS)

    Kwek, L. C.; Oh, C. H.; Wang, Xiang-Bin

    1999-09-01

    It is known that, by extending the equivalence of the Fisher information matrix to its quantum version, the Bures metric, the quantum Jeffreys prior can be determined from the volume element of the Bures metric. We compute the Bures metric for the displaced squeezed thermal state and analyse the quantum Jeffreys prior and its marginal probability distributions. To normalize the marginal probability density function, it is necessary to provide a range of values of the squeezing parameter or the inverse temperature. We find that if the range of the squeezing parameter is kept narrow, there are significant differences in the marginal probability density functions in terms of the squeezing parameters for the displaced and undisplaced situations. However, these differences disappear as the range increases. Furthermore, marginal probability density functions against temperature are very different in the two cases.

  3. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui

    2018-03-01

    Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.

  4. Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Mizuno, Jun; Wakui, Kentaro; Furusawa, Akira; Sasaki, Masahide

    2005-01-01

    We have experimentally realized the scheme initially proposed as quantum dense coding with continuous variables [

    Ban, J. Opt. B: Quantum Semiclassical Opt. 1, L9 (1999)
    ;
    Braunstein and Kimble, Phys. Rev. A 61, 042302 (2000)
    ]. In our experiment, a pair of EPR (Einstein-Podolsky-Rosen) beams is generated from two independent squeezed vacua. After adding a two-quadrature signal to one of the EPR beams, two squeezed beams that contain the signal were recovered. Although our squeezing level is not sufficient to demonstrate the channel capacity gain over the Holevo limit of a single-mode channel without entanglement, our channel is superior to conventional channels such as coherent and squeezing channels. In addition, the optical addition and subtraction processes demonstrated are elementary operations of universal quantum information processing on continuous variables.

  5. An investigation of squeeze-cast alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    1993-01-01

    Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.

  6. Estimation of the Parameters in a Two-State System Coupled to a Squeezed Bath

    NASA Astrophysics Data System (ADS)

    Hu, Yao-Hua; Yang, Hai-Feng; Tan, Yong-Gang; Tao, Ya-Ping

    2018-04-01

    Estimation of the phase and weight parameters of a two-state system in a squeezed bath by calculating quantum Fisher information is investigated. The results show that, both for the phase estimation and for the weight estimation, the quantum Fisher information always decays with time and changes periodically with the phases. The estimation precision can be enhanced by choosing the proper values of the phases and the squeezing parameter. These results can be provided as an analysis reference for the practical application of the parameter estimation in a squeezed bath.

  7. Teleportation of squeezing: Optimization using non-Gaussian resources

    NASA Astrophysics Data System (ADS)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  8. Improved spin squeezing of an atomic ensemble through internal state control

    NASA Astrophysics Data System (ADS)

    Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul

    2016-05-01

    Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.

  9. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane

    2017-08-01

    The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.

  10. Effect of squeeze on electrostatic TG wave damping

    NASA Astrophysics Data System (ADS)

    Ashourvan, A.; Dubin, D. H. E.

    2013-03-01

    We present a 1D theory, neglecting radial dependency, for the damping of cylindrically symmetric plasma modes due to a cylindrically symmetric squeeze potential Vsq(z), applied to the axial midpoint of a non-neutral plasma column. Inside the plasma, particles experience a much smaller, Debye shielded squeeze potential φ0(z) of magnitude φs. The squeeze divides the plasma into passing and trapped particles; the latter cannot pass over the squeeze. Both analytical and computer simulation methods were used to study a 1D squeezed plasma mode. For our analytical study, in the regime where qφs/T ≪ 1, we assume the trapped particle population to be negligibly small and we treat qφ0(z) as a pertubation in the equilibrium hamiltonian. Our computer simulations consist of solving the 1D Vlasov-Poisson system and obtaining the damping rate for a self-consistent plasma mode. Damping of the mode in collisionless theory is caused by Landau resonances at energies En for which the bounce frequency ωb(En) and the wave frequency ω satisfy ω = nωb(En). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n ≫ 1 in the perturbed distribution. The harmonics allow resonances at energies En ≤ T and cause a substantial damping, even at wave phase velocities much larger than the thermal velocity, which is not expected for an unsqueezed plasma. In the regime ω/k≫√T/m (k is the wave number) and T ≫ qφs, the resonance damping rate has a |Vsq|2 dependence. This behavior is consistent with the observed experimental results.

  11. Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Akira; Takeoka, Masahiro; Sasaki, Masahide

    2005-08-15

    We study the measurement-induced non-Gaussian operation on the single- and two-mode Gaussian squeezed vacuum states with beam splitters and on-off type photon detectors, with which mixed non-Gaussian states are generally obtained in the conditional process. It is known that the entanglement can be enhanced via this non-Gaussian operation on the two-mode squeezed vacuum state. We show that, in the range of practical squeezing parameters, the conditional outputs are still close to Gaussian states, but their second order variances of quantum fluctuations and correlations are effectively suppressed and enhanced, respectively. To investigate an operational meaning of these states, especially entangled states,more » we also evaluate the quantum dense coding scheme from the viewpoint of the mutual information, and we show that non-Gaussian entangled state can be advantageous compared with the original two-mode squeezed state.« less

  12. Entanglement of coherent superposition of photon-subtraction squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Jin; Ye, Wei; Zhou, Wei-Dong; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun

    2017-10-01

    A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition ( τa + sb) m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ = s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for even-order operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/ s has an obvious effect on entanglement and fidelity.

  13. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    NASA Astrophysics Data System (ADS)

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.

  14. Investigation on the Yarn Squeezing Effect of Three Dimensional Full Five Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan

    2018-04-01

    The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.

  15. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.

    PubMed

    Karalis, Aristeidis; Joannopoulos, J D

    2016-07-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.

  16. Autoclave processing for composite material fabrication. 1: An analysis of resin flows and fiber compactions for thin laminate

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.

  17. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    PubMed Central

    Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.

    2018-01-01

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883

  18. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes.

    PubMed

    Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just

    2018-02-15

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  19. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  20. Comparison of acetate tape impression with squeezing versus skin scraping for the diagnosis of canine demodicosis.

    PubMed

    Pereira, A V; Pereira, S A; Gremião, I D F; Campos, M P; Ferreira, A M R

    2012-11-01

    This study compared the sensitivity of acetate tape impression and skin squeezing with that of deep skin scraping for the diagnosis of demodicosis in dogs. Demodex canis was detected in 100% of acetate tape impressions obtained after skin squeezing and in 90% of deep skin scrapings. There was a significant difference (P < 0.001) between the techniques in the total number of mites detected. Acetate tape impression with skin squeezing was found to be more sensitive than deep skin scraping and is an alternative diagnostic method for canine demodicosis. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.

  1. Effect of pressure dependent viscosity on couple stress squeeze film lubrication between porous circular stepped plates

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Raju, B. T.; Santhosh Kumar, J.; Vasanth, K. R.

    2018-04-01

    In this paper, the effect of PDV on the couple stress squeeze film lubrication between porous circular stepped plates is presented. Keeping the base of Christensen’s stochastic theory modified Reynolds equation is derived. Reynolds equation, fluid film pressure, squeeze film time and load carrying capacity are solved using standard perturbation technique. The results are tabulated and presented graphically for selected physical parameters and found that the squeeze effect is depleted in a porous bearing compared to its nonporous and increasing permeability has an adverse effect on the pressure, load carrying capacity and time of approach.

  2. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    NASA Astrophysics Data System (ADS)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  3. Effect of dispersion forces on squeezing with Rydberg atoms

    NASA Technical Reports Server (NTRS)

    Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.

    1994-01-01

    We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.

  4. Distribution of squeezed states through an atmospheric channel.

    PubMed

    Peuntinger, Christian; Heim, Bettina; Müller, Christian R; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd

    2014-08-08

    Continuous variable quantum states of light are used in quantum information protocols and quantum metrology and known to degrade with loss and added noise. We were able to show the distribution of bright polarization squeezed quantum states of light through an urban free-space channel of 1.6 km length. To measure the squeezed states in this extreme environment, we utilize polarization encoding and a postselection protocol that is taking into account classical side information stemming from the distribution of transmission values. The successful distribution of continuous variable squeezed states is accentuated by a quantum state tomography, allowing for determining the purity of the state.

  5. Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Sachdeva, Deepika; Tiwari, Shashank; Sundarraj, Suresh; Luo, Alan A.

    2010-12-01

    Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.

  6. Versatile Gaussian probes for squeezing estimation

    NASA Astrophysics Data System (ADS)

    Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo

    2017-05-01

    We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.

  7. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    PubMed Central

    Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.

    2017-01-01

    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025

  8. Method and apparatus for making an optical element having a dielectric film

    NASA Technical Reports Server (NTRS)

    Augason, Gordon C. (Inventor)

    1987-01-01

    A film-application device (FAD) comprising a pair of exterior, tapered, O-ring bearing plate members and a central plate member for simplifying the process of thermally bonding a thin dielectric film to a substrate comprising an optical element are discussed. In use, the film is sandwiched between the O rings and stretched across the optical element by squeezing the exterior plates together before bonding to the element. The film may be used for protecting the optical element or to reduce surface reflection of radiation. The FAD may also be used without the center plate to stretch a dielectric film prior to its attachment to or insertion in a holder to make pellicles or beam-splitters.

  9. Number-squeezed and fragmented states of strongly interacting bosons in a double well

    NASA Astrophysics Data System (ADS)

    Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta

    2017-11-01

    We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.

  10. A Theoretical and Experimental Study for a Developing Flow in a Thin Fluid Gap

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Lang, Ji; Jen, Kei-Peng; Nathan, Rungun; Vucbmss Team

    2016-11-01

    In this paper, we report a novel theoretical and experimental approach to examine a fast developing flow in a thin fluid gap. Although the phenomena are widely observed in industrial applications and biological systems, there is a lack of analytical approach that captures the instantaneous fluid response to a sudden impact. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. A sudden impact was imposed on the piston, creating a fast compaction on the thin fluid gap underneath. The motion of the piston was captured by the laser displacement sensor, and the fluid pressure build-up and relaxation was recorded by the pressure transducer. For this dynamic process, a novel analytical approach was developed. It starts with the inviscid limit when the viscous fluid effect has no time to appear. This short process is followed by a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. A boundary layer integral method is used during the process. Lastly, the flow is completely viscous dominant featured by a typical squeeze flow in a thin gap. Excellent agreement between the theory and the experiment was achieved. The study presented herein, filling the gap in the literature, will have broad impact in industrial and biomedical applications. This research was supported by the National Science Foundation under Award #1511096.

  11. New Interpretation of the Wigner Function

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1996-01-01

    I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the 'squeezed' Q function. This propagator leads to squeezing in one of the phase-space variables and anti-squeezing in the other. By noting that the Q function is related to the Wigner function by a special case of the above propagator, I am led to a new interpretation of the Wigner function.

  12. Squeezing of magnetic flux in nanorings.

    PubMed

    Dajka, J; Ptok, A; Luczka, J

    2012-12-12

    We study superconducting and non-superconducting nanorings and look for non-classical features of magnetic flux passing through nanorings. We show that the magnetic flux can exhibit purely quantum properties in some peculiar states with quadrature squeezing. We identify a subset of Gazeau-Klauder states in which the magnetic flux can be squeezed and, within tailored parameter regimes, quantum fluctuations of the magnetic flux can be maximally reduced.

  13. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  14. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N

    2016-03-21

    We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.

  15. Pressure Distribution in a Porous Squeeze Film Bearing Lubricated with a Herschel-Bulkley Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.

    2016-12-01

    The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations on the flow of the viscoplastic fluid (lubricant) in a bearing clearance and in a porous layer the modified Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel disks) is discussed in detail.

  16. Linear canonical transformations of coherent and squeezed states in the Wigner phase space. II - Quantitative analysis

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1989-01-01

    It is possible to calculate expectation values and transition probabilities from the Wigner phase-space distribution function. Based on the canonical transformation properties of the Wigner function, an algorithm is developed for calculating these quantities in quantum optics for coherent and squeezed states. It is shown that the expectation value of a dynamical variable can be written in terms of its vacuum expectation value of the canonically transformed variable. Parallel-axis theorems are established for the photon number and its variant. It is also shown that the transition probability between two squeezed states can be reduced to that of the transition from one squeezed state to vacuum.

  17. Combined Effect of Piezoviscous Dependency and Non-Newtonian Couple Stress on Squeeze-Film Porous Annular Plate

    NASA Astrophysics Data System (ADS)

    Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.

  18. Catalysis of heat-to-work conversion in quantum machines

    PubMed Central

    Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.

    2017-01-01

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine. PMID:29087326

  19. ProtSqueeze: simple and effective automated tool for setting up membrane protein simulations.

    PubMed

    Yesylevskyy, Semen O

    2007-01-01

    The major challenge in setting up membrane protein simulations is embedding the protein into the pre-equilibrated lipid bilayer. Several techniques were proposed to achieve optimal packing of the lipid molecules around the protein. However, all of them possess serious disadvantages, which limit their applicability and discourage the users of simulation packages from using them. In the present work, we analyzed existing approaches and proposed a new procedure of protein insertion into the lipid bilayer, which is implemented in the ProtSqueeze software. The advantages of ProtSqueeze are as follows: (1) the insertion algorithm is simple, understandable, and controllable; (2) the software can work with virtually any simulation package on virtually any platform; (3) no modification of the source code of the simulation package is needed; (4) the procedure of insertion is as automated as possible; (5) ProtSqueeze is distributed for free under a general public license. In this work, we present the architecture and the algorithm of ProtSqueeze and demonstrate its usage in case studies.

  20. Gaussian private quantum channel with squeezed coherent states

    PubMed Central

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  1. Catalysis of heat-to-work conversion in quantum machines

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.

    2017-11-01

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.

  2. Engineering Matter Interactions Using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoǧlu, Sina; Imamoǧlu, Ataç; Huber, Sebastian

    2017-04-01

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the vacuum fluctuations can be used to engineer the strength and the range of interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or wave guides, which modify the electromagnetic fluctuations. Here, we show theoretically that the enhanced fluctuations in the antisqueezed quadrature of a squeezed vacuum state allow for engineering interactions between electric dipoles without the need for a photonic structure. Thus, the strength and range of the interactions can be engineered in a time-dependent way by changing the spatial profile of the squeezed vacuum in a traveling-wave geometry, which also allows the implementation of chiral dissipative interactions. Using experimentally realized squeezing parameters and including realistic losses, we predict single-atom cooperativities C of up to 10 for the squeezed-vacuum-enhanced interactions.

  3. Gaussian private quantum channel with squeezed coherent states.

    PubMed

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-14

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  4. Catalysis of heat-to-work conversion in quantum machines.

    PubMed

    Ghosh, A; Latune, C L; Davidovich, L; Kurizki, G

    2017-11-14

    We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.

  5. Entanglement enhancement in multimode integrated circuits

    NASA Astrophysics Data System (ADS)

    Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.

    2018-06-01

    The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.

  6. Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dalafi, A.; Naderi, M. H.; Motazedifard, Ali

    2018-04-01

    We investigate theoretically a hybrid system consisting of a Bose-Einstein condensate (BEC) trapped inside a laser-driven membrane-in-the-middle optomechanical cavity assisted with squeezed vacuum injection whose moving membrane interacts both linearly and quadratically with the radiation pressure of the cavity. It is shown that such a hybrid system is very suitable for generating strong quadrature squeezing in the mechanical mode of the membrane and the Bogoliubov mode of the BEC in the unresolved sideband regime. More interestingly, by choosing a suitable sign for the quadratic optomechanical coupling (QOC), one can achieve a very high degree of squeezing in the mechanical mode and a strong entanglement between the mechanical and atomic modes without the necessity of using squeezed light injection. Furthermore, the QOC changes the effective oscillation frequencies of both the mechanical and the atomic modes and affects their relaxation times. It can also make the system switch from optical bistability to tristability.

  7. Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

    NASA Astrophysics Data System (ADS)

    Lü, Shulin; Yang, Xiong; Hao, Liangyan; Wu, Shusen; Fang, Xiaogang; Wang, Jing

    2018-05-01

    In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in Mg96.9Zn1Y2Zr0.1 alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast Mg96.9Zn1Y2Zr0.1 alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.

  8. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  9. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less

  10. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  11. Continuous-variable teleportation of a negative Wigner function

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav, Jr.; Filip, Radim; Furusawa, Akira

    2010-07-01

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there is a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.

  12. Continuous-variable teleportation of a negative Wigner function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mista, Ladislav Jr.; Filip, Radim; Furusawa, Akira

    2010-07-15

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there ismore » a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.« less

  13. Semi-automated vectorial analysis of anorectal motion by magnetic resonance defecography in healthy subjects and fecal incontinence.

    PubMed

    Noelting, J; Bharucha, A E; Lake, D S; Manduca, A; Fletcher, J G; Riederer, S J; Joseph Melton, L; Zinsmeister, A R

    2012-10-01

    Inter-observer variability limits the reproducibility of pelvic floor motion measured by magnetic resonance imaging (MRI). Our aim was to develop a semi-automated program measuring pelvic floor motion in a reproducible and refined manner. Pelvic floor anatomy and motion during voluntary contraction (squeeze) and rectal evacuation were assessed by MRI in 64 women with fecal incontinence (FI) and 64 age-matched controls. A radiologist measured anorectal angles and anorectal junction motion. A semi-automated program did the same and also dissected anorectal motion into perpendicular vectors representing the puborectalis and other pelvic floor muscles, assessed the pubococcygeal angle, and evaluated pelvic rotation. Manual and semi-automated measurements of anorectal junction motion (r = 0.70; P < 0.0001) during squeeze and evacuation were correlated, as were anorectal angles at rest, squeeze, and evacuation; angle change during squeeze or evacuation was less so. Semi-automated measurements of anorectal and pelvic bony motion were also reproducible within subjects. During squeeze, puborectalis injury was associated (P ≤ 0.01) with smaller puborectalis but not pelvic floor motion vectors, reflecting impaired puborectalis function. The pubococcygeal angle, reflecting posterior pelvic floor motion, was smaller during squeeze and larger during evacuation. However, pubococcygeal angles and pelvic rotation during squeeze and evacuation did not differ significantly between FI and controls. This semi-automated program provides a reproducible, efficient, and refined analysis of pelvic floor motion by MRI. Puborectalis injury is independently associated with impaired motion of puborectalis, not other pelvic floor muscles in controls and women with FI. © 2012 Blackwell Publishing Ltd.

  14. Dual clearance squeeze film damper

    NASA Technical Reports Server (NTRS)

    Fleming, D. P. (Inventor)

    1985-01-01

    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.

    It is shown that potato orbits in the near-axis region of a high beta tokamak are squeezed in a magnetic well. The squeezing factor is the same as that for the banana orbits derived in an earlier work [Phys. Plasmas 3, 2843 (1996)]. It depends on the energy of the particle. For high-energy particles, the size of the squeezed orbits is independent of their energy. This implies improved confinement for high-energy particles and for high beta tokamaks with advanced fuels.

  16. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  17. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  18. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  19. Squeezing Enhances Quantum Synchronization.

    PubMed

    Sonar, Sameer; Hajdušek, Michal; Mukherjee, Manas; Fazio, Rosario; Vedral, Vlatko; Vinjanampathy, Sai; Kwek, Leong-Chuan

    2018-04-20

    It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime. We demonstrate that strong entrainment is possible for small values of squeezing, and in this regime, the states are nonclassical. Furthermore, we show that the quality of synchronization measured by the FWHM of the power spectrum is enhanced with squeezing.

  20. Squeezing Enhances Quantum Synchronization

    NASA Astrophysics Data System (ADS)

    Sonar, Sameer; Hajdušek, Michal; Mukherjee, Manas; Fazio, Rosario; Vedral, Vlatko; Vinjanampathy, Sai; Kwek, Leong-Chuan

    2018-04-01

    It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime. We demonstrate that strong entrainment is possible for small values of squeezing, and in this regime, the states are nonclassical. Furthermore, we show that the quality of synchronization measured by the FWHM of the power spectrum is enhanced with squeezing.

  1. Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2017-05-01

    The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.

  2. High-rate squeezing process of bulk metallic glasses.

    PubMed

    Fan, Jitang

    2017-03-24

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  3. Slowing Quantum Decoherence by Squeezing in Phase Space

    NASA Astrophysics Data System (ADS)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  4. Unbalance response of a two spool gas turbine engine with squeeze film bearings

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Li, D. F.

    1981-01-01

    This paper presents a dynamic analysis of a two-spool gas turbine helicopter engine incorporating intershaft rolling element bearings between the gas generator and power turbine rotors. The analysis includes the nonlinear effects of a squeeze film bearing incorporated on the gas generator rotor. The analysis includes critical speeds and forced response of the system and indicates that substantial dynamic loads may be imposed on the intershaft bearings and main bearing supports with an improperly designed squeeze film bearing. A comparison of theoretical and experimental gas generator rotor response is presented illustrating the nonlinear characteristics of the squeeze film bearing. It was found that large intershaft bearing forces may occur even though the engine is not operating at a resonant condition.

  5. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v

  6. Which Q-analogue of the squeezed oscillator?

    NASA Technical Reports Server (NTRS)

    Solomon, Allan I.

    1993-01-01

    The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.

  7. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    PubMed

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  8. Wave and pseudo-diffusion equations from squeezed states

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1993-01-01

    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.

  9. The origin of non-classical effects in a one-dimensional superposition of coherent states

    NASA Technical Reports Server (NTRS)

    Buzek, V.; Knight, P. L.; Barranco, A. Vidiella

    1992-01-01

    We investigate the nature of the quantum fluctuations in a light field created by the superposition of coherent fields. We give a physical explanation (in terms of Wigner functions and phase-space interference) why the 1-D superposition of coherent states in the direction of the x-quadrature leads to the squeezing of fluctuations in the y-direction, and show that such a superposition can generate the squeezed vacuum and squeezed coherent states.

  10. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, J. S.; Silva, L. F. da; Almeida, N. G. de

    2011-03-15

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  11. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    NASA Astrophysics Data System (ADS)

    Sales, J. S.; da Silva, L. F.; de Almeida, N. G.

    2011-03-01

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  12. Heisenberg operator approach for spin squeezing dynamics

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aranya Bhuti; Sharma, Deepti; Pelster, Axel

    2017-12-01

    We reconsider the one-axis twisting Hamiltonian, which is commonly used for generating spin squeezing, and treat its dynamics within the Heisenberg operator approach. To this end we solve the underlying Heisenberg equations of motion perturbatively and evaluate the expectation values of the resulting time-dependent Heisenberg operators in order to determine approximately the dynamics of spin squeezing. Comparing our results with those originating from exact numerics reveals that they are more accurate than the commonly used frozen spin approximation.

  13. A tight Cramér-Rao bound for joint parameter estimation with a pure two-mode squeezed probe

    NASA Astrophysics Data System (ADS)

    Bradshaw, Mark; Assad, Syed M.; Lam, Ping Koy

    2017-08-01

    We calculate the Holevo Cramér-Rao bound for estimation of the displacement experienced by one mode of an two-mode squeezed vacuum state with squeezing r and find that it is equal to 4 exp ⁡ (- 2 r). This equals the sum of the mean squared error obtained from a dual homodyne measurement, indicating that the bound is tight and that the dual homodyne measurement is optimal.

  14. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  15. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fourth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  17. Laguerre-polynomial-weighted squeezed vacuum: generation and its properties of entanglement

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhang, Kuizheng; Zhang, Haoliang; Xu, Xuexiang; Hu, Liyun

    2018-02-01

    We theoretically prepare a kind of two-mode entangled non-Gaussian state generated by combining quantum catalysis and parametric-down amplifier operated on the two-mode squeezing vacuum state. We then investigate the entanglement properties by examining Von Neumann entropy, EPR correlation, squeezing effect and the fidelity of teleportation. It is shown that only Von Neumann entropy can be enhanced by both single- and two-mode catalysis in a small squeezing region, while the other properties can be enhanced only by two-mode catalysis including symmetrical and asymmetrical cases. A comparison among these properties shows that the squeezing and the EPR correlation definitely lead to the improvement of both the entanglement and the fidelity, and the region of enhanced fidelity can be seen as a sub-region of the enhanced entanglement which indicates that the entanglement is not always beneficial for the fidelity. In addition, the effect of photon-loss after catalysis on the fidelity is considered and the symmetrical two-photon catalysis may present better behavior than the symmetrical single-photon case against the decoherence in a certain region.

  18. A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Moldenaers, Paula; Clasen, Christian

    2011-03-01

    A new generation of the "flexure-based microgap rheometer" (the N-FMR) has been developed which is also capable of measuring, in addition to the shear stress, the first normal stress difference of micrometer thin fluid films. This microgap rheometer with a translation system based on compound spring flexures measures the rheological properties of microliter samples of complex fluids confined in a plane couette configuration with gap distances of h = 1-400 μm up to shear rates of dot γ = 3000 s-1. Feed back loop controlled precise positioning of the shearing surfaces with response times <1 ms enables to control the parallelism within 1.5 μrad and to maintain the gap distance within 20 nm. This precise gap control minimizes squeeze flow effects and allows therefore to measure the first normal stress difference N1 of the thin film down to a micrometer gap distance, with a lower limit of {{N_1 }/{dot γ }} = 9.375 × 10^{ - 11} {η/{h^2 }} that depends on the shear viscosity η and the squared inverse gap. Structural development of complex fluids in the confinement can be visualized by using a beam splitter on the shearing surface and a long working distance microscope. In summary, this new instrument allows to investigate the confinement dependent rheological and morphological evolution of micrometer thin films.

  19. Pump-dump iterative squeezing of vibrational wave packets.

    PubMed

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  20. Engineering matter interactions using squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this submission, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH-Zurich.

  1. Engineering matter interactions using squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this talk, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH Zurich.

  2. Finite-time quantum entanglement in propagating squeezed microwaves.

    PubMed

    Fedorov, K G; Pogorzalek, S; Las Heras, U; Sanz, M; Yard, P; Eder, P; Fischer, M; Goetz, J; Xie, E; Inomata, K; Nakamura, Y; Di Candia, R; Solano, E; Marx, A; Deppe, F; Gross, R

    2018-04-23

    Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

  3. Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel

    NASA Astrophysics Data System (ADS)

    Ren, Gang; Du, Jian-ming; Zhang, Wen-hai

    2018-05-01

    We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel by using the two-mode entangled state in the Fock space and Kraus operator. The explicit formulation of the output state is also given. It is found that the output state does not exhibit sub-Poissonian behavior for the nonnegative value of the Mandel's Q-parameters in a wide range of values of squeezing parameter and dissipation factor. It is interesting to see that second-order correlation function is independent of the dissipation factor. However, the photon-number distribution of the output quantum state shows remarkable oscillations with respect to the dissipation factor. The shape of Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the amplitude dissipative channel.

  4. Effect of magnon-phonon interactions on magnon squeezed states in ferromagnets

    NASA Astrophysics Data System (ADS)

    Mikhail, I. F. I.; Ismail, I. M. M.; Ameen, M.

    2018-02-01

    The squeezed states of dressed magnons in ferromagnets have been investigated. No effective Debye cutoff frequency has been assumed unlike what has been done hitherto. Instead, the results have been expressed throughout in terms of the reduced temperature. The effect of dressed magnon-phonon interactions on the formulation of these states has been studied. It has been shown that the magnon-phonon interactions play a significant role in determining the squeeze factor and the variation of the dressed magnon effective mass with temperature.

  5. Influence of oil-squeeze-film damping on steady-state response of flexible rotor operating to supercritical speeds

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data were obtained for the unbalance response of a flexible rotor to speeds above the third lateral bending critical. Squeeze-film damping coefficients calculated from measured data showed good agreement with short-journal-bearing approximations over a frequency range from 5000 to 31,000 cmp. Response of a rotor to varying amounts of unbalance was investigated. A very lightly damped rotor was compared with one where oil-squeeze dampers were applied.

  6. New Optical Field Generated by Partial Tracing Over Two-Mode Squeezing-Rotating Entangled Vacuum State ^{{*}}

    NASA Astrophysics Data System (ADS)

    Ren, Gang; Du, Jian-ming; Zhang, Wen-Hai

    2018-05-01

    Based on the two-mode squeezing-rotating entangled vacuum state (Fan and Fan in Commun Theor Phys 33:701-704, 2000), we obtained a new quantum state by using partial tracing method. This new state can be considered as a real chaotic field. We also studied its squeezing properties and quantum statistical properties by giving the analytic results and exact numerical results. It was established that the rotation angle's parameter plays an important role in this new optical field.

  7. Estimation of squeeze-film damping and inertial coefficients from experimental free-decay data

    NASA Technical Reports Server (NTRS)

    Roberts, J. B.; of Mechanical Engineers, London.

    1987-01-01

    The results are given for an experimental program concerned with a parametric identification of the damping and inertial coefficients of a cylindrical squeeze-film bearing, through an analysis of transient response data. The results enable the operating range for which a linear model of the squeeze-film is appropriate to be determined. Comparisons are made between the estimated coefficients and theoretical predictions. Presentation is by courtesy of the Council of the Institution of Mechanical Engineers, London.

  8. A Squeeze and Heat Approach to Water Reclamation

    DTIC Science & Technology

    2012-05-01

    mg/L Coliform 0 CFU/100 mL 9 2012 NDIA E2S2, New Orleans, LA 5/24/2012 • Water quality criteria defined by the Department of the Army, Office...Copyright © 2012 DRS Technologies, Inc. All rights reserved. A “Squeeze and Heat” Approach to Water Reclamation Al Garcia Bryan Lanterman Matt...REPORT DATE MAY 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE A ’Squeeze and Heat’ Approach to Water

  9. Instability of an intershaft squeeze film damper in a two-spool rotor dynamics simulator

    NASA Technical Reports Server (NTRS)

    Alderson, R. G.

    1987-01-01

    An instability associated with an intershaft squeeze film damper is described. The squeeze film is located between the intershaft bearing outer race and the low-speed shaft of a five-bearing, two-spool test rig. The instability is dominated by response of the third system mode to destabilizing excitation of the type described by Hibner, et al. Installing a spring cage in place of the intershaft damper removes the instability and produces satisfactory performance throughout the operating range.

  10. Nonlinear optical magnetometry with accessible in situ optical squeezing

    DOE PAGES

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  11. [Integrated study of fecal incontinence with defecography, anal ultrasonography, perineography, and manometry].

    PubMed

    Salzano, A; De Rosa, A; Amodio, F; Vallone, G; Pinto, A; Carbone, M; Gesuè, G; De Angelis, P

    1998-12-01

    Imaging methods such as defecography, anal US and perineography, combined with manometry, now permit to identify a growing number of causes of anorectal and pelvic floor deficiency. Fecal incontinence patients can thus be approached correctly relative to both diagnosis and treatment. We investigated the role of these techniques in the work-up of fecal incontinence. Thirty-eight subjects suffering from fecal incontinence were examined. Defecography was carried out with a special commode and videorecorded on a VHS cassette. Anal US was performed with a 7-MHz rotating probe (type 1846) with 3-cm focus length. Perineography was carried out in 15 female patients. The anorectal angle (ARA) at rest was increased (mean: 106 degrees; normal range: 90-100 degrees) in 34 cases; involuntary barium leakage was seen in 8 patients, especially on coughing. On squeezing, ARA was normal in 10 cases (mean: 72 degrees; normal range: 60-90 degrees); in 5 cases of puborectal hypotonia there was no angular excursion between rest and squeezing (mean: 105 degrees). During evacuation, the average ARA value was 166 degrees in 21 cases and ARA stretched to verticalization in 8 cases (mean: 179 degrees). Morphofunctional anorectal changes appeared as rectal mucosal prolapse (12 cases), rectocele (10 cases), perineal descent syndrome (8 cases) and external rectal prolapse (3 cases). Anal US identified 15 interruptions in sphincterial rings: 12 patterns were hypoechoic, 2 mixed and 1 hyperechoic. Atrophic thinning of internal anal sphincter was seen in 5 idiopathic incontinence patients. Perineography demonstrated cystocele in 5 cases and cystourethrocele in 1 case. Manometry showed sphincterial hypotonia at rest in 15 cases, lower values of anorectal pressure on squeezing in 8 and smaller air volumes inhibiting external sphincterial tone in 19 cases. Defecographic studies with evaluation of ARA and its changes are an important tool with high diagnostic yield. When combined with other techniques, they provide differential criteria for sphincterial and puborectal causes and permits to identify associated pelvic floor dysfunctions. We believe that defecography, anal US (and perineography in complex disorders) are necessary techniques for the correct clinical approach to fecal incontinence patients, whose role and diagnostic yield are a valid support to manometry.

  12. Can a Rescuer or Simulated Patient Accurately Assess Motion During Cervical Spine Stabilization Practice Sessions?

    PubMed Central

    Shrier, Ian; Boissy, Patrick; Brière, Simon; Mellette, Jay; Fecteau, Luc; Matheson, Gordon O.; Garza, Daniel; Meeuwisse, Willem H.; Segal, Eli; Boulay, John; Steele, Russell J.

    2012-01-01

    Context: Health care providers must be prepared to manage all potential spine injuries as if they are unstable. Therefore, most sport teams devote resources to training for sideline cervical spine (C-spine) emergencies. Objective: To determine (1) how accurately rescuers and simulated patients can assess motion during C-spine stabilization practice and (2) whether providing performance feedback to rescuers influences their choice of stabilization technique. Design: Crossover study. Setting: Training studio. Patients or Other Participants: Athletic trainers, athletic therapists, and physiotherapists experienced at managing suspected C-spine injuries. Intervention(s): Twelve lead rescuers (at the patient's head) performed both the head-squeeze and trap-squeeze C-spine stabilization maneuvers during 4 test scenarios: lift-and-slide and log-roll placement on a spine board and confused patient trying to sit up or rotate the head. Main Outcome Measure(s): Interrater reliability between rescuer and simulated patient quality scores for subjective evaluation of C-spine stabilization during trials (0 = best, 10 = worst), correlation between rescuers' quality scores and objective measures of motion with inertial measurement units, and frequency of change in preference for the head-squeeze versus trap-squeeze maneuver. Results: Although the weighted κ value for interrater reliability was acceptable (0.71–0.74), scores varied by 2 points or more between rescuers and simulated patients for approximately 10% to 15% of trials. Rescuers' scores correlated with objective measures, but variability was large: 38% of trials scored as 0 or 1 by the rescuer involved more than 10° of motion in at least 1 direction. Feedback did not affect the preference for the lift-and-slide placement. For the log-roll placement, 6 of 8 participants who preferred the head squeeze at baseline preferred the trap squeeze after feedback. For the confused patient, 5 of 5 participants initially preferred the head squeeze but preferred the trap squeeze after feedback. Conclusions: Rescuers and simulated patients could not adequately assess performance during C-spine stabilization maneuvers without objective measures. Providing immediate feedback in this context is a promising tool for changing behavior preferences and improving training. PMID:22488229

  13. External Squeeze-Film Damper For Hydrostatic Bearing

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External squeeze-film damping device suppresses vibrations of rapidly turning shaft supported by pivoted-pad hydrostatic bearing in high-pressure/high-power-density turbomachine. Stacked disks provide damping and clearance for alignment.

  14. Self-assembly of dodecaphenyl POSS thin films

    NASA Astrophysics Data System (ADS)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  15. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    DOE PAGES

    Passian, Ali; Siopsis, George

    2016-08-04

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less

  16. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  17. Graphene Squeeze-Film Pressure Sensors.

    PubMed

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  18. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGES

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  19. Quantum rotor model for a Bose-Einstein condensate of dipolar molecules.

    PubMed

    Armaitis, J; Duine, R A; Stoof, H T C

    2013-11-22

    We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due to many-body effects. Investigation of the wave function of the macroscopic dipole moment also reveals squeezing of the probability distribution for the angular momentum of the molecules.

  20. Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses

    NASA Astrophysics Data System (ADS)

    Garca Fernández, P.; Colet, P.; Toral, R.; San Miguel, M.; Bermejo, F. J.

    1991-05-01

    The squeezing properties of a model of a degenerate parametric amplifier with absorption losses and an added fourth-order nonlinearity have been analyzed. The approach used consists of obtaining the Langevin equation for the optical field from the Heisenberg equation provided that a linearization procedure is valid. The steady states of the deterministic equations have been obtained and their local stability has been analyzed. The stationary covariance matrix has been calculated below and above threshold. Below threshold, a squeezed vacuum state is obtained and the nonlinear effects in the fluctuations have been taken into account by a Gaussian decoupling. In the case above threshold, a phase-squeezed coherent state is obtained and numerical simulations allowed to compute the time interval, depending on the loss parameter, on which the system jumps from one stable state to the other. Finally, the variances numerically determined have been compared with those obtained from the linearized theory and the limits of validity of the linear theory have been analyzed. It has become clear that the nonlinear contribution may perhaps be profitably used for the construction of above-threshold squeezing devices.

  1. One- and two-mode squeezed light in correlated interferometry

    NASA Astrophysics Data System (ADS)

    Ruo-Berchera, I.; Degiovanni, I. P.; Olivares, S.; Samantaray, N.; Traina, P.; Genovese, M.

    2015-11-01

    We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity). We show how injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation. We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.

  2. Quadratic squeezing: An overview

    NASA Technical Reports Server (NTRS)

    Hillery, M.; Yu, D.; Bergou, J.

    1992-01-01

    The amplitude of the electric field of a mode of the electromagnetic field is not a fixed quantity: there are always quantum mechanical fluctuations. The amplitude, having both a magnitude and a phase, is a complex number and is described by the mode annihilation operator a. It is also possible to characterize the amplitude by its real and imaginary parts which correspond to the Hermitian and anti-Hermitian parts of a, X sub 1 = 1/2(a(sup +) + a) and X sub 2 = i/2(a(sup +) - a), respectively. These operators do not commute and, as a result, obey the uncertainty relation (h = 1) delta X sub 1(delta X sub 2) greater than or = 1/4. From this relation we see that the amplitude fluctuates within an 'error box' in the complex plane whose area is at least 1/4. Coherent states, among them the vacuum state, are minimum uncertainty states with delta X sub 1 = delta X sub 2 = 1/2. A squeezed state, squeezed in the X sub 1 direction, has the property that delta X sub 1 is less than 1/2. A squeezed state need not be a minimum uncertainty state, but those that are can be obtained by applying the squeeze operator.

  3. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    NASA Astrophysics Data System (ADS)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  4. Experiment-scale molecular simulation study of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  5. Optimization of Squeeze Casting for Aluminum Alloy Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Qingming Chang

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' formore » evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.« less

  6. Copenhagen five-second squeeze: a valid indicator of sports-related hip and groin function.

    PubMed

    Thorborg, K; Branci, S; Nielsen, M P; Langelund, M T; Hölmich, P

    2017-04-01

    No simple clinical measure exits to evaluate groin pain and its severity in athletes. The aim was to investigate the validity, reliability and responsiveness of a five-second hip-adduction squeeze test for football players designed to assess sports-related hip and groin function, pain and severity. Construct validity was assessed in 667 subelite male football players with a mean age (±SD) of 24±4 in the beginning of the season. Responsiveness and reliability were evaluated during the season in 52 and 10 players, respectively. Players answered the Copenhagen Hip and Groin Outcome Score (HAGOS) and performed the Copenhagen five-second squeeze assessed on a Numerical Pain Rating Scale (NRS) ranging from 0 to 10. As hypothesised higher pain scores during the Copenhagen five-second squeeze correlated significantly (Spearman's rho=-0.61, p<0.01) with a lesser HAGOS (Sport) Score. The change scores in the Copenhagen five-second squeeze also correlated significantly (Spearman's rho=-0.51, p<0.01), with HAGOS (Sport) change scores in the responsiveness analysis, and test-retest reliability (concordance correlation coefficient) was 0.90. Moreover, significant (p<0.01) between-group differences existed for HAGOS (Sport) Scores in players reporting groin pain intensity at one of the 3 different pain levels: NRS (0-2), NRS (3-5) and NRS (6-10). The NRS (6-10) group had the lowest median (IQR) HAGOS (Sport) Score of 47 (31-61). The Copenhagen five-second squeeze is a valid indicator of sports-related hip and groin function in football players. Players reporting groin pain intensity as 6 of 10 or more in the Copenhagen five-second squeeze experience substantially impaired sports-related hip and groin function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    NASA Astrophysics Data System (ADS)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  8. Grapefruit (Citrus paradisi Macfad) phytochemicals composition is modulated by household processing techniques.

    PubMed

    Uckoo, Ram M; Jayaprakasha, Guddadarangavvanahally K; Balasubramaniam, V M; Patil, Bhimanagouda S

    2012-09-01

    Grapefruits (Citrus paradisi Macfad) contain several phytochemicals known to have health maintaining properties. Due to the consumer's interest in obtaining high levels of these phytochemicals, it is important to understand the changes in their levels by common household processing techniques. Therefore, mature Texas "Rio Red" grapefruits were processed by some of the common household processing practices such as blending, juicing, and hand squeezing techniques and analyzed for their phytochemical content by high performance liquid chromatography (HPLC). Results suggest that grapefruit juice processed by blending had significantly (P < 0.05) higher levels of flavonoids (narirutin, naringin, hesperidin, neohesperidin, didymin, and poncirin) and limonin compared to juicing and hand squeezing. No significant variation in their content was noticed in the juice processed by juicing and hand squeezing. Ascorbic acid and citric acid were significantly (P < 0.05) higher in juice processed by juicing and blending, respectively. Furthermore, hand squeezed fruit juice had significantly higher contents of dihydroxybergamottin (DHB) than juice processed by juicing and blending. Bergamottin and 5-methoxy-7 gernoxycoumarin (5-M-7-GC) were significantly higher in blended juice compared to juicing and hand squeezing. Therefore, consuming grapefruit juice processed by blending may provide higher levels of health beneficial phytochemicals such as naringin, narirutin, and poncirin. In contrast, juice processed by hand squeezing and juicing provides lower levels of limonin, bergamottin, and 5-M-7-GC. These results suggest that, processing techniques significantly influence the levels of phytochemicals and blending is a better technique for obtaining higher levels of health beneficial phytochemicals from grapefruits. Practical Application:  Blending, squeezing, and juicing are common household processing techniques used for obtaining fresh grapefruit juice. Understanding the levels of health beneficial phytochemicals present in the juice processed by these techniques would enable the consumers to make a better choice to obtain high level of these compounds. © 2012 Institute of Food Technologists®

  9. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  10. Limitation of Shrinkage Porosity in Aluminum Rotor Die Casting

    NASA Astrophysics Data System (ADS)

    Kim, Young-Chan; Choi, Se-Weon; Kim, Cheol-Woo; Cho, Jae-Ik; Lee, Sung-Ho; Kang, Chang-Seog

    Aluminum rotor prone to have many casting defects especially large amount of air and shrinkage porosity, which caused eccentricity, loss and noise during motor operation. Many attempts have been made to develop methods of shrinkage porosity control, but still there are some problems to solve. In this research, the process of vacuum squeeze die casting is proposed for limitation of defects. The 6 pin point gated dies which were in capable of local squeeze at the end ring were used. Influences of filling patterns on HPDC were evaluated and the important process control parameters were high injection speed, squeeze length, venting and process conditions. By using local squeeze and vacuum during filling and solidification, air and shrinkage porosity were significantly reduced and the feeding efficiency at the upper end ring was improved 10%. As a result of controlling the defects, the dynamometer test showed improved motor efficiency by more than 4%.

  11. Low-noise, transformer-coupled resonant photodetector for squeezed state generation

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8 ×1 05 V/A, and the input current noise of less than 4.7 pA/√{Hz }. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  12. Lead bromide-based layered perovskite Langmuir-Blodgett films having π-conjugated molecules as organic layer prepared by using squeezed out technique

    NASA Astrophysics Data System (ADS)

    Era, Masanao; Shironita, Yu; Soda, Koichi

    2018-03-01

    Using the squeezed out technique, we successfully prepared PbBr-based layered perovskite Langmuir-Blodgett (LB) films, which have π-conjugated materials as an organic layer (i.e., a phenylenevinylene oligomer, a dithienylethene derivative, and a π-conjugated polyfluorene derivative). The mixed monolayers of π-conjugated materials and octadecylammonium bromide were spread on an aqueous subphase containing saturated PbBr2. During pressing, octadecylammonium molecules were squeezed from the mixed monolayer, and the squeezed ammonium molecules formed the PbBr-based layered perovskite structure at the air-aqueous subphase interface. The monolayers with the PbBr-based layered perovskite structure could be deposited on fused quartz substrates by the LB technique. In addition to the preparation procedure, the structural and optical properties of the layered perovskite LB films and their formation mechanism are reported in this paper.

  13. Squeezed bispectrum in the δ N formalism: local observer effect in field space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Yuichiro; Vennin, Vincent, E-mail: yuichiro.tada@ipmu.jp, E-mail: vincent.vennin@port.ac.uk

    2017-02-01

    The prospects of future galaxy surveys for non-Gaussianity measurements call for the development of robust techniques for computing the bispectrum of primordial cosmological perturbations. In this paper, we propose a novel approach to the calculation of the squeezed bispectrum in multiple-field inflation. With use of the δ N formalism, our framework sheds new light on the recently pointed out difference between the squeezed bispectrum for global observers and that for local observers, while allowing one to calculate both. For local observers in particular, the squeezed bispectrum is found to vanish in single-field inflation. Furthermore, our framework allows one to gomore » beyond the near-equilateral ('small hierarchy') limit, and to automatically include intrinsic non-Gaussianities that do not need to be calculated separately. The explicit computational programme of our method is given and illustrated with a few examples.« less

  14. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  15. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.

    PubMed

    Yang, Wenhai; Shi, Shaoping; Wang, Yajun; Ma, Weiguang; Zheng, Yaohui; Peng, Kunchi

    2017-11-01

    We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

  16. Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.

    PubMed

    Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam

    2015-01-01

    In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.

  17. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermalmore » baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.« less

  18. Continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; Dipartimento di Fisica, Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi; CNR-INFM Coherentia, Napoli, Italy and CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi

    2007-08-15

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those thatmore » most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity.« less

  19. Quantum frequency up-conversion of continuous variable entangled states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less

  20. Improvement of an Atomic Clock using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-09-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05-0.37 +0 .34 dB . The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

  1. Comment on ``Teleportation of two-mode squeezed states''

    NASA Astrophysics Data System (ADS)

    He, Guangqiang; Zhang, Jingtao

    2011-10-01

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari [S. Adhikari , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.012337 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  2. Comment on ''Teleportation of two-mode squeezed states''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangqiang; Zhang Jingtao

    2011-10-15

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states shouldmore » be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.« less

  3. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.

    PubMed

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  4. Entanglement-Enhanced Phase Estimation without Prior Phase Information

    NASA Astrophysics Data System (ADS)

    Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.

    2017-06-01

    We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb 87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.

  5. Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM

    PubMed Central

    Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam

    2015-01-01

    In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N 1), dimensionless axial magnetic force strength parameter (N 2), dimensionless tangential magnetic force strength parameter (N 3), and magnetic Reynolds number (Re m) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics. PMID:26267247

  6. Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback

    NASA Astrophysics Data System (ADS)

    You, Xiang; Li, Zongyang; Li, Yongmin

    2017-12-01

    A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.

  7. Antibunching and unconventional photon blockade with Gaussian squeezed states

    NASA Astrophysics Data System (ADS)

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2014-12-01

    Photon antibunching is a quantum phenomenon typically observed in strongly nonlinear systems where photon blockade suppresses the probability of detecting two photons at the same time. Antibunching has also been reported with Gaussian states, where optimized amplitude squeezing yields classically forbidden values of the intensity correlation, g(2 )(0 ) <1 . As a consequence, observation of antibunching is not necessarily a signature of photon-photon interactions. To clarify the significance of the intensity correlations, we derive a sufficient condition for deducing whether a field is non-Gaussian based on a g(2 )(0 ) measurement. We then show that the Gaussian antibunching obtained with a degenerate parametric amplifier is close to the ideal case reached using dissipative squeezing protocols. We finally shed light on the so-called unconventional photon blockade effect predicted in a driven two-cavity setup with surprisingly weak Kerr nonlinearities, stressing that it is a particular realization of optimized Gaussian amplitude squeezing.

  8. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  9. Experiments with Lasers and Frequency Doublers

    NASA Technical Reports Server (NTRS)

    Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.

    1996-01-01

    Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.

  10. Squeezed cooling of mechanical motion beyond the resolved-sideband limit

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Zhang, Lin; Zhang, Weiping

    2018-04-01

    Cavity optomechanics provides a unique platform for controlling micromechanical systems by means of optical fields that cross the classical-quantum boundary to achieve solid foundations for quantum technologies. Currently, optomechanical resonators have become promising candidates for the development of precisely controlled nano-motors, ultrasensitive sensors and robust quantum information processors. For all these applications, a crucial requirement is to cool the mechanical resonators down to their quantum ground states. In this paper, we present a novel cooling scheme to further cool a micromechanical resonator via the noise squeezing effect. One quadrature in such a resonator can be squeezed to induce enhanced fluctuations in the other, “heated” quadrature, which can then be used to cool the mechanical motion via conventional optomechanical coupling. Our theoretical analysis and numerical calculations demonstrate that this squeeze-and-cool mechanism offers a quick technique for deeply cooling a macroscopic mechanical resonator to an unprecedented temperature region below the zero-point fluctuations.

  11. Bending and buckling of viscoplastic threads

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Balmforth, Neil

    2012-11-01

    We use a slender body theory to describe the dynamics of a thin viscoplastic thread undergoing extrusion, such as occurs when squeezing toothpaste from a tube. The theory adopts the Bingham model for a yield stress fluid, together with an asymptotic approximation for the stress and strain-rate profiles across the narrow width of the thread, which imply that the thread must either be rigid or fully yielded across its entire width. A compact description of the resultant longitudinal stress and moment acting on the thread allows these yielded and unyielded regions to be identified for given external forces. The theory is applied to extrusion flows; the yield stress prevents any deformation until a critical length of extrusion is reached, after which the dynamically evolving yielded regions mediate a distinctive drooping of a horizontal beam, or a catastrophic collapse of an upright beam.

  12. Modelling of particle-laden flow inside nanomaterials.

    PubMed

    Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  13. Modelling of particle-laden flow inside nanomaterials

    NASA Astrophysics Data System (ADS)

    Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  14. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  15. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  16. Higher-Order Squeezing in a Boson Coupled Two-Mode System

    NASA Technical Reports Server (NTRS)

    Chizhov, A. V.; Haus, J. W.; Yeong, K. C.

    1996-01-01

    We consider a model for nondegenerate cavity fields interacting through an intervening Boson field. The quantum correlations introduced in this manner are manifest through their higher-order correlation functions where a type of squeezed state is identified.

  17. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). Copyright 1999 Academic Press.

  18. SQUEEZE-E: The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions.

    PubMed

    Wassenaar, Tsjerk A; de Vries, Sjoerd; Bonvin, Alexandre M J J; Bekker, Henk

    2012-10-09

    In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent-solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as possible, for a given minimal distance between images. Here, we describe how such a simulation cell can be set up for ensembles, taking into account a priori available or estimable information regarding conformational flexibility. Doing so ensures that any conformation present in the input ensemble will satisfy the distance criterion during the simulation. This helps avoid periodicity artifacts due to conformational changes. The method introduces three new approaches in computational geometry: (1) The first is the derivation of an optimal packing of ensembles, for which the mathematical framework is described. (2) A new method for approximating the α-hull and the contact body for single bodies and ensembles is presented, which is orders of magnitude faster than existing routines, allowing the calculation of packings of large ensembles and/or large bodies. 3. A routine is described for searching a combination of three vectors on a discretized contact body forming a reduced base for a lattice with minimal cell volume. The new algorithms reduce the time required to calculate packings of single bodies from minutes or hours to seconds. The use and efficacy of the method is demonstrated for ensembles obtained from NMR, MD simulations, and elastic network modeling. An implementation of the method has been made available online at http://haddock.chem.uu.nl/services/SQUEEZE/ and has been made available as an option for running simulations through the weNMR GRID MD server at http://haddock.science.uu.nl/enmr/services/GROMACS/main.php .

  19. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  20. Generation of Squeezed Light Using Photorefractive Degenerate Two-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Lu, Yajun; Wu, Meijuan; Wu, Ling-An; Tang, Zheng; Li, Shiqun

    1996-01-01

    We present a quantum nonlinear model of two-wave mixing in a lossless photorefractive medium. A set of equations describing the quantum nonlinear coupling for the field operators is obtained. It is found that, to the second power term, the commutation relationship is maintained. The expectation values for the photon number concur with those of the classical electromagnetic theory when the initial intensities of the two beams are strong. We also calculate the quantum fluctuations of the two beams initially in the coherent state. With an appropriate choice of phase, quadrature squeezing or number state squeezing can be produced.

  1. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.

  2. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    PubMed

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  3. Squeezed states: A geometric framework

    NASA Technical Reports Server (NTRS)

    Ali, S. T.; Brooke, J. A.; Gazeau, J.-P.

    1992-01-01

    A general definition of squeezed states is proposed and its main features are illustrated through a discussion of the standard optical coherent states represented by 'Gaussian pure states'. The set-up involves representations of groups on Hilbert spaces over homogeneous spaces of the group, and relies on the construction of a square integrable (coherent state) group representation modulo a subgroup. This construction depends upon a choice of a Borel section which has a certain permissible arbitrariness in its selection; this freedom is attributable to a squeezing of the defining coherent states of the representation, and corresponds in this way to a sort of gauging.

  4. Squeezed-state quantum key distribution with a Rindler observer

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Shi, Ronghua; Guo, Ying

    2018-03-01

    Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.

  5. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2016-05-01

    This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.

  6. Impact of Advance Rate on Entrapment Risk of a Double-Shielded TBM in Squeezing Ground

    NASA Astrophysics Data System (ADS)

    Hasanpour, Rohola; Rostami, Jamal; Barla, Giovanni

    2015-05-01

    Shielded tunnel boring machines (TBMs) can get stuck in squeezing ground due to excessive tunnel convergence under high in situ stress. This typically coincides with extended machine stoppages, when the ground has sufficient time to undergo substantial displacements. Excessive convergence of the ground beyond the designated overboring means ground pressure against the shield and high shield frictional resistance that, in some cases, cannot be overcome by the TBM thrust system. This leads to machine entrapment in the ground, which causes significant delays and requires labor-intensive and risky operations of manual excavation to release the machine. To evaluate the impact of the time factor on the possibility of machine entrapment, a comprehensive 3D finite difference simulation of a double-shielded TBM in squeezing ground was performed. The modeling allowed for observation of the impact of the tunnel advance rate on the possibility of machine entrapment in squeezing ground. For this purpose, the model included rock mass properties related to creep in severe squeezing conditions. This paper offers an overview of the modeling results for a given set of rock mass and TBM parameters, as well as lining characteristics, including the magnitude of displacement and contact forces on shields and ground pressure on segmental lining versus time for different advance rates.

  7. Study of first electronic transition and hydrogen bonding state of ultra-thin water layer of nanometer thickness on an α-alumina surface by far-ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Goto, Takeyoshi; Kinugasa, Tomoya

    2018-05-01

    The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.

  8. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, P.; Lu, Z.-H.

    2018-03-01

    A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  9. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE PAGES

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian; ...

    2017-06-12

    We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  10. The Effect of Two Different Hand Exercises on Grip Strength, Forearm Circumference, and Vascular Maturation in Patients Who Underwent Arteriovenous Fistula Surgery

    PubMed Central

    Kong, Sangwon; Lee, Kyung Soo; Kim, Junho

    2014-01-01

    Objective To compare the effect of two different hand exercises on hand strength and vascular maturation in patients who underwent arteriovenous fistula surgery. Methods We recruited 18 patients who had chronic kidney disease and had undergone arteriovenous fistula surgery for hemodialysis. After the surgery, 10 subjects performed hand-squeezing exercise with GD Grip, and other 8 subjects used Soft Ball. The subjects continued the exercises for 4 weeks. The hand grip strength, pinch strength (tip, palmar and lateral pinch), and forearm circumference of the subjects were assessed before and after the hand-squeezing exercise. The cephalic vein size, blood flow velocity and volume were also measured by ultrasonography in the operated limb. Results All of the 3 types of pinch strengths, grip strength, and forearm circumference were significantly increased in the group using GD Grip. Cephalic vein size and blood flow volume were also significantly increased. However, blood flow velocity showed no difference after the exercise. The group using Soft Ball showed a significant increase in the tip and lateral pinch strength and forearm circumference. The cephalic vein size and blood flow volume were also significantly increased. On comparing the effect of the two different hand exercises, hand-squeezing exercise with GD Grip had a significantly better effect on the tip and palmar pinch strength than hand-squeezing exercise with Soft Ball. The effect on cephalic vein size was not significantly different between the two groups. Conclusion The results showed that hand squeezing exercise with GD Grip was more effective in increasing the tip and palmar pinch strength compared to hand squeezing exercise with soft ball. PMID:25379494

  11. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian

    We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  12. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Slosar, Anže

    The squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ''responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approach to themore » cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1−σ constraint is err[ f {sub NL}]∼60. Ability for DESI to measure f {sub NL} through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. The combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  13. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  14. Fermented Citrus reticulata (ponkan) fruit squeezed draff that contains a large amount of 4'-demethylnobiletin prevents MK801-induced memory impairment.

    PubMed

    Kawahata, Ichiro; Suzuki, Tatsuya; Rico, Evelyn Gutiérrez; Kusano, Shuichi; Tamura, Hiroshi; Mimaki, Yoshihiro; Yamakuni, Tohru

    2017-10-01

    A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.

  15. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  16. Squeezing in a 2-D generalized oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.

    1994-01-01

    A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.

  17. Squeezing the Calendar.

    ERIC Educational Resources Information Center

    Shea, Christopher

    1994-01-01

    Albertus Magnus College (Connecticut) has addressed the problem of declining enrollment offering a bachelor's degree program compressed into three years. Three full semesters are squeezed into an academic year. The semester is shortened by two weeks, but class time is lengthened. The third semester's tuition each year is discounted. (MSE)

  18. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  19. Slip analysis of squeezing flow using doubly stratified fluid

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  20. Microstructural Evolution during Mid-Crustal Shear Zone Thickening and Thinning, Mount Irene Detachment Zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, M.; Smith, S. A. F.; Scott, J.; Rooney, J. S.; Demurtas, M.

    2016-12-01

    Recent work has shown that ductile shear zones experience cyclic variations in stress and strain rate due to, for example, elastic loading from earthquake slip on brittle faults or the presence of rigid particles and asperities within the shear zone. Such non-steady state flow conditions can promote microstructural changes including a decrease in grain sizes followed by a switch in the main deformation mechanisms. Understanding the microstructural changes that occur during non steady-state deformation is therefore critical in evaluating shear zone rheology. The Mount Irene shear zone formed during Cretaceous extension in the middle crust and was active at temperatures of 600°C and pressures of 6 kbar. The shear zone localized in a basal calcite marble layer typically 3-5 m thick containing hundreds of thin (mm-cm) calc-silicate bands that are now parallel to the shear zone boundaries. The lower boundary of the shear zone preserves meter-scale undulations that cause the shear zone to be squeezed in to regions that are <1.5 m thick. The calc-silicate bands act as "flow markers" and allow individual shear zone layers to be traced continuously through thick and thin regions, implying that the mylonites experienced cyclic variations in stress and strain rate. Calc-mylonite samples collected from the same layer close to the base of the shear zone reveal that layer thinning was accompanied by progressive microstructural changes including intense twinning, stretching and flattening of large calcite porphyroclasts as well as the development of interconnected networks of recrystallized calcite aggregates. EBSD analysis shows that the recrystallized aggregates contain polygonal calcite grains with microstructures (e.g. grain quadruple junctions) similar to those reported for neighbor-switching processes associated with grain boundary sliding and superplasticity. Ongoing and future work will utilize samples from across the full thickness of the shear zone to determine key microstructural changes and deformation mechanisms that accommodated shear zone thinning and thickening during non-steady state deformation.

  1. Preseason Adductor Squeeze Strength in 303 Spanish Male Soccer Athletes: A Cross-sectional Study

    PubMed Central

    Esteve, Ernest; Rathleff, Michael Skovdal; Vicens-Bordas, Jordi; Clausen, Mikkel Bek; Hölmich, Per; Sala, Lluís; Thorborg, Kristian

    2018-01-01

    Background: Hip adductor muscle weakness and a history of groin injury both have been identified as strong risk factors for sustaining a new groin injury. Current groin pain and age have been associated with hip adductor strength. These factors could be related, but this has never been investigated. Purpose: To investigate whether soccer athletes with past-season groin pain and with different durations of past-season groin pain had lower preseason hip adductor squeeze strength compared with those without past-season groin pain. We also investigated whether differences in preseason hip adductor squeeze strength in relation to past-season groin pain and duration were influenced by current groin pain and age. Study Design: Cross-sectional study; Level of evidence, 3. Methods: In total, 303 male soccer athletes (mean age, 23 ± 4 years; mean weight, 74.0 ± 7.9 kg; mean height, 178.1 ± 6.3 cm) were included in this study. Self-reported data regarding current groin pain, past-season groin pain, and duration were collected. Hip adductor squeeze strength was obtained using 2 different reliable testing procedures: (1) the short-lever (resistance placed between the knees, feet at the examination bed, and 45° of hip flexion) and (2) the long-lever (resistance placed between the ankles and 0° of hip flexion) squeeze tests. Results: There was no difference between those with (n = 123) and without (n = 180) past-season groin pain for hip adductor squeeze strength when adjusting for current groin pain and age. However, athletes with past-season groin pain lasting longer than 6 weeks (n = 27) showed 11.5% and 15.3% lower values on the short-lever (P = .006) and long-lever (P < .001) hip adductor squeeze strength tests, respectively, compared with those without past-season groin pain. Conclusion: Male soccer athletes with past-season groin pain lasting longer than 6 weeks are likely to begin the next season with a high-risk groin injury profile, including a history of groin pain and hip adduction weakness. PMID:29349093

  2. The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations

    NASA Technical Reports Server (NTRS)

    Wuensche, Alfred

    1996-01-01

    The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.

  3. Correlation and squeezing for optical transistor and intensity for router applications in Pr3+:YSO.

    PubMed

    Khan, Ghulam Abbas; Li, Changbiao; Raza, Faizan; Ahmed, Noor; Mahesar, Abdul Rasheed; Ahmed, Irfan; Zhang, Yanpeng

    2017-06-14

    We realized an optical transistor and router utilizing multi-order fluorescence and spontaneous parametric four-wave mixing. Specifically, the optical routing action was derived from the results of splitting in the intensity signal due to a dressing effect, whereas the transistor as a switch and amplifier was realized by a switching correlation and squeezing via a nonlinear phase. A substantial enhancement of the optical contrast was observed for switching applications using correlation and squeezing contrary to the intensity signal. Moreover, the controlling parameters were also configured to devise a control mechanism for the optical transistor and router.

  4. Robust sub-shot-noise measurement via Rabi-Josephson oscillations in bimodal Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonenkov, I.; Vardi, A.; Moore, M. G.

    2011-06-15

    Mach-Zehnder atom interferometry requires hold-time phase squeezing to attain readout accuracy below the standard quantum limit. This increases its sensitivity to phase diffusion, restoring shot-noise scaling of the optimal signal-to-noise ratio in the presence of interactions. The contradiction between the preparations required for readout accuracy and robustness to interactions is removed by monitoring Rabi-Josephson oscillations instead of relative-phase oscillations during signal acquisition. Optimizing the signal-to-noise ratio with a Gaussian squeezed input, we find that hold-time number squeezing satisfies both demands and that sub-shot-noise scaling is retained even for strong interactions.

  5. Linear canonical transformations of coherent and squeezed states in the Wigner phase space

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1988-01-01

    It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.

  6. Fast generation of spin-squeezed states in bosonic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Juliá-Díaz, B.; Torrontegui, E.; Martorell, J.; Muga, J. G.; Polls, A.

    2012-12-01

    We describe methods for the fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions. We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schrödinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. A comparison with current experiments shows that our methods allow for an important reduction in the preparation times of highly squeezed spin states.

  7. Effect of micropolar fluids on the squeeze film elliptical plates

    NASA Astrophysics Data System (ADS)

    Rajashekhar Anagod, Roopa; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    This paper elaborates on the theoretical analysis of squeeze film characteristics between elliptical plates lubricated with non-Newtonian micro-polar fluid on the basis of Eringen's micropolar fluid theory. The modified Reynold’s equations governing flow of micro-polar fluid is mathematically derived and the outcome reveals distribution of film pressure which determines the dynamic performance characteristics in terms of load and squeezing time for various values of coupling number and micro structure size parameter. Based on the results reported, The influence of non-Newtonian micropolar fluids is examined in enhancing the time of approach and load carrying capacity to the case of classical Newtonian lubricant.

  8. Enhancement of quantum-enhanced LADAR receiver in nonideal phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    The phase-sensitive amplification (PSA) with an injected squeezed vacuum field is theoretically investigated in quantum-enhanced laser detection and ranging (LADAR) receiver. The theoretical model of the amplified process is derived to investigate the quantum fluctuations in detail. A new method of mitigating the unflat gain of nonideal PSA is proposed by adjusting the squeezed angle of the squeezed vacuum field. The simulation results indicate that signal-noise ratio (SNR) of system can be efficiently improved and close to the ideal case by this method. This research will provide an important potential in the applications of quantum-enhanced LADAR receiver.

  9. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  10. Thomas precession and squeezed states of light

    NASA Technical Reports Server (NTRS)

    Han, D.; Hardekopf, E. E.; Kim, Y. S.

    1989-01-01

    The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.

  11. Squeezing effects applied in nonclassical superposition states for quantum nanoelectronic circuits

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2017-06-01

    Quantum characteristics of a driven series RLC nanoelectronic circuit whose capacitance varies with time are studied using an invariant operator method together with a unitary transformation approach. In particular, squeezing effects and nonclassical properties of a superposition state composed of two displaced squeezed number states of equal amplitude, but 180° out of phase, are investigated in detail. We applied our developments to a solvable specific case obtained from a suitable choice of time-dependent parameters. The pattern of mechanical oscillation of the amount of charges stored in the capacitor, which are initially displaced, has exhibited more or less distortion due to the influence of the time-varying parameters of the system. We have analyzed squeezing effects of the system from diverse different angles and such effects are illustrated for better understanding. It has been confirmed that the degree of squeezing is not constant, but varies with time depending on specific situations. We have found that quantum interference occurs whenever the two components of the superposition meet together during the time evolution of the probability density. This outcome signifies the appearance of nonclassical features of the system. Nonclassicality of dynamical systems can be a potential resource necessary for realizing quantum information technique. Indeed, such nonclassical features of superposition states are expected to play a key role in upcoming information science which has attracted renewed attention recently.

  12. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.

  13. Tubes, Mono Jets, Squeeze Out and CME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longacre, R.

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  14. 18 CFR 2.17 - Price discrimination and anticompetitive effect (price squeeze issue).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Price discrimination and anticompetitive effect (price squeeze issue). 2.17 Section 2.17 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  15. 18 CFR 2.17 - Price discrimination and anticompetitive effect (price squeeze issue).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Price discrimination and anticompetitive effect (price squeeze issue). 2.17 Section 2.17 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  16. 18 CFR 2.17 - Price discrimination and anticompetitive effect (price squeeze issue).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Price discrimination and anticompetitive effect (price squeeze issue). 2.17 Section 2.17 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  17. 18 CFR 2.17 - Price discrimination and anticompetitive effect (price squeeze issue).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Price discrimination and anticompetitive effect (price squeeze issue). 2.17 Section 2.17 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND...

  18. Survey of Veterinarians Using a Novel Physical Compression Squeeze Procedure in the Management of Neonatal Maladjustment Syndrome in Foals

    PubMed Central

    Weich, Kalie M.; Madigan, John E.

    2017-01-01

    Simple Summary Neonatal foals must pass key milestones for survival such as standing and sucking from the mare shortly after birth. A condition known as neonatal maladjustment syndrome (NMS), or “dummy foal syndrome”, is characterized by failure to stand, suck, and follow their mare, putting them at risk of malnourishment, infection, and death. NMS had been presumed to be exclusively caused by low oxygen in the foal during the perinatal period. More recently, however, our group demonstrated the presence of neuroactive steroids in foals that exhibited the altered behavior and consciousness characteristic of the disorder. It has been hypothesized that signaling the transition from the in utero unconscious state to extrauterine consciousness may involve labor-induced physical compression (squeezing). During normal birth, foals experience such physical compression for approximately 20 min during stage-2 labor. Current medical treatments for NMS are symptomatic and supportive, which may require 2–7 days of veterinary care. Anecdotal evidence demonstrated that a novel physical compression (squeeze method) that applies 20 min of sustained pressure to the chest of neonatal foals exhibiting this syndrome might rapidly hasten recovery. This survey compares reported outcomes of medical therapy alone to this squeeze procedure with or without medical therapy. The results revealed some foals that received the squeeze procedure recovered faster than those that received medical therapy only. Abstract Horses are a precocious species that must accomplish several milestones that are critical to survival in the immediate post-birth period for their survival. One essential milestone is the successful transition from the intrauterine unconsciousness to an extrauterine state of consciousness or awareness. This transition involves a complex withdrawal of consciousness inhibitors and an increase in neuroactivating factors that support awareness. This process involves neuroactive hormones as well as inputs related to factors such as cold, visual, olfactory, and auditory stimuli. One factor not previously considered in this birth transition is a yet unreported direct neural reflex response to labor-induced physical compression of the fetus in the birth canal (squeezing). Neonatal maladjustment syndrome (NMS) is a disorder of the newborn foal characterized by altered behavior, low affinity for the mare, poor awareness of the environment, failure to bond to the mother, abnormal sucking, and other neurologically-based abnormalities. This syndrome has been associated with altered events during birth, and was believed to be caused exclusively by hypoxia and ischemia. However, recent findings revealed an association of the NMS syndrome with the persistence of high concentrations of in utero neuromodulating hormones (neurosteroids) in the postnatal period. Anecdotal evidence demonstrated that a novel physical compression (squeeze) method that applies 20 min of sustained pressure to the thorax of some neonatal foals with this syndrome might rapidly hasten recovery. This survey provides information about outcomes and time frames to recovery comparing neonatal foals that were given this squeeze treatment to foals treated with routine medical therapy alone. Results revealed that the squeeze procedure, when applied for 20 min, resulted in a faster full recovery of some foals diagnosed with NMS. The adjunctive use of a non-invasive squeeze method may improve animal welfare by hastening recovery and foal–mare interactions that minimize health problems. This would also avoid or reduce costs arising from hospitalization associated with veterinary and nursing care that sometimes leads owners to elect for euthanasia. PMID:28872596

  19. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions

    NASA Astrophysics Data System (ADS)

    You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen

    2017-04-01

    Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.

  20. Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid

    PubMed Central

    Nakahara, Hiromichi; Lee, Sannamu; Shibata, Osamu

    2009-01-01

    Interfacial behavior was studied in pulmonary surfactant model systems containing an amphiphilic α-helical peptide (Hel 13-5), which consists of 13 hydrophobic and five hydrophilic amino acid residues. Fully saturated phospholipids of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) were utilized to understand specific interactions between anionic DPPG and cationic Hel 13-5 for pulmonary functions. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of DPPG/Hel 13-5 and DPPC/DPPG (4:1, mol/mol)/Hel 13-5 preparations were measured to obtain basic information on the phase behavior under compression and expansion processes. The interaction leads to a variation in squeeze-out surface pressures against a mole fraction of Hel 13-5, where Hel 13-5 is eliminated from the surface on compression. The phase behavior was visualized by means of Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy. At low surface pressures, the formation of differently ordered domains in size and shape is induced by electrostatic interactions. The domains independently grow upon compression to high surface pressures, especially in the DPPG/Hel 13-5 system. Under the further compression process, protrusion masses are formed in AFM images in the vicinity of squeeze-out pressures. The protrusion masses, which are attributed to the squeezed-out Hel 13-5, grow larger in lateral size with increasing DPPG content in phospholipid compositions. During subsequent expansion up to 35 mN m−1, the protrusions retain their height and lateral diameter for the DPPG/Hel 13-5 system, whereas the protrusions become smaller for the DPPC/Hel 13-5 and DPPC/DPPG/Hel 13-5 systems due to a reentrance of the ejected Hel 13-5 into the surface. In this work we detected for the first time, to our knowledge, a remarkably large hysteresis loop for cyclic ΔV-A isotherms of the binary DPPG/Hel 13-5 preparation. This exciting phenomenon suggests that the specific interaction triggers two completely independent processes for Hel 13-5 during repeated compression and expansion: 1), squeezing-out into the subsolution; and 2), and close packing as a monolayer with DPPG at the interface. These characteristic processes are also strongly supported by atomic force microscopy observations. The data presented here provide complementary information on the mechanism and importance of the specific interaction between the phosphatidylglycerol headgroup and the polarized moiety of native surfactant protein B for biophysical functions of pulmonary surfactants. PMID:19217859

  1. Simulation of the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-09-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H{sub 2}{sup +} molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulationmore » code also differentiates the contributions due to original and to recombined H{sub 2}{sup +} molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H{sub 2}{sup +} molecular ions transmitted through thin foils.« less

  2. Combined effect of Piezo-viscous dependency and non- Newtonian couple stresses in Annular Plates Squeeze-Film characteristics

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan

    2018-04-01

    In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.

  3. A critical velocity of squeezing a droplet through a circular constriction: implications on ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Drapaca, Corina

    2016-11-01

    Ischemic stroke accounts for about 87 percent of all stroke cases. In these cases, models of squeezing a droplet through a smaller constriction channel can help better understand the pathology and capillary restoring after a Stroke. In the present research, we analytical expressed the minimum impulse of squeezing a droplet through a circular channel as well as its critical velocity. By comparison with a previously defined critical velocity, we find the difference between these two. Applications of this research in the understanding of ischemic stroke are also discussed. Zhifeng Zhang thanks the support of Robert A. Sebrosky Graduate Fellowship in Engineering Science and Mechanics, the Pennsylvania State University.

  4. Observation of two-photon interference with continuous variables by homodyne detection

    NASA Astrophysics Data System (ADS)

    Wu, Daohua; Kawamoto, Kota; Guo, Xiaomin; Kasai, Katsuyuki; Watanabe, Masayoshi; Zhang, Yun

    2017-10-01

    We experimentally observed a two-photon interference between a squeezed vacuum state from an optical parametric amplifier and a weak coherent state on a beam splitter with continuous variables. The photon statistics properties of the mixed field were investigated by calculating the correlations among four permutations of measured quadratures components, which were obtained by two homodyne detection systems. This also means that the two-photon interference occurred at analysis frequency differing from the previous two-photon interference reports. The nonclassical effect of photon anti-bunching occurred when an amplitude squeezed vacuum state acted as one of interference sources. On the other hand, the photon bunching effect appeared when a phase squeezed vacuum state was employed.

  5. Time-dependent variational approach in terms of squeezed coherent states: Implication to semi-classical approximation

    NASA Technical Reports Server (NTRS)

    Tsue, Yasuhiko

    1994-01-01

    A general framework for time-dependent variational approach in terms of squeezed coherent states is constructed with the aim of describing quantal systems by means of classical mechanics including higher order quantal effects with the aid of canonicity conditions developed in the time-dependent Hartree-Fock theory. The Maslov phase occurring in a semi-classical quantization rule is investigated in this framework. In the limit of a semi-classical approximation in this approach, it is definitely shown that the Maslov phase has a geometric nature analogous to the Berry phase. It is also indicated that this squeezed coherent state approach is a possible way to go beyond the usual WKB approximation.

  6. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  7. Coastal and Estuarine Mangrove Squeeze in the Mekong and Saigon Delta

    NASA Astrophysics Data System (ADS)

    Stive, M.

    2016-02-01

    Both in the Mekong and Saigon deltas coastal squeeze is a frequent and pregnant problem, which leads to amazingly alarmous coastal and estuarine erosion rates. From the landside the squeeze is due to encroaching dike relocations and agri- and aquacultures, from the sea side it is due to decreasing sediment sources and relative sea level rise. These multiple pressures at some locations, certainly away from the sediment sources (like Ca Mau) leads to unprecedentent erosion rates. Managed retreat may be a longer term solution, but this will require a new way of thinking. Sandy and silt nourishment strategies may be an innovative alternative, but will require underbuilding scientific and practical research.

  8. Linear canonical transformations of coherent and squeezed states in the Wigner phase space. III - Two-mode states

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1990-01-01

    It is shown that the basic symmetry of two-mode squeezed states is governed by the group SP(4) in the Wigner phase space which is locally isomorphic to the (3 + 2)-dimensional Lorentz group. This symmetry, in the Schroedinger picture, appears as Dirac's two-oscillator representation of O(3,2). It is shown that the SU(2) and SU(1,1) interferometers exhibit the symmetry of this higher-dimensional Lorentz group. The mathematics of two-mode squeezed states is shown to be applicable to other branches of physics including thermally excited states in statistical mechanics and relativistic extended hadrons in the quark model.

  9. Comparison of qubit and qutrit like entangled squeezed and coherent states of light

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-10-01

    Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  11. Nonunitary and unitary approach to Eigenvalue problem of Boson operators and squeezed coherent states

    NASA Technical Reports Server (NTRS)

    Wunsche, A.

    1993-01-01

    The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.

  12. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  13. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    NASA Technical Reports Server (NTRS)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  14. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass opticalmore » parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.« less

  15. Optical implementation of spin squeezing

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.

    2017-05-01

    Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.

  16. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    NASA Astrophysics Data System (ADS)

    Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  17. Effect of high hydrostatic pressure processing and squeezing pressure on some quality properties of pomegranate juice against thermal treatment

    NASA Astrophysics Data System (ADS)

    Subasi, B. G.; Alpas, H.

    2017-01-01

    The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150 psi - 0.689 and 1.033 MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400 MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p ≤ .05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.

  18. China’s marriage squeeze: A decomposition into age and sex structure

    PubMed Central

    LI, Xiaomin; LI, Shuzhuo; FELDMAN, Marcus W.

    2016-01-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China’s male marriage squeeze. In this paper we develop an index we call “spousal sex ratio” (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China’s marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market. PMID:27242390

  19. China's marriage squeeze: A decomposition into age and sex structure.

    PubMed

    Jiang, Quanbao; Li, Xiaomin; Li, Shuzhuo; Feldman, Marcus W

    2016-06-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China's male marriage squeeze. In this paper we develop an index we call "spousal sex ratio" (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China's marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market.

  20. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    PubMed

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  1. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  2. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  3. Pre-season adductor squeeze test and HAGOS function sport and recreation subscale scores predict groin injury in Gaelic football players.

    PubMed

    Delahunt, Eamonn; Fitzpatrick, Helen; Blake, Catherine

    2017-01-01

    To determine if pre-season adductor squeeze test and HAGOS function, sport and recreation subscale scores can identify Gaelic football players at risk of developing groin injury. Prospective study. Senior inter-county Gaelic football team. Fifty-five male elite Gaelic football players (age = 24.0 ± 2.8 years, body mass = 84.48 ± 7.67 kg, height = 1.85 ± 0.06 m, BMI = 24.70 ± 1.77 kg/m 2 ) from a single senior inter-county Gaelic football team. Occurrence of groin injury during the season. Ten time-loss groin injuries were registered representing 13% of all injuries. The odds ratio for sustaining a groin injury if pre-season adductor squeeze test score was below 225 mmHg, was 7.78. The odds ratio for sustaining a groin injury if pre-season HAGOS function, sport and recreation subscale score was < 87.5 was 8.94. Furthermore, for each additional point on the numerical rating scale pain rating during performance of the adductor squeeze test, the odds of groin injury increased by 2.16. This study provides preliminary evidence that pre-season adductor squeeze test and HAGOS function, sport and recreation subscale scores can be used to identify Gaelic football players at risk of developing groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Functional MRI Motor Imagery Tasks to Detect Command Following in Traumatic Disorders of Consciousness.

    PubMed

    Bodien, Yelena G; Giacino, Joseph T; Edlow, Brian L

    2017-01-01

    Severe traumatic brain injury impairs arousal and awareness, the two components of consciousness. Accurate diagnosis of a patient's level of consciousness is critical for determining treatment goals, access to rehabilitative services, and prognosis. The bedside behavioral examination, the current clinical standard for diagnosis of disorders of consciousness, is prone to misdiagnosis, a finding that has led to the development of advanced neuroimaging techniques aimed at detection of conscious awareness. Although a variety of paradigms have been used in functional magnetic resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of these paradigms in the patient population is unknown. Here, we compare the rate of covert consciousness detection by hand squeezing and tennis playing motor imagery paradigms in 10 patients with traumatic disorders of consciousness [six male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive wakefulness syndrome, two minimally conscious without language function, and three minimally conscious with language function, per bedside examination with the Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, the hand squeezing paradigm detected covert command following in 7/10 and the tennis playing paradigm in 9/10 subjects. In patients who followed commands on the CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy (ACC) of detecting covert command following in patients who demonstrated this behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis paradigm performed better than the hand squeezing paradigm in healthy subjects, but in patients, the hand squeezing paradigm detected command following with greater ACC. These findings indicate that current fMRI motor imagery paradigms frequently fail to detect command following and highlight the need for paradigm optimization to improve the accuracy of covert consciousness detection.

  5. Functional MRI Motor Imagery Tasks to Detect Command Following in Traumatic Disorders of Consciousness

    PubMed Central

    Bodien, Yelena G.; Giacino, Joseph T.; Edlow, Brian L.

    2017-01-01

    Severe traumatic brain injury impairs arousal and awareness, the two components of consciousness. Accurate diagnosis of a patient’s level of consciousness is critical for determining treatment goals, access to rehabilitative services, and prognosis. The bedside behavioral examination, the current clinical standard for diagnosis of disorders of consciousness, is prone to misdiagnosis, a finding that has led to the development of advanced neuroimaging techniques aimed at detection of conscious awareness. Although a variety of paradigms have been used in functional magnetic resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of these paradigms in the patient population is unknown. Here, we compare the rate of covert consciousness detection by hand squeezing and tennis playing motor imagery paradigms in 10 patients with traumatic disorders of consciousness [six male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive wakefulness syndrome, two minimally conscious without language function, and three minimally conscious with language function, per bedside examination with the Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, the hand squeezing paradigm detected covert command following in 7/10 and the tennis playing paradigm in 9/10 subjects. In patients who followed commands on the CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy (ACC) of detecting covert command following in patients who demonstrated this behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis paradigm performed better than the hand squeezing paradigm in healthy subjects, but in patients, the hand squeezing paradigm detected command following with greater ACC. These findings indicate that current fMRI motor imagery paradigms frequently fail to detect command following and highlight the need for paradigm optimization to improve the accuracy of covert consciousness detection. PMID:29326648

  6. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  7. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure.

    PubMed

    Chang, Wendi; Akselrod, Gleb M; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole-dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopant molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole-dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole-dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.

  8. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Wendi; Akselrod, Gleb M.; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole–dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopantmore » molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole–dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole–dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.« less

  9. Integrated Multiscale Modeling of Molecular Computing Devices. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Schulze

    2012-11-01

    The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.

  10. High efficiency Raman memory by suppressing radiation trapping

    NASA Astrophysics Data System (ADS)

    Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2017-06-01

    Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.

  11. How to Measure Squeeze Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longacre, R. S.

    2016-09-01

    Squeeze out happen when the expanding central fireball flows around a large surface flux tube in a central Au-Au collision at RHIC. We model such an effect in a flux tube model. Two particle correlations with respect to the v 2 axis formed by the soft fireball particles flowing around this large flux tube is a way of measuring the effect.

  12. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  13. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  14. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  15. Effect of extraction method on quality of orange juice: hand-squeezed, commercial-fresh squeezed and processed

    USDA-ARS?s Scientific Manuscript database

    Fresh orange juice is perceived to be more wholesome than processed juice. Fresh juice may have flavor and nutrients that differ from pasteurized or processed juice. In this study, ‘Hamlin’ and ‘Valencia’ oranges were extracted using a commercial food service juicer, pasteurized or not, resulting in...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivares, Stefano

    We investigate the performance of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows one to clone at will one of the two incoming input states. This machine is a complete generalization of a 1{yields}2 cloning scheme demonstrated by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)]. The input-output fidelity is studied for a generic Gaussian input state, and the effect of nonunit quantum efficiency is also taken into account. We show that, if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using amore » third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machine is also discussed.« less

  17. Squeezed states and Hermite polynomials in a complex variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Górska, K., E-mail: katarzyna.gorska@ifj.edu.pl; Horzela, A., E-mail: andrzej.horzela@ifj.edu.pl

    2014-01-15

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavormore » of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)].« less

  18. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M. T. L.; Hetet, G.; Peng, A.

    2006-02-15

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezingmore » is consistent with this theory.« less

  19. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  20. Pressure Distribution in a Squeeze Film Spherical Bearing with Rough Surfaces Lubricated by an Ellis Fluid

    NASA Astrophysics Data System (ADS)

    Jurczak, P.; Falicki, J.

    2016-08-01

    In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen's stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.

  1. Generating spin squeezing states and Greenberger-Horne-Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Twamley, Jason

    2016-11-01

    Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology. Here we propose a scheme to create collective coupling of an ensemble of spins to a mechanical vibrational mode actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ˜0.62 at cryogenic temperature. The numerical simulations show that the geometric-phase-based scheme is mostly immune to thermal mechanical noise.

  2. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  3. Magnetic Resonance with Squeezed Microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienfait, A.; Campagne-Ibarcq, P.; Kiilerich, A. H.

    2017-10-17

    Vacuum fluctuations of the electromagnetic field set a fundamental limit to the sensitivity of a variety of measurements, including magnetic resonance spectroscopy. We report the use of squeezed microwave fields, which are engineered quantum states of light for which fluctuations in one field quadrature are reduced below the vacuum level, to enhance the detection sensitivity of an ensemble of electronic spins at millikelvin temperatures. By shining a squeezed vacuum state on the input port of a microwave resonator containing the spins, we obtain a 1.2-dB noise reduction at the spectrometer output compared to the case of a vacuum input. Thismore » result constitutes a proof of principle of the application of quantum metrology to magnetic resonance spectroscopy.« less

  4. Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerrits, Thomas; Stevens, Martin; Baek, Burm

    We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agreemore » and verify that the detected modes contain the desired photon number distributions.« less

  5. Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises

    NASA Technical Reports Server (NTRS)

    Gusev, A. V.; Kulagin, V. V.

    1996-01-01

    The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.

  6. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top ofmore » thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.« less

  7. Quantifying resistances across nanoscale low- and high-angle interspherulite boundaries in solution-processed organic semiconductor thin films.

    PubMed

    Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin

    2012-11-27

    The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.

  8. Sixth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  9. Quantum dynamics of a BEC interacting with a single-mode quantized field under the influence of a dissipation process: thermal and squeezed vacuum reservoirs

    NASA Astrophysics Data System (ADS)

    Ghasemian, E.; Tavassoly, M. K.

    2017-09-01

    In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.

  10. Squeezing flow viscometry for nonelastic semiliquid foods--theory and applications.

    PubMed

    Campanella, Osvaldo H; Peleg, Micha

    2002-01-01

    In most conventional rheometers, notably the coaxial cylinders and capillary viscometers, the food specimen is pressed into a narrow gap and its structure is altered by uncontrolled shear. Also, most semiliquid foods exhibit slip, and consequently the measurements do not always reflect their true rheological properties. A feasible solution to these two problems is squeezing flow viscometry where the specimen, practically intact and with or without suspended particles, is squeezed between parallel plates. The outward flow pattern mainly depends on the friction between the fluid and plates or its absence ("lubricated squeezing flow"). Among the possible test geometries, the one of constant area and changing volume is the most practical for foods. The test can be performed at a constant displacement rate using common Universal Testing Machines or under constant loads (creep array). The tests output is in the form of a force-height, force-time, or height-time relationship, from which several rheological parameters can be derived. With the current state of the art, the method can only be applied at small displacement rates. Despite the method's crudeness, its results are remarkably reproducible and sensitive to textural differences among semiliquid food products. The flow patterns observed in foods do not always follow the predictions of rheological models originally developed for polymer melts because of the foods' unique microstructures. The implications of these discrepancies and the role that artifacts may play are evaluated in light of theoretical and practical considerations. The use of squeezing flow viscometry to quantify rheological changes that occur during a product's handling and to determine whether they are perceived sensorily is suggested.

  11. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    PubMed Central

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  12. Investigation of squeeze-film dampers

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dogan, M.

    1982-01-01

    Squeeze film dampers are a means of curing instabilities in rotating shaft assemblies. Their efficiency depends very much on the condition of the oil, which in turn depends on inlet and outlet arrangements, on damper geometry and on the flexibility of the rotor and surrounding structure. Rig investigations in which structural flexibility is included experimentally are discussed. Comparisons are made between measured and predicted results.

  13. Relation of squeezed states between damped harmonic and simple harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.

    1993-01-01

    The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.

  14. Broken Stringers Can Be Recovered By Splicing, Research By Pallet Lab Shows

    Treesearch

    Chaille Brindley

    1997-01-01

    With the increasing prices of lumber, pallet manufacturers and recyclers are looking to squeeze every dollar out of their operations. A recent study on stringer repair reveals another potential area of the business that may be squeezed. The study by Dr. Marshall White, director of the pallet and container research laboratory at Virginia Tech, shows broken stringers can...

  15. Evidence of non-classical (squeezed) light in biological systems

    NASA Astrophysics Data System (ADS)

    Popp, F. A.; Chang, J. J.; Herzog, A.; Yan, Z.; Yan, Y.

    2002-01-01

    By use of coincidence measurements on “ultraweak” photon emission, the photocount statistics (PCS) of artificial visible light turns out to follow-as expected-super-Poissonian PCS. Biophotons, originating from spontaneous or light-induced living systems, display super-Poissonian, Poissonian and even sub-Poissonian PCS. This result shows the first time evidence of non-classical (squeezed) light in living tissues.

  16. Generation of excited coherent states for a charged particle in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Mojaveri, B.; Dehghani, A.

    2015-04-01

    We introduce excited coherent states, |β , α ; n| ≔ a† n | β , α|, where n is an integer and states |β , α| denote the coherent states of a charged particle in a uniform magnetic field. States |β , α| minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal's type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β , α , n| are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |beta; , α ; n| in cavities.

  17. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  18. Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monras, Alex; Illuminati, Fabrizio

    2011-01-15

    We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result indicates a stronger form ofmore » compatibility for the estimation of the two parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d{<=}6) perform better than any randomly sampled states with similar energy. However, we also find that states with very similar performance and energy exist with much less entanglement than the maximally entangled ones.« less

  19. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  20. Effective theory of squeezed correlation functions

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Simonović, Marko

    2016-03-01

    Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in klong/kshort. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (klong/kshort)Δ with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.

  1. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    PubMed

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  2. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximizemore » the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.« less

  3. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  4. Squeezed states and graviton-entropy production in the early universe

    NASA Technical Reports Server (NTRS)

    Giovannini, Massimo

    1994-01-01

    Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.

  5. Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.

    1994-01-01

    Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.

  6. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    PubMed

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  7. Shear thinning of the Lennard-Jones fluid by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1985-11-01

    Extensive Molecular Dynamics, MD, calculations of the Lennard-Jones, LJ, rheological equation of state have been made. Non-equilibrium MD permits evaluation of shear thinning of the dense LJ liquid which adheres in behaviour quite closely with that of more complex “real molecules”. However, quantitative correspondence with simple analytic formulae for non-Newtonian behaviour used in the treatment of experimental data is hindered by poor prediction of certain key parameters. For example, at low shear rates, the equilibrium Newtonian viscosity and, at high shear rates, a limiting shear stress are often required. Both are difficult to obtain by simulation in the portion of the LJ phase diagram which exhibits significant shear thinning and using present techniques. Suggestions for improving the Eyring model for shear thinning are made.

  8. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  9. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  10. Soluble Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene Derivatives for Solution-Processed Organic Field-Effect Transistors.

    PubMed

    Sawamoto, Masanori; Kang, Myeong Jin; Miyazaki, Eigo; Sugino, Hiroyoshi; Osaka, Itaru; Takimiya, Kazuo

    2016-02-17

    We demonstrate a new approach to solution-processable dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives that can afford good thin-film transistors having mobilities higher than 0.1 cm(2) V(-1) s(-1). The key molecular design strategy is the introduction of one branched alkyl group at the edge of the DNTT core, which improves solubility while retaining semiconducting characteristics in the thin-film state. Dialkylation, i.e., the introduction of two branched alkyl groups on the DNTT core, had a detrimental effect on the semiconducting properties. Although the physicochemical properties of the mono- and dialkylated derivatives at the molecular level were almost the same, the thin-film absorption spectra and the ionization potentials (IPs) were markedly different, indicating that the intermolecular interaction in the thin-film state was affected by the number of alkyl groups. Indeed, the packing structures of the monoalkylated DNTTs in the thin-film state, which were estimated from the XRD patterns, were similar to that of parent DNTT, indicating the existence of the lamella structure with the herringbone packing motif. In sharp contrast, the XRD patterns of the dialkylated DNTT thin films showed poor crystallinity, and the packing structures were significantly different from that of parent DNTT. All the results of structural characterization in the thin-film state and evaluation of device characteristics of the DNTT derivatives with branched alkyl groups indicate that the introduction of a branched alkyl group in the molecular long-axis direction is an effective way to solubilize the rigid, largely π-extended organic semiconducting core without interfering with the semiconducting characteristics in the thin-film state.

  11. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  12. Zero-Bounded Limits as a Special Case of the Squeeze Theorem for Evaluating Single-Variable and Multivariable Limits

    ERIC Educational Resources Information Center

    Gkioulekas, Eleftherios

    2013-01-01

    Many limits, typically taught as examples of applying the "squeeze" theorem, can be evaluated more easily using the proposed zero-bounded limit theorem. The theorem applies to functions defined as a product of a factor going to zero and a factor that remains bounded in some neighborhood of the limit. This technique is immensely useful…

  13. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    PubMed

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  14. Survey of Veterinarians Using a Novel Physical Compression Squeeze Procedure in the Management of Neonatal Maladjustment Syndrome in Foals.

    PubMed

    Aleman, Monica; Weich, Kalie M; Madigan, John E

    2017-09-05

    Horses are a precocious species that must accomplish several milestones that are critical to survival in the immediate post-birth period for their survival. One essential milestone is the successful transition from the intrauterine unconsciousness to an extrauterine state of consciousness or awareness. This transition involves a complex withdrawal of consciousness inhibitors and an increase in neuroactivating factors that support awareness. This process involves neuroactive hormones as well as inputs related to factors such as cold, visual, olfactory, and auditory stimuli. One factor not previously considered in this birth transition is a yet unreported direct neural reflex response to labor-induced physical compression of the fetus in the birth canal (squeezing). Neonatal maladjustment syndrome (NMS) is a disorder of the newborn foal characterized by altered behavior, low affinity for the mare, poor awareness of the environment, failure to bond to the mother, abnormal sucking, and other neurologically-based abnormalities. This syndrome has been associated with altered events during birth, and was believed to be caused exclusively by hypoxia and ischemia. However, recent findings revealed an association of the NMS syndrome with the persistence of high concentrations of in utero neuromodulating hormones (neurosteroids) in the postnatal period. Anecdotal evidence demonstrated that a novel physical compression (squeeze) method that applies 20 min of sustained pressure to the thorax of some neonatal foals with this syndrome might rapidly hasten recovery. This survey provides information about outcomes and time frames to recovery comparing neonatal foals that were given this squeeze treatment to foals treated with routine medical therapy alone. Results revealed that the squeeze procedure, when applied for 20 min, resulted in a faster full recovery of some foals diagnosed with NMS. The adjunctive use of a non-invasive squeeze method may improve animal welfare by hastening recovery and foal-mare interactions that minimize health problems. This would also avoid or reduce costs arising from hospitalization associated with veterinary and nursing care that sometimes leads owners to elect for euthanasia.

  15. Sub-Shot Noise Power Source for Microelectronics

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou

    2011-01-01

    Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub-shot noise current source can be built that will be beneficial for a very broad range of low-power, low-noise electronic instruments and applications, both cryogenic and room-temperature. Taking advantage of recent demonstrations of the squeezed light sources based on optical micro-disks, this sub-shot noise current source can be made compatible with the size/power requirements specific of the electronic devices it will support.

  16. Recent progress in n-channel organic thin-film transistors.

    PubMed

    Wen, Yugeng; Liu, Yunqi

    2010-03-26

    Particular attention has been focused on n-channel organic thin-film transistors (OTFTs) during the last few years, and the potentially cost-effective circuitry-based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n-channel semiconductors in the past five years, and limitations and practicable solutions for n-channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin-film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.

  17. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  18. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  19. Associations Between Egg Capsule Morphology and Predation Among Populations of the Marine Gastropod, Nucella emarginata.

    PubMed

    Rawlings, T A

    1990-12-01

    Intraspecific variation in the morphology of egg capsules is ideal for assessing the costs and benefits of encapsulation, yet little is known about the extent of such variation among populations of a single species. In the present study, I compared capsule morphology among three populations of the intertidal gastropod, Nucella emarginata. Significant differences were found both in capsule wall thickness and capsule strength. Mean capsule wall thickness varied as much as 25% among populations, with the dry weight of capsular cases differing accordingly. Capsule strength, measured as resistance to puncturing and squeezing forces, also varied among populations, but did not directly reflect differences in capsule wall thickness. Despite extensive variation in capsule morphology within this species, the number and size of eggs contained within capsules of equal volume did not differ significantly among populations. I also compared the type of capsule-eating predators that were present at each site. Shore crabs, Hemigrapsus spp., were abundant at all three sites; however, the predatory isopods Idotea wosnesenskii were only present at sites containing relatively thick-walled capsules. Although Hemigrapsus and Idotea were able to chew through both thick- and thin-walled capsules, laboratory experiments revealed that Idotea preferentially opened thin-walled capsules. These results suggest that variation in capsule morphology among populations of N. emarginata may, at least in part, reflect selection for the protection of embryos against predation.

  20. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications

    PubMed Central

    Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G.; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations—thick and thin plaque psoriasis—from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines. PMID:26176783

  1. Engineering On-Surface Spin Crossover: Spin-State Switching in a Self-Assembled Film of Vacuum-Sublimable Functional Molecule.

    PubMed

    Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario

    2018-03-01

    The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  3. The precision and torque production of common hip adductor squeeze tests used in elite football.

    PubMed

    Light, N; Thorborg, K

    2016-11-01

    Decreased hip adductor strength is a known risk factor for groin injury in footballers, with clinicians testing adductor strength in various positions and using different protocols. Understanding how reliable and how much torque different adductor squeeze tests produce will facilitate choosing the most appropriate method for future testing. In this study, the reliability and torque production of three common adductor squeeze tests were investigated. Test-retest reliability and cross-sectional comparison. Twenty elite level footballers (16-33 years) without previous or current groin pain were recruited. Relative and absolute test-retest reliability, and torque production of three adductor squeeze tests (long-lever in abduction, short-lever in adduction and short-lever in abduction/external rotation) were investigated. Each participant performed a series of isometric strength tests measured by hand-held dynamometry in each position, on two test days separated by two weeks. No systematic variation was seen for any of the tests when using the mean of three measures (ICC=0.84-0.97, MDC%=6.6-19.5). The smallest variation was observed when taking the mean of three repetitions in the long-lever position (ICC=0.97, MDC%=6.6). The long-lever test also yielded the highest mean torque values, which were 69% and 11% higher than the short-lever in adduction test and short-lever in abduction/external rotation test respectively (p<0.001). All three tests described in this study are reliable methods of measuring adductor squeeze strength. However, the test performed in the long-lever position seems the most promising as it displays high test-retest precision and the highest adductor torque production. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  5. Generation of Antibunched Light by Excited Molecules in a Microcavity Trap

    NASA Technical Reports Server (NTRS)

    DeMartini, F.; DiGiuseppe, G.; Marrocco, M.

    1996-01-01

    The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

  6. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.

    PubMed

    Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying

    2018-05-01

    We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.

  7. Parametrization and Optimization of Gaussian Non-Markovian Unravelings for Open Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Megier, Nina; Strunz, Walter T.; Viviescas, Carlos; Luoma, Kimmo

    2018-04-01

    We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open quantum systems. The different unravelings correspond to different choices of squeezed coherent states, reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are compatible with the Markov limit. We demonstrate the versatility of our results for quantum information tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor unravelings for improving entanglement bounds or for environment-assisted entanglement protection.

  8. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  9. Target Detection of Quantum Illumination Receiver Based on Photon-subtracted Entanglement State

    NASA Astrophysics Data System (ADS)

    Chi, Jiao; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2017-12-01

    We theoretically propose a quantum illumination receiver based on the ideal photon-subtracted two-mode squeezed state (PSTMSS) to efficiently detect the noise-hidden target. This receiver is generated by applying an optical parametric amplifier (OPA) to the cross correlation detection. With analyzing the output performance, it is found that OPA as a preposition technology of the receiver can contribute to the PSTMSS by significantly reducing the error probability than that of the general two-mode squeezed state (TMSS). Comparing with TMSS, the signal-to-noise ratio of quantum illumination based on ideal PSTMSS and OPA is improved more than 4 dB under an optimal gain of OPA. This work may provide a potential improvement in the application of accurate target detection when two kinds of resource have the identical real squeezing parameter.

  10. Resonance fluorescence and quantum interference of a single NV center

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.

    2017-11-01

    The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.

  11. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2017-11-01

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  12. Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.

    PubMed

    Owerre, Solomon; Nsofini, Joachim

    2017-09-20

    Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.

  13. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.

    PubMed

    Owerre, S A; Nsofini, J

    2017-10-19

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z 2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z 2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  14. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  15. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    NASA Astrophysics Data System (ADS)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  16. Encoding qubits into oscillators with atomic ensembles and squeezed light

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  17. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  18. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    PubMed

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  19. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  20. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    NASA Astrophysics Data System (ADS)

    Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander

    2016-05-01

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.

  1. Layering Transitions and Squeeze-Out Patterns in Nanoscale Polymeric Soap Films

    NASA Astrophysics Data System (ADS)

    Berg, Steffen; Troian, Sandra M.

    2004-11-01

    Oscillatory forces in freely suspended or confined nanofilms of micellar solutions, colloidal suspensions, alkanes and semidilute polyelectrolyte films generate stepwise thinning during the final stages of film drainage. The step jump correlates with the basic aggregation unit such as the micellar size or the polymer mesh size. In all studies so far reported, the interface separating films of different thickness is circular or elliptical, as seen in common or Newton black films. Our studies of freely suspended soaps films containing an anionic surfactant and nonionic polymer have revealed that the last stratification event expands with a fractal boundary whose dimension increases with the solution viscosity above a critical value. Unstable front propagation resembles a viscous fingering instability. We propose that internal film layering due to confinement of polymer-surfactant aggregates leads to a smaller viscosity in the thinnest film (≈ 12 nm), which rapidly penetrates into an exterior layer (≈ 62 nm) of higher viscosity. Subsequent coarsening of the fractal interface mimics shapes recently observed in macroscopic systems.

  2. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure.

    PubMed

    Alcaraz Iranzo, David; Nanot, Sébastien; Dias, Eduardo J C; Epstein, Itai; Peng, Cheng; Efetov, Dmitri K; Lundeberg, Mark B; Parret, Romain; Osmond, Johann; Hong, Jin-Yong; Kong, Jing; Englund, Dirk R; Peres, Nuno M R; Koppens, Frank H L

    2018-04-20

    The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Coating flow of non-Newtonian anti-HIV microbicide vehicles

    NASA Astrophysics Data System (ADS)

    Park, Su Chan; Szeri, Andrew; Verguet, Stéphane; Katz, David; Weiss, Aaron

    2008-11-01

    Elastohydrodynamic lubrication over soft substrates is of importance for the drug delivery functions of vehicles for anti-HIV topical microbicides. These are intended to inhibit transmission into vulnerable mucosa, e.g. in the vagina. First generation prototype microbicides have gel vehicles, which spread after insertion and coat luminal surfaces. Effectiveness derives from potency of the active ingredients and completeness and durability of coating. Delivery vehicle rheology, luminal biomechanical properties and the force due to gravity influence the coating mechanics. We develop a framework for understanding the relative importance of boundary squeezing and body forces on the extent and speed of the coating that results. In the case of a shear-thinning fluid, the Carreau number also plays a role. Numerical solutions are developed for a range of conditions and materials. Results are interpreted with respect to tradeoffs between wall elasticity, longitudinal forces, bolus viscosity and bolus volume. These provide initial insights of practical value for formulators of non-Newtonian gel delivery vehicles for anti-HIV microbicidal formulations.

  4. The Shock and Vibration Digest. Volume 12, Number 7,

    DTIC Science & Technology

    1980-07-01

    clearance of the pump [14]. This external damper controls passage of the and the journal bearing have an effect on the stability shaft through...initial Analytical and experimental investigation with the operation of large Deriaz pumps have been studied squeeze- film damper [15, 16] showed the...existence (251; a procedure for satisfactory operation is de- of an intershaft viscous damper instability. The scribed. squeeze- film damper was explored

  5. Time irreversibility from symplectic non-squeezing

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-04-01

    The issue of how time reversible microscopic dynamics gives rise to macroscopic irreversible processes has been a recurrent issue in Physics since the time of Boltzmann whose ideas shaped, and essentially resolved, such an apparent contradiction. Following Boltzmann's spirit and ideas, but employing Gibbs's approach, we advance the view that macroscopic irreversibility of Hamiltonian systems of many degrees of freedom can be also seen as a result of the symplectic non-squeezing theorem.

  6. Pressure distribution with surface roughness for effect between porous infinitely long rectangular plates with MHD couple stress squeeze film lubrication

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kesavan, Sundarammal

    2018-04-01

    This investigation is an analysis of MHD couple stress squeeze film performance with a rough surface between porous infinitely long rectangular plates. The pressure equation for the magnetic field is mathematically derived using Christensen’s stochastic equation. Therefore, the upshot of this magnetic effect reveals the enhanced performance of the pressure which is compared to the Newtonian instance.

  7. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    NASA Astrophysics Data System (ADS)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  8. Stability of matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  9. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  10. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherencemore » and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.« less

  11. Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.

    DTIC Science & Technology

    1980-11-01

    calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace

  12. Polarization squeezing of light by single passage through an atomic vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreiro, S.; Valente, P.; Failache, H.

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  13. Experimental measurement of the dynamic pressure distribution in a squeeze film bearing damper executing circular centered orbits

    NASA Technical Reports Server (NTRS)

    Sanandres, L. A.; Vance, J. M.

    1987-01-01

    A review of previous experimental measurements of squeeze film damper (SFD) forces is given. Measurements by the authors of SFD pressure fields and force coefficients, for circular centered orbits with epsilon = 0.5, are described and compared with computer predictions. For Reynolds numbers over the range 2-6, the effect of fluid inertia on the pressure fields and forces is found to be significant.

  14. Modeling of magnetorheological fluid in quasi-static squeeze flow mode

    NASA Astrophysics Data System (ADS)

    Horak, Wojciech

    2018-06-01

    This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.

  15. Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution.

    PubMed

    Eberhard, W G

    2001-01-01

    Males of Microsepsis eberhardi and M. armillata use their genitalic surstyli to rhythmically squeeze the female's abdomen with stereotyped movements during copulation. Squeezing movements did not begin until intromission had occurred and, contrary to predictions of the conflict-of-interest hypothesis for genitalic evolution, did not overcome morphological or behavioral female resistance. Contrary to predictions of the lock-and-key hypothesis, female morphology was uniform in the two species and could not mechanically exclude the genitalia of either species of male. The complex pattern of squeezing movements differed between the two species as predicted by the sexual selection hypothesis for genitalic evolution. Also, evolutionarily derived muscles and pseudoarticulations in the male's genitalic surstyli facilitated one type of movement, whose patterns were especially distinct. The data support the hypothesis that the male surstyli evolved to function as courtship devices.

  16. Resonant photodetector for cavity- and phase-locking of squeezed state generation.

    PubMed

    Chen, Chaoyong; Li, Zhixiu; Jin, Xiaoli; Zheng, Yaohui

    2016-10-01

    Based on the requirement of squeezed state generation, we build the phase relationship between two electronic local oscillators for the cavity- and phase-locking branches, and a 2-way 90° power splitter is adopted to satisfy the phase relationship simultaneously, which greatly simplifies the experimental setup and adjusting process. A LC parallel resonant circuit, which is composed by the inherent capacitance of a photodiode and an extra inductor, is adopted in the resonant photodetector to improve the gain factor at the expected frequency. The gain of the resonant photodetector is about 30 dB higher than that of the broadband photodetector at the resonant frequency. The peak-to-peak value of the error signal for cavity-locking (phase-locking) with the resonant photodetector is 240 (260) times of that with the broadband photodetector, which can improve the locking performance on the premise of not affecting the squeezing degree.

  17. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Aguiar, O. D.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Ast, S.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S.; Bao, Y.; Barayoga, J. C.; Barker, D.; Barr, B.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Bell, C.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bork, R.; Born, M.; Bose, S.; Bowers, J.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Buckland, K.; Brückner, F.; Buchler, B. C.; Buonanno, A.; Burguet-Castell, J.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannon, K.; Cao, J.; Capano, C. D.; Carbone, L.; Caride, S.; Castiglia, A. D.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chen, X.; Chen, Y.; Cho, H.-S.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Constancio Junior, M.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cumming, A.; Cunningham, L.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G. S.; Daw, E. J.; Dayanga, T.; Deleeuw, E.; Denker, T.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Palma, I.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drasco, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S. S.; Engel, R.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fang, Q.; Farr, B. F.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Garcia, J.; Gehrels, N.; Gelencser, G.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guido, C.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Huang, V.; Huerta, E. A.; Hughey, B.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jesse, E.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kozameh, C.; Kremin, A.; Kringel, V.; Krishnan, B.; Kucharczyk, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuper, B. J.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leong, J. R.; Levine, B.; Lhuillier, V.; Lin, A. C.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacArthur, J.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Mageswaran, M.; Mailand, K.; Manca, G.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martinov, D.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazzolo, G.; McAuley, K.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mokler, F.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nanda Kumar, D.; Nash, T.; Nayak, R.; Necula, V.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Paris, H.; Parkinson, W.; Pedraza, M.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Pöld, J.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C.; Raymond, V.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodriguez, L.; Rodruck, M.; Rollins, J. G.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vallisneri, M.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verma, S.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, J.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Wiseman, A. G.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Zanolin, M.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-08-01

    Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

  18. A gravitational wave observatory operating beyond the quantum shot-noise limit

    NASA Astrophysics Data System (ADS)

    Ligo Scientific Collaboration; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavagliá, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Cho, H.; Chua, S. S. Y.; Chung, S.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; Diguglielmo, J.; di Palma, I.; Díaz, M.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Geng, R.; Gergely, L. Á.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Huynh-Dinh, T.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Li, J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.; Mori, T.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Ajith, P.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R. J. E.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vitale, S.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wanner, A.; Wang, X.; Wang, Z.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2011-12-01

    Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology--the injection of squeezed light--offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.

  19. 0.75 atoms improve the clock signal of 10,000 atoms

    NASA Astrophysics Data System (ADS)

    Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.

    2017-02-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

  20. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.

    PubMed

    Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G

    2017-02-17

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  1. Dissipative versus dispersive coupling in quantum optomechanics: Squeezing ability and stability

    NASA Astrophysics Data System (ADS)

    Tagantsev, A. K.; Sokolov, I. V.; Polzik, E. S.

    2018-06-01

    The generation of squeezed light and the optomechanical instability of a dissipative type of opto-mechanical coupling are theoretically addressed for a cavity with the input mirror serving as a mechanical oscillator or for an equivalent system. The problem is treated analytically for the case of resonance excitation or small detunings, mainly focusing on the bad-cavity limit. A qualitative difference between the dissipative and purely dispersive coupling is reported. In particular, it is shown that, for the purely dissipative coupling in the bad-cavity regime, the backaction is strongly reduced and the squeezing ability of the system is strongly suppressed, in contrast to the case of purely dispersive coupling. It is also shown that, for small detunings, stability diagrams for the cases of the purely dispersive and dissipative couplings are qualitatively identical to within the change of the sign of detuning. The results obtained are compared with those from the recent theoretical publications.

  2. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  3. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  4. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  5. Effects of fluid inertia and turbulence on force coefficients for squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Andres, L. S.; Vance, J. M.

    1984-01-01

    The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent added mass at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.

  6. The significance of late-stage processes in lava flow emplacement: squeeze-ups in the 2001 Etna flow field

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.

    2009-04-01

    The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different texture to that of the surrounding `a`ā flow surface. The appearance of the squeeze-up material in this flow is similar to that of the plastic lava forcibly drained from the front of the Parícutin flow. The squeeze-up features demonstrate marked morphological variation, which was found to reflect the rheology of the material being extruded, the volume of material being extruded, the extrusion rate and the geometry of the source bocca. We describe the final morphology of squeeze-ups from the 2001 flow field, which ranges from relatively fluid flows to extrusions of high-strength material that accumulated above the source bocca, forming features more akin to tumuli. Although tumulus-like in overall shape and dimensions, the morphology and inferred growth mechanisms for these structures leads to them being dubbed ‘exogenous tumuli', to distinguish them from the more familiar tumuli resulting from inflation processes, which are described elsewhere (e.g. Macdonald 1972; Walker 1991; Duncan et al. 2004). The morphological data are then used together with observations of lava surface textures and squeeze-up locations to build up a picture of flow structure and flow dynamics at the time of squeeze-up formation. The structure of the crust underlying the clinker cover can be elucidated by examining the locations in which squeeze-ups occur, as extrusions exploit zones of crustal weakness. It is found that the flow crust plays an increasingly important role in determining the locus of squeeze-ups as the flow evolves. Squeeze-ups that clearly had a high strength upon extrusion formed as a result of high overpressures in the flow interior. The extrusion of such material may represent the latter stages of activity of a long-lived bocca, or the new development of a bocca in a part of the flow that had been stagnant for some time. Examination of squeeze-up textures may help determine whether the material was transported to the extrusion site in an open or closed system, or if it was stored for a significant length of time before extrusion. Information may also be gleaned concerning the maximum crystallinity at which lava can flow, which is an important parameter in flow modelling. Evidence for a mechanism by which sufficient overpressure can be generated to extrude such material is presented.

  7. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  8. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight

    DOE PAGES

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...

    2017-08-23

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene- r-propylene) blocks (B), and end-capped by a poly(more » t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less

  9. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    PubMed

    Zhou, Zhengping; Liu, Guoliang

    2017-04-01

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  11. Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chih-Hao; Dong, Xue-Hui; Lin, Zhiwei

    2015-12-03

    The self-assembly behaviors of specifically designed giant surfactants are systematically studied in thin films using grazing incident X-ray and transmission electron microscopy (TEM), focusing on the effects of head surface functionalities and molecular architectures on nanostructure formation. Two molecular nanoparticles (MNPs) with different affinities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as heads of the giant surfactants. By covalently tethering these functional MNPs onto the chain end or the junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants possess distinct molecular architectures are constructed. With fixed lengthmore » of the PEO block, the molecular weight change of the PS block originates the phase formation and transition. Due to the distinct affinity, the AC60-based giant surfactants form two-component morphologies, while three-component morphologies are found in the FPOSS-based ones. A PS block stretching parameter is introduced to characterize the PS chain conformation in different morphologies. The highly diverse self-assembly behaviors and the tunable dimensions in thin films suggest the giant surfactants could be a promising and robust platform for nanolithography applications.« less

  12. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    PubMed

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  13. Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.

    PubMed

    Rahmanudin, Aiman; Sivula, Kevin

    2017-06-28

    Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.

  14. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.

    PubMed

    Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio

    2010-07-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.

  15. Coherent communication with continuous quantum variables

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  16. Measurement-Based Linear Optics

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Gabay, Natasha C.; Rohde, Peter P.; Menicucci, Nicolas C.

    2017-03-01

    A major challenge in optical quantum processing is implementing large, stable interferometers. We offer a novel approach: virtual, measurement-based interferometers that are programed on the fly solely by the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping. We compare our proposal to existing (physical) interferometers and consider its performance for BosonSampling, which could demonstrate postclassical computational power in the near future. We prove its efficiency in time and squeezing (energy) in this setting.

  17. Third International Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Rubin, Morton H. (Editor); Shih, Yan-Hua (Editor); Zachary, Woodford W. (Editor)

    1994-01-01

    The purpose of these workshops is to bring together an international selection of scientists to discuss the latest developments in Squeezed States in various branches of physics, and in the understanding of the foundations of quantum mechanics. At the third workshop, special attention was given to the influence that quantum optics is having on our understanding of quantum measurement theory. The fourth meeting in this series will be held in the People's Republic of China.

  18. A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun

    2017-01-01

    Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.

  19. Nonclassicality and decoherence of photon-added squeezed coherent Schrödinger kitten states in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Yogesh, V.

    2018-01-01

    We study the nonclassicality of the evolution of a superposition of an arbitrary number of photon-added squeezed coherent Schrödinger cat states in a nonlinear Kerr medium. The nonlinearity of the medium gives rise to the periodicities of the quantities such as the Wehrl entropy SQ and the negativity δW of the W-distribution, and a series of local minima of these quantities arise at the rational submultiples of the said period. At these local minima the evolving state coincides with the transient Yurke-Stoler type of photon-added squeezed kitten states, which, for the choice of the phase space variables reflecting their macroscopic nature, show extremely short-lived behavior. Proceeding further we provide the closed form tomograms, which furnish the alternate description of these short-lived states. The increasing complexity in the kitten formations induces more number of interference terms that trigger more quantumness of the corresponding states. The nonclassical depth of the photon-added squeezed kitten states are observed to be of maximum possible value. Employing the Lindblad master equation approach we study the amplitude and the phase damping models for the initial state considered here. In the phase damping model the nonclassicality is not completely erased even in the long time limit when the dynamical quantities, such as the negativity δW and the tomogram, assume nontrivial asymptotic values.

  20. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.

    PubMed

    Grote, Hartmut; Weinert, Michael; Adhikari, Rana X; Affeldt, Christoph; Kringel, Volker; Leong, Jonathan; Lough, James; Lück, Harald; Schreiber, Emil; Strain, Kenneth A; Vahlbruch, Henning; Wittel, Holger

    2016-09-05

    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5μA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments.

  1. 3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts

    NASA Astrophysics Data System (ADS)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh

    2016-10-01

    Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.

  2. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks

    PubMed Central

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-01-01

    Abstract. Neurofeedback is a method for using neural activity displayed on a computer to regulate one’s own brain function and has been shown to be a promising technique for training individuals to interact with brain–machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain–machine interface applications. PMID:28680906

  3. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks.

    PubMed

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-04-01

    Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.

  4. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  5. Optimization of the transmission of observable expectation values and observable statistics in continuous-variable teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albano Farias, L.; Stephany, J.

    2010-12-15

    We analyze the statistics of observables in continuous-variable (CV) quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output-state observables, in particular, cumulants which are additive in terms of the input state and the resource of teleportation. Working with a general class of teleportation resources, the squeezed-bell-like states, which may be optimized in a free parameter for better teleportation performance, we discuss the relation between resources optimal for fidelity and those optimal for different observable averages. We obtain the values of the free parameter of the squeezed-bell-like states which optimize the central momentamore » and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters {Delta}{sub (2)}{sup opt} and {Delta}{sub (4)}{sup opt} for the second- and fourth-order cumulants, which do not depend on the squeezing of the resource. The second-order central momenta, which are equal to the second-order cumulants, and the photon number average are also optimized by the resource with {Delta}{sub (2)}{sup opt}. We show that the optimal fidelity resource, which has been found previously to depend on the characteristics of input, approaches for high squeezing to the resource that optimizes the second-order momenta. A similar behavior is obtained for the resource that optimizes the photon statistics, which is treated here using the sum of the squared differences in photon probabilities of input versus output states as the distortion measure. This is interpreted naturally to mean that the distortions associated with second-order momenta dominate the behavior of the output state for large squeezing of the resource. Optimal fidelity resources and optimal photon statistics resources are compared, and it is shown that for mixtures of Fock states both resources are equivalent.« less

  6. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the laboratory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  7. Cavitation effects on the pressure distribution of a squeeze film damper bearing

    NASA Technical Reports Server (NTRS)

    Zeidan, Fouad Y.; Vance, John M.

    1989-01-01

    High speed motion pictures have revealed several operating regimes in a squeeze film damper. Pressure measurements corresponding to these distinct regimes were made to examine their effect on the performance of such dampers. Visual observation also revealed the means by which the pressure in the feed groove showed higher amplitudes than the theory predicts. Comparison between vapor and gaseous cavitation are made based on their characteristic pressure wave, and the effect this has on the total force and its phase.

  8. Non-linear identification of a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Stanway, Roger; Mottershead, John; Firoozian, Riaz

    1987-01-01

    Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.

  9. Quantum state atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passian, Ali; Siopsis, George

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

  10. Black hole squeezers

    NASA Astrophysics Data System (ADS)

    Su, Daiqin; Ho, C. T. Marco; Mann, Robert B.; Ralph, Timothy C.

    2017-09-01

    We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs "squeeze" the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.

  11. Quantum state atomic force microscopy

    DOE PAGES

    Passian, Ali; Siopsis, George

    2017-04-10

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

  12. Marshburn squeezes a water bubble out of his beverage container

    NASA Image and Video Library

    2013-01-21

    ISS034-E-031709 (21 Jan. 2013) --- NASA astronaut Tom Marshburn, Expedition 34 flight engineer, squeezes a water bubble out of his beverage container in the Unity node of the International Space Station. He is wearing a Drager Double Sensor on his forehead which is used on the Circadian Rhythms Experiment. This experiment examines the hypothesis that long-term spaceflights significantly affect the synchronization of the circadian rhythms in humans due to changes of a non-24 hour light-dark cycle.

  13. Design and test of a squeeze-film damper for a flexible power transmission shaft

    NASA Technical Reports Server (NTRS)

    Darlow, M. S.; Smalley, A. J.

    1978-01-01

    For a flexible shaft designed to pass through a number of bending critical speeds, a squeeze-film damper has been designed and tested. The damper properties were selected to provide control of all critical speeds, while meeting additional constraints of high power transmission requirements and damper simplicity. The damper was fabricated and installed and its ability to control flexible shaft vibrations was demonstrated by the comparison of vibration amplitudes both with and without the damper.

  14. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2001-01-01

    Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13 x 10 km. its maximum depth 7.2 km. and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwater rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E-W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault. 

  15. Interfacial thin films rupture and self-similarity

    NASA Astrophysics Data System (ADS)

    Ward, Margaret H.

    2011-06-01

    Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.

  16. Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule

    NASA Astrophysics Data System (ADS)

    Antón, M. A.; Maede-Razavi, S.; Carreño, F.; Thanopulos, I.; Paspalakis, E.

    2017-12-01

    A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a microwave field that couples to the permanent dipole's moment is presented. We focus to a situation where the angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular complex with high nonlinear optical response although they can also occur in other quantum systems with broken inversion symmetry.

  17. HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments.

    PubMed

    Farman, Gerrie P; Rynkiewicz, Michael J; Orzechowski, Marek; Lehman, William; Moore, Jeffrey R

    2018-06-01

    Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Molecular Simulation of the Free Energy for the Accurate Determination of Phase Transition Properties of Molecular Solids

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Lisal, Martin; Brennan, John

    2015-06-01

    Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.

  19. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations and catalysis. The oriented UTD-1 membrane was evaluated for the separation of n-heptane/toluene mixture. Practicum two. It has been previously observed that residual moisture plays a role in ETV-ICP-MS by altering signal intensity. Here is reported observed signal intensities with ETV-ICP-MS, resulting from the use of hydrogen, nitrogen and ascorbic acid. The use of ascorbic acid yielded enhanced signal intensity, reproducibility and linearity compared to inorganic modifiers'.

  20. The effect of polymer architecture on the interdiffusion in thin polymer films

    NASA Astrophysics Data System (ADS)

    Caglayan, Ayse; Yuan, Guangcui; Satija, Sushil K.; Uhrig, David; Hong, Kunlun; Akgun, Bulent

    Branched polymer chains have been traditionally used in industrial applications as additives. Recently they have found applications in electrochromic displays, lithography, biomedical coatings and targeting multidrug resistant bacteria. In some of these applications where they are confined in thin layers, it is important to understand the relation between the mobility and polymer chain architecture to optimize the processing conditions. Earlier interdiffusion measurements on linear and cyclic polymer chains demonstrated the key role of chain architecture on mobility. We have determined the vertical diffusion coefficients of the star polystyrene chains in thin films as a function of number of polymer arms, molecular weight per arm, and film thickness using neutron reflectivity (NR) and compare our results with linear chains of identical total molecular weight. Bilayer samples of 4-arm and 8-arm protonated polystyrenes (hPS) and deuterated polystyrenes (dPS) were used to elucidate the effect of polymer chain architecture on polymer diffusion. NR measurements indicate that the mobility of polymer chains in thin films get faster as the number of polymer arms increases and the arm molecular weight decreases. Both star polymers showed faster interdiffusion compared to their linear analog. Diffusion coefficient of branched PS chains has a weak dependence on the film thickness.

  1. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  2. The entangled accelerating universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador

    2009-08-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  3. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    PubMed

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  4. Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model

    NASA Astrophysics Data System (ADS)

    Ahadpour, S.; Mirmasoudi, F.

    2018-04-01

    We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.

  5. Relieving the Time Squeeze? Effects of a White-Collar Workplace Change on Parents

    PubMed Central

    Hill, Rachelle; Tranby, Eric; Kelly, Erin; Moen, Phyllis

    2013-01-01

    Employed parents perceive a time squeeze even as trends from the 1960s show they are spending more time with their children. Work conditions (e.g., hours and schedule control) would seem to affect both parents’ time with children and perceived time squeeze, but most studies rely on cross-sectional data that do not establish causality. The authors examined the effects of the introduction of a workplace flexibility initiative (Results Only Work Environment [ROWE]) on changes in mothers’ and fathers’ perceptions of the adequacy of their time with children and actual time spent with children (N = 225). Baseline data show the importance of work conditions for parents’ sense of perceived time adequacy. Panel data show that mothers (but not fathers) in ROWE report increased schedule control and improved time adequacy, but no change in actual time spent with children, except that ROWE increases evening meals with children for mothers sharing few meals at baseline. PMID:24436498

  6. FE Modelling of Tensile and Impact Behaviours of Squeeze Cast Magnesium Alloy AM60

    NASA Astrophysics Data System (ADS)

    DiCecco, Sante; Altenhof, William; Hu, Henry

    In response to the need for reduced global emissions, the transportation industry has been steadily increasing the magnesium content in vehicles. This trend has resulted in experimental documentation of numerous alloy and casting combinations, while comparatively little work has been done regarding the development of numerical material models for vehicle crashworthiness simulations. In this study, material mechanical behaviour was implemented into an existing material model within the nonlinear FEA code LS-DYNA to emulate the mechanical behaviour of squeeze cast magnesium alloy AM60 with a relatively thick section of 10 mm thickness. Model validation was achieved by comparing the numerical and experimental results of a tensile test and Charpy impact event. Validation found an average absolute error of 5.44% between numerical and experimental tensile test data, whereas a relatively large discrepancy was found during Charpy evaluation. This discrepancy has been attributed to the presence of microstructure inhomogeneity in the squeeze cast magnesium alloy AM60.

  7. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.

    PubMed

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D; Soljačić, Marin

    2017-06-27

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements.

  8. Finger Position Alters the Median Nerve Properties within the Carpal Tunnel: A Pre-Post MRI Comparison Study

    PubMed Central

    Nadar, Mohammed Shaban; Dashti, Mohsen H.; Cherian, Jigimon

    2013-01-01

    Purpose The purpose of this study was to compare the properties of the median nerve and the flexor retinaculum within the carpal tunnel with Magnetic Resonance Imaging (MRI) under two conditions: (a) fingers extended, and (b) fingers in an isometric squeeze grip. Methods Thirty-Four volunteers participated in this experimental study. The flexor retinaculum and median nerve characteristics were measured during both conditions using MRI. Results The isometric squeeze grip condition resulted in significant palmar bowing of the flexor retinaculum (t = 7.67, p<.001), a significant flattening-ratio of the median nerve (t = 4.308, p<.001), and no significant decrease in the cross-sectional area of the median nerve (t = 2.508, p = 0.017). Conclusion The isometric squeeze grip condition resulted in anatomical deformations within the carpal tunnel, possibly explained by the lumbrical muscles incursion into the carpal tunnel during finger flexion. PMID:24265763

  9. Marriage Squeeze and Intergenerational Support in Contemporary Rural China: Evidence from X County of Anhui Province

    PubMed Central

    Guo, Qiuju; Feldman, Marcus W.

    2017-01-01

    With China’s gender imbalance and increasingly severe male marriage squeeze, patterns of intergenerational support in rural areas are likely to undergo significant change. Using data from a survey of four towns from X county in Anhui province carried out in 2008, this paper analyzes the effects of sons’ marital status on intergenerational support. Random-effect regression analysis shows that son’s marital status has strong effects on financial support to and co-residence with parents. Compared with married sons, older unmarried sons (so-called forced bachelors) tend to provide less financial support to their parents, and are more likely to live with their parents. Parents’ support of sons, as well as the parents’ own needs and sons’ capabilities all affect the support provided by sons. These results show that both theories of exchange and altruism are simultaneously relevant in the context of the marriage squeeze of contemporary rural China. PMID:26243325

  10. Effect of squeeze film damper land geometry on damper performance

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Hahn, E. J.

    1994-04-01

    Variable axial land geometry dampers can significantly alter the unbalance response, and in particular, the likelihood of undesirable jump behavior, or circular orbit-type squeeze film dampers. Assuming end feed, the pressure distribution, the fluid film forces, and the stiffness and damping coefficients are obtained for such variable axial and geometry dampers, as well as the jump-up propensity for vertical squeeze film damped rigid rotors. It is shown that variable land geometry dampers can reduce the variation of stiffness and damping coefficients, thereby reducing the degree of damper force non-linearity, and presumably reducing the likelihood of undesirable bistable operation. However, it is also found that regardless of unbalance and regardless of the depth, width or shape of the profile, parallel land dampers are least likely to experience jump-up to undesirable operation modes. These conflicting conclusions may be accounted for by the reduction in damping. They will need to be qualified for practical dampers which normally have oil hole feed rather than end feed.

  11. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    NASA Technical Reports Server (NTRS)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  12. Motion of Deformable Drops Through Porous Media

    NASA Astrophysics Data System (ADS)

    Zinchenko, Alexander Z.; Davis, Robert H.

    2017-01-01

    This review describes recent progress in the fundamental understanding of deformable drop motion through porous media with well-defined microstructures, through rigorous first-principles hydrodynamical simulations and experiments. Tight squeezing conditions, when the drops are much larger than the pore throats, are particularly challenging numerically, as the drops nearly coat the porous material skeleton with small surface clearance, requiring very high surface resolution in the algorithms. Small-scale prototype problems for flow-induced drop motion through round capillaries and three-dimensional (3D) constrictions between solid particles, and for gravity-induced squeezing through round orifices and 3D constrictions, show how forcing above critical conditions is needed to overcome trapping. Scaling laws for the squeezing time are suggested. Large-scale multidrop/multiparticle simulations for emulsion flow through a random granular material with multiple drop breakup show that the drop phase generally moves faster than the carrier fluid; both phase velocities equilibrate much faster to the statistical steady state than does the drop-size distribution.

  13. Mechanical stress as a regulator of cell motility

    NASA Astrophysics Data System (ADS)

    Putelat, T.; Recho, P.; Truskinovsky, L.

    2018-01-01

    The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.

  14. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation

    NASA Astrophysics Data System (ADS)

    Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.

    2017-04-01

    The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.

  15. A Squeeze-film Damping Model for the Circular Torsion Micro-resonators

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Li, Pu

    2017-07-01

    In recent years, MEMS devices are widely used in many industries. The prediction of squeeze-film damping is very important for the research of high quality factor resonators. In the past, there have been many analytical models predicting the squeeze-film damping of the torsion micro-resonators. However, for the circular torsion micro-plate, the works over it is very rare. The only model presented by Xia et al[7] using the method of eigenfunction expansions. In this paper, The Bessel series solution is used to solve the Reynolds equation under the assumption of the incompressible gas of the gap, the pressure distribution of the gas between two micro-plates is obtained. Then the analytical expression for the damping constant of the device is derived. The result of the present model matches very well with the finite element method (FEM) solutions and the result of Xia’s model, so the present models’ accuracy is able to be validated.

  16. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Tobias; Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover; Haendchen, Vitus

    Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highestmore » value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.« less

  17. Projective filtering of the fundamental eigenmode from spatially multimode radiation

    NASA Astrophysics Data System (ADS)

    Pérez, A. M.; Sharapova, P. R.; Straupe, S. S.; Miatto, F. M.; Tikhonova, O. V.; Leuchs, G.; Chekhova, M. V.

    2015-11-01

    Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.

  18. Quantum correlations in microwave frequency combs

    NASA Astrophysics Data System (ADS)

    Weissl, Thomas; Jolin, Shan W.; Haviland, David B.; Department of Applied Physics Team

    Non-linear superconducting resonators are used as parametric amplifiers in circuit quantum electrodynamics experiments. When a strong pump is applied to a non-linear microwave oscillator, it correlates vacuum fluctuations at signal and idler frequencies symmetrically located around the pump, resulting in two-mode squeezed vacuum. When the non-linear oscillator is pumped with a frequency comb, complex multipartite entangled states can be created as demonstrated with experiments in the optical domain. Such cluster states are considered to be a universal resource for one-way quantum computing. With our microwave measurement setup it is possible to pump and measure response at as many as 42 frequencies in parallel, with independent control over all pump amplitudes and phases. We show results of two-mode squeezing for of pairs of tones in a microwave frequency comb. The squeezing is created by four-wave mixing of a pump tone applied to a non-linear coplanar-waveguide resonator. We acknowledge financial support from the Knut and Alice Wallenberg foundation.

  19. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures

    PubMed Central

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J.; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D.; Soljačić, Marin

    2017-01-01

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene–BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon–phonon–polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene–BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements. PMID:28611222

  20. Bright squeezed vacuum in a nonlinear interferometer: Frequency and temporal Schmidt-mode description

    NASA Astrophysics Data System (ADS)

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-05-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode nonclassical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion, and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases.

  1. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.

    PubMed

    Vuković, Lela; Vokac, Elizabeth; Král, Petr

    2014-06-19

    We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.

  2. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  3. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000.more » Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.« less

  4. Whirl Motion of a Seal Test Rig with Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    This paper presents the experimental behavior and dynamic analysis of a high speed test rig with rolling element bearings mounted in squeeze film oil damper bearings. The test rotor is a double overhung configuration with rolling element ball bearings mounted in uncentered squeeze-film oil dampers. The damper design is similar to that employed with various high-speed aircraft HP gas turbines. The dynamic performance of the test rig with the originally installed dampers with an effective damper length of length 0.23-inch was unacceptable. The design speed of 40,000 RPM could not be safely achieved as nonsynchronous whirling at the overhung seal test disk and high amplitude critical speed response at the drive spline section occurred at 32,000 RPM. In addition to the self excited stability and critical speed problems, it was later seen from FFT data analysis, that a region of supersynchronous dead band whirling occurs between 10,000 to 15,000 RPM which can lead to bearing distress and wear. The system was analyzed using both linear and nonlinear techniques. The extended length damper design resulting from the analysis eliminated the rotor subsynchronous whirling, high amplitude critical speed, and the dead band whirling region allowing the system to achieve a speed of 45,000 RPM. However, nonlinear analysis shows that damper lockup could occur with high rotor unbalance at 33,000 RPM, even with the extended squeeze-film dampers. The control of damper lockup will be addressed in a future paper.

  5. Monolayers of the lipid derivatives of isoniazid at the air/water interface and the formation of self-assembled nanostructures in water.

    PubMed

    Jin, Yiguang; Chen, Shufeng; Xin, Rui; Zhou, Yisheng

    2008-07-15

    Isoniazid (INH, isonicotinic acid hydrazide) is one of the most commonly used anti-tubercular drugs. However, resistance of Mycobacterium tuberculosis strains to anti-mycobacterial agents including INH is an increasing problem worldwide. Development of new anti-mycobacterial agents thus has attracted attention. Five lipid derivatives of INH were prepared in this study. They formed monolayers at the air/water interface, and some nanostructures with different morphologies were obtained through molecular self-assembly in water. The derivatives included one fatty acyl derivative containing a 12-C hydrocarbon-long chain (1), three fatty alcohol derivatives with a succinyl as spacer and an 8, 12 or 16-C hydrocarbon-long chain (2, 3 and 4), and one tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivative containing a 12-C hydrocarbon-long chain (5). The surface pressure-area isotherms depended on the volume and configuration of heads and the length of tails of derivatives. Compound 2 had a relatively large head and a short tail, easily standing uprightly at the interface. Under a certain surface pressure, the linear polar head groups of 3 could be partly squeezed out and insert into subphase because the length of heads were comparable to the one of tails. The very long tails of 4 always maintained above the interface and led to a high collapse pressure. Compound 5 possessed an extended and large head consisting of the THTT and INH groups so that the relatively short tails tilted at the interface and difficultly contact with each other. The THTT rings might be partly squeezed out and enter into air under a certain surface pressure. The self-assembly behaviours of derivatives in water depended on the molecular configuration and agreed with the corresponding monolayer behaviours. The flexible and medium-long tails (1 and 3) led to the derivatives to form nanoscale vesicles, though the short or very long tails did not (2 and 4). Interestingly, intermolecular hydrogen bonding could occur between the molecules of 5, and improve the derivative forming helical nanofibres other than vesicles. The molecular self-assembly of INH's lipid derivatives was explored in details in this study. The formation mechanisms of self-assembled nanostructures were analyzed. Various types of self-assembled nanostructures were obtained and the formation mechanisms were analyzed. The relationship between the self-assembly and the molecular configuration of amphiphilic derivatives was also revealed. The lipid derivatives of INH show promising anti-Mycobacterium action because the amphiphilic prodrugs allow for better penetration of the bacterial cells. The self-assembled nanostructures may likely be the potential self-assembled drug delivery systems for tuberculosis therapy.

  6. The effect of solvent upon molecularly thin rotaxane film formation

    NASA Astrophysics Data System (ADS)

    Farrell, Alan A.; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Jarvis, Suzanne P.

    2007-05-01

    We have investigated variations in molecularly thin rotaxane films deposited by solvent evaporation, using atomic force microscopy (AFM). Small changes in rotaxane structure result in significant differences in film morphology. The addition of exo-pyridyl moietes to the rotaxane macrocycle results in uniform domains having orientations corresponding to the underlying substrate lattice, while a larger, less symmetric molecule results in a greater lattice mismatch and smaller domain sizes. We have measured differences in film heights both as a function of the solvent of deposition and as a function of surface coverage of rotaxanes. Based on these observations we describe how the use of solvents with higher hydrogen-bond basicity results in films which are more likely to favour sub-molecular motion.

  7. Formation of ferromagnetic molecular thin films from blends by annealing

    PubMed Central

    Robaschik, Peter; Ma, Ye; Din, Salahud

    2017-01-01

    We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton) substrates kept at room temperature. The MnPc:TCNQ films are found to be entirely amorphous due to the size mismatch of the molecules. However, by annealing while covering the samples highly crystalline MnPc films in the β-polymorph can be obtained at 60 °C lower than when starting with pure MnPc films. The resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K. PMID:28900600

  8. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  9. Recognition of Conformational Changes in β-Lactoglobulin by Molecularly Imprinted Thin Films

    PubMed Central

    Turner, Nicholas W.; Liu, Xiao; Piletsky, Sergey A.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein β-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1–100 µg mL−1. Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein. PMID:17665947

  10. Recognition of conformational changes in beta-lactoglobulin by molecularly imprinted thin films.

    PubMed

    Turner, Nicholas W; Liu, Xiao; Piletsky, Sergey A; Hlady, Vladimir; Britt, David W

    2007-09-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein beta-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1-100 microg mL(-1). Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein.

  11. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.

  12. Modifying Effects of Plasticizer, Chain Connectivity, and Chain Adsorption on the Physical Aging and Interfacial Gradient in Dynamics in Thin Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Thees, Michael; Roth, Connie

    How the glass transition and physical aging in thin films change with confinement is nontrival, with studies in the literature showing that these effects can be modified by various factors including chain adsorption to substrate interfaces and addition of diluents. Some studies indicate that addition of plasticizer appears to eliminate confinement effects such as Tg gradients and possibly impacts chain adsorption to substrates. In contrast, how plasticizer affects physical aging in glassy polymers has been largely unexplored experimentally, despite various theoretical and simulation efforts. Previously we have shown that for neat polystyrene (PS) films, with molecular weights MW < 3000 kg/mol, physical aging rates in thin films decrease with decreasing film thickness consistent with expectations from local Tg gradients. However, we have recently found that for very high molecular weights, MW > 7000 kg/mol, the physical aging rate in thin films was more bulk like, suggesting a diminished gradient in dynamics related to chain connectivity and possibly chain adsorption to the substrate interface. Here, we explore how the addition of dioctyl phthalate (DOP) plasticizer to PS can alter the physical aging rate of thin films and possibly modify the adsorbed layer.

  13. Visualization of exciton transport in ordered and disordered molecular solids.

    PubMed

    Akselrod, Gleb M; Deotare, Parag B; Thompson, Nicholas J; Lee, Jiye; Tisdale, William A; Baldo, Marc A; Menon, Vinod M; Bulović, Vladimir

    2014-04-16

    Transport of nanoscale energy in the form of excitons is at the core of photosynthesis and the operation of a wide range of nanostructured optoelectronic devices such as solar cells, light-emitting diodes and excitonic transistors. Of particular importance is the relationship between exciton transport and nanoscale disorder, the defining characteristic of molecular and nanostructured materials. Here we report a spatial, temporal and spectral visualization of exciton transport in molecular crystals and disordered thin films. Using tetracene as an archetype molecular crystal, the imaging reveals that exciton transport occurs by random walk diffusion, with a transition to subdiffusion as excitons become trapped. By controlling the morphology of the thin film, we show that this transition to subdiffusive transport occurs at earlier times as disorder is increased. Our findings demonstrate that the mechanism of exciton transport depends strongly on the nanoscale morphology, which has wide implications for the design of excitonic materials and devices.

  14. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  15. Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics

    NASA Technical Reports Server (NTRS)

    Karassiov, V. P.

    1994-01-01

    The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.

  16. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  17. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  18. Squeezed Back-to-Back Correlation of {D}^{0}{\\bar{D}}^{0} in Relativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Ai-Geng; Zhang, Yong; Cheng, Luan; Sun, Hao; Zhang, Wei-Ning

    2018-05-01

    We investigate the squeezed back-to-back correlation (BBC) of $D^0\\!{\\bar D}^0$ in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the BBC of $D^0\\!{\\bar D}^0$ is significant in peripheral Au+Au collisions at the RHIC energy. A possible way to detect the BBC in experiment is presented.

  19. Nonclassical features of trimodal excited coherent Greenberger - Horne - Zeilinger(GHZ) - type state

    NASA Astrophysics Data System (ADS)

    Merlin, J.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    We examine the influence of photon excitation on each mode of the Glauber coherent GHZ type tripartite state. Concurrence is adopted as entanglement measure between bipartite entangled state. The pairwise concurrence is calculated and used as a quantifier of intermodal entanglement. The entanglement distribution among three modes is investigated using tangle as a measure and the residual entanglement is also calculated. The effect of the photon addition process on the quadrature squeezing is investigated. The higher order squeezing capacity of the photon addition process is also shown.

  20. Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State

    NASA Astrophysics Data System (ADS)

    Siyouri, Fatima-Zahra

    2017-12-01

    In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.

Top