Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
Subranging technique using superconducting technology
Gupta, Deepnarayan
2003-01-01
Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Shingla, Vidhi; Csáthy, G. A.
2017-03-01
We present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/√{Hz}. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures. In particular, we demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3.25 kΩ resistor down to 16 mK. Our circuit is a useful alternative to the commonly used High Electron Mobility Transistor-based amplifiers, but in contrast to the latter, it offers a much reduced 1/f noise. In comparison to SQUIDs interfaced with cryogenic current comparators, our circuit has similar low noise levels, but it is easier to build and to shield from magnetic pickup.
NASA Astrophysics Data System (ADS)
Berger, Jorge
2018-06-01
In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1μ m and temperature 0.9T_c, we obtain a flux resolution of the order of 10^{-5}Φ _0/Hz^{1/2}; the resolution is expected to improve as the temperature is lowered.
SiGe Integrated Circuit Developments for SQUID/TES Readout
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.
2018-03-01
SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.
SQUIDs De-fluxing Using a Decaying AC Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei Nikolaevich; Semenov, Vasili Kirilovich; Anderson, Bill
Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper wemore » present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.« less
Johnson noise measurements of a 3.1 k Ω resistor at mK temperatures using a SQUID-based circuit
NASA Astrophysics Data System (ADS)
Shingla, Vidhi; Kleinbaum, Ethan; Csáthy, Gábor
The measurement of Johnson noise of resistors of the order of a k Ω at mK temperatures is a difficult task. Such a measurement is not possible with room temperature amplifiers since the typical amplifier noise exceeds the Johnson noise. Such measurements are, however, possible with circuits based on cooled High Electron Mobility Transistors (HEMTs). We present an alternative circuit for such measurements which is based on a dc SQUID. We demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3 . 1 k Ω resistor down to 16 mK, enabling therefore Johnson noise thermometry. This work was supported by the NSF Grant DMR-1505866.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
High-T(c) squid application in medicine and geophysics
NASA Technical Reports Server (NTRS)
Polushkin, V. N.; Uchaikin, S. V.; Vasiliev, B. V.
1991-01-01
In our laboratory of high-T(sub c), a one-hole squid was built from Y1Ba2Cu3O(7-x) ceramics obtained by a standard procedure of solid state reaction. The ceramics with critical current density J(sub c) is greater than 100 A/sq cm was selected. In the middle of a 10 x 10 x 2 mm ceramics pellet, a 0.8 mm hole was drilled in which the superconducting loop of the squid was located. Between the hole and the edge of the pellet, a cut was mechanically filed out with a bridge inside it connecting the superconducting ring. A scheme of the magnetometer is presented. The resonant frequency shift of the tank circuit, the connection of the squid with this circuit, and the squid inductance are evaluated. One of the most interesting fields of the squid-based magnetometer application is biomagnetism, particularly, the human heart magnetocardiogram measuring. The low-temperature squids were used in this area and many interesting and important scientific results have been obtained. The observations have shown that the main noise contribution was not due to the squid but to the Earth's magnetic field variations, industrial inductions, and mainly to the vibrations caused by liquid nitrogen boiling and by vibrations of the box. Further attempts are needed to reduce the magnetic noise inductions. Nevertheless, the estimations promise the maximum signal/noise relation of the high-T(sub c) squid-magnetocardiometer to be not less than 10:1 in a bandwidth of 60 Hz. Apparently, such resolution would be enough not only for steady cardiogram reading but even for thin structure investigation at average technique application.
High-T(sub c) squid application in medicine and geophysics
NASA Technical Reports Server (NTRS)
Polushkin, V. N.; Uchaikin, S. V.; Vasiliev, B. V.
1990-01-01
In the Laboratory a high-T(sub c) one-hole squid was built from Y1Ba2Cu3O(7-x) ceramics obtained by a standard procedure of solid state reaction. The ceramics with critical current density J(sub c) is greater than 100 A/sq cm was selected. In the middle of 10 x 10 x 2 mm ceramics pellet a 0.8 mm hole was drilled in which superconducting loop of the squid was located. Between the hole and the edge of the pellet a cut was mechanically filed out with a bridge inside it connecting the superconducting ring. A scheme of the magnetometer is presented. The resonant frequency shift of the tank circuit, the connection of the squid with this circuit, and the squid inductance are evaluated. One of the most interesting fields of the squid-based magnetometer application is biomagnetism, particularly, the human heart magnetocardiogram measuring. The low-temperature squids were used in this area and many interesting and important scientific results have been obtained. The observations have shown that the main noise contribution was not due to the squid but to the Earth's magnetic field variations, industrial inductions, and mainly to the vibrations caused by liquid nitrogen boiling and by vibrations of the box. Further attempts are needed to reduce the magnetic noise inductions. Nevertheless, the estimations promise the maximum signal/noise relation of the high-T(sub c) squid-magnetocardiometer to be not less than 10:1 in a bandwidth of 60 Hz. Apparently, such resolution would be enough not only for steady cardiogram reading but even for thin structure investigation at average technique application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TonThat, D.M.; Clarke, J.
1996-08-01
A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux lockedmore » operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}« less
Parametric Phase-Sensitive Detector Using Two-cell SQUID
2010-08-01
an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed
Reduced Power Laer Designation Systems
2008-06-20
200KD, Ri = = 60Kfl, and R 2 = R4 = 2K yields an overall transimpedance gain of 200K x 30 x 30 = 180MV/A. Figure 3. Three stage photodiode amplifier ...transistor circuit for bootstrap buffering of the input stage, comparing the noise performance of the candidate amplifier designs, selecting the two...transistor bootstrap design as the circuit of choice, and comparing the performance of this circuit against that of a basic transconductance amplifier
AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers
NASA Technical Reports Server (NTRS)
Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.;
2011-01-01
SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.
Non-resonant interactions between superconducting circuits coupled through a dc-SQUID
NASA Astrophysics Data System (ADS)
Jin, X. Y.; Lecocq, F.; Cicak, K.; Kotler, S. S.; Peterson, G. A.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.
We use a flux-biased direct current superconducting quantum interference device (dc-SQUID) to generate non-resonant tunable interactions between transmon qubits and resonators modes. By modulating the flux to the dc-SQUID, we can create an interaction with variable coupling rates from zero to greater than 100 MHz. We explore this system experimentally and describe its operation. Parametric coupling is important for constructing larger coupled systems, useful for both quantum information architectures and quantum simulators.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
SQUID magnetometers for low-frequency applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.
1989-09-01
The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falferi, P.; Mezzena, R.; Vitale, S.
1997-08-01
The coupling effects of a commercial dc superconducting quantum interference device (SQUID) to an electrical LC resonator which operates at audio frequencies ({approx}1kHz) with quality factors Q{approx}10{sup 6} are presented. The variations of the resonance frequency of the resonator as functions of the flux applied to the SQUID are due to the SQUID dynamic inductance in good agreement with the predictions of a model. The variations of the quality factor point to a feedback mechanism between the output of the SQUID and the input circuit. {copyright} {ital 1997 American Institute of Physics.}
Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.
Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T
2014-03-15
Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Di Ventra, Massimiliano; Giazotto, Francesco
2018-01-01
We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, which can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of approximately 0.2 ns for a Nb-based SQUID in thermal contact with a phonon bath at 4.2 K. We suggest a noninvasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.
NASA Astrophysics Data System (ADS)
Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho
2011-09-01
We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.
Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.
2014-06-01
We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.
The DCU: the detector control unit of the SAFARI instrument onboard SPICA
NASA Astrophysics Data System (ADS)
Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.
2012-09-01
The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.
High-performance dc SQUIDs with submicrometer niobium Josephson junctions
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jing; Peter Grünberg Institute; Zhang, Yi
2014-05-15
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
NASA Astrophysics Data System (ADS)
Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin
2014-05-01
The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.
Complex Visual Adaptations in Squid for Specific Tasks in Different Environments
Chung, Wen-Sung; Marshall, N. Justin
2017-01-01
In common with their major competitors, the fish, squid are fast moving visual predators that live over a great range of depths in the ocean. Both squid and fish show a variety of adaptations with respect to optical properties, receptors and their underlying neural circuits, and these adaptations are often linked to the light conditions of their specific niche. In contrast to the extensive investigations of adaptive strategies in fish, vision in response to the varying quantity and quality of available light, our knowledge of visual adaptations in squid remains sparse. This study therefore undertook a comparative study of visual adaptations and capabilities in a number of squid species collected between 0 and 1,200 m. Histology, magnetic resonance imagery (MRI), and depth distributions were used to compare brains, eyes, and visual capabilities, revealing that the squid eye designs reflect the lifestyle and the versatility of neural architecture in its visual system. Tubular eyes and two types of regional retinal deformation were identified and these eye modifications are strongly associated with specific directional visual tasks. In addition, a combination of conventional and immuno-histology demonstrated a new form of a complex retina possessing two inner segment layers in two mid-water squid species which they rhythmically move across a broad range of depths (50–1,000 m). In contrast to their relatives with the regular single-layered inner segment retina live in the upper mesopelagic layer (50–400 m), the new form of retinal interneuronal layers suggests that the visual sensitivity of these two long distance vertical migrants may increase in response to dimmer environments. PMID:28286484
Josephson Junction Arrays with Positional Disorder: Experiments and Simulations
1988-02-01
8 By Martin Gerard Forrester (~) February 1988 Technical Report No i 2 u es;pis repoft cvr ubrs fechnical Information ~( Extracted : Date: This...2.10 SQUID bridge circuit 48 Fig. 3.1 Ic(T) for sample DA1B2-00 53 Fig. 3.2 R(T) forsample DA1B1-00 57 Fig. 3.3 R(T) fit to HN form, sample DA1B2-00 58...with positional disorder 71 Fig. 3.12 Critical field f,(q) vs. 1/q2 73 Fig. 3.13 (a) R(T) for Sierpinski gasket G2, measured with a SQUID 78 (b) R(T
Reduced Power Laser Designation Systems
2009-01-10
buffering of the input stage; comparing the noise performance of the candidate amplifier designs; selection of the two-transistor bootstrap design as the...circuit of choice; and comparing the performance of this circuit against that of a basic transconductance amplifier . 15. SUBJECT TERMS Laser...Guided Weapons; Laser designation; laser rangefinders; infrared photodiodes; transconductance amplifiers . 16. SECURITY CLASSIFICATION OF: a. REPORT U
Analog cosmological particle generation in a superconducting circuit
NASA Astrophysics Data System (ADS)
Tian, Zehua; Jing, Jiliang; Dragan, Andrzej
2017-06-01
We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.
Simulation and optimization of a dc SQUID with finite capacitance
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Schrijner, P.; Llurba, R.
1984-02-01
This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.
Performance of an on-chip superconducting circulator for quantum microwave systems
NASA Astrophysics Data System (ADS)
Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.
Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.
The Microwave SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Mates, John Arthur Benson
2011-12-01
This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.
Code-division-multiplexed readout of large arrays of TES microcalorimeters
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.
2016-09-01
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.
Superconducting Digital Multiplexers for Sensor Arrays
NASA Technical Reports Server (NTRS)
Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan
2004-01-01
Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.
NASA Technical Reports Server (NTRS)
Barner, J. B.; Kleinsasser, A. W.; Hunt, B. D.
1996-01-01
The ability to controllably fabricate High-Temperature Superconductor (HTS) S-Normal-S (SNS) Josephson Juntions (JJ's) enhances the possibilities fro many applications, including digital circuits, SQUID's, and mixers. A wide variety of approaches to fabricating SNS-like junctions has been tried and analyzed in terms of proximity effect behavior.
Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.
High Resolution Imaging with MUSTANG-2 on the GBT
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.
Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takei, Y.; Yamasaki, N.Y; Mitsuda, K.
2009-12-16
A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz withmore » standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.« less
Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.
Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying
2015-02-10
Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.
NASA Astrophysics Data System (ADS)
Blencowe, M. P.; Armour, A. D.
2008-09-01
We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems designed for use in deep space and planetary exploration missions are expected to encounter extreme temperatures and wide thermal swings. Silicon-based devices are limited in their wide-temperature capability and usually require extra measures, such as cooling or heating mechanisms, to provide adequate ambient temperature for proper operation. Silicon-On-Insulator (SOI) technology, on the other hand, lately has been gaining wide spread use in applications where high temperatures are encountered. Due to their inherent design, SOI-based integrated circuit chips are able to operate at temperatures higher than those of the silicon devices by virtue of reducing leakage currents, eliminating parasitic junctions, and limiting internal heating. In addition, SOI devices provide faster switching, consume less power, and offer improved radiation-tolerance. Very little data, however, exist on the performance of such devices and circuits under cryogenic temperatures. In this work, the performance of an SOI bootstrapped, full-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
Improved Sensing Coils for SQUIDs
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho
2007-01-01
An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.
Treacy, Daniel; Howard, Kirsten; Hayes, Alison; Hassett, Leanne; Schurr, Karl; Sherrington, Catherine
2018-01-01
Among people admitted for inpatient rehabilitation, is usual care plus standing balance circuit classes more cost-effective than usual care alone? Cost-effectiveness study embedded within a randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. 162 rehabilitation inpatients from a metropolitan hospital in Sydney, Australia. The experimental group received a 1-hour standing balance circuit class, delivered three times a week for 2 weeks, in addition to usual therapy. The circuit classes were supervised by one physiotherapist and one physiotherapy assistant for up to eight patients. The control group received usual therapy alone. Costs were estimated from routinely collected hospital use data in the 3 months after randomisation. The functional outcome measure was mobility measured at 3 months using the Short Physical Performance Battery administered by a blinded assessor. An incremental analysis was conducted and the joint probability distribution of costs and outcomes was examined using bootstrapping. The median cost savings for the intervention group was AUD4,741 (95% CI 137 to 9,372) per participant; 94% of bootstraps showed that the intervention was both effective and cost saving. Two weeks of additional standing balance circuit classes delivered in addition to usual therapy resulted in decreased healthcare costs at 3 months in hospital inpatients admitted for rehabilitation. There is a high probability that this intervention is both cost saving and effective. ACTRN12611000412932. [Treacy D, Howard K, Hayes A, Hassett L, Schurr K, Sherrington C (2018) Two weeks of additional standing balance circuit classes during inpatient rehabilitation are cost saving and effective: an economic evaluation. Journal of Physiotherapy 64: 41-47]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Concentric transmon qubit featuring fast tunability and site-selective Z coupling
NASA Astrophysics Data System (ADS)
Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies
NASA Technical Reports Server (NTRS)
Gottardi, L.; Blandler, S. R.; Porter, F. S.; Sadleir, J. E.; Kilbourne, C. A.; Bailey, C. N.; Finkbeiner, F. M.; Chervenak, J. A.; Adams, J. S.; Eckart, M. E.;
2012-01-01
In this paper we present the progress made at SRON in the read-out of GSFC x-ray transition-edge sensor (TES) micro-calorimeters in the frequency domain. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop (FLL) SQUID read-out scheme. The TES read-out suffered from the use of sub-optimal circuit components, large parasitic inductances, low quality factor resonators and poor magnetic field shielding. We have developed a novel experimental set-up, which allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We study the single pixel performance as a function of TES bias frequency, voltage and perpendicular magnetic field.
NASA Astrophysics Data System (ADS)
Qiu, Yang; Li, Hua; Zhang, Shu-Lin; Wang, Yong-Liang; Kong, Xiang-Yan; Zhang, Chao-Xiang; Zhang, Yong-Sheng; Xu, Xiao-Feng; Yang, Kang; Xie, Xiao-Ming
2015-07-01
We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward-McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂ V/∂ Φ larger than 420 μV/Φ 0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system. Project supported by “One Hundred Persons Project” of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tingting; Zhao, Jing, E-mail: zhaojing-8239@jlu.edu.cn; Peter Grünberg Institute
2014-11-15
In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2more » fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.« less
Tunable ohmic environment using Josephson junction chains
NASA Astrophysics Data System (ADS)
Rastelli, Gianluca; Pop, Ioan M.
2018-05-01
We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical superconducting quantum interference devices (SQUIDs), with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in situ the SQUIDs' inductance, the double chain can operate as a tunable ohmic resistor in a frequency band spanning up to 1 GHz, with a resistance that can be swept through values comparable to the resistance quantum Rq=h /(4 e2) ≃6.5 kΩ . We argue that the circuit complexity is within reach using current Josephson junction technology.
Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M
2018-04-01
We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.
NASA Astrophysics Data System (ADS)
Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.
2018-04-01
We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.
Novel Multiplexing Technique for Detector and Mixer Arrays
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.
2001-01-01
Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.
NASA Astrophysics Data System (ADS)
Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th
2006-06-01
Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.
Quantum interference in an interfacial superconductor.
Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D
2016-10-01
The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.
NASA Astrophysics Data System (ADS)
Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy
2017-09-01
We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.
Nonequilibrium Superconductivity in Optically Illuminated Tunnel Junctions.
1980-08-01
SMITH 0 OI77C-0085 UNCLASSIFIED TR-17 MLN1., rnunnununu Cnrs 661 1 -- OSLEV Iff lee of Naval Research Contract 100014-75-C-0848 NR -372-012 National...Thermoelectric Current SQUID Circuit Fiber Optics 20. ABSTRACT (Continue an reverse sde Ii nec.*eary wid Identify by block number ) Results of a series of ...experiments. AC~~31flFor tA _C N~D 1 .8. Un Dit- vcial Unclassified SECURITY CLASSIFICATION OF TmIS PAGEthsan Data £nred II Ofie of Naval Research ContracT
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
NASA Astrophysics Data System (ADS)
Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.
2016-01-01
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Experiments with d-wave Superconductors
NASA Astrophysics Data System (ADS)
Mannhart, J.; Hilgenkamp, H.; Hammerl, G.; Schneider, C. W.
2003-10-01
The predominant d
Design Overview of the DM Radio Pathfinder Experiment
NASA Technical Reports Server (NTRS)
Silva-Feaver, Maximiliano; Chaudhuri, Saptarshi; Cho, Hsaio-Mei; Dawson, Carl; Graham, Peter; Irwin, Kent; Kuenstner, Stephen; Li, Dale; Mardon, Jeremy; Moseley, Harvey;
2016-01-01
We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the differential SQUID readout circuit, the shielding, and the cryogenic mounting structure. We present the current status of the pathfinder experiment and illustrate it's potential science reach in the context of the larger experimental program.
One-dimensional sections of exotic spacetimes with superconducting circuits
NASA Astrophysics Data System (ADS)
Sabín, Carlos
2018-05-01
We introduce analogue quantum simulations of 1 + 1 dimensional sections of exotic 3 + 1 dimensional spacetimes, such as Alcubierre warp-drive spacetime, Gödel rotating universe and Kerr highly-rotating black hole metric. Suitable magnetic flux profiles along a SQUID array embedded in a superconducting transmission line allow to generate an effective spatiotemporal dependence in the speed of light, which is able to mimic the corresponding light propagation in a dimensionally-reduced exotic spacetime. In each case, we discuss the technical constraints and the links with possible chronology protection mechanisms and we find the optimal region of parameters for the experimental implementation.
1992-03-14
overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is
The design and evaluation of superconducting connectors
NASA Technical Reports Server (NTRS)
Payne, J. E.
1982-01-01
The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.
NASA Astrophysics Data System (ADS)
Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy
2013-10-01
We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus be very sensitive to the effects of fishing and climate change.
European roadmap on superconductive electronics - status and perspectives
NASA Astrophysics Data System (ADS)
Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.
2010-12-01
Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by ‘transition-edge’ bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: Ultra-sensitive sensing and imaging. Quantum measurement instrumentation. Advanced analogue-to-digital converters. Superconductive electronics technology.
Low field electron paramagnetic resonance imaging with SQUID detection
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)
2012-01-01
In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.
Optimization of the R-SQUID noise thermometer
NASA Astrophysics Data System (ADS)
Seppä, Heikki
1986-02-01
The Josephson junction can be used to convert voltage into frequency and thus it can be used to convert voltage fluctuations generated by Johnson noise in a resistor into frequency fluctuations. As a consequence, the temperature of the resistor can be defined by measuring the variance of the frequency fluctuations. Unfortunately, the absolute determination of temperature by this approach is disturbed by several undesirable effects: a rolloff introduced by the bandwidth of the postdetection filter, additional noise caused by rf amplifiers, and a mixed noise effect caused by the nonlinearity of the Josephson junction together with rf noise in the tank circuit. Furthermore, the variance is a statistical quantity and therefore the limited number of frequency counts produces inaccuracy in a temperature measurement. In this work the total inaccuracy of the noise thermometer is analyzed and the optimal choice of the parameters is derived. A practical way to find the optimal conditions for the Josephson junction noise thermometer is discussed. The inspection shows that under the optimal conditions the total error is dependent only on the temperature under determination, the equivalent noise temperature of the preamplifier, the bias frequency of the SQUID, and the total time used for the measurement.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
Frequency-tuned microwave photon counter based on a superconductive quantum interferometer
NASA Astrophysics Data System (ADS)
Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.
2018-03-01
Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.
Fan, N.Q.; Clarke, J.
1993-10-19
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.
Fan, Non Q.; Clarke, John
1993-01-01
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
NASA Astrophysics Data System (ADS)
de Waal, V. J.
1983-02-01
The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.
Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro
2014-01-01
Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.
Flux trapping in multi-loop SQUIDs and its impact on SQUID-based absolute magnetometry
NASA Astrophysics Data System (ADS)
Schönau, T.; Zakosarenko, V.; Schmelz, M.; Anders, S.; Meyer, H.-G.; Stolz, R.
2018-07-01
The effect of flux trapping on the flux-voltage characteristics of multi-loop SQUID magnetometers was investigated by means of repeated cool-down cycles in a stepwise increased magnetic background field. For a SQUID with N parallel loops, N different flux offsets, each separated by {{{Φ }}}0/N, were observed even in zero magnetic field. These flux offsets further split into a so called fine structure, which can be explained by minor asymmetries in the SQUID design. The observed results are discussed with particular regard to their impact on the previously presented absolute SQUID cascade vector magnetometer.
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.
Zhu, Junli; Li, Jianrong; Jia, Jia
2012-09-01
Trimethylamine oxide (TMAO) in squid is demethylated to dimethylamine (DMA) and formaldehyde (FA) during storage and processing. This study examined the effects of thermal processing and various chemical substances on FA and DMA formation in squid. The thermal conversion of TMAO was assessed by analysing four squid and four gadoid fish species, which revealed that FA, DMA and trimethylamine (TMA) were gradually produced in squid, whereas TMA increased and FA decreased in gadoid fish. A significant increase in both FA and DMA levels was observed in the supernatant of jumbo squid with increased heating temperature and extended heating time at pH 6-7. Ferrous chloride combined with cysteine and/or ascorbate had a significantly positive effect on FA formation in the heated supernatant of jumbo squid. No significant difference was observed in the levels of Cu and Fe in squid and gadoid fish. The capability of Fe(2+) to promote the formation of FA and DMA was not completely attributable to its reducing power in squid. Non-enzymatic decomposition of TMAO was a key pathway during the thermal processing of jumbo squid, and Fe(2+) was a crucial activator in the formation of FA and DMA. Copyright © 2012 Society of Chemical Industry.
Scanning SQUID Microscope and its Application in Detecting Weak Currents
NASA Astrophysics Data System (ADS)
Zhong, Chaorong; Li, Fei; Zhang, Fenghui; Ding, Hongsheng; Luo, Sheng; Lin, Dehua; He, Yusheng
A scanning SQUID microscope based on HTS dc SQUID has been developed. One of the applications of this microscope is to detect weak currents inside the sample. Considering that what being detected by the SQUID is the vertical component of the magnetic field on a plan where the SQUID lies, whereas the current which produces the magnetic field is actually located in a plan below the SQUID, a TWO PLAN model has been established. In this model Biot-Savart force laws and Fourier transformation were used to inverse the detected magnetic field into the underneath weak current. It has been shown that the distance between the current and the SQUID and the noise ratio of the experimental data have significant effects on the quality of the inverse process.
Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki
2015-01-01
We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.
Temperature-dependent performance of all-NbN DC-SQUID magnetometers
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen
2017-05-01
Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.
NanoSQUIDs: Basics & recent advances
NASA Astrophysics Data System (ADS)
José Martínez-Pérez, Maria; Koelle, Dieter
2017-08-01
Superconducting Quantum Interference Devices (SQUIDs) are one of the most popular devices in superconducting electronics. They combine the Josephson effect with the quantization of magnetic flux in superconductors. This gives rise to one of the most beautiful manifestations of macroscopic quantum coherence in the solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to transduce magnetic flux into measurable electric signals. As a consequence, any physical observable that can be converted into magnetic flux, e.g., current, magnetization, magnetic field or position, becomes easily accessible to SQUID sensors. In the late 1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric scale would encompass an enormous increase of their sensitivity to localized tiny magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g., individual magnetic nanoparticles or surface magnetic states with unprecedented sensitivities. The purpose of this chapter is to present a detailed survey of microscopic and nanoscopic SQUID sensors. We will start by discussing the principle of operation of SQUIDs, placing the emphasis on their application as ultrasensitive detectors for small localized magnetic signals. We will continue by reviewing a number of existing devices based on different kinds of Josephson junctions and materials, focusing on their advantages and drawbacks. The last sections are left for applications of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle characterization, placing special stress on the investigation of individual magnetic nanoparticles.
Allometry indicates giant eyes of giant squid are not exceptional.
Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C
2013-02-18
The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.
A method for simulating a flux-locked DC SQUID
NASA Technical Reports Server (NTRS)
Gutt, G. M.; Kasdin, N. J.; Condron, M. R., II; Muhlfelder, B.; Lockhart, J. M.; Cromar, M. W.
1993-01-01
The authors describe a computationally efficient and accurate method for simulating a dc SQUID's V-Phi (voltage-flux) and I-V characteristics which has proven valuable in evaluating and improving various SQUID readout methods. The simulation of the SQUID is based on fitting of previously acquired data from either a real or a modeled device using the Fourier transform of the V-Phi curve. This method does not predict SQUID behavior, but rather is a way of replicating a known behavior efficiently with portability into various simulation programs such as SPICE. The authors discuss the methods used to simulate the SQUID and the flux-locking control electronics, and present specific examples of this approach. Results include an estimate of the slew rate and linearity of a simple flux-locked loop using a characterized dc SQUID.
Low noise niobium dc SQUID with a planar input coil
NASA Astrophysics Data System (ADS)
de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.
1983-02-01
A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.
High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide
NASA Astrophysics Data System (ADS)
Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.
2004-05-01
A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON
Cole, Kenneth S.; Baker, Richard F.
1941-01-01
Longitudinal alternating current impedance measurements have been made on the squid giant axon over the frequency range from 30 cycles per second to 200 kc. per second. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The impedance at high frequency was approximately as predicted theoretically on the basis of the poorly conducting dielectric characteristics of the membrane previously determined. For the large majority of the axons, the impedance reached a maximum at a low frequency and the reactance then vanished at a frequency between 150 and 300 cycles per second. Below this frequency, the reactance was inductive, reaching a maximum and then approaching zero as the frequency was decreased. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane. The impedance characteristics of the membrane as calculated from the measured longitudinal impedance of the axon may be expressed by an equivalent membrane circuit containing inductance, capacity, and resistance. For a square centimeter of membrane the capacity of 1 µf with dielectric loss is shunted by the series combination of a resistance of 400 ohms and an inductance of one-fifth henry. PMID:19873252
Trophic niche of squids: Insights from isotopic data in marine systems worldwide
NASA Astrophysics Data System (ADS)
Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.
2013-10-01
Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.
Statistical characterization of voltage-biased SQUIDs with weakly damped junctions
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Yi; Mück, Michael; Zhang, Shulin; Krause, Hans-Joachim; Braginski, Alex I.; Zhang, Guofeng; Wang, Yongliang; Kong, Xiangyan; Xie, Xiaoming; Offenhäusser, Andreas; Jiang, Mianheng
2013-06-01
Recently, it has been shown that voltage-biased readout of SQUIDs with weakly damped junctions (large Stewart-McCumber parameter βc, due to high shunt resistance) is useful for suppression of preamplifier noise. We experimentally studied the characteristics of 53 planar niobium-SQUID magnetometers with junction shunt resistors RJ nominally of 30 Ω fabricated on 5 × 5 mm2 chips. The field-to-flux transfer coefficient ∂B/∂Φ of the magnetometers was 1.5 nT/Φ0, with a SQUID loop inductance Ls of about 350 pH. The distributions of important SQUID parameters, such as the current swing Iswing, the dynamic resistance Rd, and the flux-to-voltage transfer coefficient ∂V/∂Φ, are given. Nearly all the SQUIDs could be stably operated in the voltage bias mode and their ∂V/∂Φ reached a large mean value of 380 μV/Φ0. In this case, the SQUIDs can be read out directly by a commercial operational amplifier without any additional means to suppress preamplifier noise. The mean flux noise of the SQUIDs was found to be 4.5 μΦ0 Hz-1/2, corresponding to a field resolution of 7 fT Hz-1/2. To demonstrate the applicability of these SQUIDs in the direct readout scheme, a simple four-channel SQUID gradiometer system was set up to perform magnetocardiography and magnetoencephalography measurements in a magnetically shielded room.
Alabia, Irene D.; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki
2015-01-01
We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999–2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid’s putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37–40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40–44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ. PMID:26571118
Mismatch between the eye and the optic lobe in the giant squid.
Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin
2017-07-01
Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant squids has not evolved proportionally in terms of performing complex tasks compared with shallow-water cephalopod species.
Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
NASA Technical Reports Server (NTRS)
Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.
1995-01-01
A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.
Technical and commerical challenges in high Tc SQUIDs and their industrial applications
NASA Technical Reports Server (NTRS)
Lu, D. F.
1995-01-01
A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.
Input clustering in the normal and learned circuits of adult barn owls.
McBride, Thomas J; DeBello, William M
2015-05-01
Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Winarni Agustini, Tri; Hadiyanto; Wijayanti, Ima; Amalia, Ulfah; Benjakul, Soottawat
2018-02-01
Antioxidant could be extracted and isolated from squid inks. Squid ink in the form of melanin free ink (MFI) could be act as an electron donor which can stabilize free radicals in lipid oxidation. This study was carried out to assess the antioxidant activity of squid inks converted into MFI in different dilution and to optimize the extraction conditions for the application of MFI as an antioxidative agent on fish product. Three different types of MFI extracts i.e : pure squid ink, squid ink with 5 times dilution and squid ink with 10 times dilutions by using cooled ionized water (4°C). The ink was then centrifuged at 18.000 x g for 30 minutes at cooled centrifuge (4°C) followed by DPPH analysis. The results showed that the IC50 of MFI extracts were 2.84 ppm; 1.11 ppm and 0.34 ppm, respectively (p < 0.05). The results indicated that squid ink with 10 times dilution in extraction of MFI had the highest value in free radical inhibitory. Although the IC50 of three different dilutions are equally low, and are considered as very strong antioxidative agent, however, it showed that the MFI extracted from squid ink had the ability to prevent free radical
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints
NASA Astrophysics Data System (ADS)
Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.
2002-05-01
Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.
Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.F.; Fan, C.; Ruan, J.Z.
1994-12-31
A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less
Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan
2004-03-19
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.
Anderson, E J; DeMont, M E
2000-09-01
High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill period of squid plays a greater role, and the jet period a lesser role, in the low whole-cycle efficiencies predicted in squid and similar jet-propelled organisms. These findings offer new perspectives on locomotory hydrodynamics, intramantle pressure measurements and functional morphology with regard to squid and other jet-propelled organisms.
NASA Astrophysics Data System (ADS)
Robinson, C. J.; Gomez-Gutierrez, J.
2016-02-01
Dosidicus gigas (jumbo squid) is an ecologically relevant predator in the Gulf of California, Mexico, where it supports an economically valuable fishery. The commercial jumbo squid fishery in the Gulf declined steeply after an El Niño event in 2009-2010, and subsequent landings have remained at historically low levels in the relevant squid fishing centers (Guaymas, Sonora, and Santa Rosalia, Baja California Sur). In this paper, we examined wind speed and satellite chlorophyll a concentrations on the jumbo squid fishing grounds as factors that would be expected to be relevant to this prolonged period of low landings. Analysis from local weather stations, remote sensing and fishery data showed that low jumbo squid landings from 2010 to 2015 occurred during a period abnormally weak winter/spring winds and extremely low chlorophyll a concentrations off the East Guaymas Basin. Results indicate that the squid fishing area in the Guaymas region has been chronically impoverished during this period, and that this area may no longer be a productive habitat for jumbo squid. In response to this decreased productivity, size-at-maturity of jumbo squid showed a drastic decrease over the same period. Results are compared with the effect of El Niño 1997-1998 on the jumbo squid fishery and size-at-maturity of this species in the Gulf of California. The key difference between the recovery phases for El Niño 1997-1998 versus El Niño2009-2010 was the wind intensity as measured in the Guaymas fishing area.
SQUIDs: microscopes and nondestructive evaluation
NASA Astrophysics Data System (ADS)
Mück, Michael
2005-03-01
SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2009-01-01
Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor)
2013-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2014-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2011-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)
2010-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
The UT 19-channel DC SQUID based neuromagnetometer.
ter Brake, H J; Flokstra, J; Jaszczuk, W; Stammis, R; van Ancum, G K; Martinez, A; Rogalla, H
1991-01-01
A 19-channel DC SQUID based neuromagnetometer is under construction at the University of Twente (UT). Except for the cryostat all elements of the system are developed at the UT. It comprises 19 wire-wound first-order gradiometers in a hexagonal configuration. The gradiometers are connected to planar DC SQUIDs fabricated with a Nb/Al, AlO kappa/Nb technology. For this connection we developed a method to bond a Nb wire to a Nb thin-film. The SQUIDs are placed in compartmentalised Nb modules. Further, external feedback is incorporated in order to eliminate cross talk between the gradiometers. The electronics basically consist of a phase-locked loop operating with a modulation frequency of 100 kHz. Between SQUID and preamplifier a small transformer is used to limit the noise contribution of the preamplifier. In the paper the overall system is described, and special attention is paid to the SQUID module (bonding, compartments, external-feedback setup, output transformer).
Biofunctional Properties of Enzymatic Squid Meat Hydrolysate
Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo
2015-01-01
Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752
Bootstrapped two-electrode biosignal amplifier.
Dobrev, Dobromir Petkov; Neycheva, Tatyana; Mudrov, Nikolay
2008-06-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation. Low-voltage and low-power tendencies prevail. A two-electrode biopotential amplifier, designed for low-supply voltage (2.7-5.5 V), is presented. This biomedical amplifier design has high differential and sufficiently low common mode input impedances achieved by means of positive feedback, implemented with an original interface stage. The presented circuit makes use of passive components of popular values and tolerances. The amplifier is intended for use in various two-electrode applications, such as Holter monitors, external defibrillators, ECG monitors and other heart beat sensing biomedical devices.
Superconducting quantum interference device with frequency-dependent damping: Readout of flux qubits
NASA Astrophysics Data System (ADS)
Robertson, T. L.; Plourde, B. L. T.; Hime, T.; Linzen, S.; Reichardt, P. A.; Wilhelm, F. K.; Clarke, John
2005-07-01
Recent experiments on superconducting flux qubits, consisting of a superconducting loop interrupted by Josephson junctions, have demonstrated quantum coherence between two different quantum states. The state of the qubit is measured with a superconducting quantum interference device (SQUID). Such measurements require the SQUID to have high resolution while exerting minimal backaction on the qubit. By designing shunts across the SQUID junctions appropriately, one can improve the measurement resolution without increasing the backaction significantly. Using a path-integral approach to analyze the Caldeira-Leggett model, we calculate the narrowing of the distribution of the switching events from the zero-voltage state of the SQUID for arbitrary shunt admittances, focusing on shunts consisting of a capacitance Cs and resistance Rs in series. To test this model, we fabricated a dc SQUID in which each junction is shunted with a thin-film interdigitated capacitor in series with a resistor, and measured the switching distribution as a function of temperature and applied magnetic flux. After accounting for the damping due to the SQUID leads, we found good agreement between the measured escape rates and the predictions of our model. We analyze the backaction of a shunted symmetric SQUID on a flux qubit. For the given parameters of our SQUID and realistic parameters for a flux qubit, at the degeneracy point we find a relaxation time of 113μs , which limits the decoherence time to 226μs . Based on our analysis of the escape process, we determine that a SQUID with purely capacitive shunts should have narrow switching distributions and no dissipation.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Busch, S. E.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Merrell, W.; Nagler, P. C.; Porst, J. P.;
2012-01-01
Like MMCs, MPTs enable high energy microcalorimeters with zero bias power dissipation and potential resolution < 1 eV. MPTs can provide d(phi)/dT as large as 1000 (Phi)(sub 0)/K, with no excess noise, thereby reducing the importance of SQUID noise. Long coherence length in a Type-I superconducting MoAu film offers multiple advantages for efficient flux expulsion in MPT. Region of steepest d(phi)/dT is the Meissner effect in the small device; flux is expelled/penetrates to minimize free energy. Steepness of transition can be engineered with choice of film thickness and coil pitch relative to lambda(sub eff)(0), ratio of T/T(sub c), and bias circuit inductance.
Overton, Jr., William C.; Steyert, Jr., William A.
1984-01-01
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Overton, W.C. Jr.; Steyert, W.A. Jr.
1981-05-22
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Whole-head SQUID system in a superconducting magnetic shield.
Ohta, H; Matsui, T; Uchikawa, Y
2004-11-30
We have constructed a mobile whole-head SQUID system in a superconducting magnetic shield - a cylinder of high Tc superconductor BSCCO of 65 cm in diameter and 160 cm in length. We compared the noise spectra of several SQUID sensors of SNS Josephson junctions in the superconducting magnetic shield with those of the same SQUID sensors in a magnetically shielded room of Permalloy. The SQUID sensors in the superconducting magnetic shield are more than 100 times more sensitive than those in a magnetically shielded room of Permalloy below 1 Hz. We tested the whole-head SQUID system in the superconducting magnetic shield observing somatosensory signals evoked by stimulating the median nerve in the right wrist of patients by current pulses. We present data of 64 and 128 traces versus the common time axis for comparison. Most sensory responses of human brains phase out near 250 ms. However monotonic rhythms still remain even at longer latencies than 250 ms. The nodes of these rhythm are very narrow even at these longer latencies just indicating low noise characteristics of the SQUID system at low-frequencies. The current dipoles at the secondary somatosensory area SII are evoked at longer latencies than 250 ms contributing to a higher-level brain function. The SQUID system in a superconducting magnetic shield will also have advantages when it is used as a DC MEG to study very slow activities and function of the brain.
NASA Astrophysics Data System (ADS)
Chesca, Boris; John, Daniel; Mellor, Christopher J.
2015-10-01
A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10-17) mV and (0.3-2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.
Gong, Yi; Li, Yunkai; Chen, Xinjun; Chen, Ling
2018-04-15
Squid is an important seafood resource for Asian and European countries. With the continuous development of processed squid products, an effective traceability system has become increasingly prominent. Here, we attempt to trace the fishery products of the main target species, jumbo squid (Dosidicus gigas), by using biochemical tracers. Carbon and nitrogen isotope ratios (δ 13 C and δ 15 N values) and fatty acid profiles were identified in squid from three harvest locations in the eastern Pacific Ocean by isotope ratio mass spectrometry and gas chromatography/mass spectrometry, respectively. Comparative analysis was used to evaluate the geographic variations in tracers and to identify the suitable discriminatory variables among origins. Significant spatial variations were found in isotopic values and fatty acid profiles in squid muscle tissues, possibly because of different food availability and/or oceanographic conditions that each group experiences at a given location. The stepwise discriminant analysis indicated that δ 15 N, C16:1n7, C17:1n7, C18:2n6, C20:1 and C20:4n6 were effective variables at differentiating origin. Combined use of stable isotope ratios and fatty acid analyses could trace geographic origins of jumbo squid. This study provides an alternative approach for improving authenticity evaluation of commercial squid products. Copyright © 2018 John Wiley & Sons, Ltd.
Timing of squid migration reflects North Atlantic climate variability.
Sims, D W; Genner, M J; Southward, A J; Hawkins, S J
2001-12-22
The environmental and biotic conditions affecting fisheries for cephalopods are only partially understood. A problem central to this is how climate change may influence population movements by altering the availability of thermal resources. In this study we investigate the links between climate and sea-temperature changes and squid arrival time off southwestern England over a 20-year period. We show that veined squid (Loligo forbesi) migrate eastward in the English Channel earlier when water in the preceding months is warmer, and that higher temperatures and early arrival correspond with warm (positive) phases of the North Atlantic oscillation (NAO). The timing of squid peak abundance advanced by 120-150 days in the warmest years ('early' years) compared with the coldest ('late' years). Furthermore, sea-bottom temperature was closely linked to the extent of squid movement. Temperature increases over the five months prior to and during the month of peak squid abundance did not differ between early and late years, indicating squid responded to temperature changes independently of time of year. We conclude that the temporal variation in peak abundance of squid seen off Plymouth represents temperature-dependent movement, which is in turn mediated by climatic changes associated with the NAO. Such climate-mediated movement may be a widespread characteristic of cephalopod populations worldwide, and may have implications for future fisheries management because global warming may alter both the timing and location of peak population abundance.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach.
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-12-01
The squid ink extract is well known for its biomedical properties. In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. Squid ink is very high in a number of important nutrients. It's particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-01-01
Background: The squid ink extract is well known for its biomedical properties. Objective: In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Materials and Methods: Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. Results: In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Conclusion: Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. SUMMARY Squid ink is very high in a number of important nutrients. It’s particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin PMID:29333051
Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G
2012-07-01
Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.
Size increment of jumbo flying squid Dosidicus gigas mature females in Peruvian waters, 1989-2004
NASA Astrophysics Data System (ADS)
Argüelles, Juan; Tafur, Ricardo; Taipe, Anatolio; Villegas, Piero; Keyl, Friedeman; Dominguez, Noel; Salazar, Martín
2008-10-01
Changes in population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters were studied based on size-at-maturity from 1989 to 2004. From 1989 to 1999, mature squid belonging to the medium-sized group prevailed, but from 2001 on, mature squids were larger. This change is not related to the changes in sea surface temperature and we hypothesized that it was caused by the population increase of mesopelagic fishes as prey.
2014-09-01
junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...can sense minute magnetic fields approaching 1015 Tesla. These SQUIDs can be arranged in arrays with different coupling schemes and parameter values to...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This
NASA Astrophysics Data System (ADS)
Setyobudi, Eko; Jeon, Chan-Hyeok; Choi, Kwangho; Lee, Sung Il; Lee, Chung Il; Kim, Jeong-Ho
2013-06-01
The occurrence of Genus Anisakis nematode larvae in marine fishes and cephalopods is epidemiologically important because Anisakis simplex larval stage can cause a clinical disease in humans when infected hosts are consumed raw. Common squid ( Todarodes pacificus) from Korean waters were investigated for anisakid nematodes infection during 2009˜2011. In total, 1,556 larvae were collected from 615 common squids and 732 of them were subsequently identified by PCR-RFLP analysis of ITS rDNA. Depending on the sampling locations, the nematode larvae from common squid showed different prevalence, intensity and species distribution. A high prevalence (P) and mean intensity (MI) of infection were observed in the Yellow Sea (n = 250, P = 86.0%, MI = 5.99 larvae/host) and the southern sea of Korea (n = 126, P = 57.1%, MI = 3.36 larvae/host). Anisakis pegreffii was dominantly found in common squid from the southern sea (127/ 140, 90.7%) and the Yellow Sea (561/565, 98.9%). In contrast, the P and MI of infection were relatively low in the East Sea (n = 239, P = 8.37%, MI = 1.25 larvae/host). A. pegreffii was not found from the East Sea and 52.0% (13/25) of the nematodes were identified as A. simplex. Most of them were found in the body cavity or digestive tract of common squid, which are rarely consumed raw by humans. Considering the differenences in anisakid nematode species distribution and their microhabitat in common squid, it remains unclear whether common squid plays an important role in the epidemiology of human anisakis infection in Korea. Further extensive identification of anisakid nematodes in common squid, with geographical and seasonal information will be necessary.
NASA Astrophysics Data System (ADS)
Neira, Sergio; Arancibia, Hugo
2013-10-01
We analyzed recent food web and fish stock changes in the central Chile marine ecosystem, comparing the roles of jumbo squid (Dosidicus gigas) as predator, the environment, and fishing. To accomplish this we used food web modeling and the Ecopath with Ecosim software (EwE). The principal fish stocks have experienced wide decadal fluctuations in the past 30 years, including stock collapses of horse mackerel (Trachurus murphyi) and hake (Merluccius gayi), and there was a large influx of jumbo squid during the mid-2000s. We used two EwE models representing the food web off central Chile to test the hypothesis that predation by jumbo squid has been significant in explaining the dynamics of the main fishing resources and other species in the study area. Results indicate that predation by jumbo squid on fish stocks is lower than that of other predators (e.g. hake) and the fishery. Long-term fluctuations (1978-2004) in the biomass of the main fish stocks (as well as other components of the food web) seem to be related to fishing and to variation in primary production, rather than to predation by jumbo squid alone. Jumbo squid seems to play a role as predator rather than prey in the system, but its impacts are low when compared with the impacts of other predators and fishing. Therefore, we conclude that jumbo squid predation on its prey was not the primary force behind the collapse of important fish stocks off central Chile. Future efforts should be directed to better understanding factors that trigger sudden increases in jumbo squid abundance off central Chile, as well as modeling its trophic impacts.
Guerrero-Ferreira, Ricardo; Gorman, Clayton; Chavez, Alba A.; Willie, Shantell
2013-01-01
Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates. PMID:22885637
Negative inductance SQUID qubit operating in a quantum regime
NASA Astrophysics Data System (ADS)
Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.
2018-04-01
Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2013-01-01
The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.
Aperture effects in squid jet propulsion.
Staaf, Danna J; Gilly, William F; Denny, Mark W
2014-05-01
Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.
Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions
NASA Astrophysics Data System (ADS)
Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen
2018-05-01
Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
.... 110707371-2136-02] RIN 0648- XB145 Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Trimester 1 Longfin Squid Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION...
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
NASA Astrophysics Data System (ADS)
Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen
We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.
NASA Astrophysics Data System (ADS)
Wang, Xuehui; Qiu, Yongsong; Zhang, Peng; Du, Feiyan
2017-07-01
Based on the biological data of purpleback flying squid ( Sthenoteuthis oualaniensis) collected by light falling-net in the southern South China Sea (SCS) during September to October 2012 and March to April 2013, growth and mortality of `Medium' and `Dwarf' forms of squid are derived using the Powell-Wetherall, ELEFAN methods and length-converted catch curves (FiSAT package). Given a lack of commercial exploitation, we assume total mortality to be due entirely to natural mortality. We estimate these squid have fast growth, with growth coefficients ( k) ranging from 1.42 to 2.39, and high natural mortality ( M), with estimates ranging from 1.61 to 2.92. To sustainably exploit these squid stocks, yield per recruitment based on growth and natural mortality was determined using the Beverton-Holt dynamic pool model. We demonstrate squid stocks could sustain high fishing mortality and low ages at first capture, with an optimal fishing mortality >3.0, with the optimal age at first capture increased to 0.4-0.6 years when fishing mortality approached optimal levels. On the basis of our analyses and estimates of stock biomass, we believe considerable potential exists to expand the squid fishery into the open SCS, relieving fishing pressure on coastal waters.
Superconducting Quantum Interferometers for Nondestructive Evaluation
Kostyurina, E. A.; Kalashnikov, K. V.; Maslennikov, Yu. V.; Koshelets, V. P.
2017-01-01
We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs). The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna. PMID:29210980
Becker, Kaylyn N; Warren, Joseph D
2015-05-01
Material properties of the flesh from three fish species (Merluccius productus, Symbolophorus californiensis, and Diaphus theta), and several body parts of the Humboldt squid (Dosidicus gigas) collected from the California Current ecosystem were measured. The density contrast relative to seawater varied within and among taxa for fish flesh (0.9919-1.036), squid soft body parts (mantle, arms, tentacle, braincase, eyes; 1.009-1.057), and squid hard body parts (beak and pen; 1.085-1.459). Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast relative to seawater varied within and among taxa for fish flesh (0.986-1.027) and Humboldt squid mantle and braincase (0.937-1.028). Material properties in this study are similar to values from previous studies on species with similar life histories. In general, the sound speed and density of soft body parts of fish and squid were 1%-3% and 1%-6%, respectively, greater than the surrounding seawater. Hard parts of the squid were significantly more dense (6%-46%) than seawater. The material properties reported here can be used to improve target strength estimates from acoustic scattering models, which could increase the accuracy of biomass estimates from acoustic surveys for these nekton.
Squid rocket science: How squid launch into air
NASA Astrophysics Data System (ADS)
O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney
2013-10-01
Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.
Identification of four squid species by quantitative real-time polymerase chain reaction.
Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan
2016-02-01
Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peña, Marian; Villanueva, Roger; Escánez, Alejandro; Ariza, Alejandro
2018-03-01
Squids are fast swimmers that are difficult to catch by nets and to record with echosounders in the open ocean. A rare detection of orangeback flying squid Sthenoteuthis pteropus in the Central Eastern Atlantic Ocean off the coast of Senegal was accomplished during the MAFIA oceanographic survey carried out between Brazil and the Canary Islands in April 2015. Although net sampling did not yield any subadult or adult individuals, dozens were visually detected from the vessel jumping out of the water at night and displaying their characteristic dorsal photophore patch. A few squids were caught with fishing lines and identified at the species level. The acoustic echograms revealed distinctive previously unobserved acoustic echotraces that seemed to be caused by those squids, which were the only new species detected at that station (over a bottom depth ranging from 4010 to 5215 m, between 10° 45‧ N 22° 41‧ W and 10° 53‧ N 22° 40‧ W). The acoustic response and swimming behaviour shown by those echotraces reinforced this hypothesis. The (potentially) squid recordings dove rapidly (0.19 m/s to 0.48 m/s) from around 10 m below the mesopelagic fish layer, which had migrated to the subsurface at night (35 m depth), to depths of 70-95 m, and swam upward, apparently attacking fish from below. The morning squid migration to deeper waters (250-300 m) was also recorded acoustically. Downward movements of squid swimming at speeds of 0.22 m/s were calculated from the echogram, while the mesopelagic migrating fish swam at 0.27 m/s reaching 250 m depth. Sv120 - Sv38 averaged 2.7 ± 3.2 dB for the squid echotraces while the mesopelagic layer showed values of -8.8 ± 0.9 dB. These ranges agreed with values in the literature and from theoretical models. This study provides more insight into the migrating behaviour of oceanic squids, a species group that is poorly represented in the acoustic literature due to challenges in studying them.
Hoving, Henk-Jan T; Gilly, William F; Markaida, Unai; Benoit-Bird, Kelly J; -Brown, Zachary W; Daniel, Patrick; Field, John C; Parassenti, Liz; Liu, Bilin; Campos, Bernardita
2013-07-01
Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1-1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009-2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life-history strategy. Large squid abandoned seasonal coastal-shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well-mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle-length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life-history trajectory in which gigantism and high fecundity in normally productive coastal-shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life- history strategies can coexist. Hydro-acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate-driven switch in size-at-maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate-change and the potential ecological impacts of this invasive predator on marine ecosystems. © 2013 Blackwell Publishing Ltd.
Valenzuela-Lagarda, José Luis; García-Armenta, Evangelina; Pacheco-Aguilar, Ramón; Gutiérrez-Dorado, Roberto; Mazorra-Manzano, Miguel Ángel; Lugo-Sánchez, María Elena; Muy-Rangel, María Dolores
2018-01-24
The giant squid (Dosidicus gigas) is a species of commercial interest as a source of protein, and it can be developed into ready-to-eat food products, including expanded extrusion snacks (EES). EES are prepared primarily from starch; however, adding animal protein increases the nutritional contents. The objective of this study was to evaluate the effect of the protein-carbohydrate interactions on the physical and morphological characteristics of an EES made of squid mantle and potato-corn flour. The independent variable was the squid mantle content (40, 60, 80, and 100%) and two controls (0 1 = 100% potato, 0 2 = 100% corn). The expansion rate (ER) of the sample is significantly minor (p < .5) when the squid mantle content increases ER = 2.0, 1.8 1.4 to 40, 60, and 80%, respectively. In samples with more protein, crispness and crunchiness were reduced, whereas the hardness increased. Digital imaging analysis indicated that the interaction between protein and starch causes significant morphometric changes to the fractal dimension (2.665-2.739) and lacunarity (0.61-1.29). The results showed that it is possible to incorporate up to 60% squid mantle to prepare EES that possess texture and morphometric characteristics competitive in reported studies with snacks usually incorporating flours, corn, and wheat in the formulations. The giant squid is a very attractive species because its meat has low caloric intake, high protein content, and is an important source of omega 3 fatty acids. Despite the desirable qualities of the squid meat its consumption is very low due to the low diffusion of the properties of its meat, acid, and ammoniacal flavor, rigid texture that requires prolonged cooking times and lack of alternatives of consumption. In Mexico, this type of squid is mainly destined for export as frozen mantle and products with little added value, which generates little economic benefit. Therefore, the results of this research may be of interest to the squid processing industry, which demands new forms of consumption of this marine species to increase their commercialization and added value. © 2018 Wiley Periodicals, Inc.
Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.
York, Carly A; Bartol, Ian K; Krueger, Paul S
2016-09-15
Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2016-06-01
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model (GLM) and generalized additive model (GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance (catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature (SST), mixed layer depth (MLD), and the interaction term ( SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40°N and 44°N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20°C and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995-2002 and high during 2003-2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
SQUID use for Geophysics: finding billions of dollars
NASA Astrophysics Data System (ADS)
Foley, Catherine
2014-03-01
Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
50 CFR 648.124 - Scup commercial season and commercial fishery area restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessels in the Southern Gear Restricted Area that are fishing for or in possession of the following non-exempt species: Longfin squid; black sea bass; and silver hake (whiting). (b) Northern Gear Restricted... are fishing for, or in possession of, the following non-exempt species: Longfin squid squid; black sea...
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
Scanning SQUID sampler with 40-ps time resolution
NASA Astrophysics Data System (ADS)
Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Scanning SQUID sampler with 40-ps time resolution.
Cui, Zheng; Kirtley, John R; Wang, Yihua; Kratz, Philip A; Rosenberg, Aaron J; Watson, Christopher A; Gibson, Gerald W; Ketchen, Mark B; Moler, Kathryn A
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ 0 . This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina
2010-01-01
Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.
Analytical approximations to the dynamics of an array of coupled DC SQUIDs
NASA Astrophysics Data System (ADS)
Berggren, Susan; Palacios, Antonio
2014-04-01
Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain conditions, to strong signal amplification effects. Over the past years we have studied this generic feature on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array and it could serve as a mathematical framework to find approximate solutions to related complex systems with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array of SQUIDs has not been reported yet in the literature.
Paleomagnetic Analysis Using SQUID Microscopy
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.
2007-01-01
Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.
A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
Hashemi, S Saeid; Sawan, Mohamad; Savaria, Yvon
2012-08-01
We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop. Therefore, the rectifier is good for applications with low-voltage power supplies and large load current. The rectifier topology does not require complex circuit design. The highest voltages available in the circuit are used to drive the gates of selected transistors in order to reduce leakage current and to lower their channel on-resistance, while having high transconductance. The proposed rectifier was fabricated using the standard TSMC 0.18 μm CMOS process. When connected to a sinusoidal source of 3.3 V peak amplitude, it allows improving the overall power efficiency by 11% compared to the best recently published results given by a gate cross-coupled-based structure.
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-01-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
NASA Astrophysics Data System (ADS)
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
NASA Astrophysics Data System (ADS)
Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.
2013-10-01
From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
NASA Astrophysics Data System (ADS)
Granata, Carmine; Vettoliere, Antonio
2016-02-01
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In particular, we will discuss the motivations, the theoretical aspects, the fabrication techniques, the different nanoSQUIDs and the relative nanoscale applications.
Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)
NASA Astrophysics Data System (ADS)
Weinstock, H.
1993-04-01
In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.
OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics
Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.
2013-02-06
We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less
[Biochemistry and functional characterization of squid mantle meat (Dosidicus gigas)].
Abugoch, L; Guarda, A; María Pérez, L; Isabel Donghi, M
2000-12-01
A study for the characterization of frozen giant squid mantle (meat) protein stored at -25 degrees C for 8 month was started. In the present research, the following functional properties were investigate: emulsifying, water holding and gel forming capacities. Optimal conditions for the separation and differentiation of miofibrillar and sarcoplasmatic proteins were also studied. It was found that the unfrozen giant squid mantle meat es capable of emulifying 2.817,4 g of oil/g of protein and holding capacity was 3.64 g of water/g of protein. Related to the gel forming capacity, it was not obtain, probably due to excessive storage of the meat. With regard to miofibrilar protein obtention of the squid mantle meat, it was found that two low ionic strength washings (I = 0.05), the sarcoplasmic proteins were practically eliminated from the protein matrix. The differentiation of miofibrilar and sarcoplasmatic proteins was obtained by PAGE-SDS of the squid mantle meat extracted at two different ionic strength (I = 0.05 and I = 0.5). This work demonstrates that the giant squid mantle protein has a high emulsifying and water holding capacity, and it can be used, as a raw material, for the improvement of sausage products. About the gelling products, more studies will be necessary with fresh squid mantle meat to conclude about this functional property.
Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko
2011-05-19
Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin. © 2011 American Chemical Society
Read-out electronics for DC squid magnetic measurements
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... and GOA sharks, sculpins, and octopuses, and GOA squids as a group for purposes of prohibited species.../npfmc/default.htm . One alternative previously adopted for a Tier 6 stock (squid and octopus in the GOA... groups (sharks, skates, sculpins, octopus, or squid) approaches overfishing. Response: See the response...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
.... SUMMARY: NMFS proposes changing the butterfish mortality cap on the longfin squid fishery from a catch cap to a discard cap in Framework Adjustment 7 to the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan,. This action also proposes reducing the butterfish mortality cap for the 2013 fishing year...
Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun
2015-05-01
This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®
Graded Positive Feedback in Elasmobranch Ampullae of Lorenzini
NASA Astrophysics Data System (ADS)
Kalmijn, Ad. J.
2003-05-01
The acute electrical sensitivity of marine sharks and rays is the greatest known in the Animal Kingdom. I investigate the possibility that the underlying biophysical principles are the very same as those encountered in the central nervous system of animal and man. The elasmobranch ampullae of Lorenzini detect the weak electric fields originating from the oceanic environment, whereas the nerve cells of the brain detect the electric fields arising, well, from the central nervous system. In responding to electrical signals, the cell membranes of excitable cells behave in different regions of the cell as negative or positive conductors. The negative and positive conductances in series, loaded by the cell's electrolytic environment, constitute a positive feedback circuit. The result may be of an all-or-none nature, as in peripheral nerve conduction, or of a graded nature, as in central processing. In this respect, the operation of the elasmobranch ampullae of Lorenzini is more akin to the graded, integrative processes of higher brain centers than to the conduction of nerve action potentials. Hence, the positive-feedback ampullary circuit promises to help elucidate the functioning of the central nervous system as profoundly as the squid giant axon has served to reveal the process of nervous conduction.
A shot in the dark: same-sex sexual behaviour in a deep-sea squid.
Hoving, Hendrik J T; Bush, Stephanie L; Robison, Bruce H
2012-04-23
Little is known about the reproductive habits of deep-living squids. Using remotely operated vehicles in the deep waters of the Monterey Submarine Canyon, we have found evidence of mating, i.e. implanted sperm packages, on similar body locations in males and females of the rarely seen mesopelagic squid Octopoteuthis deletron. Equivalent numbers of both sexes were found to have mated, indicating that male squid routinely and indiscriminately mate with both males and females. Most squid species are short-lived, semelparous (i.e. with a single, brief reproductive period) and promiscuous. In the deep, dark habitat where O. deletron lives, potential mates are few and far between. We suggest that same-sex mating behaviour by O. deletron is part of a reproductive strategy that maximizes success by inducing males to indiscriminately and swiftly inseminate every conspecific that they encounter.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
...NMFS is implementing final 2012 specifications and management measures for Atlantic mackerel (mackerel), and 2012-2014 specifications for Illex and longfin squid, and interim final 2012 specifications and management measures for butterfish. This is the first year that the specifications are being set for Atlantic mackerel and butterfish under the provisions of the Mid-Atlantic Fishery Management Council's (Council) Annual Catch Limit and Accountability Measure Omnibus Amendment. This action also adjusts the closure threshold for the commercial mackerel fishery to 95 percent (from 90 percent), and allows the use of jigging gear to target longfin squid if the longfin squid fishery is closed due to the butterfish mortality cap. Finally, this rule makes minor corrections in existing regulatory text to clarify the intent of the regulations. These specifications and management measures promote the utilization and conservation of the Atlantic Mackerel, Squid, and Butterfish (MSB) resource.
Squid as nutrient vectors linking Southwest Atlantic marine ecosystems
NASA Astrophysics Data System (ADS)
Arkhipkin, Alexander I.
2013-10-01
Long-term investigations of three abundant nektonic squid species from the Southwest Atlantic, Illex argentinus, Doryteuthis gahi and Onykia ingens, permitted to estimate important population parameters including individual growth rates, duration of ontogenetic phases and mortalities. Using production model, the productivity of squid populations at different phases of their life cycle was assessed and the amount of biomass they convey between marine ecosystems as a result of their ontogenetic migrations was quantified. It was found that squid are major nutrient vectors and play a key role as transient 'biological pumps' linking spatially distinct marine ecosystems. I. argentinus has the largest impact in all three ecosystems it encounters due to its high abundance and productivity. The variable nature of squid populations increases the vulnerability of these biological conveyers to overfishing and environmental change. Failure of these critical biological pathways may induce irreversible long-term consequences for biodiversity, resource abundance and spatial availability in the world ocean.
Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily
2014-01-01
The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The circuits are fabricated using standard microlithographic techniques and are compatible with uniform, large array formats. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM employs the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. There is no fragile membrane in the structure for thermal isolation, which improves the fabrication yield.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
..., Squid, and Octopus in the Gulf of Alaska AGENCY: National Marine Fisheries Service (NMFS), National... prohibiting directed fishing for sculpins, sharks, squid, and octopus in the Gulf of Alaska (GOA). This action..., and octopus in the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t.), January 13, 2011...
A YBCO RF-squid variable temperature susceptometer and its applications
NASA Technical Reports Server (NTRS)
Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia
1991-01-01
The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.
Macroscale and Microscale Structural Characterization of Cephalopod Chromatophores
2011-04-01
ABSTRACT Cephalopods, the class of mollusks that include squid, cuttlefish, and octopus , possess skin with dynamic adaptable appearance. Their unique...Cephalopods, the class of mollusks that include squid, cuttlefish, and octopus , possess skin with dynamic adaptable appearance. Their unique ability to...Cephalopoda including cuttlefish, octopus , and squid (Hanlon, 2007; Hanlon and Messenger, 1996; Hanlon, 1982; Hanlon and Messenger, 1988). These
Designing a Microhydraulically driven Mini robotic Squid
2016-05-20
applications for microrobots include remote monitoring, surveillance, search and rescue, nanoassembly, medicine, and in-vivo surgery . Robotics platforms...Secretary of Defense for Research and Engineering. Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng B.S., U.S. Air...Committee on Graduate Students 2 Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng Submitted to the Department
jSquid: a Java applet for graphical on-line network exploration.
Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L
2008-06-15
jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
Gong, Yi; Chen, Xin-jun; Li, Yun-kai; Han, Meng-jie
2015-09-01
As a pelagic cephalopod and one of the main target species of Chinese distant water fishery, jumbo squids (Dosidicus gigas) play a major role in the marine ecosystems of the eastern Pacific. Understanding the feeding ecology and migration patterns of jumbo squids is of importance for better utilizing the resources. The isotopic signatures of gladius, have been proved to be a powerful tool to reveal high resolution and ontogenic variations in individual foraging strategies of squids; which is an archival tissue with no elemental turnover after formation. In this study, the growth equation of gladius proostracum was established based on the age information determined by statolith. Gladius was cut successionally by the growth curve of gladius proostracum, the stable isotopic values of the gladius profiles were determined, and the feeding ecology and migration patterns of jumbo squids during its growth process were investigated. Results showed that the jumbo squids began to migrate after 180 days of postnatal, and their trophic levels tended to decrease throughout the life span. These results demonstrated the feasibility of using continuous sampling hard tissue to study the feeding ecology and habitat transfer of jumbo squids.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism
NASA Astrophysics Data System (ADS)
Hoving, H. J. T.; Robison, B. H.
2016-10-01
In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
Sensitive Spin Detection Using An On-Chip Squid-Waveguide Resonator
NASA Astrophysics Data System (ADS)
Yue, Guang
Quantum computing gives novel way of computing using quantum mechanics, which furthers human knowledge and has exciting applications. Quantum systems with diluted spins such as rare earth ions hosted in single crystal, molecule-based magnets etc. are promising qubits candidates to form the basis of a quantum computer. High sensitivity measurement and coherent control of these spin systems are crucial for their practical usage as qubits. The micro-SQUID (direct-current micrometer-sized Superconducting QUantum Interference Device) is capable to measure magnetization of spin system with high sensitivity. For example, the micro-SQUID technique can measure magnetic moments as small as several thousand muB as shown by the study of [W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)]. Here we develop a novel on-chip setup that combines the micro-SQUID sensitivity with microwave excitation. Such setup can be used for electron spin resonance measurements or coherent control of spins utilizing the high sensitivity of micro-SQUID for signal detection. To build the setup, we studied the fabrication process of the micro-SQUID, which is made of weak-linked Josephson junctions. The SQUID as a detector is integrated on the same chip with a shorted coplanar waveguide, so that the microwave pulses can be applied through the waveguide to excite the sample for resonance measurements. The whole device is plasma etched from a thin (˜ 20nm) niobium film, so that the SQUID can work at in large in-plane magnetic fields of several tesla. In addition, computer simulations are done to find the best design of the waveguide such that the microwave excitation field is sufficiently strong and uniformly applied to the sample. The magnetization curve of Mn12 molecule-based magnet sample is measured to prove the proper working of the micro-SQUID. Electron spin resonance measurement is done on the setup for gadolinium ions diluted in a CaWO4 single crystal. The measurement shows clear evidence of the resonance signal from the 1st transition of the gadolinium ions' energy levels, which shows the setup is successfully built. Due to the high sensitivity of micro-SQUID and the ability to concentrate microwave energy in small areas of the chip, this setup can detect signals from a small number of spins (107) in a small volume (several mum 3).
Nilsson, Dan-E; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger T; Shashar, Nadav
2013-09-08
We recently reported (Curr Biol 22:683-688, 2012) that the eyes of giant and colossal squid can grow to three times the diameter of the eyes of any other animal, including large fishes and whales. As an explanation to this extreme absolute eye size, we developed a theory for visual performance in aquatic habitats, leading to the conclusion that the huge eyes of giant and colossal squid are uniquely suited for detection of sperm whales, which are important squid-predators in the depths where these squid live. A paper in this journal by Schmitz et al. (BMC Evol Biol 13:45, 2013) refutes our conclusions on the basis of two claims: (1) using allometric data they argue that the eyes of giant and colossal squid are not unexpectedly large for the size of the squid, and (2) a revision of the values used for modelling indicates that large eyes are not better for detection of approaching sperm whales than they are for any other task. We agree with Schmitz et al. that their revised values for intensity and abundance of planktonic bioluminescence may be more realistic, or at least more appropriately conservative, but argue that their conclusions are incorrect because they have not considered some of the main arguments put forward in our paper. We also present new modelling to demonstrate that our conclusions remain robust, even with the revised input values suggested by Schmitz et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... rulemaking (ANPR); notice to reaffirm the control date for the Loligo squid (Loligo) and Illex squid (Illex...: Public comments on the ANPR must be received no later than 5 p.m., eastern standard time, on February 8... fisheries since 2003. On May 20, 2003 (68 FR 27516), NMFS published, at the request of the Council, an ANPR...
Second order gradiometer and dc SQUID integrated on a planar substrate
NASA Astrophysics Data System (ADS)
van Nieuwenhuyzen, G. J.; de Waal, V. J.
1985-02-01
An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative ∂2Bz/∂x2 of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16×16.5 mm2 a sensitivity of 1.5×10-9 Tm-2 Hz-1/2 is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1×10-7 T Φ-10.
A Spread-Spectrum SQUID Multiplexer
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.
2018-06-01
The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.
NASA Astrophysics Data System (ADS)
Inaba, T.; Nakazawa, Y.; Yoshida, K.; Kato, Y.; Hattori, A.; Kimura, T.; Hoshi, T.; Ishizu, T.; Seo, Y.; Sato, A.; Sekiguchi, Y.; Nogami, A.; Watanabe, S.; Horigome, H.; Kawakami, Y.; Aonuma, K.
2017-11-01
A 64-channel Nb-based DC-SQUID magnetocardiography (MCG) system was installed at the University of Tsukuba Hospital (UTH) in March 2007 after obtaining Japanese pharmaceutical approval and insurance reimbursement approval. In the period between 2008 and 2016, the total number of patients was 10 085. The heart diseases diagnosed in fetuses as well as adults are mainly atrial arrhythmia, abnormal repolarization, ventricular arrhythmia, and fetal arrhythmia. In most cases of insufficient diagnostic accuracy with electrocardiography, SQUID MCG precisely revealed these heart diseases as an abnormal electrical current distribution. Based on success in routine examinations, SQUID MCG is now an indispensable clinical instrument with diagnostic software tuned up during routine use at UTH.
Dantsker, Eugene; Clarke, John
2000-01-01
The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.
Stewart, Julia S; Hazen, Elliott L; Bograd, Steven J; Byrnes, Jarrett E K; Foley, David G; Gilly, William F; Robison, Bruce H; Field, John C
2014-06-01
Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean. © 2014 John Wiley & Sons Ltd.
Current-induced SQUID behavior of superconducting Nb nano-rings
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef
2016-06-01
The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.
ELECTROPHORETIC AND IMMUNOLOGICAL STUDIES OF SQUID AXOPLASM PROTEINS.
HUNEEUS-COX, F
1964-03-06
By disc electrophoresis of the axoplasm of Dosidicus gigas, 14 protein bands have been resolved. Anti-bodies to the intra-axonal proteins and to squid blood proteins were produced in rabbits. By Ouchterlony's technique, six antigenic components can be demonstrated in axoplasm; the combined use of disc electrophoresis and immune diflusion in agar resolves seven antigenic components in axoplasm; none of these components is detectable in squid blood.
NASA Astrophysics Data System (ADS)
Jiang, Feng-Ying; Wang, Ning; Jin, Yi-Rong; Deng, Hui; Tian, Ye; Lang, Pei-Lin; Li, Jie; Chen, Ying-Fei; Zheng, Dong-Ning
2013-04-01
We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-Tc superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.
Squid - a simple bioinformatics grid.
Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M
2005-08-03
BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example.
Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.
Chung, SungWon; Lu, Ying; Henry, Roland G
2006-11-01
Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.
NASA Astrophysics Data System (ADS)
Bazzino, Gastón; Gilly, William F.; Markaida, Unai; Salinas-Zavala, César A.; Ramos-Castillejos, Jorge
2010-07-01
We deployed four pop-up archival-transmitting (PAT) tags on jumbo squid ( Dosidicus gigas) collected in the Pacific Ocean off the main entrance to Magdalena Bay on the Baja California peninsula in June 2005. This is the first successful deployment of PAT tags on jumbo squid in an area outside the Gulf of California. Summary data were obtained through the ARGOS satellite system for three of the tags; the fourth tag was physically recovered. All of the tagged squid tended to remain on the shallow continental shelf for several days after tagging and then moved offshore into deeper water. Three of the four squid appeared to migrate in a general southerly direction while the fourth remained offshore of Magdalena Bay. All of the squid spent most daylight hours at depths that were associated with the hypoxic oxygen minimum layer, and at night they spent a majority of time in the upper 50 m of the water column. Stomach content analysis and tag temperature-depth data during the first days after tagging revealed that the squid were feeding on pelagic red crabs ( Pleuroncodes planipes) and several larger, neritic fishes over the continental shelf off Magdalena Bay during a seasonal nearshore upwelling. Comparison of our results with those previously collected in the Gulf of California reveal that Dosidicus gigas can vary its behavior and diet to suit local environmental conditions. This adaptability is likely to be an important factor in the ability of D. gigas to invade and colonize new areas.
Murakawa, Kentaro; Fukunaga, Kenji; Tanouchi, Masatoshi; Hosokawa, Masashi; Hossain, Zakir; Takahashi, Koretaro
2007-01-01
Mushroom (Agaricus blazei Murill) extract has been reported to possess antitumor effects through immune activation. Here, we investigated the beneficial effects of combining A. blazei extract with marine phospholipids in comparison to A. blazei extract alone on myeloma sp2 tumor suppression when orally administrated. The experimental groups designed for sp2 tumor bearing BALB/c nu/nu mice were drinks of: (1)control; (2)1.0 mg/mL squid phospholipid liposome alone; (3)0.5 mg/mL A. blazei Murill water extract alone; (4)1.0 mg/mL squid phospholipid liposome with 0.5 mg/mL A. blazei Murill water extract in the form of those simple mixture; and (5)1.0 mg/mL squid phospholipid liposome with 0.5 mg/mL A. blazei Murill water extract partially encapsulated. Orally administrated volumes amounted to approximately 5 mL per day per mouse for all groups. A. blazei Murill water extract alone and squid phospholipid alone served groups show moderate tumor suppression with total administrations of approximately 105 mg/mouse for squid phospholipid through out the experimental term. When both A. blazei Murill water extract and squid phospholipid were administrated simultaneously in a simple mixture form, promotional effect on cancer tumor suppression was observed. And when A. blazei Murill water extract was partially encapsulated in the squid phospholipid liposomes with total administrations being 105 mg/mouse for squid phospholipid, effect on cancer tumor suppression was more pronounced. Though there was no statistically significant difference in tumor sizes between the simple mixture form administrated group i.e. group (4) and the partially encapsulated form administrated group i.e. group (5), the tumor vanished mouse was seen in the partially encapsulated form administrated group. Thus it was concluded that combinational administration of the A. blazei Murill water extract and the marine phospholipid may be useful in myeloma sp2 therapy.
NASA Astrophysics Data System (ADS)
Ming, Bin
Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID microscopy (SSM) application. A scanning SQUID microscope is a non-contact, non-destructive imaging tool that can resolve weak currents beneath the sample surface by detecting their magnetic fields. Our low-noise sapphire-based step-edge SQUIDs should be particularly suitable for such an application. An earlier effort to make SNS trench junctions using focused ion beam (FIB) is reviewed in a separate chapter. (Abstract shortened by UMI.)
A Practical HTS SQUID Magnetometer System for NDI of Aircraft
1994-01-10
based on present-day high Tc SQUIDs is feasible, and present a portable design cooled by a miniature cryocooler . In addition, a reevaluation of the basic...integration of this cryocooler with SQUIDs, is that there is no available electromagnetic field emission information. We did not find any for other types ...background signals. Third, there are several other types of cryocoolers , integrated or split, made of plastics available on the market. They will
Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong
2009-01-01
A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
Abugoch, L; Guarda, A; Pérez, L M; Paredes, M P
1999-06-01
The good nutritional properties of meat from big squid (Dosidicus gigas) living on the Chilean coast, was determined through its proximal composition 70 cal/100 g fresh meat; 82.23 +/- 0.98% moisture; 15.32 +/- 0.93% protein; 1.31 +/- 0.12% ashes; 0.87 +/- 0.18% fat and 0.27% NNE (non-nitrogen extract). The big squid meat was used to develop a gel product which contained NaCl and TPP. It was necessary to use additives for gel preparation, such as carragenin or alginate or egg albumin, due to the lack of gelation properties of squid meat. Formulations containing egg albumin showed the highest gel force measured by penetration as compared to those that contained carragenin or alginate.
Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Ramírez-Suárez, Juan C; Lugo-Sánchez, Maria E; García-Orozco, Karina D; Sotelo-Mundo, Rogerio R; Peña-Ramos, Aida
2016-04-01
Conformational and thermal-rheological properties of acidic (APC) and neutral (NPC) protein concentrates were evaluated and compared to those of squid (Dosidicus gigas) muscle proteins (SM). Surface hydrophobicity, sulfhydryl status, secondary structure profile, differential scanning calorimetry and oscillatory dynamic rheology were used to evaluate the effect of treatments on protein properties. Acidic condition during the washing process (APC) promoted structural and conformational changes in the protein present in the concentrate produced. These changes were enhanced during the heat setting of the corresponding sol. Results demonstrate that washing squid muscle under the proposed acidic conditions is a feasible technological alternative for squid-based surimi production improving its yield and gel-forming ability. Copyright © 2015. Published by Elsevier Ltd.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
Improved Readout Scheme for SQUID-Based Thermometry
NASA Technical Reports Server (NTRS)
Penanen, Konstantin
2007-01-01
An improved readout scheme has been proposed for high-resolution thermometers, (HRTs) based on the use of superconducting quantum interference devices (SQUIDs) to measure temperature- dependent magnetic susceptibilities. The proposed scheme would eliminate counting ambiguities that arise in the conventional scheme, while maintaining the superior magnetic-flux sensitivity of the conventional scheme. The proposed scheme is expected to be especially beneficial for HRT-based temperature control of multiplexed SQUIDbased bolometer sensor arrays. SQUID-based HRTs have become standard for measuring and controlling temperatures in the sub-nano-Kelvin temperature range in a broad range of low-temperature scientific and engineering applications. A typical SQUIDbased HRT that utilizes the conventional scheme includes a coil wound on a core made of a material that has temperature- dependent magnetic susceptibility in the temperature range of interest. The core and the coil are placed in a DC magnetic field provided either by a permanent magnet or as magnetic flux inside a superconducting outer wall. The aforementioned coil is connected to an input coil of a SQUID. Changes in temperature lead to changes in the susceptibility of the core and to changes in the magnetic flux detected by the SQUID. The SQUID readout instrumentation is capable of measuring magnetic-flux changes that correspond to temperature changes down to a noise limit .0.1 nK/Hz1/2. When the flux exceeds a few fundamental flux units, which typically corresponds to a temperature of .100 nK, the SQUID is reset. The temperature range can be greatly expanded if the reset events are carefully tracked and counted, either by a computer running appropriate software or by a dedicated piece of hardware.
Alegre, Ana; Ménard, Frédéric; Tafur, Ricardo; Espinoza, Pepe; Argüelles, Juan; Maehara, Víctor; Flores, Oswaldo; Simier, Monique; Bertrand, Arnaud
2014-01-01
The jumbo squid Dosidicus gigas plays an important role in marine food webs both as predator and prey. We investigated the ontogenetic and spatiotemporal variability of the diet composition of jumbo squid in the northern Humboldt Current system. For that purpose we applied several statistical methods to an extensive dataset of 3,618 jumbo squid non empty stomachs collected off Peru from 2004 to 2011. A total of 55 prey taxa was identified that we aggregated into eleven groups. Our results evidenced a large variability in prey composition as already observed in other systems. However, our data do not support the hypothesis that jumbo squids select the most abundant or energetic taxon in a prey assemblage, neglecting the other available prey. Indeed, multinomial model predictions showed that stomach fullness increased with the number of prey taxa, while most stomachs with low contents contained one or two prey taxa only. Our results therefore question the common hypothesis that predators seek locally dense aggregations of monospecific prey. In addition D. gigas consumes very few anchovy Engraulis ringens in Peru, whereas a tremendous biomass of anchovy is potentially available. It seems that D. gigas cannot reach the oxygen unsaturated waters very close to the coast, where the bulk of anchovy occurs. Indeed, even if jumbo squid can forage in hypoxic deep waters during the day, surface normoxic waters are then required to recover its maintenance respiration (or energy?). Oxygen concentration could thus limit the co-occurrence of both species and then preclude predator-prey interactions. Finally we propose a conceptual model illustrating the opportunistic foraging behaviour of jumbo squid impacted by ontogenetic migration and potentially constrained by oxygen saturation in surface waters. PMID:24465788
Alegre, Ana; Ménard, Frédéric; Tafur, Ricardo; Espinoza, Pepe; Argüelles, Juan; Maehara, Víctor; Flores, Oswaldo; Simier, Monique; Bertrand, Arnaud
2014-01-01
The jumbo squid Dosidicus gigas plays an important role in marine food webs both as predator and prey. We investigated the ontogenetic and spatiotemporal variability of the diet composition of jumbo squid in the northern Humboldt Current system. For that purpose we applied several statistical methods to an extensive dataset of 3,618 jumbo squid non empty stomachs collected off Peru from 2004 to 2011. A total of 55 prey taxa was identified that we aggregated into eleven groups. Our results evidenced a large variability in prey composition as already observed in other systems. However, our data do not support the hypothesis that jumbo squids select the most abundant or energetic taxon in a prey assemblage, neglecting the other available prey. Indeed, multinomial model predictions showed that stomach fullness increased with the number of prey taxa, while most stomachs with low contents contained one or two prey taxa only. Our results therefore question the common hypothesis that predators seek locally dense aggregations of monospecific prey. In addition D. gigas consumes very few anchovy Engraulis ringens in Peru, whereas a tremendous biomass of anchovy is potentially available. It seems that D. gigas cannot reach the oxygen unsaturated waters very close to the coast, where the bulk of anchovy occurs. Indeed, even if jumbo squid can forage in hypoxic deep waters during the day, surface normoxic waters are then required to recover its maintenance respiration (or energy?). Oxygen concentration could thus limit the co-occurrence of both species and then preclude predator-prey interactions. Finally we propose a conceptual model illustrating the opportunistic foraging behaviour of jumbo squid impacted by ontogenetic migration and potentially constrained by oxygen saturation in surface waters.
Behavioral ecology of jumbo squid (Dosidicus gigas) in relation to oxygen minimum zones
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Field, John C.; Markaida, Unai; Gilly, William F.
2013-10-01
Habitat utilization, behavior and food habits of the jumbo or Humboldt squid, Dosidicus gigas, were compared between an area recently inhabited in the northern California Current System (CCS) and a historically established area of residence in the Gulf of California (GOC). Low dissolved oxygen concentrations at midwater depths define the oxygen minimum zone (OMZ), an important environmental feature in both areas. We analyzed vertical diving behavior and diet of D. gigas and hydrographic properties of the water column to ascertain the extent to which squid utilized the OMZ in the two areas. The upper boundary of the OMZ has been shoaling in recent decades in the CCS, and this phenomenon has been proposed to vertically compress the pelagic environment inhabited by aerobic predators. A shoaling OMZ will also bring mesopelagic communities into a depth range with more illumination during daytime, making these organisms more vulnerable to predation by visual predators (i.e. jumbo squid). Because the OMZ in the GOC is considerably shallower than in the CCS, our study provides insight into the behavioral plasticity of jumbo squid and how they may respond to a shoaling OMZ in the CCS. We propose that shoaling OMZs are likely to be favorable to jumbo squid and could be a key indirect factor behind the recent range expansion of this highly migratory predator.
Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda)
NASA Astrophysics Data System (ADS)
Arkhipkin, Alexander I.; Bizikov, Vyacheslav A.; Fuchs, Dirk
2012-03-01
The microstructure of the gladius cone was investigated in six species of nektonic squid: shallow-water Loligo gahi (Loliginidae), pelagic eurybathic Illex argentinus, Todarodes pacificus, Dosidicus gigas (Ommastrephidae), and deepwater Onykia ingens (Onychoteuthidae) and Gonatus antarcticus (Gonatidae) using state-of-the-art microscopy. Apart from L. gahi, all other species had septa-like layers in the gladius cone, which for the first time were investigated in detail and compared with those in extinct Cretaceous belemnites Hibolithes sp. and Pachyteuthis sp., and spirulid Cyrtobelus sp. It was found that the organic layers of the gladius cone in recent squid can be homologized with the organic components of the shell in fossil phragmocone-bearing coleoids. The septa-like layers in modern gladius cones therefore represent a vestigial phragmocone composed of organic septal rudiments of the ancestral phragmocone that has lost the siphuncle and gas-filled chambers. The well-developed rostrum in onychoteuthids and small rostrum of the gladius in ommastrephids and gonatids can be seen as homologous with the belemnoid rostrum, which may indicate a close phylogenetic relationship between belemnites and at least some squid. Possible evolutionary pathways of the reduction of the functional phragmocone in squid ancestors are discussed. Several features such as the loss of shell calcification, deep water speciation, and the structure of the equilibrium organ point to a deep-water origin of squids.
Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine
2016-03-01
We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
Measurement of SQUID noise levels for SuperCDMS SNOLAB detectors - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Maxwell
SuperCDMS SNOLAB is a second generation direct dark matter search. In the SuperCDMS SNOLAB experiment, detectors are able to pick up from signals from dark matter nuclear recoil interactions which occur inside the bulk of the detectors. These interactions produce both phonon and charge signals. HEMTs read out charge signals whereas TES are used to detect phonon signals which are then read out by SQUID amplifiers. SQUID amplifiers must add negligible noise to the TES intrinsic noise which has been previously measured and is approximately 50pA/√Hz down to 100Hz for ease of signal distinguishability in dark matter nuclear interactions. Themore » intrinsic noise level of the SQUID was tested in the SLAC 300mK fridge and determined to provide adequately low levels of noise with a floor of approximately 3pA/√Hz. Furthermore, a 10x amplifier was tested for addition of extraneous noise. This noise was investigated with and without this amplifier, and it was found that it did not add a significant amount of noise to the intrinsic SQUID noise.« less
Flux Noise due to Spins in SQUIDs
NASA Astrophysics Data System (ADS)
LaForest, Stephanie
Superconducting Quantum Interference Devices (SQUIDs) are currently being used as flux qubits and read-out detectors in a variety of solid-state quantum computer architectures. The main limitation of SQUID qubits is that they have a coherence time of the order of 10 micros, due to the presence of intrinsic flux noise that is not yet fully understood. The origin of flux noise is currently believed to be related to spin impurities present in the materials and interfaces that form the device. Here we present a novel numerical method that enables calculations of the flux produced by spin impurities even when they are located quite close to the SQUID wire. We show that the SQUID will be particularly sensitive to spins located at its wire edges, generating flux shifts of up to 4 nano flux quanta, much higher than previous calculations based on the software package FastHenry. This shows that spin impurities in a particular region along the wire's surface play a much more important role in producing flux noise than other spin impurities located elsewhere in the device.
Observation of quantum jumps in a superconducting quantum bit
NASA Astrophysics Data System (ADS)
Vijay, R.
2011-03-01
Superconducting qubit technology has made great advances since the first demonstration of coherent oscillations more than 10 years ago. Coherence times have improved by several orders of magnitude and significant progress has been made in qubit state readout fidelity. However, a fast, high-fidelity, quantum non-demolition measurement scheme which is essential to implement quantum error correction has so far been missing. We demonstrate such a scheme for the first time where we continuously measure the state of a superconducting quantum bit using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time. The key development enabling this experiment is the use of a low quality factor (Q), nonlinear resonator to implement a phase-sensitive parametric amplifier operating near the quantum limit. The nonlinear resonator was constructed using a two junction SQUID shunted with an on-chip capacitor. The SQUID allowed us to tune the operating band of the amplifier and the low Q provided us with a bandwidth greater than 10 MHz, sufficient to observe jumps in the qubit state in real time. I will briefly describe the operation of the parametric amplifier and discuss how it was used to measure the state of a transmon qubit in the circuit QED architecture. I will discuss measurement fidelity and the statistics of the quantum jumps. I will conclude by discussing the implications of this development for quantum information processing and further improvements to the measurement technique. We acknowledge support from AFOSR and the Hertz Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp
Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic rangemore » of about 1.4 × 10{sup 7} was created as a demonstration.« less
The Hawaiian bobtail squid as a model system for selective particle capture in microfluidic systems.
NASA Astrophysics Data System (ADS)
Nawroth, Janna; McFall-Ngai, Margaret; Dabiri, John
2013-11-01
Juvenile Hawaiian bobtail squids reliably capture and isolate a single species of bacteria, Vibrio fischeri, from inhaled coastal water containing a huge background of living and non-living particles of comparable size. Biochemical mechanisms orchestrate a chain of specific interactions as soon as V.fischeri attach to the squid's internal light organ. It remains unclear, however, how the bacteria carried by the squid's ventilation currents are initially attracted to the light organ's surface. Here we present preliminary experimental data showing how arrangement and coordination of the cilia covering the light organ create a 3D flow field that facilitates advection, sieving and selective retention of flow-borne particles. These studies may inspire novel microfluidic tools for detection and capture of specific cells and particles.
NMR/MRI with hyperpolarized gas and high Tc SQUID
Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander
2000-01-01
A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.
Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frack, E.K.; Drake, R.E.; Patt, R.
This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less
Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging
NASA Technical Reports Server (NTRS)
Felt, Frederick S.
2005-01-01
During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu
2014-09-15
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less
Development of RF Sensor Based on Two-Cell Squid
2011-07-15
to (8) is proportional to the reduced drive detuning, ωp0 is the resonant frequency for small oscillations, i.e. the plasma frequency of the combined...2 Φ= cnc IRπω (16) where Rn is the normal resistance of the Josephson junction in the SQUID, and L the inductance of the...were about 9 fF. The critical current I0 of each junction in the SQUID was 17.7 μA, normal resistance 110.9 Ω, plasma frequency ωp 124 GHz and
Development of RF Sensor Based on Two-cell SQUID
2012-07-01
according to (8) is proportional to the reduced drive detuning, ωp0 is the resonant frequency for small oscillations, i.e. the plasma frequency of the...0/2 Φ= cnc IRπω (16) where Rn is the normal resistance of the Josephson junction in the SQUID, and L the inductance of the...17.7 μA, normal resistance 110.9 Ω, plasma frequency ωp 124 GHz and characteristic frequency 948 GHz. While the loop inductance of SQUID was 60 pH
Basic and Applied Magnetism with a Squid Gradiometer.
1985-12-01
r , , WV w- =v- -V,; . r Zr! I , : r -. : r , : s : i . : I , C CI SQUID ta) 0 7 - .- 4 , 4 4 4 - .44* . . 2 Te 1 I T ...... 2zt 14 tbt’faceewient...incheS) iuSteed D~ISPLACE4ENT ’ . • •. . , I t ( pi A, , I phud.I’ t h bh r . /Os ,7/,/( ds I DR8 _ I Is i it r V( ttw( lt hd ,h r % I I VS94 SQUID...magnetization. Barkhausen Reversible Missing
1976-01-01
excluded from this Study except as points of reference. The conclusions identify a number of relevant functional technology items which are of...SQUID 20 4.2 4.3 The RF SQUID and its associated circuitry and operating characteristics 22 Bulk point contact SQUID formed by...a point contact, a constriction or microbridge in a thin film ("Dayem Bridge"), an S-N-S junction (in which pairs move through a "normal" metal
Barrows, F.T.; Lellis, W.A.
1999-01-01
A study was conducted to determine the effect of dietary protein and lipid source on dorsal fin erosion in rainbow trout. Seven diets were each fed to four replicate lots of 300 first-feeding fry cultured in 75 1 aluminum troughs for 8 weeks. Two basal diets were manufactured with approximately equal nutrient content, one using krill and squid meals and the other anchovy meal as the primary protein-containing ingredients. The meals used to manufacture the diets were separated into two fractions: lipid (ether-extractable); and protein/ash (non-ether-extractable) using a large soxhlet. The fractions were then recombined to create two additional diets; one containing anchovy protein/ash with krill/squid lipid, the other krill/squid protein/ash with fish lipid. A fifth diet recombined krill/squid protein/ash with krill/squid lipid to evaluate effects of the extraction process. Two additional treatments included a diet with a portion of the krill meal replaced by poultry by-product meal, and the basal anchovy meal diet supplemented with sodium, magnesium, and copper. Fish consuming diets containing anchovy meal as the primary protein source gained more weight (P < 0.05) than fish consuming krill/squid meal-based diets. Dorsal fin index (DFI, measured as mean dorsal fin height x 100/total fish length) was greater (P < 0.05) for fish consuming diets containing krill/squid meal protein/ash fraction (DFI = 9.9%-10.0%) than for fish consuming diets containing anchovy meal protein/ash fraction (DFI = 4.9%-5.3%), regardless of lipid source. Supplementation of the anchovy meal diet with sodium, magnesium, and copper improved (P < 0.05) DFI by approximately 20%, but not to the level supported by the krill/squid meal protein/ash fraction diets. The cost of the krill meal diet was reduced by inclusion of poultry by-product meal without affecting dorsal fin condition. These data indicate that the dietary agent contributing to dorsal fin erosion in rainbow trout is not present in the ether-extractable fraction of the diet, but rather in the protein or mineral fraction.
Palavicini, Juan Pablo; Correa-Rojas, Rodrigo A.; Rosenthal, Joshua J. C.
2012-01-01
A-to-I RNA editing is particularly common in coding regions of squid mRNAs. Previously, we isolated a squid editing enzyme (sqADAR2) that shows a unique structural feature when compared with other ADAR2 family members: an additional double-stranded RNA (dsRNA) binding domain (dsRBD). Alternative splicing includes or excludes this motif, generating a novel or a conventional variant termed sqADAR2a and sqADAR2b, respectively. The extra dsRBD of sqADAR2a increases its editing activity in vitro. We hypothesized that the high activity is due to an increase in the affinity of the enzyme for dsRNA. This may be important because protein-RNA interactions can be influenced by physical factors. We became particularly interested in analyzing the effects of salt on interactions between sqADAR2 and RNA because squid cells have a ∼3-fold higher ionic strength and proportionally more Cl− than vertebrate cells. To date, in vitro biochemical analyses of adenosine deamination have been conducted using vertebrate-like ionic strength buffers containing chloride as the major anion, although the vast majority of cellular anions are known to be organic. We found that squid-like salt conditions severely impair the binding affinity of conventional ADAR2s for dsRNA, leading to a decrease in nonspecific and site-specific editing activity. Inhibition of editing was mostly due to high Cl− levels and not to the high concentrations of K+, Na+, and organic anions like glutamate. Interestingly, the extra dsRBD in sqADAR2a conferred resistance to the high Cl− levels found in squid neurons. It does so by increasing the affinity of sqADAR2 for dsRNA by 30- or 100-fold in vertebrate-like or squid-like conditions, respectively. Site-directed mutagenesis of squid ADAR2a showed that its increased affinity and editing activity are directly attributable to the RNA binding activity of the extra dsRBD. PMID:22457361
Magnetic biosensor using a high transition temperature SQUID
NASA Astrophysics Data System (ADS)
Grossman, Helene Lila
A high transition temperature (Tc) Superconducting QUantum Interference Device (SQUID) is used to detect magnetically-labeled microorganisms. The targets are identified and quantified by means of magnetic relaxation measurements, with no need for unbound magnetic labels to be washed away. The binding rate between antibody-linked magnetic particles and targets can be measured with this technique. Installed in a "SQUID microscope," a YBa2Cu 3O7-delta SQUID is mounted on a sapphire rod thermally linked to a liquid nitrogen can; these components are enclosed in a fiberglass vacuum chamber. A thin window separates the vacuum chamber from the sample, which is at room temperature and atmospheric pressure. In one mode of the experiment, targets are immobilized on a substrate and immersed a suspension of ˜50 nm diameter superparamagnetic particles, coated with antibodies. A pulsed magnetic field aligns the magnetic dipole moments, and the SQUID measures the magnetic relaxation signal each time the field is turned off. Unbound particles relax within ˜50 mus by Brownian rotation, too fast for the SQUID system to measure. In contrast, particles bound to targets have their Brownian motion inhibited. These particles relax in ˜1 s by rotation of the internal dipole moment, and this Neel relaxation process is detected by the SQUID. This assay is demonstrated with a model system of liposomes carrying the FLAG epitope; the detection limit is (2.7 +/- 0.2) x 105 particles. The replacement of the SQUID with a gradiometer improves the detection limit to (7.0 +/- 0.7) x 103 particles. In an alternate mode of the experiment, freely suspended targets (larger than ˜1 mum diameter) are detected. Since the Brownian relaxation time of the targets is longer than the measurement time, particles bound to targets are effectively immobilized and exhibit Neel relaxation. Listeria monocytogenes are detected using this method; the sensitivity is (1.1 +/- 0.2) x 105 bacteria in 20 muL. For a 1 nL sample volume, the detection limit is expected to be 230 +/- 40 bacteria. Time-resolved measurements, which yield the binding rate between particles and bacteria, are reported. Also, potential improvements to the system and possible applications are discussed.
NASA Astrophysics Data System (ADS)
Lueker, Martin; Benson, Bradford A.; Chang, Clarence L.; Cho, Hsiao-Mei; Dobbs, Matt; Holzapfel, William L.; Lanting, Trevor; Lee, Adrian T.; Mehl, Jared; Plagge, Thomas; Shirokoff, Erik; Spieler, Helmuth G.; Vieira, Joaquin D.
2009-06-01
In contemporary cosmic microwave background experiments, bolometric detectors are often background limited, and in this case the sensitivity of instruments can only be improved by increasing the number of background-limited detectors, and so contemporary TES receivers contain as many pixels as possible. Frequency-domain multiplexing (fMUX) is one strategy for reading out many detectors with one SQUID. For any readout system, it is important to carefully evaluate the thermal design of detector, in conjunction with the readout bandwidth, in order to ensure stable electro-thermal feedback (ETF). We demonstrate a novel technique for characterizing the thermal circuit of our detectors, using am AC-bias and the fMUX electronics. This technique is used to study the internal thermal coupling of a TES bolometer. We illustrate how the insights gathered by this technique have been instrumental in improving the stability of our multiplexed detectors for the south pole telescope (SPT).
Broadband and Resonant Approaches to Axion Dark Matter Detection.
Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse
2016-09-30
When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.
Hu, Yaqin; Yu, Hiaxia; Dong, Kaicheng; Yang, Shuibing; Ye, Xingqian; Chen, Shiguo
2014-10-01
Due to its unique structure, jumbo squid (Dosidicus gigas) meat is sensitive to heat treatment, which makes the traditional squid products taste tough and hard. This study aimed to tenderise jumbo squid meat through ultrasonic treatment. Response surface methodology (RSM) was used to predict the tenderising effect of various treatment conditions. According to the results of RSM, the optimal conditions appeared to be a power of 186.9 W, a frequency of 25.6 kHz, and a time of 30.8 min, and the predicted values of flexibility and firmness under these optimal conditions were 2.40 mm and 435.1 g, respectively. Protein degradation and a broken muscle fibre structure were observed through histological assay and SDS-PAGE, which suggests a satisfactory tenderisation effect. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mates, J. A. B.; Becker, D. T.; Bennett, D. A.; Dober, B. J.; Gard, J. D.; Hays-Wehle, J. P.; Fowler, J. W.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.
2017-08-01
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the arrays into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES) microcalorimeters contain roughly 250 detectors and use time-division multiplexing with Superconducting Quantum Interference Devices (SQUIDs). The bandwidth limits of this technology constrain the number of sensors per amplifier chain, a quantity known as the multiplexing factor, to several 10s. With microwave SQUID multiplexing, we can expand the readout bandwidth and enable much larger multiplexing factors. While microwave SQUID multiplexing of TES microcalorimeters has been previously demonstrated with small numbers of detectors, we now present a fully scalable demonstration in which 128 TES detectors are read out on a single pair of coaxial cables.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.
Lindgren, Annie R; Anderson, Frank E
2018-01-01
Historically, deep-level relationships within the molluscan class Cephalopoda (squids, cuttlefishes, octopods and their relatives) have remained elusive due in part to the considerable morphological diversity of extant taxa, a limited fossil record for species that lack a calcareous shell and difficulties in sampling open ocean taxa. Many conflicts identified by morphologists in the early 1900s remain unresolved today in spite of advances in morphological, molecular and analytical methods. In this study we assess the utility of transcriptome data for resolving cephalopod phylogeny, with special focus on the orders of Decapodiformes (open-eye squids, bobtail squids, cuttlefishes and relatives). To do so, we took new and previously published transcriptome data and used a unique cephalopod core ortholog set to generate a dataset that was subjected to an array of filtering and analytical methods to assess the impacts of: taxon sampling, ortholog number, compositional and rate heterogeneity and incongruence across loci. Analyses indicated that datasets that maximized taxonomic coverage but included fewer orthologs were less stable than datasets that sacrificed taxon sampling to increase the number of orthologs. Clades recovered irrespective of dataset, filtering or analytical method included Octopodiformes (Vampyroteuthis infernalis + octopods), Decapodiformes (squids, cuttlefishes and their relatives), and orders Oegopsida (open-eyed squids) and Myopsida (e.g., loliginid squids). Ordinal-level relationships within Decapodiformes were the most susceptible to dataset perturbation, further emphasizing the challenges associated with uncovering relationships at deep nodes in the cephalopod tree of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Operational Experience with the Frontier System in CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenfeld, Barry; Dykstra, Dave; Kreuzer, Peter
2012-06-20
The Frontier framework is used in the CMS experiment at the LHC to deliver conditions data to processing clients worldwide, including calibration, alignment, and configuration information. Each central server at CERN, called a Frontier Launchpad, uses tomcat as a servlet container to establish the communication between clients and the central Oracle database. HTTP-proxy Squid servers, located close to clients, cache the responses to queries in order to provide high performance data access and to reduce the load on the central Oracle database. Each Frontier Launchpad also has its own reverse-proxy Squid for caching. The three central servers have been deliveringmore » about 5 million responses every day since the LHC startup, containing about 40 GB data in total, to more than one hundred Squid servers located worldwide, with an average response time on the order of 10 milliseconds. The Squid caches deployed worldwide process many more requests per day, over 700 million, and deliver over 40 TB of data. Several monitoring tools of the tomcat log files, the accesses of the Squids on the central Launchpad servers, and the availability of remote Squids have been developed to guarantee the performance of the service and make the system easily maintainable. Following a brief introduction of the Frontier framework, we describe the performance of this highly reliable and stable system, detail monitoring concerns and their deployment, and discuss the overall operational experience from the first two years of LHC data-taking.« less
The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane
2015-12-01
Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation. © 2015 International Society for Neurochemistry.
Operational Experience with the Frontier System in CMS
NASA Astrophysics Data System (ADS)
Blumenfeld, Barry; Dykstra, Dave; Kreuzer, Peter; Du, Ran; Wang, Weizhen
2012-12-01
The Frontier framework is used in the CMS experiment at the LHC to deliver conditions data to processing clients worldwide, including calibration, alignment, and configuration information. Each central server at CERN, called a Frontier Launchpad, uses tomcat as a servlet container to establish the communication between clients and the central Oracle database. HTTP-proxy Squid servers, located close to clients, cache the responses to queries in order to provide high performance data access and to reduce the load on the central Oracle database. Each Frontier Launchpad also has its own reverse-proxy Squid for caching. The three central servers have been delivering about 5 million responses every day since the LHC startup, containing about 40 GB data in total, to more than one hundred Squid servers located worldwide, with an average response time on the order of 10 milliseconds. The Squid caches deployed worldwide process many more requests per day, over 700 million, and deliver over 40 TB of data. Several monitoring tools of the tomcat log files, the accesses of the Squids on the central Launchpad servers, and the availability of remote Squids have been developed to guarantee the performance of the service and make the system easily maintainable. Following a brief introduction of the Frontier framework, we describe the performance of this highly reliable and stable system, detail monitoring concerns and their deployment, and discuss the overall operational experience from the first two years of LHC data-taking.
Vector sensor for scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.
Jiang, Wenyu; Simon, Richard
2007-12-20
This paper first provides a critical review on some existing methods for estimating the prediction error in classifying microarray data where the number of genes greatly exceeds the number of specimens. Special attention is given to the bootstrap-related methods. When the sample size n is small, we find that all the reviewed methods suffer from either substantial bias or variability. We introduce a repeated leave-one-out bootstrap (RLOOB) method that predicts for each specimen in the sample using bootstrap learning sets of size ln. We then propose an adjusted bootstrap (ABS) method that fits a learning curve to the RLOOB estimates calculated with different bootstrap learning set sizes. The ABS method is robust across the situations we investigate and provides a slightly conservative estimate for the prediction error. Even with small samples, it does not suffer from large upward bias as the leave-one-out bootstrap and the 0.632+ bootstrap, and it does not suffer from large variability as the leave-one-out cross-validation in microarray applications. Copyright (c) 2007 John Wiley & Sons, Ltd.
Effect of dietary marine lipids on female white bass ova compositions and progeny survival.
Lewis, H A; Trushenski, J T; Lane, R L; Kohler, C C
2010-12-01
We evaluated white bass ovum fatty acid composition as well as embryonic and larval survival after varying n-3 and n-6 long-chain polyunsaturated fatty acid (LC-PUFA) concentrations in maternal diets. Diets containing graded levels (0, 33, 66, or 100%) of squid to menhaden oils were fed daily to apparent satiation to female white bass for 8 weeks prior to spawning. Embryonic survival was negatively related to maternal squid oil intake (P=0.015, R2=0.970). Squid oil-fed broodstock produced ova with decreased 20:5n-3 and increased C18 polyunsaturated fatty acid concentrations, largely reflecting the fatty acid profile of squid oil. Within ovum phospholipid, accumulation of 18:2n-6 may have altered biological function resulting in the lower embryonic survival among ova produced from the squid oil-fed broodstock. Our data suggest the importance of feeding white bass broodstock diets high in total n-3 LC-PUFA (at least 4.0% dry matter), and 20:5n-3-rich lipid sources such as menhaden oil can be effectively utilized by female white bass to produce quality ova.
Vampire squid: detritivores in the oxygen minimum zone
Hoving, Hendrik J. T.; Robison, Bruce H.
2012-01-01
Vampire squid (Vampyroteuthis infernalis) are considered phylogenetic relics with cephalopod features of both octopods and squids. They lack feeding tentacles, but in addition to their eight arms, they have two retractile filaments, the exact functions of which have puzzled scientists for years. We present the results of investigations on the feeding ecology and behaviour of Vampyroteuthis, which include extensive in situ, deep-sea video recordings from MBARI's remotely operated vehicles (ROVs), laboratory feeding experiments, diet studies and morphological examinations of the retractile filaments, the arm suckers and cirri. Vampire squid were found to feed on detrital matter of various sizes, from small particles to larger marine aggregates. Ingested items included the remains of gelatinous zooplankton, discarded larvacean houses, crustacean remains, diatoms and faecal pellets. Both ROV observations and laboratory experiments led to the conclusion that vampire squid use their retractile filaments for the capture of food, supporting the hypothesis that the filaments are homologous to cephalopod arms. Vampyroteuthis' feeding behaviour is unlike any other cephalopod, and reveals a unique adaptation that allows these animals to spend most of their life at depths where oxygen concentrations are very low, but where predators are few and typical cephalopod food is scarce. PMID:23015627
Vampire squid: detritivores in the oxygen minimum zone.
Hoving, Hendrik J T; Robison, Bruce H
2012-11-22
Vampire squid (Vampyroteuthis infernalis) are considered phylogenetic relics with cephalopod features of both octopods and squids. They lack feeding tentacles, but in addition to their eight arms, they have two retractile filaments, the exact functions of which have puzzled scientists for years. We present the results of investigations on the feeding ecology and behaviour of Vampyroteuthis, which include extensive in situ, deep-sea video recordings from MBARI's remotely operated vehicles (ROVs), laboratory feeding experiments, diet studies and morphological examinations of the retractile filaments, the arm suckers and cirri. Vampire squid were found to feed on detrital matter of various sizes, from small particles to larger marine aggregates. Ingested items included the remains of gelatinous zooplankton, discarded larvacean houses, crustacean remains, diatoms and faecal pellets. Both ROV observations and laboratory experiments led to the conclusion that vampire squid use their retractile filaments for the capture of food, supporting the hypothesis that the filaments are homologous to cephalopod arms. Vampyroteuthis' feeding behaviour is unlike any other cephalopod, and reveals a unique adaptation that allows these animals to spend most of their life at depths where oxygen concentrations are very low, but where predators are few and typical cephalopod food is scarce.
Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.
Zepeda, Emily A; Veline, Robert J; Crook, Robyn J
2017-06-01
Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.S.C.
1997-05-01
Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magneticmore » field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.« less
Magnetization reversal of an individual exchange-biased permalloy nanotube
NASA Astrophysics Data System (ADS)
Buchter, A.; Wölbing, R.; Wyss, M.; Kieler, O. F.; Weimann, T.; Kohlmann, J.; Zorin, A. B.; Rüffer, D.; Matteini, F.; Tütüncüoglu, G.; Heimbach, F.; Kleibert, A.; Fontcuberta i Morral, A.; Grundler, D.; Kleiner, R.; Koelle, D.; Poggio, M.
2015-12-01
We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and a temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18 ±2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by x-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
Effects of Storage Temperature on the Quality of Frozen Squid
NASA Astrophysics Data System (ADS)
Kozima, Tsuneo; Ohtaka, Tateo
Squid ( Todarodes pacificus) , which is one of the main Japanzse coastal fish , was frozen under commercial condition after catch immediately and stored at -18 , -23 , -30 °C and 40 °C for 12 months. During storage the quality was measured by determining amount of free drip , water-holding capacity of muscle , weight ratio of cooking loss , histoligical feature of frozen and thawed muscle , and organoleptic test at regular intervals , each 2 months. Storage life of frozen squid was 12 months at below -18 °C.
SQUID-based microwave cavity search for dark-matter axions.
Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J
2010-01-29
Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
NASA Astrophysics Data System (ADS)
Igarashi, H.; Ishikawa, Y.; Wakamatsu, T.; Tanaka, Y.; Nishikawa, S.; Nishikawa, H.; Kamachi, M.; Kuragano, T.; Takatsuki, Y.; Fujii, Y.; Usui, N.; Toyoda, T.; Hirose, N.; Sakai, M.; Saitoh, S. I.; Imamura, Y.
2016-02-01
The neon flying squid (Ommastrephes bartramii) has a wide-spread distribution in subtropical and temperate waters in the North Pacific, which plays an important role in the pelagic ecosystem and is one of the major targets in Japanese squid fisheries. The main fishing areas for Japanese commercial vessels are located in the central North Pacific (35-45N, around the date line) in summer. In this study, we have developed several kinds of habitat suitability index (HSI) models of the neon flying squid for investigating the relationship between its potential habitat and the ocean state variations in the target area. For developing HSI models, we have used a new ocean reanalysis dataset FORA (4-dimensional variational Ocean Re-Analysis) produced by JAMSTEC/CEIST and MRI-JMA. The horizontal resolution is 0.1*0.1 degree of latitude and longitude with 54 vertical levels, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies. In addition, we have developed a new 4D-VAR (4-dimensional variational) ocean data assimilation system for predicting ocean environmental changes in the main fishing grounds. We call this system "SKUIDS" (Scalable Kit of Under-sea Information Delivery System). By using these prediction fields of temperature, salinity, sea surface height, horizontal current velocity, we produced daily HSI maps of the neon flying squid, and provided them to the Japanese commercial vessels in operation. Squid fishermen can access the web site for delivering the information of ocean environments in the fishing ground by using Inmarsat satellite communication on board, and show the predicted fields of subsurface temperatures and HSI. Here, we present the details of SKUIDS and the web-delivery system for squid fishery, and some preliminary results of the operational prediction.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2017-12-01
Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004-2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature (SST) and chlorophyll- a (Chl- a) concentration. Our results indicate that the SST in the range of 15 to 19°C and the Chl- a concentration in the range of 0.1 to 0.4 mg m-3 are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5°C and the Chl- a concentration at 0.25 mg m-3 are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl- a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5°C SST and 0.25 mg m-3 Chl- a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5°C SST and the 0.25 mg m-3 Chl- a concentration. Our findings suggest the convergent oceanographic features (fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.
Making Superconducting Welds between Superconducting Wires
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I.; Eom, Byeong Ho
2008-01-01
A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as part of a persistent-current circuit having an inductance of 1 mH. A current was induced in a loop, and no attenuation of the current after a time interval 1,000 s was discernible in a measurement having a fractional accuracy of 10(exp -4): This observation supports the conclusion that the weld had an electrical resistance <10(exp -10) omega.
TEM measurement in a low resistivity overburden performed by using low temperature SQUID
NASA Astrophysics Data System (ADS)
Ji, Yanju; Du, Shangyu; Xie, Lijun; Chang, Kai; Liu, Yang; Zhang, Yi; Xie, Xiaoming; Wang, Yuan; Lin, Jun; Rong, Liangliang
2016-12-01
Exploration of areas with thick low resistivity overburden is still a challenge for time domain transient electromagnetic method (TEM). We report modeling of a sandwich-layered earth by simulating the B field response with different conductive target layer thicknesses, thus obtaining a relationship between the resolution of the B field and the exploration depth. A low temperature Superconducting Quantum Interference Device (SQUID) is an ideal sensor for measuring the secondary magnetic field B in TEM measurements, because its sensitivity of several fT/√Hz is independent of frequency. In our TEM experiments, we utilized two different coils as receivers, a simple SQUID system, and a large transmitter loop of 200 × 200 m2 to compare the detected decay curves. At some measurement points, a decay signal of more than 300 ms duration was obtained by using the SQUID. Apparent resistivity profiles of about 9 km length are presented.
Intermodulation in nonlinear SQUID metamaterials: Experiment and theory
NASA Astrophysics Data System (ADS)
Zhang, Daimeng; Trepanier, Melissa; Antonsen, Thomas; Ott, Edward; Anlage, Steven M.
2016-11-01
The response of nonlinear metamaterials and superconducting electronics to two-tone excitation is critical for understanding their use as low-noise amplifiers and tunable filters. A new setting for such studies is that of metamaterials made of radio frequency superconducting quantum interference devices (rf-SQUIDs). The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. Using a two time scale analysis technique, we present an analytical theory that successfully explains our experimental observations. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
Tracking Electromagnetic Energy With SQUIDs
NASA Technical Reports Server (NTRS)
2005-01-01
A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.
2007-10-01
We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.
Application of SQUIDs for registration of biomagnetic signals
NASA Astrophysics Data System (ADS)
Voitovych, I. D.; Primin, M. A.; Sosnytskyy, V. N.
2012-04-01
Supersensitive magnetometric systems based on low-temperature SQUIDs have been designed to conduct research in cardiology (magnetocardiography) and to examine distribution of magnetic nanoparticles in biologic objects. Such SQUID magnetometric systems are distinguished by their noise immunity enabling research in nonscreened rooms. High repeatability of research outcomes has been confirmed. The use of magnetocardiographic systems has permitted a new screening information technology to be developed to diagnose heart diseases at early stages. Magnetic imaging of heart's action currents is an ideal way to test local electrical heterogeneity of myocardium. It is shown that magnetocardiography has a significant potential for both basic science of analysis of heart's biosignals and clinical cardiologic practice. A SQUID magnetometric system measuring magnetic signals radiated by the organs of laboratory animals is described. Information technology for automatic recording and transforming magnetometric data has been developed; the measurement of signals over rats' livers while injecting intravenously the nanoparticles of iron oxides and lead solutions are presented.
Microfluidic systems for investigating host-microbe relationship
NASA Astrophysics Data System (ADS)
Bhattacharjee, Arunima; Vincent, Lionel; Nawroth, Janna; Ruby, Ned; McFall-Ngai, Margaret; Kanso, Eva; Biodynamics Laboratory Collaboration; Pacific Biosciences Research Center Collaboration
2017-11-01
The symbiosis between the bioluminescent bacterium, Vibrio fisheri, and the Hawaiian bobtail squid, Euprymna scolopes, has been widely studied, and this association is used as a model system for studying bacterial colonization of ciliated host tissues. The recruitment of Vibrio fisheri to a specialized light organ in the nascent squid is facilitated by various chemosensing and mechanosensing events. To decipher the effects of such environmental and host-derived sensors on bacterial physiology, we use specifically designed microfluidic channels to engineer chemical and mechanical fields similar to those observed in the light organ of the squid. These in vitrostudies are aimed at complementing ongoing in vivo studies in the system squid-vibrio system. This approach enables us, for the first time, to isolate the effect of mechanical and chemical cues on bacterial motility in this symbiosis and to quantify the bacterial response to these cues. NSF Inspire.
Source localization of brain activity using helium-free interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard
2014-05-26
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localizationmore » of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.« less
NASA Astrophysics Data System (ADS)
Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.
Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C
2017-04-01
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.
Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D
2013-01-01
Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (<30 cm gladii length). In contrast, bulk δ(15)N values from gladii of large squid (>60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.
Ruiz-Cooley, Rocio I.; Ballance, Lisa T.; McCarthy, Matthew D.
2013-01-01
Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997–98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ15N values, a proxy for habitat baseline δ15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ15N values in gladii for squid at small sizes (<30 cm gladii length). In contrast, bulk δ15N values from gladii of large squid (>60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key “invasive” predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure. PMID:23527242
O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide
Post, Deborah M. B.; Yu, Liping; Krasity, Benjamin C.; Choudhury, Biswa; Mandel, Mark J.; Brennan, Caitlin A.; Ruby, Edward G.; McFall-Ngai, Margaret J.; Gibson, Bradford W.; Apicella, Michael A.
2012-01-01
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other Gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of l-glycero-d-manno-heptose, d-glycero-d-manno-heptose, glucose, 3-deoxy-d-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid. PMID:22247546
Magnetite Biomineralization: Fifty years of progress, from beach-combing to the SQUID microscope
NASA Astrophysics Data System (ADS)
Kirschvink, J. L.; Dixson, A. D.; Raub, T.
2012-12-01
Magnetite biomineralization was first discovered 50 years ago as a hardening agent in the teeth of the Polyplacophoran molluscs (chitons) by the late Prof. Heinz A. Lowenstam of Caltech, when he noticed unusual erosional effects produced by their grazing in the intertidal zones of Palau (Lowenstam, 1962). Since then, biogenic magnetite has been detected in a broad range of organisms, including magnetotactic bacteria, protists, insects, fish, amphibians, reptiles, birds, and mammals including humans. In many species, the role of ferromagnetic material as a neurophysiological transducer is demonstrated clearly through the effects of pulse-remagnetization on behavior. A brief (1 uS), properly configured magnetic discharge from a rectified LC circuit, tailored to exceed the coercivity of the magnetite, will often abolish a magnetic behavioral response, or in some cases make the organism go the wrong way. This is a unique ferromagnetic effect. The genes controlling magnetite biomineralization are well characterized in several species of bacteria, and the ability of some of these bacterial genes to initiate magnetite precipitation in mammalian cell lines argues for a common descent, probably via a magnetotactic mitochondrial ancestor. Previous studies in fish reported the presence of single-domain magnetite crystals in cells near projections of the trigeminal nerve, co-located in the olfactory epithelium. Although the cells are rare, the recent development of a spinning magnetic field technique allows easy identification and isolation of these cells for individual study (Eder et al., 2012). The cells are surprisingly magnetic, with moments hundreds of times larger than typical magnetotactic bacteria. Subsequent efforts to identify the anatomical seat of magnetoreceptors have focused on the same locations in new organisms, excluding other areas. Using SQUID moment magnetometry and SQUID scanning microscopy, we report here the unexpected presence of biogenic magnetite in the lateral line region of the zebrafish, Danio rerio. We suspect that the magnetic field receptor cells of the trigeminal system in animals may be co-located within a variety of other sensory tissues (olfaction, lateral line, vision, hearing, taste, etc.) as a means of spatially dispersing cells with large magnetic moments to prevent magnetostatic interactions between them. References: Eder et al., Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Natl. Acad. Sci. USA 2012; 109:12022-12027. Lowenstam, H.A., 1962. Magnetite in denticle capping in recent chitons (Polyplacophora). Bulletin of the Geological Society of America 73, 435-438.
Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions
ERIC Educational Resources Information Center
Padilla, Miguel A.; Divers, Jasmin
2013-01-01
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Tests of Independence for Ordinal Data Using Bootstrap.
ERIC Educational Resources Information Center
Chan, Wai; Yung, Yiu-Fai; Bentler, Peter M.; Tang, Man-Lai
1998-01-01
Two bootstrap tests are proposed to test the independence hypothesis in a two-way cross table. Monte Carlo studies are used to compare the traditional asymptotic test with these bootstrap methods, and the bootstrap methods are found superior in two ways: control of Type I error and statistical power. (SLD)
Sensitive spin detection using an on-chip SQUID-waveguide resonator
NASA Astrophysics Data System (ADS)
Yue, G.; Chen, L.; Barreda, J.; Bevara, V.; Hu, L.; Wu, L.; Wang, Z.; Andrei, P.; Bertaina, S.; Chiorescu, I.
2017-11-01
Precise detection of spin resonance is of paramount importance to achieve coherent spin control in quantum computing. We present a setup for spin resonance measurements, which uses a dc-SQUID flux detector coupled to an antenna from a coplanar waveguide. The SQUID and the waveguide are fabricated from a 20 nm Nb thin film, allowing high magnetic field operation with the field applied parallel to the chip. We observe a resonance signal between the first and third excited states of Gd spins S = 7/2 in a CaWO4 crystal, relevant for state control in multi-level systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 0.50 870 Octopus 1.00 0.98 0.81 875 Squid 1.00 0.98 0.69 Rockfish 1.00 0.98 0.88 0.60 0.50 200... Capelin Sharks 0.30 0.30 0.25 Skates 710 Sablefish 0.05 0.35 0.30 0.30 0.25 870 Octopus 875 Squid Rockfish... Sablefish 0.17 0.00 1.00 870 Octopus 0.17 0.85 0.00 1.00 875 Squid 0.17 0.75 0.00 1.00 Rockfish 0.00 1.00...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 0.50 870 Octopus 1.00 0.98 0.81 875 Squid 1.00 0.98 0.69 Rockfish 1.00 0.98 0.88 0.60 0.50 200... Capelin Sharks 0.30 0.30 0.25 Skates 710 Sablefish 0.05 0.35 0.30 0.30 0.25 870 Octopus 875 Squid Rockfish... Sablefish 0.17 0.00 1.00 870 Octopus 0.17 0.85 0.00 1.00 875 Squid 0.17 0.75 0.00 1.00 Rockfish 0.00 1.00...
Squid detected NMR and MRI at ultralow fields
Clarke, John [Berkeley, CA; McDermott, Robert [Louisville, CO; Pines, Alexander [Berkeley, CA; Trabesinger, Andreas Heinz [CH-8006 Zurich, CH
2007-05-15
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Squid detected NMR and MRI at ultralow fields
Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz
2006-05-30
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Squid detected NMR and MRI at ultralow fields
Clarke, John [Berkeley, CA; Pines, Alexander [Berkeley, CA; McDermott, Robert F [Monona, WI; Trabesinger, Andreas H [London, GB
2008-12-16
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
SQUID detected NMR and MRI at ultralow fields
Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz
2006-10-03
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Transport characteristics of μ-SQUIDs for probing magnetism
NASA Astrophysics Data System (ADS)
Biswas, Sourav; Paul, Sagar; Parashari, Harsh; Winkelmann, Clemens B.; Courtois, Hervé; Gupta, Anjan K.
2018-04-01
We study the transport properties of niobium (Nb) based micron sized superconducting quantum interference devices (μ-SQUID), which are designed to eliminate thermal hysteresis down to 1.3 K. Current-voltage characteristics are non-hysterestic at the lowest temperature. Large voltage oscillations with magnetic field are observed for a wide range of bias currents with good flux sensitivity and reduced flux noise. However, devices with fins and devices on sapphire substrate show hysteresis for wide range of bath temperature. We have also been able to see the sign of magnetic response from a single micron size ferromagnetic permalloy ellipse using the μ-SQUID.
Gould, Patrick J.; Ostrom, Peggy H.; Walker, William
1997-01-01
The diets of Laysan (Diomedea immutabilis) and black-footed albatrosses (D. nigripes) killed in squid and large-mesh drift nets in the transitional zone of the North Pacific Ocean were investigated by examining the contents of the digestive tracts and determining δ13C and δ15N values in breast-muscle tissue. The results show that (i) the combined prey of the two species of albatross consists of over 46 species of marine organisms including coelenterates, arthropods, mollusks, fish, and marine mammals; (ii) both species supplement their traditional diets with food made available by commercial fishing operations (e.g., net-caught squid and offal); (iii) while obtained from drift nets, diets of nonbreeding Laysan and black-footed albatrosses are dominated by neon flying squid (Ommastrephes bartrami); (iv) in the absence of drift-net-related food, Laysan albatrosses feed most heavily on fish and black-footed albatrosses feed most heavily on squid; and (v) based on δ15N values, nonbreeding adult Laysan albatrosses from the transitional zone of the North Pacific Ocean and Laysan albatross nestlings fed by adults from Midway Island in the subtropical Pacific feed at one trophic level and one-third of a trophic level lower than black-footed albatrosses, respectively.
NASA Astrophysics Data System (ADS)
Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.
2017-08-01
We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.
Coelho, Rui C G; Marques, Ana L P; Oliveira, Sara M; Diogo, Gabriela S; Pirraco, Rogério P; Moreira-Silva, Joana; Xavier, José C; Reis, Rui L; Silva, Tiago H; Mano, João F
2017-09-01
Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using acid-based and pepsin-based protocols, with the higher yield being obtained from I. argentinus in the presence of pepsin. The produced collagen has been characterized in terms of physicochemical properties, evidencing an amino acid profile similar to the one of calf collagen, but exhibiting a less preserved structure, with hydrolyzed portions and a lower melting temperature. Pepsin-soluble collagen isolated from I. argentinus was selected for further evaluation of biomedical potential, exploring its incorporation on poly-ε-caprolactone (PCL) 3D printed scaffolds for the development of hybrid scaffolds for tissue engineering, exhibiting hierarchical features. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Chen, Yong; Tian, Siquan; Li, Jianhua; Fang, Zhou; Yang, Mingxia
2013-01-01
Age, maturation and population structure of the Humboldt squid Dosidicus gigas were studied based on random sampling of the Chinese jigging fishery off the Peruvian Exclusive Economic Zones (EEZ) during 2008-2010. Estimated ages ranged from 144 to 633 days, confirming that the squid is a short-lived species with longevity no longer than 2 years. Occurrence of mature females and hatching in each month indicated that Humboldt squid spawned year-round. Back-calculated hatching dates for the samples were from January 22nd, 2008 to April 22nd, 2010 with a peak between January and March. Two size-based and two hatching date-based populations could be defined from mantle length (ML) at maturity and back-calculated hatching dates, respectively. Females matured at a larger size than males, and there was a significant difference in ML at maturity between the two hatching groups ( P <0.05). The waters adjacent to 11°S off the Peruvian EEZ may be a potential spawning ground. This study shows the complexity of the population structure and large variability in key life history parameters in the Humboldt squid off the Peruvian EEZ, which should be considered in the assessment and management of this important resource.
High-Resolution Displacement Sensor Using a SQUID Array Amplifier
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung
2004-01-01
Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.
Mooney, T Aran; Samson, Julia E; Schlunk, Andrea D; Zacarias, Samantha
2016-07-01
Sound is an abundant cue in the marine environment, yet we know little regarding the frequency range and levels which induce behavioral responses in ecologically key marine invertebrates. Here we address the range of sounds that elicit unconditioned behavioral responses in squid Doryteuthis pealeii, the types of responses generated, and how responses change over multiple sound exposures. A variety of response types were evoked, from inking and jetting to body pattern changes and fin movements. Squid responded to sounds from 80 to 1000 Hz, with response rates diminishing at the higher and lower ends of this frequency range. Animals responded to the lowest sound levels in the 200-400 Hz range. Inking, an escape response, was confined to the lower frequencies and highest sound levels; jetting was more widespread. Response latencies were variable but typically occurred after 0.36 s (mean) for jetting and 0.14 s for body pattern changes; pattern changes occurred significantly faster. These results demonstrate that squid can exhibit a range of behavioral responses to sound include fleeing, deimatic and protean behaviors, all of which are associated with predator evasion. Response types were frequency and sound level dependent, reflecting a relative loudness concept to sound perception in squid.
Tandem Repeat Proteins Inspired By Squid Ring Teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon
Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.
ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY
Cole, Kenneth S.; Curtis, Howard J.
1939-01-01
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers. PMID:19873125
ERIC Educational Resources Information Center
Fan, Xitao
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
ERIC Educational Resources Information Center
Spinella, Sarah
2011-01-01
As result replicability is essential to science and difficult to achieve through external replicability, the present paper notes the insufficiency of null hypothesis statistical significance testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to illustrate the bootstrap method. The bootstrap relies on…
Lorrain, Anne; Argüelles, Juan; Alegre, Ana; Bertrand, Arnaud; Munaron, Jean-Marie; Richard, Pierre; Cherel, Yves
2011-01-01
Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Using δ(13)C and δ(15)N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (>60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius δ(13)C values indicated one or several migrations through the squid's lifetime (∼8-9 months), during which δ(15)N values also fluctuated (range: 1 to 5‰). One individual showed an unexpected terminal 4.6‰ δ(15)N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes.
Lorrain, Anne; Argüelles, Juan; Alegre, Ana; Bertrand, Arnaud; Munaron, Jean-Marie; Richard, Pierre; Cherel, Yves
2011-01-01
Background Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Methodology/Principal Findings Using δ13C and δ15N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (>60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius δ13C values indicated one or several migrations through the squid's lifetime (∼8–9 months), during which δ15N values also fluctuated (range: 1 to 5‰). One individual showed an unexpected terminal 4.6‰ δ15N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. Conclusions/Significance The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes. PMID:21779391
Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2017-01-01
Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the invidual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively. PMID:28007515
NASA Astrophysics Data System (ADS)
Ichii, T.; Nishikawa, H.; Igarashi, H.; Okamura, H.; Mahapatra, K.; Sakai, M.; Wakabayashi, T.; Inagake, D.; Okada, Y.
2017-01-01
We investigated the impacts of extensive anthropogenic (high seas driftnet squid fishery) and natural (late 1990s major climate regime shift) events on dominant epipelagic fish, squid, and shark in the central North Pacific Transition Region based on a driftnet survey covering the years 1979-2006. Fishing was conducted by Japan, Korea and Taiwan to target neon flying squid in the period 1979-1992, resulting in a decline in stocks of the target species and non-target species (Pacific pomfret and juvenile blue shark), which were by-catch of this fishery. The catch was found to be at the maximum sustainable yield (MSY) level for neon flying squid, the underfished level for juvenile blue shark, but the overfished level for Pacific pomfret. The MSY of Pacific pomfret indicated that this species is more susceptible to exploitation than previously considered. In response to the late 1990s regime shift, neon flying squid and Pacific saury showed low stock levels in 1999-2002 and 1998-2002, respectively, as a result of reduced productivity in their nursery grounds (the Subtropical Frontal Zone and Kuroshio Extension Bifurcation Region, respectively). On the other hand, Pacific pomfret showed no decreasing trend in stock during the low- and intermediate-productivity regimes because of the high productivity of their main spawning/nursery ground (Transition Zone Chlorophyll Front), which was independent of the regime shifts. Thus, squid and saury appear to be more susceptible to the regime shift than pomfret. We discuss the implications for stock management of the species-specific responses to the fishery and the regime shift.
ERIC Educational Resources Information Center
Nevitt, Jonathan; Hancock, Gregory R.
2001-01-01
Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…
Nonparametric bootstrap analysis with applications to demographic effects in demand functions.
Gozalo, P L
1997-12-01
"A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt
Effects of magnetic islands on bootstrap current in toroidal plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, G.; Lin, Z.
The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less
Effects of magnetic islands on bootstrap current in toroidal plasmas
Dong, G.; Lin, Z.
2016-12-19
The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less
Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems
Chang, Sun-Il
2018-01-01
This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW. PMID:29342103
Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik
2018-01-17
This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.
Squid Dissection: From Pen to Ink.
ERIC Educational Resources Information Center
Brown, Cindy; Kisiel, Jim
2003-01-01
Introduces students to dissection, which is an important part of scientific discovery. Students not only gain an understanding of the anatomy of a squid, but also develop a sense of responsibility and respect for the animal that they are using as a learning tool. (Author/SOE)
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Wang, San-Lang; Wu, Pei-Chen; Liang, Tzu-Wen
2009-05-26
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.
NASA Astrophysics Data System (ADS)
Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo
2004-11-01
An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.
2011-01-01
Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
Trueblood, Lloyd A; Seibel, Brad A
2014-08-01
Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals. © 2014. Published by The Company of Biologists Ltd.
Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina
2008-09-15
A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle. Copyright © 2008. Published by Elsevier Ltd.
Onshore-offshore movement of jumbo squid (Dosidicus gigas) on the continental shelf
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Gilly, William F.; Field, John C.; Payne, John C.
2013-10-01
Jumbo squid (Dosidicus gigas) have greatly extended their range in the California Current System, where they forage on a variety of ecologically and economically important species that inhabit both coastal and offshore mesopelagic regions. Swimming abilities and behavior are important factors in assessing the impacts of this range expansion, particularly in regard to foraging in conjunction with onshore-offshore movement over the continental shelf. Here we describe a study of horizontal movements by jumbo squid along and across the continental shelf off Washington, USA, using acoustic tags in association with the Census of Marine Life's Pacific Ocean Shelf Tracking Program (POST) receiver arrays. We detected frequent movements along the shelf break, movement onto the shelf at night, and no evidence of movement as a cohesive school. Our results demonstrate feasibility of using acoustic tags and arrays to document horizontal movements of jumbo squid along and across the continental shelf. This is important in order to determine how those movements overlap with those of other ecologically and commercially important fish species.
NASA Astrophysics Data System (ADS)
Kempf, S.; Wegner, M.; Deeg, L.; Fleischmann, A.; Gastaldo, L.; Herrmann, F.; Richter, D.; Enss, C.
2017-06-01
We report on the design, fabrication and characterization of a 64 pixel metallic magnetic calorimeter array that is read out by an integrated, on-chip microwave SQUID multiplexer. Based on the results of our comprehensive device characterization we refined the state-of-the-art multiplexer model which assumes each associated non-hysteretic rf-SQUID to purely behave as a flux-dependent inductor. In particular, we include the capacitance and the subgap resistance of the Josephson junction as well as screening effects and parasitic mutual couplings between different coils that show up only when a superconducting flux transformer is attached to the SQUID input. Thanks to these modifications, we are able to explain the occurrence of a magnetic flux dependence of the internal quality factor of the microwave resonators as well as to accurately calculate the characteristic multiplexer parameters. When combining the refined multiplexer model with the thermodynamical description of a metallic magnetic calorimeter, we find a reasonable agreement between our measurements and predictions.
Microwave photon generation in a doubly tunable superconducting resonator
NASA Astrophysics Data System (ADS)
Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander, J.; Shumeiko, V.; Delsing, P.
2018-03-01
We have created a doubly tunable resonator, with the intention to simulate relativistic motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide microwave resonator, with fundamental resonant frequency ω 1 /(2π) ~ 5 GHz. Both of its ends are terminated to ground via dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows the tuning of ω 1 /(2π) by approximately 700 MHz. Using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to 2ω 1. We observe photon generation, at ω 1, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control this threshold, in good agreement with a theoretical model. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings resulting in current driving of the SQUIDs.
Dispersive Readout of a Superconducting Flux Qubit Using a Microstrip SQUID Amplifier
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Hoskinson, E. M.; Macklin, C.; Siddiqi, I.; Clarke, John
2011-03-01
Dispersive techniques for the readout of superconducting qubits offer the possibility of high repetition-rate, quantum non-demolition measurement by avoiding dissipation close to the qubit. To achieve dispersive readout, we couple our three-junction aluminum flux qubit inductively to a 1-2 GHz non-linear oscillator formed by a capacitively shunted DC SQUID. The frequency of this resonator is modulated by the state of the qubit via the flux-dependent inductance of the SQUID. Readout is performed by probing the resonator in the linear (weak drive) regime with a microwave tone and monitoring the phase of the reflected signal. A microstrip SQUID amplifier (MSA) is used to increase the sensitivity of the measurement over that of a HEMT (high electron mobility transistor) amplifier. We report measurements of the performance of our amplification chain. Increased fidelity and reduced measurement backaction resulting from the implementation of the MSA will also be discussed. This work was funded in part by the U.S. Government and by BBN Technologies.
NASA Astrophysics Data System (ADS)
Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.
We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.
Merten, Véronique; Christiansen, Bernd; Javidpour, Jamileh; Piatkowski, Uwe; Puebla, Oscar; Gasca, Rebeca; Hoving, Henk-Jan T
2017-01-01
In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855) (Cephalopoda, Ommastrephidae) is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding) were combined with stable isotope data (∂15N and ∂13C) of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid's gladius-the chitinous spiniform structure supporting the muscles and organs-were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp.), but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae), crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid's trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and nutrients from lower to higher trophic levels may be underestimated and important for understanding how a changing ocean impacts food webs in the eastern Atlantic.
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of state-of-the-art DC-SQUID-based multiplexers.
Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang
2015-01-01
We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change.
Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang
2015-01-01
We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change. PMID:25923519
The pace of life in deep-dwelling squids
NASA Astrophysics Data System (ADS)
Hoving, H. J. T.; Robison, B. H.
2017-08-01
Coastal and epipelagic cephalopods are among the fastest growing invertebrates, with life cycles of typically 1 year or less. Evidence is accumulating that deep-sea taxa often live longer and grow slower than their shallow water relatives. We test the hypothesis that deep-sea squid show increased longevity and reduced growth rates compared to coastal and epipelagic species, by validation experiments and quantification of statolith increments of three deep-sea squids from the Monterey Submarine Canyon. The periodicity of statolith increment formation in coastal species is daily, but is unknown for deep-sea squid. Between 2010 and 2013, specimens of Chiroteuthis calyx, Galiteuthis phyllura and Octopoteuthis deletron were captured by remotely operated vehicles and trawl nets off California. ROV-captured living squid were immersed in tetracycline and kept alive in the lab for between 3 and 14 days. Correlating the number of elapsed days with the number of newly deposited statolith increments, and statolith growth after the fluorescent tetracycline mark, provided evidence of regular and daily increment deposition, in C. calyx and O. deletron. This relationship was less strong in G. phyllura and the one-increment-per-day hypothesis was not accepted for this species. Reconstructing growth rates based on statolith counts and wet weights from animals of a wide size range suggest that O. deletron is a slower growing squid (0.59% BW/day) than C. calyx (1.3% BW/day) and G. phyllura (1.2% BW/day). Octopoteuthis deletron matures at around two years, the oldest C. calyx was a mature male of 1.5 years and the eldest G. phyllura was 10 months and still immature. Maximum reported sizes for G. phyllura and C. calyx exceed those of our examined specimens, and therefore their longevity likely exceeds 2 years, in particular if the females brood their eggs. Our study supports the hypothesis that deeper living squid exhibit reduced growth rates and an increased longevity compared to shallow living species. We discuss these traits in the context of a life in the deep pelagic ocean.
Seehafer, Kia; Brophy, Samantha; Tom, Sara R.; Crook, Robyn J.
2018-01-01
Cephalopod molluscs are known for their extensive behavioral repertoire and their impressive learning abilities. Their primary defensive behaviors, such as camouflage, have received detailed study, but knowledge is limited to intensive study of relatively few species. A considerable challenge facing cephalopod research is the need to establish new models that can be captive bred, are tractable for range of different experimental procedures, and that will address broad questions in biological research. The Hawaiian Bobtail Squid (Euprymna scolopes) is a small, tropical cephalopod that has a long history of research in the field of microbial symbiosis, but offers great promise as a novel behavioral and neurobiological model. It can be bred in the laboratory through multiple generations, one of the few species of cephalopod that can meet this requirement (which is incorporated in regulations such as EU directive 2010/63/EU). Additionally, laboratory culture makes E. scolopes an ideal model for studying ontogeny- and experience-dependent behaviors. In this study, we show that captive bred juvenile and adult E. scolopes produce robust, repeatable defensive behaviors when placed in an exposed environment and presented with a visual threat. Further, adult and juvenile squid employ different innate defensive behaviors when presented with a size-matched model predator. When a 10-min training procedure was repeated over three consecutive days, defensive behaviors habituated in juvenile squid for at least 5 days after training, but memory did not appear to persist for 14 days. In contrast, adult squid did not show any evidence of long-term habituation memory. Thus we conclude that this species produces a range of quantifiable, modifiable behaviors even in a laboratory environment where ecologically-relevant, complex behavioral sequences may not reliably occur. We suggest that the lack of long-term memory in adult squid may be related to their less escalated initial response to the mimic, and thus indicates less motivation to retain memory and not necessary inability to form memory. This is the first demonstration of age-related differences in defensive behaviors in Euprymna, and the first record of habituation in this experimentally tractable genus of squid. PMID:29651249
Kaufmann, Esther; Wittmann, Werner W.
2016-01-01
The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085
Gould, Patrick J.; Walker, William; Ostrom, Peggy H.
1997-01-01
We examined digestive tract contents and nitrogen stable isotope ratios in breast muscles of northern fulmars (Fulmarus glacialis) salvaged from squid and large-mesh drift nets in the transitional North Pacific. Lantern fishes (Myctophidae) were the principal prey item found in the digestive tracts. Pieces of unidentified fishes (probably Pacific pomfret Brama japonica) and shredded squid tissue (probably neon flying squid Ommastrephes bartrami) indicate scavenging at fishing operations. Although soft-bodied prey such as Velella were not found in the digestive tracts, δ 15N values suggest that fulmars may feed heavily on such low trophic-level animals.
McFall-Ngai, M; Montgomery, M K
1990-12-01
The sepiolid squid, Euprymna scolopes, has a bilobed luminous organ in the center of the mantle cavity, associated with the ink sac. Luminous bacterial symbionts (Vibrio fischeri) are housed in narrow channels of host epithelial tissue. The channels of each lobe of the light organ empty into a ciliated duct, which is contiguous with the mantle cavity of the squid. Surrounding the symbiotic bacteria and their supportive host cells are host tissues recruited into the light organ system, including a muscle-derived lens and thick reflector that appear to permit the squid to control the quality of bacterial light emission.
Efficient bootstrap estimates for tail statistics
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Aarnes, Ole Johan
2017-03-01
Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.
One Period of Exploration with the Squid.
ERIC Educational Resources Information Center
Bradley, James V.; Ng, Andrew
1997-01-01
Presents a lab that can be offered after students have learned the basic anatomy and physiology of the various phyla, the primary objective of which is to explore and apply their acquired knowledge to a new situation. Involves exploring the anatomy and life-style of the squid. (JRH)
Compact integrated dc SQUID gradiometer
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.
1982-10-01
An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17×12 mm and a sensitivity of 3.5×10-12 T m-1 Hz-1/2.
Code of Federal Regulations, 2012 CFR
2012-10-01
... framework adjustments to management measures. 648.25 Section 648.25 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES... Butterfish Fisheries § 648.25 Atlantic Mackerel, squid, and butterfish framework adjustments to management...
Code of Federal Regulations, 2014 CFR
2014-10-01
... framework adjustments to management measures. 648.25 Section 648.25 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES... Butterfish Fisheries § 648.25 Atlantic Mackerel, squid, and butterfish framework adjustments to management...
Code of Federal Regulations, 2013 CFR
2013-10-01
... framework adjustments to management measures. 648.25 Section 648.25 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES... Butterfish Fisheries § 648.25 Atlantic Mackerel, squid, and butterfish framework adjustments to management...
Soto, W.; Punke, E. B.; Nishiguchi, M. K.
2013-01-01
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal–bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000–20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation. PMID:22519773
Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system
NASA Astrophysics Data System (ADS)
Kraus, R. H.; Volegov, P.; Maharajh, K.; Espy, M. A.; Matlashov, A. N.; Flynn, E. R.
2002-03-01
Performance for a recently completed whole-head magnetoencephalography system using a superconducting imaging surface (SIS) surrounding an array of 150 SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. Conceptually, the SIS images nearby sources onto the SQUIDs while shielding sensors from distant “noise” sources. A finite element method (FEM) description using the as-built geometry was developed to describe the SIS effect on source fields by imposing B⊥( surface)=0 . Sensors consist of 8×8 mm 2 SQUID magnetometers with 0.84 nT/ Φ0 sensitivity and <3 fT/ Hz noise. A series of phantom experiments to verify system efficacy have been completed. Simple dry-wire phantoms were used to eliminate model dependence from our results. Phantom coils were distributed throughout the volume encompassed by the array with a variety of orientations. Each phantom coil was precisely machined and located to better than 25 μm and 10 mRad accuracy. Excellent agreement between model-calculated and measured magnetic field distributions of all phantom coil positions and orientations was found. Good agreement was found between modeled and measured shielding of the SQUIDs from sources external to the array showing significant frequency-independent shielding. Phantom localization precision was better than 0.5 mm at all locations with a mean of better than 0.3 mm.
Shaffer, Justin F.; Kier, William M.
2012-01-01
SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds. PMID:22189767
Squid 'ear bones' (statoliths) from the Jurassic succession of South-west England
NASA Astrophysics Data System (ADS)
Hart, Malcolm; Page, Kevin; Price, Gregory; Smart, Christopher
2015-04-01
Squid 'ear bones' - or statoliths - are a part of the balancing organs of modern and probably most fossil squids. Over the course of the last 10 years fossil statoliths have been discovered in the Jurassic sediments of the Wessex Basin (South-west England). They are probably all related to teuthids, such as Belemnotheutis antiquus Pearce, of Callovian-Oxfordian age. Thus far, we have identified four possible 'species' of statolith that are in the process of being formally described, named and their potential relationships determined. The sediments from which these statoliths have been recorded also contain squid hooklets (onycites), otoliths (fish 'ear bones') and other microfossils (including foraminifera). All are, therefore, of marine origin. In the case of the Christian Malford and Ashton Keynes lagerstätte (of late Callovian age), the statoliths are associated with exceptional, soft-bodied preservation of squid and it may be possible to determine the parent animal of the recorded statoliths. A number of museum collections (Natural History Museum [London], Natural History Museum [Paris], Senckenberg [Frankfurt], Smithsonian Institution [Washington], etc.) are being investigated in order to trace the possible host animals for all of the recorded statoliths. Despite many thousands of samples of Cretaceous sediments being investigated for foraminifera over the past 40+ years, no statoliths have been recorded and none are known from the literature.
What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics Curriculum
Hesterberg, Tim C.
2015-01-01
Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using t-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods—how they work, when they work or not, and which methods work better—and to highlight pedagogical issues. Supplementary materials for this article are available online. [Received December 2014. Revised August 2015] PMID:27019512
Novel Approaches to Quantum Computation Using Solid State Qubits
2007-12-31
hysteretic DC-SQUIDs, Phys. Rev. B 71, 220509(R) (2005). 18. C.-P. Yang and S. Han, Generation of Greenberger-Horne- Zeilinger entangled states with three SQUID...Horne- Zeilinger entangled states with multiple superconducting quantum interference device qubits/atoms in cavity QED, Phys. Rev. A 70, 062323 (2004
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... Butterfish Fisheries; Specifications and Management Measures AGENCY: National Marine Fisheries Service (NMFS... implements 2010 specifications and management measures for Atlantic mackerel, squid, and butterfish (MSB... (Loligo), and butterfish at the same levels as 2009. This action also modifies accounting procedures for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
.... This action complies with the 2010 Specifications and Management Measures for the Atlantic Mackerel, Squid, and Butterfish Fisheries Management Plan, which modified accounting procedures for underages of... FURTHER INFORMATION CONTACT: Lindsey Feldman, Fishery Management Specialist, 978-675-2179, Fax 978-281...
50 CFR 635.5 - Recordkeeping and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
.../headboat vessel, an Atlantic tunas vessel, a shark vessel, a swordfish vessel, or a vessel in the squid... fish landed and discarded. Entries on a day's fishing activities must be entered on the logbook form.../headboat vessel, Atlantic tunas vessel, shark vessel, swordfish vessel, or a vessel in the squid trawl...
NASA Astrophysics Data System (ADS)
Hart, Malcolm; de Jonghe, Alex; Duff, Keith; Page, Kevin; Price, Gregory; Smart, Christopher; Wilby, Philip
2010-05-01
In the 1840s, during the construction of the Great Western Railway west of Swindon, a number of beautifully preserved coleoids (belemnites and squid-like cephalopods) were found. These famous specimens of Belemnoteuthis and Mastigophora, as well as a number of fish, were eventually described as a fossil lagerstätte under the name of the "Christian Malford Squid Bed". Many of these specimens, which come from the Phaeinum Zone (Callovian) of the Oxford Clay Formation, contain soft tissue, muscle fibres and the content of their ink sacs. In October 2007 the British Geological Survey funded an excavation of the site some ~100 m from the original borrow pits alongside the railway. This pit yielded some new coleoid specimens as well as many ammonites, bivalves and gastropods, all of which are exquisitely preserved. Some of the bedding surfaces recovered are plastered with monospecific assemblages of foraminifera (In the 1840s, during the construction of the Great Western Railway west of Swindon, a number of beautifully preserved coleoids (belemnites and squid-like cephalopods) were found. These famous specimens of Belemnoteuthis and Mastigophora, as well as a number of fish, were eventually described as a fossil lagerstätte under the name of the "Christian Malford Squid Bed". Many of these specimens, which come from the Phaeinum Zone (Callovian) of the Oxford Clay Formation, contain soft tissue, muscle fibres and the content of their ink sacs. In October 2007 the British Geological Survey funded an excavation of the site some ~100 m from the original borrow pits alongside the railway. This pit yielded some new coleoid specimens as well as many ammonites, bivalves and gastropods, all of which are exquisitely preserved. Some of the bedding surfaces recovered are plastered with monospecific assemblages of foraminifera (Epistomina spp.). Our work on borehole core No. 10 (from the same location) has recovered exceptionally large numbers of statoliths, otoliths (fish ‘ear' bones), squid hooks and foraminifera. Statoliths are the small, paired, aragonitic stones found in the heads of modern and fossil coleoids. Jurassic statoliths have yet to be described in any detail as there is only one reference to them in the literature (Clarke, 2003). The exceptional abundance of statoliths and squid hooks recorded in the samples from the core is thought to represent a Jurassic squid-breeding ground which existed for a substantial interval of late Callovian time. The annual spawning of female squids massively enlarges their ovaries and this breaks down the body wall leaving spent individuals to die. The lack of belemnites in the same strata suggests that the animals involved (unknown at present) did not possess a calcified "guard". The highest numbers of statoliths occur over a 3 m thickness of strata with the greatest abundance ~1 m below the Christian Malford Squid Bed. The numbers recorded in this part of the Phaeinum Zone are well above background levels in the rest of the Jurassic in the UK (Malcolm Clarke, pers.com.) where one has to wash several kg of sediment to recover <200 statoliths. The occurrence of abundant, though low diversity, foraminiferal assemblages in the same samples point to an oxic, though possibly stressed, environment. The significant proportion of deformed foraminifera in the assemblages appears to confirm that the environment was less than optimum. CLARKE, M.R. 2003. Potential of statoliths for interpreting coleoid evolution: A brief review. Berliner Paläobiol. Abh., 3, 37-47.
Reduced ion bootstrap current drive on NTM instability
NASA Astrophysics Data System (ADS)
Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan
2018-05-01
The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions
NASA Astrophysics Data System (ADS)
Fontes, L. R. G.; Schonmann, R. H.
2008-09-01
We study the threshold θ bootstrap percolation model on the homogeneous tree with degree b+1, 2≤ θ≤ b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p f , such that a) for p> p f , the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p< p f , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p c , such that 0< p c < p f , with the following properties: 1) if p≤ p c , then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p> p c , then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p< p c , the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p= p c , the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p f ] and analytic on ( p c , p f ), admitting an analytic continuation from the right at p c and, only in the case θ= b, also from the left at p f .
Superconducting bearings for application in cryogenic experiments in space
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.; Worden, P. W., Jr.
1980-01-01
Linear superconducting magnetic bearings suitable for use in a proposed orbital equivalence principle experiment and for general application in space were developed and tested. Current flows in opposite directions in adjacent superconducting wires arranged parallel to the axis of a cylinder. This configuration provides maximum stiffness radially while allowing the test mass to move freely along the cylinder axis. In a space application, the wires are extended to cover the entire perimeter of the cylinder: for the earth-based tests it was desirable to use only the bottom half. Control of the axial position of the test mass is by small control coils which may be positioned inside or outside the main bearing. The design is suitable for application to other geometries where maximum stiffness is desired. A working model scaled to operate in a 1-g environment was perfected approximate solutions for the bearings were developed. A superconducting transformer method of charging the magnets for the bearing, and a position detector based on a SQUID magnetometer and associated superconducting circuit were also investigated.
Xiao, Yongling; Abrahamowicz, Michal
2010-03-30
We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.
Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J
2014-03-01
When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.
A bootstrap based space-time surveillance model with an application to crime occurrences
NASA Astrophysics Data System (ADS)
Kim, Youngho; O'Kelly, Morton
2008-06-01
This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.
Numerical restoration of surface vortices in Nb films measured by a scanning SQUID microscope
NASA Astrophysics Data System (ADS)
Ito, Atsuki; Thanh Huy, Ho; Dang, Vu The; Miyoshi, Hiroki; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
In the present work, we investigated a vortex profile appeared on a pure Nb film (500 nm in thickness, 10 mm x 10 mm) by using a scanning SQUID microscope. We found that the local magnetic distribution thus observed is broadened compared to a true vortex profile in the superconducting film. We therefore applied the numerical method to improve a spatial resolution of the scanning SQUID microscope. The method is based on the inverse Biot-Savart law and the Fourier transformation to recover a real-space image. We found that the numerical analyses give a smaller vortex than the raw vortex profile observed by the scanning microscope.
ERIC Educational Resources Information Center
Enders, Craig K.
2005-01-01
The Bollen-Stine bootstrap can be used to correct for standard error and fit statistic bias that occurs in structural equation modeling (SEM) applications due to nonnormal data. The purpose of this article is to demonstrate the use of a custom SAS macro program that can be used to implement the Bollen-Stine bootstrap with existing SEM software.…
NASA Astrophysics Data System (ADS)
Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.
1997-11-01
The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
.... 100804323-0569-02] RIN 0648-XA523 Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Directed Butterfish Fishery AGENCY: National Marine Fisheries Service...; closure. SUMMARY: NMFS announces that the directed fishery for butterfish in the Exclusive Economic Zone...
Hydrolysates from scallop and squid processing byproducts as specialty aquafeed ingredients
USDA-ARS?s Scientific Manuscript database
Around 9,000 MT of squid (Loligo pealei) is landed annually in Rhode Island, USA, most of which is processed resulting in 40-50% unutilized byproducts (about 3,500 MT). On the other hand, the sea scallop (Placopecten magellanicus) resource off New England is currently at historic high levels of 22,7...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less
Cosmological flux noise and measured noise power spectra in SQUIDs
Beck, Christian
2016-01-01
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418
Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.
2016-01-01
The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H
2010-01-01
Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less
2015-01-01
The ecological significance of fish and squid of the mesopelagic zone (200 m–1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models. PMID:26287534
Adsorption of Pb(II) and Cd(II) by Squid Ommastrephes bartrami Melanin
Chen, Shiguo; Xue, Changhu; Wang, Jingfeng; Feng, Hui; Wang, Yuming; Ma, Qin; Wang, Dongfeng
2009-01-01
The adsorption of Cd(II) and Pb(II) by squid melanin was investigated. At a metal ion concentration of 2 mM/L, the biosorption efficiency of melanin reached 95% for Cd(II) and Pb(II). The maximum content of bound Cd(II) and Pb(II) was 0.93 mM/g and 0.65 mM/g, respectively. Temperature had no obvious effect on the adsorption of the metals, and in a pH range of 4.0–7.0, the adsorption yield was high and stable. Macrosalts such as NaCl, MgCl2, and CaCl2 had no obvious effect on the binding of Pb(II) but greatly diminished the adsorption of Cd(II), which indicated that different functional groups in squid melanin are responsible for their adsorption. IR analysis of metal ion-enriched squid melanin demonstrated that the possible functional groups responsible for metal binding were phenolic hydroxyl (OH), carboxyl (COOH), and amine groups (NH). This study reports a new material for the removal of heavy metals from low-strength wastewater. PMID:20148082
NASA Astrophysics Data System (ADS)
Lee, Sung Hoon; Lee, Soon-Gul
2017-09-01
We have fabricated YBa2Cu3O7 (YBCO) dc SQUIDs containing nanobridges across twin boundaries of LaAlO3 (LAO) substrates as Josephson elements by using a focused ion beam (FIB) etching method and measured their transport properties. The beam energy was 30 keV and the current was 1.5 pA for the nanobridge pattern. Each bridge with a nominal width of 200 nm crossed a twin boundary in the (100) direction. The SQUID loop had a 10 μm × 10 μm hole with a 5.7 μm average linewidth. The SQUID voltage showed modulations in response to the external flux with a maximum modulation depth of 350 μV at 77.0 K. HR-XRD spectra showed that the epitaxially grown YBCO film was twinned in commensurate with the twinning of the LAO substrate. Tilting of the c-axis of YBCO across the twin boundary is believed to play a role as a tunnel barrier.
Sinclair, Elizabeth H; Walker, William A; Thomason, James R
2015-01-01
The ecological significance of fish and squid of the mesopelagic zone (200 m-1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models.
Cosmological flux noise and measured noise power spectra in SQUIDs.
Beck, Christian
2016-06-20
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.
Rosen, Hannah; Gilly, William; Bell, Lauren; Abernathy, Kyler; Marshall, Greg
2015-01-15
Dosidicus gigas (Humboldt or jumbo flying squid) is an economically and ecologically influential species, yet little is known about its natural behaviors because of difficulties in studying this active predator in its oceanic environment. By using an animal-borne video package, National Geographic's Crittercam, we were able to observe natural behaviors in free-swimming D. gigas in the Gulf of California with a focus on color-generating (chromogenic) behaviors. We documented two dynamic displays without artificial lighting at depths of up to 70 m. One dynamic pattern, termed 'flashing' is characterized by a global oscillation (2-4 Hz) of body color between white and red. Flashing was almost always observed when other squid were visible in the video frame, and this behavior presumably represents intraspecific signaling. Amplitude and frequency of flashing can be modulated, and the phase relationship with another squid can also be rapidly altered. Another dynamic display termed 'flickering' was observed whenever flashing was not occurring. This behavior is characterized by irregular wave-like activity in neighboring patches of chromatophores, and the resulting patterns mimic reflections of down-welled light in the water column, suggesting that this behavior may provide a dynamic type of camouflage. Rapid and global pauses in flickering, often before a flashing episode, indicate that flickering is under inhibitory neural control. Although flashing and flickering have not been described in other squid, functional similarities are evident with other species. © 2015. Published by The Company of Biologists Ltd.
Torrinha, A; Gomes, F; Oliveira, M; Cruz, R; Mendes, E; Delerue-Matos, C; Casal, S; Morais, S
2014-05-01
The most consumed squid species worldwide were characterized regarding their concentrations of minerals, fatty acids, cholesterol and vitamin E. Interspecific comparisons were assessed among species and geographical origin. The health benefits derived from squid consumption were assessed based on daily minerals intake and on nutritional lipid quality indexes. Squids contribute significantly to daily intake of several macro (Na, K, Mg and P) and micronutrients (Cu, Zn and Ni). Despite their low fat concentration, they are rich in long-chain omega-3 fatty acids, particularly docosahexaenoic (DHA) and eicosapentanoic (EPA) acids, with highly favorable ω-3/ω-6 ratios (from 5.7 to 17.7), reducing the significance of their high cholesterol concentration (140-549 mg/100g ww). Assessment of potential health risks based on minerals intake, non-carcinogenic and carcinogenic risks indicated that Loligo gahi (from Atlantic Ocean), Loligo opalescens (from Pacific Ocean) and Loligo duvaucelii (from Indic Ocean) should be eaten with moderation due to the high concentrations of Cu and/or Cd. Canonical discriminant analysis identified the major fatty acids (C14:0, C18:0, C18:1, C18:3ω-3, C20:4ω-6 and C22:5ω-6), P, K, Cu and vitamin E as chemical discriminators for the selected species. These elements and compounds exhibited the potential to prove authenticity of the commercially relevant squid species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.
Wang, Zuozhen
2018-01-01
Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.
Application of the Bootstrap Methods in Factor Analysis.
ERIC Educational Resources Information Center
Ichikawa, Masanori; Konishi, Sadanori
1995-01-01
A Monte Carlo experiment was conducted to investigate the performance of bootstrap methods in normal theory maximum likelihood factor analysis when the distributional assumption was satisfied or unsatisfied. Problems arising with the use of bootstrap methods are highlighted. (SLD)
Sousounis, Konstantinos; Ogura, Atsushi; Tsonis, Panagiotis A
2013-01-01
Coleoid cephalopods like squids have a camera-type eye similar to vertebrates. On the other hand, Nautilus (Nautiloids) has a pinhole eye that lacks lens and cornea. Since pygmy squid and Nautilus are closely related species they are excellent model organisms to study eye evolution. Having being able to collect Nautilus embryos, we employed next-generation RNA sequencing using Nautilus and pygmy squid developing eyes. Their transcriptomes were compared and analyzed. Enrichment analysis of Gene Ontology revealed that contigs related to nucleic acid binding were largely up-regulated in squid, while the ones related to metabolic processes and extracellular matrix-related genes were up-regulated in Nautilus. These differences are most likely correlated with the complexity of tissue organization in these species. Moreover, when the analysis focused on the eye-related contigs several interesting patterns emerged. First, contigs from both species related to eye tissue differentiation and morphogenesis as well as to cilia showed best hits with their Human counterparts, while contigs related to rabdomeric photoreceptors showed the best hit with their Drosophila counterparts. This bolsters the idea that eye morphogenesis genes have been generally conserved in evolution, and compliments other studies showing that genes involved in photoreceptor differentiation clearly follow the diversification of invertebrate (rabdomeric) and vertebrate (ciliated) photoreceptors. Interestingly some contigs showed as good a hit with Drosophila and Human homologues in Nautilus and squid samples. One of them, capt/CAP1, is known to be preferentially expressed in Drosophila developing eye and in vertebrate lens. Importantly our analysis also provided evidence of gene duplication and diversification of their function in both species. One of these genes is the Neurofibromatosis 1 (NF1/Nf1), which in mice has been implicated in lens formation, suggesting a hitherto unsuspected role in the evolution of the lens in molluscs.
Sousounis, Konstantinos; Ogura, Atsushi; Tsonis, Panagiotis A.
2013-01-01
Coleoid cephalopods like squids have a camera-type eye similar to vertebrates. On the other hand, Nautilus (Nautiloids) has a pinhole eye that lacks lens and cornea. Since pygmy squid and Nautilus are closely related species they are excellent model organisms to study eye evolution. Having being able to collect Nautilus embryos, we employed next-generation RNA sequencing using Nautilus and pygmy squid developing eyes. Their transcriptomes were compared and analyzed. Enrichment analysis of Gene Ontology revealed that contigs related to nucleic acid binding were largely up-regulated in squid, while the ones related to metabolic processes and extracellular matrix-related genes were up-regulated in Nautilus. These differences are most likely correlated with the complexity of tissue organization in these species. Moreover, when the analysis focused on the eye-related contigs several interesting patterns emerged. First, contigs from both species related to eye tissue differentiation and morphogenesis as well as to cilia showed best hits with their Human counterparts, while contigs related to rabdomeric photoreceptors showed the best hit with their Drosophila counterparts. This bolsters the idea that eye morphogenesis genes have been generally conserved in evolution, and compliments other studies showing that genes involved in photoreceptor differentiation clearly follow the diversification of invertebrate (rabdomeric) and vertebrate (ciliated) photoreceptors. Interestingly some contigs showed as good a hit with Drosophila and Human homologues in Nautilus and squid samples. One of them, capt/CAP1, is known to be preferentially expressed in Drosophila developing eye and in vertebrate lens. Importantly our analysis also provided evidence of gene duplication and diversification of their function in both species. One of these genes is the Neurofibromatosis 1 (NF1/Nf1), which in mice has been implicated in lens formation, suggesting a hitherto unsuspected role in the evolution of the lens in molluscs. PMID:24205087
NASA Astrophysics Data System (ADS)
Fong de Los Santos, Luis E.
Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
Fishery biology of jumbo flying squid Dosidicus gigas off Costa Rica Dome
NASA Astrophysics Data System (ADS)
Chen, Xinjun; Li, Jianghua; Liu, Bilin; Li, Gang; Lu, Huajie
2014-06-01
The jumbo flying squid ( Dosidicus gigas) population was surveyed with the help of Chinese squid jigging vessels off the Costa Rica Dome (4°-11°N, 90°-100°W) in 2009 and 2010. The daily catch of D. gigas in the two survey cruises ranged from 0 to 5.5 t and was mostly obtained from the areas bounded by 6°-9°N and 91°-94°W and by 6°30'-7°30'N and 96°-97°W. The sea surface temperature in the areas yielding the most catch ranged from 27.5 to 29°C. The sex ratio of the total catch was 3.75:1 (female: male). The mantle length of the squid ranged from 211 to 355 mm (male) and from 204 to 429 mm (female) with an average of 297.9 and 306.7 mm, respectively. In the relationship of the mantle length (mm) and body weight (g) of the squid, there was no significant difference between sexes. The female and male were at a similar maturity, and most individuals are maturing or have matured with a few females being spent. The size (mantle length) and age at the first sexual maturity were 297 mm and 195 d in females, and less than 211 mm and 130 d in males, respectively. Most of the sampled stomachs (70.6%) had no food remains. The major preys of the squids were fish, cephalopods and crustaceans, with the most abundant Myctophum orientale and D. gigas. The preys in more than 65% of the non-empty sampled stomachs evidenced the cannibalism of D. gigas. The results improved current understanding of the fishery biology of D. gigas off the Costa Rica Dome, which may facilitate the assessment and management of relative fishery resources.
Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui
2013-02-01
The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.
Prototyping a new, high-temperature SQUID magnetometer system
NASA Astrophysics Data System (ADS)
Grappone, J. Michael; Shaw, John; Biggin, Andrew J.
2017-04-01
High-sensitivity Superconducting Quantum Inference Devices (SQUIDs) and μ-metal shielding have largely solved paleomagnetic noise problems. Combing the two allows successful measurements of previously unusable samples, generally sediments with very weak (<10 pAm2) magnetizations. The improved sensitivity increases the fidelity of magnetic field variation surveys, but surveys continue to be somewhat slow. SQUIDs have historically been expensive to buy and operate, but technological advances now allow them to operate at liquid nitrogen temperatures (77 K), drastically reducing their costs. Step-wise thermal paleomagnetics studies cause large lag times during later steps as a result of heating from and cooling to room temperature for measurements. If the cooling step is removed entirely, however, the lag time drops by at least half. Available magnetometers currently provide either SQUID-level (0.1 - 1 pAm2) sensitivity or continuous heating. Combining a SQUID magnetometer with a high temperature oven is the logical next step to uncover the mysteries of the paleofield. However, the few that currently offer high temperature capabilities with noise levels approaching 10 pAm2 require either spinning or vibrating the sample, necessitating additional handling and potentially causing damage to the sample. Two primary factors have plagued previous developments: noise levels and temperature gradients. Our entire system is shielded from the environment using 4 layers of μ-metal. Our sample oven (designed for 7 mm diameter samples) sits inside a copper pipe and operates at high-frequency AC voltages. High frequency (10 kHz) AC current reduces the skin depth of radio frequency (RF) electromagnetic noise, which allows the 2 mm-thick copper shielding to reduce RF noise by ˜94%, leaving a residual field of ˜1.5 nT at the SQUID's location, 14.9 mm from the oven. A computer-controlled Eurotherm 3216 thermal controller regulates the temperature within ± 0.5 ˚ C. To reach 700 ˚ C, just above the Curie temperature of Hematite, a temperature difference of nearly 900 ˚ C between the sample and the SQUID is required. Since dipole fields decay rapidly with distance (∝ r -3 ), the equipment is designed to handle temperature gradients above 500 ˚ C cm-1 for maximum sensitivity using a passive double-vacuum separation system. All the parts used are commercially available to help reduce the operating costs and increase versatility.
The DCU: the detector control unit for SPICA-SAFARI
NASA Astrophysics Data System (ADS)
Clénet, Antoine; Ravera, Laurent; Bertrand, Bernard; den Hartog, Roland H.; Jackson, Brian D.; van Leeuven, Bert-Joost; van Loon, Dennis; Parot, Yann; Pointecouteau, Etienne; Sournac, Anthony
2014-08-01
IRAP is developing the warm electronic, so called Detector Control Unit" (DCU), in charge of the readout of the SPICA-SAFARI's TES type detectors. The architecture of the electronics used to readout the 3 500 sensors of the 3 focal plane arrays is based on the frequency domain multiplexing technique (FDM). In each of the 24 detection channels the data of up to 160 pixels are multiplexed in frequency domain between 1 and 3:3 MHz. The DCU provides the AC signals to voltage-bias the detectors; it demodulates the detectors data which are readout in the cold by a SQUID; and it computes a feedback signal for the SQUID to linearize the detection chain in order to optimize its dynamic range. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. several µs) and with fast signals (i.e. frequency carriers at 3:3 MHz). This digital signal processing is complex and has to be done at the same time for the 3 500 pixels. It thus requires an optimisation of the power consumption. We took the advantage of the relatively reduced science signal bandwidth (i.e. 20 - 40 Hz) to decouple the signal sampling frequency (10 MHz) and the data processing rate. Thanks to this method we managed to reduce the total number of operations per second and thus the power consumption of the digital processing circuit by a factor of 10. Moreover we used time multiplexing techniques to share the resources of the circuit (e.g. a single BBFB module processes 32 pixels). The current version of the firmware is under validation in a Xilinx Virtex 5 FPGA, the final version will be developed in a space qualified digital ASIC. Beyond the firmware architecture the optimization of the instrument concerns the characterization routines and the definition of the optimal parameters. Indeed the operation of the detection and readout chains requires to properly define more than 17 500 parameters (about 5 parameters per pixel). Thus it is mandatory to work out an automatic procedure to set up these optimal values. We defined a fast algorithm which characterizes the phase correction to be applied by the BBFB firmware and the pixel resonance frequencies. We also defined a technique to define the AC-carrier initial phases in such a way that the amplitude of their sum is minimized (for a better use of the DAC dynamic range).
Small sample mediation testing: misplaced confidence in bootstrapped confidence intervals.
Koopman, Joel; Howe, Michael; Hollenbeck, John R; Sin, Hock-Peng
2015-01-01
Bootstrapping is an analytical tool commonly used in psychology to test the statistical significance of the indirect effect in mediation models. Bootstrapping proponents have particularly advocated for its use for samples of 20-80 cases. This advocacy has been heeded, especially in the Journal of Applied Psychology, as researchers are increasingly utilizing bootstrapping to test mediation with samples in this range. We discuss reasons to be concerned with this escalation, and in a simulation study focused specifically on this range of sample sizes, we demonstrate not only that bootstrapping has insufficient statistical power to provide a rigorous hypothesis test in most conditions but also that bootstrapping has a tendency to exhibit an inflated Type I error rate. We then extend our simulations to investigate an alternative empirical resampling method as well as a Bayesian approach and demonstrate that they exhibit comparable statistical power to bootstrapping in small samples without the associated inflated Type I error. Implications for researchers testing mediation hypotheses in small samples are presented. For researchers wishing to use these methods in their own research, we have provided R syntax in the online supplemental materials. (c) 2015 APA, all rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... Fishery Management Council (Council) announces its intent to prepare an amendment (Amendment 14) to the Fishery Management Plan (FMP) for Atlantic Mackerel, Squid, and Butterfish (MSB) and to prepare an EIS to analyze the impacts of any proposed management measures. This amendment may address one or more of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... manages the groundfish fishery in the BSAI exclusive economic zone according to the Fishery Management.... 111213751-2102-02] RIN 0648-XC119 Fisheries of the Exclusive Economic Zone Off Alaska; Squid in the Bering Sea and Aleutian Islands Management Area AGENCY: National Marine Fisheries Service (NMFS), National...
A conserved chemical dialog of mutualism: lessons from squid and vibrio
Schwartzman, Julia A.; Ruby, Edward G.
2015-01-01
Microorganisms shape, and are shaped by, their environment. In host-microbe associations, this environment is defined by tissue chemistry, which reflects local and organism-wide physiology, as well as inflammatory status. We review how, in the squid-vibrio mutualism, both partners shape tissue chemistry, revealing common themes governing tissue homeostasis in animal-microbe associations. PMID:26384815
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
.... Dated: July 30, 2013. Alan D. Risenhoover, Director, Office of Sustainable Fisheries, performing the... Council considers if and how access to the Illex squid fishery should be controlled. DATES: August 2, 2013... before September 3, 2013. ADDRESSES: You may submit comments on this document, identified by NOAA-NMFS...
Pérez, Alejandro Escánez; Elena, Rodrigo Riera; González, Ángel Francisco González; Sierra, Ángel Guerra
2012-01-01
Abstract Data on opportunistic sightings of diamond-shaped squid Thysanoteuthis rhombus egg masses in the Canary Islands (Atlantic Ocean) are presented. A total of 16 egg masses of this species were recorded and photographed from 2000 to 2010 around the western islands of the archipelago (El Hierro, Tenerife and La Gomera). These data reveal the existence of an important spawning area for diamond-shaped squid around the Canary Islands, in subtropical east Atlantic waters. We provide preliminary data for the potential development of an artisanal fishery focused on this species, and a discussion on its potential impacts on the marine ecosystem. PMID:23129987
NASA Astrophysics Data System (ADS)
Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho
2018-01-01
Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.
Energetics of an rf SQUID Coupled to Two Thermal Reservoirs
Gardas, B.; Łuczka, J.; Ptok, A.; ...
2015-12-07
We study energetics of a Josephson tunnel junction connecting a superconducting loop pierced by an external magnetic flux (an rf SQUID) and coupled to two independent thermal reservoirs of different temperature. In the framework of the theory of quantum dissipative systems, we analyze energy currents in stationary states. The stationary energy flow can be periodically modulated by the external magnetic flux exemplifying the rf SQUID as a quantum heat interferometer. Additionally, we consider the transient regime and identify three distinct regimes: monotonic decay, damped oscillations and pulse-type behavior of energy currents. Furthermore, the first two regimes can be controlled bymore » the external magnetic flux while the last regime is robust against its variation.« less
Active cooling of an audio-frequency electrical resonator to microkelvin temperatures
NASA Astrophysics Data System (ADS)
Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.
2010-11-01
We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.
Practical SQUID Instrument for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Tralshawala, N.; Claycomb, J. R.; Miller, John H., Jr.
1997-01-01
We report on the development of a scanning eddy-current imaging system designed to detect deep subsurface flaws in conducting materials. A high transition temperature (high-T c) superconducting quantum interference device (SQUID) magnetometer is employed to provide the required sensitivity at low frequencies, while a combination of small cylindrical high-Tc superconducting and A-metal shields enable the instrument to be scanned in a magnetically noisy environment, rather than the object under test. The shields are arranged to prevent unwanted excitation and ambient noise fields from reaching the SQUID, and to enhance spatial resolution and minimize undesirable edge effects. Thus far, the instrument has successfully detected cracks and pits through 10 layers of aluminum, with a combined thickness of 5 cm at room temperature.
Bootstrap confidence levels for phylogenetic trees.
Efron, B; Halloran, E; Holmes, S
1996-07-09
Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783-791] suggested the use of the bootstrap to answer this question. Felsenstein's method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein's method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.
Coefficient Alpha Bootstrap Confidence Interval under Nonnormality
ERIC Educational Resources Information Center
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew
2012-01-01
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Pearson-type goodness-of-fit test with bootstrap maximum likelihood estimation.
Yin, Guosheng; Ma, Yanyuan
2013-01-01
The Pearson test statistic is constructed by partitioning the data into bins and computing the difference between the observed and expected counts in these bins. If the maximum likelihood estimator (MLE) of the original data is used, the statistic generally does not follow a chi-squared distribution or any explicit distribution. We propose a bootstrap-based modification of the Pearson test statistic to recover the chi-squared distribution. We compute the observed and expected counts in the partitioned bins by using the MLE obtained from a bootstrap sample. This bootstrap-sample MLE adjusts exactly the right amount of randomness to the test statistic, and recovers the chi-squared distribution. The bootstrap chi-squared test is easy to implement, as it only requires fitting exactly the same model to the bootstrap data to obtain the corresponding MLE, and then constructs the bin counts based on the original data. We examine the test size and power of the new model diagnostic procedure using simulation studies and illustrate it with a real data set.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?
ERIC Educational Resources Information Center
Thompson, Bruce
Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…
Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil
NASA Astrophysics Data System (ADS)
Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.
2017-07-01
We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.
Higuera-Barraza, O A; Torres-Arreola, W; Ezquerra-Brauer, J M; Cinco-Moroyoqui, F J; Rodríguez Figueroa, J C; Marquez-Ríos, E
2017-09-01
Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20kHz, 20, and 40% amplitude) was applied for 30, 60, and 90s to a protein extract prepared from giant squid mantle causing an increase (p<0.05) in surface hydrophobicity (S o ) from 108.4±1.4 to 239.1±2.4 after application of pulsed ultrasound at 40% of amplitude for 90s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p⩾0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p<0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67±5.52m 2 /g for the control and increased up to 217.7±3.8m 2 /g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Zamborsky, D J; Nishiguchi, M K
2011-01-01
Bobtail squid from the genera Sepiola and Rondeletiola (Cephalopoda: Sepiolidae) form mutualistic associations with luminous Gram-negative bacteria (Gammaproteobacteria: Vibrionaceae) from the genera Vibrio and Photobacterium. Symbiotic bacteria proliferate inside a bilobed light organ until they are actively expelled by the host into the surrounding environment on a diel basis. This event results in a dynamic symbiont population with the potential to establish the symbiosis with newly hatched sterile (axenic) juvenile sepiolids. In this study, we examined the genetic diversity found in populations of sympatric sepiolid squid species and their symbionts by the use of nested clade analysis with multiple gene analyses. Variation found in the distribution of different species of symbiotic bacteria suggests a strong influence of abiotic factors in the local environment, affecting bacterial distribution among sympatric populations of hosts. These abiotic factors include temperature differences incurred by a shallow thermocline, as well as a lack of strong coastal water movement accompanied by seasonal temperature changes in overlapping niches. Host populations are stable and do not appear to have a significant role in the formation of symbiont populations relative to their distribution across the Mediterranean Sea. Additionally, all squid species examined (Sepiola affinis, S. robusta, S. ligulata, S. intermedia, and Rondeletiola minor) are genetically distinct from one another regardless of location and demonstrate very little intraspecific variation within species. These findings suggest that physical boundaries and distance in relation to population size, and not host specificity, are important factors in limiting or defining gene flow within sympatric marine squids and their associated bacterial symbionts in the Mediterranean Sea.
Girija, Smiline; Duraipandiyan, Veeramuthu; Kuppusamy, Pandi Suba; Gajendran, Hariprasad; Rajagopal, Raghuraman
2014-01-01
Chromatographic characterization and the GC-MS evaluation of the black pigmented ink of Loligo duvauceli in the present study have yielded an array of bioactive compounds with potent antimicrobial property. Facing an alarm of antimicrobial resistance globally, a need for elucidating antimicrobial agents from natural sources will be the need for the hour. In this view, this study is aimed at characterizing the black pigmented ink of the Indian squid L. duvauceli. The squid ink was subjected to crude solvent extraction and was fractionated by silica gel column chromatography. TLC and HPTLC profiles were recorded. Antimicrobial bioassay of the squid ink fractions was done by agar well diffusion method. The antimicrobial fraction was then characterized using GC-MS analysis. The results showed that the n-hexane extract upon column fractionation yielded a total of 8 fractions with the mobile phase of Hex/EtOAc in different gradients. TLC and HPTLC profiles showed a single spot with a retention factor of 0.76. Fraction 1 showed significant antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Lactobacillus acidophilus and a promising antifungal activity against Candida albicans. The antimicrobial fraction upon GC-MS analysis of bis(2-ethylhexyl) phthalate (BEHP) possesses the highest percentage of area normalisation (91%) with other few minor constituents. The study is concluded by stating that the antimicrobial efficacy of the squid ink might be due to the synergistic effects of the phthalate derivative and the other minor volatile compounds analysed in the squid ink. PMID:27437466
Girija, Smiline; Duraipandiyan, Veeramuthu; Kuppusamy, Pandi Suba; Gajendran, Hariprasad; Rajagopal, Raghuraman
2014-01-01
Chromatographic characterization and the GC-MS evaluation of the black pigmented ink of Loligo duvauceli in the present study have yielded an array of bioactive compounds with potent antimicrobial property. Facing an alarm of antimicrobial resistance globally, a need for elucidating antimicrobial agents from natural sources will be the need for the hour. In this view, this study is aimed at characterizing the black pigmented ink of the Indian squid L. duvauceli. The squid ink was subjected to crude solvent extraction and was fractionated by silica gel column chromatography. TLC and HPTLC profiles were recorded. Antimicrobial bioassay of the squid ink fractions was done by agar well diffusion method. The antimicrobial fraction was then characterized using GC-MS analysis. The results showed that the n-hexane extract upon column fractionation yielded a total of 8 fractions with the mobile phase of Hex/EtOAc in different gradients. TLC and HPTLC profiles showed a single spot with a retention factor of 0.76. Fraction 1 showed significant antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Lactobacillus acidophilus and a promising antifungal activity against Candida albicans. The antimicrobial fraction upon GC-MS analysis of bis(2-ethylhexyl) phthalate (BEHP) possesses the highest percentage of area normalisation (91%) with other few minor constituents. The study is concluded by stating that the antimicrobial efficacy of the squid ink might be due to the synergistic effects of the phthalate derivative and the other minor volatile compounds analysed in the squid ink.
Spady, Blake L.; Watson, Sue-Ann; Chase, Tory J.; Munday, Philip L.
2014-01-01
ABSTRACT Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species. PMID:25326517
Habitat and distribution of post-recruit life stages of the squid Loligo forbesii
NASA Astrophysics Data System (ADS)
Smith, Jennifer M.; Macleod, Colin D.; Valavanis, Vasilis; Hastie, Lee; Valinassab, Tooraj; Bailey, Nick; Santos, M. Begoña; Pierce, Graham J.
2013-10-01
This study models habitat preferences of the squid Loligo forbesii through its post-recruitment life cycle in waters around Scotland (UK). Trawl survey and market sample data from 1985 to 2004 are used to model seasonal habitats of immature, maturing and mature squid (maturity being inferred from size and season). Squid presence-absence and catch rate in areas of presence were analysed using generalised additive models, relating spatiotemporal patterns of distribution and abundance to ecogeographic variables. For all maturity classes, higher abundance in winter and spring (i.e., quarters 1 and 2) was associated with deeper water while higher abundance in summer and autumn (quarters 3 and 4) was associated with shallower water, consistent with seasonal onshore-offshore migrations but suggesting that most spawning may take place in deeper waters. The preferred SST range was generally 8-8.75 °C while preferred salinity values were below 35‰ in winter and summer and above 35‰ in spring and autumn. Squid were positively associated with gravel substrate and negatively associated with mud. Seasonal changes in habitat use were more clearly evident than changes related to inferred maturity, although the two effects cannot be fully separated due to the annual life cycle. Habitat selection for this species can be satisfactorily modelled on a seasonal basis; predictions based on such models could be useful for fishers to target the species more effectively, and could assist managers wishing to protect spawning grounds. The extent to which this approach may be useful for other cephalopods is discussed.
Neural Regulation Of Chromatophore Function In Cephalopods
2015-05-19
which include octopus , squid and cuttlefish, are the only animals able to generate active body patterns directly controlled by the nervous system...Pattering Behavior, the ability of cephalopod mollusks to generate numerous and highly complex body patterns. Cephalopods, which include octopus , squid...cephalopod species, Octopus vulgaris with the Fiorito lab at the Stazione Zoologica in Napoli, Italy and showed that regeneration follows a
50 CFR 648.22 - Atlantic mackerel, squid, and butterfish specifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... squid, which, subject to annual review, may be specified for a period of up to 3 years; (2) ACL; ACT... years; (3) ACL; commercial ACT, including RSA, DAH, Tier 3 allocation (up to 7 percent of the DAH), DAP... scientific uncertainty; the stock-wide ABC must be less than or equal to the OFL. (ii) ACL. The ACL or...
50 CFR 648.22 - Atlantic mackerel, squid, and butterfish specifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... squid, which, subject to annual review, may be specified for a period of up to 3 years; (2) ACL; ACT... years; (3) ACL; commercial ACT, including RSA, DAH, Tier 3 allocation (up to 7 percent of the DAH), DAP... scientific uncertainty; the stock-wide ABC must be less than or equal to the OFL. (ii) ACL. The ACL or...
50 CFR 648.22 - Atlantic mackerel, squid, and butterfish specifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... squid, which, subject to annual review, may be specified for a period of up to 3 years; (2) ACL; ACT... years; (3) ACL; commercial ACT, including RSA, DAH, Tier 3 allocation (up to 7 percent of the DAH), DAP... ABC must be less than or equal to the OFL. (ii) ACL. The ACL or Domestic ABC is calculated using the...
Saliu, Francesco; Longhin, Eleonora; Salanti, Anika; Degano, Ilaria; Della Pergola, Roberto
2016-06-15
A mixture of sphingoid esters was isolated (1.4% w/w) from the molecular distillation of crude squid visceral oil. A preliminary investigation on the bioactivity profile and toxic potential of this residue was carried out by in vitro experiments. No cytotoxicity and a moderate lipase inhibition activity were highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... short- lived invertebrates (squids and octopuses) with long-lived fish (sharks and skates). If approved... occurring, and therefore the groundfish ACLs and AMs must be implemented by January 1, 2011. Skate, shark... BSAI. In the GOA, shark, sculpin, octopus, and squid groups are currently managed as a complex in the...
Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment
NASA Astrophysics Data System (ADS)
Libersky, Matthew; nEDM Collaboration
2013-10-01
An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.
The front-end electronics of the LSPE-SWIPE experiment
NASA Astrophysics Data System (ADS)
Fontanelli, F.; Biasotti, M.; Bevilacqua, A.; Siccardi, F.
2016-07-01
The SWIPE detector of the Ballon Borne Mission LSPE (see e.g. the contribution of P. de Bernardis et al. in this conference) intends to measure the primordial 'B-mode' polarization of the Cosmic Microwave Background (CMB). For this scope microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. The detector is a spiderweb bolometer based on transition edge sensor and followed by a SQUID to perform the signal readout. This contribution will concentrate on the design, description and first tests on the front-end electronics which processes the squid output (and controls it). The squid output is first amplified by a very low noise preamplifier based on a discrete JFET input differential architecture followed by a low noise CMOS operational amplifier. Equivalent input noise density is 0.6 nV/Hz and bandwidth extends up to at least 2 MHz. Both devices (JFET and CMOS amplifier) have been tested at liquid nitrogen. The second part of the contribution will discuss design and results of the control electronics, both the flux locked loop for the squid and the slow control chain to monitor and set up the system will be reviewed.
Cross-correlation limit of a SQUID-based noise thermometer of the pMFFT type
NASA Astrophysics Data System (ADS)
Kirste, A.; Engert, J.
2018-03-01
The primary magnetic field fluctuation thermometer (pMFFT) is a SQUID-based noise thermometer for temperatures below 1 K, which complies with metrological requirements. It combines two signal channels in order to apply the cross-correlation technique, but it requires statistically independent noise signals for proper operation. In order to check the limit of the cross-correlation readout, we have performed zero measurements in the millikelvin range in a setup that is identical to the pMFFT, except for the removed temperature sensor. We examined the influence of different parameters such as SQUID working point or flux-lock loop parameters on the minimum cross-correlation signal down to 24 mK and below 100 kHz. Depending on the configuration, typical minimum SQUID-referred cross-power spectral densities of 1.5 × 10‑15 Φ _0^2/Hz or even smaller values were observed. For the pMFFT, considering its thermal noise spectrum, these flux densities correspond to a device noise temperature of ≤2.5 µK, thereby ensuring a negligible uncertainty contribution at the lower end of the PLTS-2000 (0.9 mK).
Thermoelectric SQUID method for the detection of segregations
NASA Astrophysics Data System (ADS)
Hinken, Johann H.; Tavrin, Yury
2000-05-01
Aero engine turbine discs are most critical parts. Material inhomogeneities can cause disc fractures during the flight with fatal air disasters. Nondestructive testing (NDT) of the discs in various machining steps is necessary and performed as well as possible. Conventional NDT methods, however, like eddy current testing and ultrasonic testing have unacceptable limits. For example, subsurface segregations often cannot be detected directly but only indirectly in such cases when cracks already have developed from them. This may be too late. A new NDT method, which we call the Thermoelectric SQUID Method, has been developed. It allows for the detection of metallic inclusions within non-ferromagnetic metallic base material. This paper describes the results of a feasibility study on aero engine turbine discs made from Inconel® 718. These contained segregations that had been detected before by anodic etching. With the Thermoelectric SQUID Method, these segregations were detected again, and further segregations below the surfaces have been found, which had not been detected before. For this new NDT method the disc material is quasi-transparent. The Thermoelectric SQUID Method is also useful to detect distributed and localized inhomogeneities in pure metals like niobium sheets for particle accelerators.
Revealing the potential of squid chitosan-based structures for biomedical applications.
Reys, L L; Silva, S S; Oliveira, J M; Caridade, S G; Mano, J F; Silva, T H; Reis, R L
2013-08-01
In recent years, much attention has been given to different marine organisms, namely as potential sources of valuable materials with a vast range of properties and characteristics. In this work, β-chitin was isolated from the endoskeleton of the giant squid Dosidicus gigas and further deacetylated to produce chitosan. Then, the squid chitosan was processed into membranes and scaffolds using solvent casting and freeze-drying, respectively, to assess their potential biomedical application. The developed membranes have shown to be stiffer and less hydrophobic than those obtained with commercial chitosan. On the other hand, the morphological characterization of the developed scaffolds, by SEM and micro-computed tomography, revealed that the matrices were formed with a lamellar structure. The findings also indicated that the treatment with ethanol prior to neutralization with sodium hydroxide caused the formation of larger pores and loss of some lamellar features. The in vitro cell culture study has shown that all chitosan scaffolds exhibited a non-cytotoxic effect over the mouse fibroblast-like cell line, L929 cells. Thus, chitosan produced from the endoskeletons of the giant squid Dosidicus gigas has proven to be a valuable alternative to existing commercial materials when considering its use as biomaterial.
Raimundo, Joana; Vale, Carlos; Rosa, Rui
2014-04-01
Jumbo (or Humboldt) squid, Dosidicus gigas, is a large jet-propelled top oceanic predator off the Eastern Pacific. The present study reports, for the first time, concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb in gills, mantle and digestive gland of this powerful pelagic squid in the Gulf of California. Zinc and Cu were the most abundant elements. All elements, with the exception of As, were largely stored in digestive gland; particularly Cd that reached concentrations between 57 and 509 µg g(-1). Significant relationships between tissues were found for Co (digestive gland-gills), As (gills-mantle) and Cd (digestive gland-mantle). Proportionality of Cd concentrations between mantle and digestive gland suggested that detoxification capacity by digestive gland was insufficient to avoid the transfer of this element to mantle and other tissues. Nonetheless, Cd concentrations in the mantle were always below the regulatory limit and, therefore lack of constraints for human consumption. On the basis of the fishery landings, one may estimate that up to 1t of Cd can be annually removed by jumbo squid fisheries. Copyright © 2014 Elsevier Inc. All rights reserved.
High temperature superconductor dc SQUID micro-susceptometer for room temperature objects
NASA Astrophysics Data System (ADS)
Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.
2004-05-01
We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.
SQUID sensor application for small metallic particle detection
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi
2009-04-01
High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods.
Unbiased Estimates of Variance Components with Bootstrap Procedures
ERIC Educational Resources Information Center
Brennan, Robert L.
2007-01-01
This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…
Explorations in Statistics: the Bootstrap
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…
Bootstrapping Confidence Intervals for Robust Measures of Association.
ERIC Educational Resources Information Center
King, Jason E.
A Monte Carlo simulation study was conducted to determine the bootstrap correction formula yielding the most accurate confidence intervals for robust measures of association. Confidence intervals were generated via the percentile, adjusted, BC, and BC(a) bootstrap procedures and applied to the Winsorized, percentage bend, and Pearson correlation…
Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection
NASA Technical Reports Server (NTRS)
Kumar, Sricharan; Srivistava, Ashok N.
2012-01-01
Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.
Tunable resonant and non-resonant interactions between a phase qubit and LC resonator
NASA Astrophysics Data System (ADS)
Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.
Measurement of metallic contaminants in food with a high-Tc SQUID
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Natsume, Miyuki; Uchida, Masashi; Hotta, Naoki; Matsuda, Takemasa; Spanut, Zarina A.; Hatsukade, Yoshimi
2004-04-01
We have proposed and demonstrated a high-Tc SQUID system for detecting metallic contaminants in foodstuffs. There is a demand for the development of systems for detecting not only magnetic materials but also non-magnetic materials such as Cu and aluminium in foodstuffs to ensure food safety. The system consists of a SQUID magnetometer, an excitation coil and a permanent magnet. For a non-magnetic sample, an AC magnetic field is applied during detection to induce an eddy current in the sample. For a magnetizable sample, a strong magnetic field is applied to the sample prior to the detection attempt. We were able to detect a stainless steel ball with a diameter of 0.1 mm and a Cu ball less than 1 mm in diameter, for example.
MCG measurement in the environment of active magnetic shield.
Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N
2004-11-30
MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan
2017-12-01
Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.
On-site detection of packaged squid freshness
NASA Astrophysics Data System (ADS)
Ahmad, Noor Azizah; Heng, Lee Yook; Salam, Faridah; Hanifah, Sharina Abu
2018-04-01
The development of indicator label for detection of total volatile basic nitrogen (TVB-N) is described. Dye extract from edible plants containing anthocyanins was immobilized onto iota-carrageenan as polymer matrix. TVB-N detection worked based on pH increase as the basic deterioration volatile amines generated in the package headspace. Results showed that the indicator label has changed color from blue to green after 12 hours of storage at ambient conditions. The TVB-N value was 38.9648 mg /100 g which is exceeded of acceptability level for seafood products. The pH value of squid flesh has also increased during storage. The colour values of L * and a * negative increases while b* negative decrease with increasing storage time. The indicator label is potentially used as freshness indicator for squid at ambient conditions.
Charge dissipative dielectric for cryogenic devices
NASA Technical Reports Server (NTRS)
Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)
2007-01-01
A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.
Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M
2015-11-11
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake
2014-06-14
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexermore » exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √S{sub I} ≤ 5 pA/√Hz, i.e., close to √S{sub I} of state-of-the-art DC-SQUID-based multiplexers.« less
SQUIDs in biomagnetism: a roadmap towards improved healthcare
NASA Astrophysics Data System (ADS)
Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka
2016-11-01
Globally, the demand for improved health care delivery while managing escalating costs is a major challenge. Measuring the biomagnetic fields that emanate from the human brain already impacts the treatment of epilepsy, brain tumours and other brain disorders. This roadmap explores how superconducting technologies are poised to impact health care. Biomagnetism is the study of magnetic fields of biological origin. Biomagnetic fields are typically very weak, often in the femtotesla range, making their measurement challenging. The earliest in vivo human measurements were made with room-temperature coils. In 1963, Baule and McFee (1963 Am. Heart J. 55 95-6) reported the magnetic field produced by electric currents in the heart (‘magnetocardiography’), and in 1968, Cohen (1968 Science 161 784-6) described the magnetic field generated by alpha-rhythm currents in the brain (‘magnetoencephalography’). Subsequently, in 1970, Cohen et al (1970 Appl. Phys. Lett. 16 278-80) reported the recording of a magnetocardiogram using a Superconducting QUantum Interference Device (SQUID). Just two years later, in 1972, Cohen (1972 Science 175 664-6) described the use of a SQUID in magnetoencephalography. These last two papers set the scene for applications of SQUIDs in biomagnetism, the subject of this roadmap. The SQUID is a combination of two fundamental properties of superconductors. The first is flux quantization—the fact that the magnetic flux Φ in a closed superconducting loop is quantized in units of the magnetic flux quantum, Φ0 ≡ h/2e, ≈ 2.07 × 10-15 Tm2 (Deaver and Fairbank 1961 Phys. Rev. Lett. 7 43-6, Doll R and Näbauer M 1961 Phys. Rev. Lett. 7 51-2). Here, h is the Planck constant and e the elementary charge. The second property is the Josephson effect, predicted in 1962 by Josephson (1962 Phys. Lett. 1 251-3) and observed by Anderson and Rowell (1963 Phys. Rev. Lett. 10 230-2) in 1963. The Josephson junction consists of two weakly coupled superconductors separated by a tunnel barrier or other weak link. A tiny electric current is able to flow between the superconductors as a supercurrent, without developing a voltage across them. At currents above the ‘critical current’ (maximum supercurrent), however, a voltage is developed. In 1964, Jaklevic et al (1964 Phys. Rev. Lett. 12 159-60) observed quantum interference between two Josephson junctions connected in series on a superconducting loop, giving birth to the dc SQUID. The essential property of the SQUID is that a steady increase in the magnetic flux threading the loop causes the critical current to oscillate with a period of one flux quantum. In today’s SQUIDs, using conventional semiconductor readout electronics, one can typically detect a change in Φ corresponding to 10-6 Φ0 in one second. Although early practical SQUIDs were usually made from bulk superconductors, for example, niobium or Pb-Sn solder blobs, today’s devices are invariably made from thin superconducting films patterned with photolithography or even electron lithography. An extensive description of SQUIDs and their applications can be found in the SQUID Handbooks (Clarke and Braginski 2004 Fundamentals and Technology of SQUIDs and SQUID Systems vol I (Weinheim, Germany: Wiley-VCH), Clarke and Braginski 2006 Applications of SQUIDs and SQUID Systems vol II (Weinheim, Germany: Wiley-VCH)). The roadmap begins (chapter 1) with a brief review of the state-of-the-art of SQUID-based magnetometers and gradiometers for biomagnetic measurements. The magnetic field noise referred to the pick-up loop is typically a few fT Hz-1/2, often limited by noise in the metallized thermal insulation of the dewar rather than by intrinsic SQUID noise. The authors describe a pathway to achieve an intrinsic magnetic field noise as low as 0.1 fT Hz-1/2, approximately the Nyquist noise of the human body. They also descibe a technology to defeat dewar noise. Chapter 2 reviews the neuroscientific and clinical use of magnetoencephalography (MEG), by far the most widespread application of biomagnetism with systems containing typically 300 sensors cooled to liquid-helium temperature, 4.2 K. Two important clinical applications are presurgical mapping of focal epilepsy and of eloquent cortex in brain-tumor patients. Reducing the sensor-to-brain separation and the system noise level would both improve spatial resolution. The very recent commercial innovation that replaces the need for frequent manual transfer of liquid helium with an automated system that collects and liquefies the gas and transfers the liquid to the dewar will make MEG systems more accessible. A highly promising means of placing the sensors substantially closer to the scalp for MEG is to use high-transition-temperature (high-T c) SQUID sensors and flux transformers (chapter 3). Operation of these devices at liquid-nitrogen temperature, 77 K, enables one to minimize or even omit metallic thermal insulation between the sensors and the dewar. Noise levels of a few fT Hz-1/2 have already been achieved, and lower values are likely. The dewars can be made relatively flexible, and thus able to be placed close to the skull irrespective of the size of the head, potentially providing higher spatial resolution than liquid-helium based systems. The successful realization of a commercial high-T c MEG system would have a major commercial impact. Chapter 4 introduces the concept of SQUID-based ultra-low-field magnetic resonance imaging (ULF MRI) operating at typically several kHz, some four orders of magnitude lower than conventional, clinical MRI machines. Potential advantages of ULF MRI include higher image contrast than for conventional MRI, enabling methodologies not currently available. Examples include screening for cancer without a contrast agent, imaging traumatic brain injury (TBI) and degenerative diseases such as Alzheimer’s, and determining the elapsed time since a stroke. The major current problem with ULF MRI is that its signal-to-noise ratio (SNR) is low compared with high-field MRI. Realistic solutions to this problem are proposed, including implementing sensors with a noise level of 0.1 fT Hz-1/2. A logical and exciting prospect (chapter 5) is to combine MEG and ULF MRI into a single system in which both signal sources are detected with the same array of SQUIDs. A prototype system is described. The combination of MEG and ULF MRI allows one to obtain structural images of the head concurrently with the recording of brain activity. Since all MEG images require an MRI to determine source locations underlying the MEG signal, the combined modality would give a precise registration of the two images; the combination of MEG with high-field MRI can produce registration errors as large as 5 mm. The use of multiple sensors for ULF MRI increases both the SNR and the field of view. Chapter 6 describes another potentially far-reaching application of ULF MRI, namely neuronal current imaging (NCI) of the brain. Currently available neuronal imaging techniques include MEG, which is fast but has relatively poor spatial resolution, perhaps 10 mm, and functional MRI (fMRI) which has a millimeter resolution but is slow, on the order of seconds, and furthermore does not directly measure neuronal signals. NCI combines the ability of direct measurement of MEG with the spatial precision of MRI. In essence, the magnetic fields generated by neural currents shift the frequency of the magnetic resonance signal at a location that is imaged by the three-dimensional magnetic field gradients that form the basis of MRI. The currently achieved sensitivity of NCI is not quite sufficient to realize its goal, but it is close. The realization of NCI would represent a revolution in functional brain imaging. Improved techniques for immunoassay are always being sought, and chapter 7 introduces an entirely new topic, magnetic nanoparticles for immunoassay. These particles are bio-funtionalized, for example with a specific antibody which binds to its corresponding antigen, if it is present. Any resulting changes in the properties of the nanoparticles are detected with a SQUID. For liquid-phase detection, there are three basic methods: AC susceptibility, magnetic relaxation and remanence measurement. These methods, which have been successfully implemented for both in vivo and ex vivo applications, are highly sensitive and, although further development is required, it appears highly likely that at least some of them will be commercialized. Chapter 8 concludes the roadmap with an assessment of the commercial market for MEG systems. Despite the huge advances that have been realized since MEG was first introduced, the number of commercial systems deployed around the world remains small, around 250 units employing about 50 000 SQUIDs. The slow adoption of this technology is undoubtedly in part due to the high cost, not least because of the need to surround the entire system in an expensive magnetically shielded room. Nonetheless, the recent introduction of automatically refilling liquid-helium systems, the ongoing reduction in sensor noise, the potential availability of high-T c SQUID systems, the availability of new and better software and the combination of MEG with ULF MRI all have the potential to increase the market size in the not-so-distant future. In particular, there is a great and growing need for better noninvasive technologies to measure brain function. There are hundreds of millions of people in the world who suffer from brain disorders such as epilepsy, stroke, dementia or depression. The enormous cost to society of these diseases can be reduced by earlier and more accurate detection and diagnosis. Once the challenges outlined in this roadmap have been met and the outstanding problems have been solved, the potential demand for SQUID-based health technology can be expected to increase by ten- if not hundred-fold.
Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.
ERIC Educational Resources Information Center
Thompson, Bruce; Fan, Xitao
This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…
A Bootstrap Generalization of Modified Parallel Analysis for IRT Dimensionality Assessment
ERIC Educational Resources Information Center
Finch, Holmes; Monahan, Patrick
2008-01-01
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
NASA Astrophysics Data System (ADS)
Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker
2017-10-01
Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.
Simulated bi-SQUID Arrays Performing Direction Finding
2015-09-01
First, we applied the multiple signal classification ( MUSIC ) algorithm on linearly polarized signals. We included multiple signals in the output...both of the same frequency and different fre- quencies. Next, we explored a modified MUSIC algorithm called dimensionality reduction MUSIC (DR- MUSIC ... MUSIC algorithm is able to determine the AoA from the simulated SQUID data for linearly polarized signals. The MUSIC algorithm could accurately find
Material properties of zooplankton and nekton from the California current
NASA Astrophysics Data System (ADS)
Becker, Kaylyn
This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.
Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data
Bakun, W.H.; Gomez, Capera A.; Stucchi, M.
2011-01-01
Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Yi, Qian
2013-05-01
Although many studies on the fishery biology of jumbo flying squid, Dosidicus gigas, have been conducted in the coastal areas within Exclusive Economic Zones (EEZs) of various countries due to its commercial and ecological importance, limited biological information is available from waters outside these EEZs. In this paper, we examined D. gigas fishery biology from waters outside Chilean, Peruvian and Costa Rican EEZs, based on the fishery data collected by Chinese jigging vessels during 2006 to 2010. The dominant mantle lengths of D. gigas were 350-450 mm, 250-400 mm and 250-350 mm outside Chilean, Peruvian and Costa Rican EEZs, respectively. Size structure analysis show that a medium-sized group existed mostly in the waters outside the Chilean and Peruvian EEZs, whereas a small-sized group occurred mainly in the waters outside the Costa Rican EEZ. The longevity of the squid outside the Costa Rican EEZ was less than 10 months, while most of those outside Chilean and Peruvian EEZs were about 1-1.5 years and very few large individuals were 1.5-2 years old. A higher percentage of mature individuals existed outside Costa Rican EEZ implying the region as a potential spawning ground, while lower proportions of mature squid outside the Peruvian and Chilean EEZs indicated that spawning may be occurring outside our study area. Spatial differences in sizes at maturity of the squid are thought to be result from different environmental factors especially different temperature and nutrition among the three areas. Stomach-content analysis showed that cannibalism was important in the diet of D. gigas. Stress generated by jigging may increase the incidence of cannibalism.
Andrés, S C; Zaritzky, N E; Califano, A N
2009-08-01
Long-chain polyunsaturated n-3 fatty acids are critical nutrients for human health and the fortification of foods with these fatty acids is an important emerging area from the commercial and academic point of view. Development, characterization, and changes during refrigerated vacuum storage of low-fat chicken sausages formulated with preemulsified squid oil were examined and compared with those formulated with beef tallow. Physicochemical analysis and process yield after heat treatment were determined; the heat-treated sausages were evaluated by purge loss, color, texture, microstructure by SEM, microbial counts, fatty acid profile, lipid oxidation, and sensory analysis during refrigerated vacuum storage. Process yield of both formulations was higher than 97% and purge losses during storage were lower than 7%. Purge losses of oil-formulated sausages were lower than those with beef tallow. Sausages with squid oil resulted in higher lightness, lower redness and yellowness, and lower texture profile analysis parameters than the formulation prepared with beef tallow. Microstructure of both formulations was similar, except for the fat droplets that microscopic observations showed in the sausages made with beef tallow. Low lipid oxidation was detected in formulation with squid oil due to the the combination of ingredients and storage conditions. Microbial counts of both products were less than 5 log cfu/g at the end of 90 d of storage. The sausage formulated with squid oil presented more than 30 and 40 g/100 g of monounsaturated and polyunsaturated fatty acids, respectively. Docosahexaenoic acid was the predominant polyunsaturated fatty acid, followed by eicosapentaenoic acid and linoleic acid. Both products showed safe sanitary conditions, good sensory acceptability, and presented very good stability and quality attributes, but sausages formulated with squid oil showed a better fatty acid profile according to nutritional criteria.
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.
Small, A L; McFall-Ngai, M J
1999-03-15
An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to the variety of types of associations that it forms with microorganisms.
Squid-based CW NMR system for measuring the magnetization of helium-3 films
NASA Astrophysics Data System (ADS)
White, Kevin Spencer
This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.
NASA Astrophysics Data System (ADS)
Young, Jock W.; Guest, Michaela A.; Lansdell, Matt; Phleger, Charles F.; Nichols, Peter D.
2010-07-01
Signature lipid and fatty acid analysis were used to discriminate the diet of swordfish ( Xiphias gladius, orbital fork length: 60-203 cm) from waters off eastern Australia. The fatty acid (FA) composition of a range of known prey (squid, myctophids, and other fishes) of swordfish, taken from stomach samples and from net tows, was compared with that of the white muscle tissue (WMT) of swordfish from the same region. Swordfish muscle was lipid rich (average 24-42% dry weight), as was the skeleton (28-41%). The robustness of the approach was also tested by comparison against a key squid prey species that was collected and stored using different protocols: (i) fresh frozen, (ii) fresh frozen, then thawed, and (iii) stomach content collection. The FA profiles were generally similar, with the ratio of docosahexaenoic acid (DHA) and palmitic acid (16:0) in particular showing no significant difference. Major fatty acids in swordfish WMT were 18:1ω9c, 16:0, 22:6ω3, and 18:0. Multidimensional scaling showed that the swordfish WMT grouped closely with small fish prey including myctophids, and not with squid. Squid contained markedly higher 22:6ω3 than swordfish. Individual prey species of the myctophidae could also be separated by the same technique. These results were supported by traditional stomach content analyses (SCA) that showed fish were the dominant prey for small swordfish sampled from southern waters whereas squid were the main prey in more northern waters, matching the FA patterns we found for the two regions. We propose that where general diet patterns are established, signature FA analysis has good potential to compliment or in some cases, replace temporal and spatial monitoring of trophic pathways for swordfish and other marine species.
Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones
NASA Astrophysics Data System (ADS)
Trübenbach, Katja; Teixeira, Tatiana; Diniz, Mário; Rosa, Rui
2013-10-01
Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid's metabolic rates was observed during hypoxia (p<0.05). This process of metabolic suppression was followed by a significant increase in Hsp70/Hsc70 expression (p<0.05), which may be interpreted as a strategy to prevent post-hypoxic oxidative damage during the squid's night upwards migration to the surface ocean. On the other hand, in normoxia, the higher SOD and CAT activities seemed to be a strategy to cope with the reoxygenation process, and may constitute an integrated stress response at shallower depths. GST activity and MDA concentrations did not change significantly from normoxia to hypoxia (p>0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
Confidence Intervals for the Mean: To Bootstrap or Not to Bootstrap
ERIC Educational Resources Information Center
Calzada, Maria E.; Gardner, Holly
2011-01-01
The results of a simulation conducted by a research team involving undergraduate and high school students indicate that when data is symmetric the student's "t" confidence interval for a mean is superior to the studied non-parametric bootstrap confidence intervals. When data is skewed and for sample sizes n greater than or equal to 10,…
The Beginner's Guide to the Bootstrap Method of Resampling.
ERIC Educational Resources Information Center
Lane, Ginny G.
The bootstrap method of resampling can be useful in estimating the replicability of study results. The bootstrap procedure creates a mock population from a given sample of data from which multiple samples are then drawn. The method extends the usefulness of the jackknife procedure as it allows for computation of a given statistic across a maximal…
Application of a New Resampling Method to SEM: A Comparison of S-SMART with the Bootstrap
ERIC Educational Resources Information Center
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao
2016-01-01
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
A Primer on Bootstrap Factor Analysis as Applied to Health Studies Research
ERIC Educational Resources Information Center
Lu, Wenhua; Miao, Jingang; McKyer, E. Lisako J.
2014-01-01
Objectives: To demonstrate how the bootstrap method could be conducted in exploratory factor analysis (EFA) with a syntax written in SPSS. Methods: The data obtained from the Texas Childhood Obesity Prevention Policy Evaluation project (T-COPPE project) were used for illustration. A 5-step procedure to conduct bootstrap factor analysis (BFA) was…
ERIC Educational Resources Information Center
Kim, Se-Kang
2010-01-01
The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo
2010-08-01
DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30° misorientation angles. The 18 × 8 µm2 SQUID loop with an estimated inductance of 13 pH contained two 3 µm wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with ΔV = 1.4 µV at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 × 10 - 5 Φ0 Hz - 1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal-metal-superconductor junction nature of the bicrystal grain boundary.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Bulaevskii, Lev N.
2012-07-01
The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.
Biomagnetism using SQUIDs: status and perspectives
NASA Astrophysics Data System (ADS)
Sternickel, Karsten; Braginski, Alex I.
2006-03-01
Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.
Llinás, R; Blinks, J R; Nicholson, C
1972-06-09
Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Wen-Hai; Ye, Liu
2007-09-01
We propose a simple scheme to realize 1→M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-09-10
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
Foote, Kenneth G; Hanlon, Roger T; Lampietro, Pat J; Kvitek, Rikk G
2006-02-01
The squid Loligo opalescens is a key species in the nearshore pelagic community of California, supporting the most valuable state marine fishery, yet the stock biomass is unknown. In southern Monterey Bay, extensive beds occur on a flat, sandy bottom, water depths 20-60 m, thus sidescan sonar is a prima-facie candidate for use in rapid, synoptic, and noninvasive surveying. The present study describes development of an acoustic method to detect, identify, and quantify squid egg beds by means of high-frequency sidescan-sonar imagery. Verification of the method has been undertaken with a video camera carried on a remotely operated vehicle. It has been established that sidescan sonar images can be used to predict the presence or absence of squid egg beds. The lower size limit of detectability of an isolated egg bed is about 0.5 m with a 400-kHz sidescan sonar used with a 50-m range when towed at 3 knots. It is possible to estimate the abundance of eggs in a region of interest by computing the cumulative area covered by the egg beds according to the sidescan sonar image. In a selected quadrat one arc second on each side, the estimated number of eggs was 36.5 million.
A SQUID-based metal detector—comparison to coil and x-ray systems
NASA Astrophysics Data System (ADS)
Bick, M.; Sullivan, P.; Tilbrook, D. L.; Du, J.; Gnanarajan, S.; Leslie, K. E.; Foley, C. P.
2005-03-01
The presence of foreign metal bodies and fragments in foodstuff and pharmaceutical products is of major concern to producers. Further, hidden metal objects can pose threats to security. In particular, stainless steel is difficult to detect by conventional coil metal detectors due to its low conductivity. We have employed an HTS SQUID magnetometer for the detection of stainless steel particles which is based on the measurement of the remanent magnetization of the particle. Our aim was to determine the detection limits of HTS SQUID-based remote magnetometry, especially for food inspection purposes, and to make a comparison of this technique to commonly used eddy current coil and x-ray inspection systems. We show that the SQUID system's sensitivity to stainless steel fragments is significantly higher than that of coil systems if the samples are magnetized in a 100 mT magnetic field prior to detection. Further, it has a higher sensitivity than x-ray systems, depending on the density distribution of the product under inspection. A 0.6 mg piece of grade-316 stainless steel (a fragment of a hypodermic needle 0.5 mm long and 0.65 mm diameter) represents the detection limit of our system with a 150 × 150 mm2 inspection orifice.
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
Hoving, Hendrik J. T.; Zeidberg, Louis D.; Benfield, Mark C.; Bush, Stephanie L.; Robison, Bruce H.; Vecchione, Michael
2013-01-01
The deep-sea squid Grimalditeuthis bonplandi has tentacles unique among known squids. The elastic stalk is extremely thin and fragile, whereas the clubs bear no suckers, hooks or photophores. It is unknown whether and how these tentacles are used in prey capture and handling. We present, to our knowledge, the first in situ observations of this species obtained by remotely operated vehicles (ROVs) in the Atlantic and North Pacific. Unexpectedly, G. bonplandi is unable to rapidly extend and retract the tentacle stalk as do other squids, but instead manoeuvres the tentacles by undulation and flapping of the clubs’ trabecular protective membranes. These tentacle club movements superficially resemble the movements of small marine organisms and suggest the possibility that G. bonplandi uses aggressive mimicry by the tentacle clubs to lure prey, which we find to consist of crustaceans and cephalopods. In the darkness of the meso- and bathypelagic zones the flapping and undulatory movements of the tentacle may: (i) stimulate bioluminescence in the surrounding water, (ii) create low-frequency vibrations and/or (iii) produce a hydrodynamic wake. Potential prey of G. bonplandi may be attracted to one or more of these as signals. This singular use of the tentacle adds to the diverse foraging and feeding strategies known in deep-sea cephalopods. PMID:23986106
Hidalgo, C; Latorre, R
1970-11-01
1. The permeability for micro-injected [(3)H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed.2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above.3. Experiments were done with the combined voltage clamp-perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant.4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled.
Hidalgo, Cecilia; Latorre, Ramón
1970-01-01
1. The permeability for micro-injected [3H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed. 2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above. 3. Experiments were done with the combined voltage clamp—perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant. 4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled. PMID:5500991
Ramirez-Suarez, Juan C; Álvarez-Armenta, Andrés; García-Sánchez, Guillermina; Pacheco-Aguilar, Ramón; Scheuren-Acevedo, Susana M; Mazorra-Manzano, Miguel A; Rascón-Chu, Agustín
2017-09-01
Jumbo squid ( Dosidicus gigas ) muscle proteins show low functionality with limited use in gel products. This work aims to assess the influence of adding the natural and commercially available fibre, amidated low-methoxyl pectin (at 0.5, 1.0, 1.5, 2.0 and 3.0%), on the physicochemical and functional characteristics of jumbo squid ( Dosidicus gigas ) mantle muscle gels. The addition of 0.5% fibre showed an immediate effect on the gel texture profile analysis, improving hardness (p<0.05) from (3.4±0.7) N of the control (no added fibre) to (5.2±0.9) N, and increasing elasticity (p≥0.05). Shear force was significant only at 3.0% fibre addition. Water holding capacity also improved (p<0.05) with fibre addition (from 75% in the control to 90-95% after the treatments). Whiteness was affected (p<0.05) when 3.0% fibre was added. Differential scanning calorimetry showed two endothermic transition peaks in the gels. The second peak (actin) increased (p<0.05) by 1-2 °C with fibre addition. Therefore, the present study demonstrates that amidated low-methoxyl pectin (0.5-3.0%) is an excellent ingredient to improve jumbo squid mantle muscle protein functionality, increasing the gel texture and water retention characteristics.
Bradshaw, Corey J A; Hindell, Mark A; Best, Narelle J; Phillips, Katrina L; Wilson, Gareth; Nichols, Peter D
2003-01-01
Understanding the trophodynamics of marine ecosystems requires data on the temporal and spatial variation in predator diet but, particularly for wide-ranging species, these data are often unavailable. The southern elephant seal (Mirounga leonina) consumes large quantities of fish and squid prey in the Southern Ocean relative to other marine mammals; however, how diet varies relative to seasonal and spatial foraging behaviour is unknown. We used fatty acid (FA) signature analysis of 63 blubber cores from adult female M. leonina over three seasons (winter 1999, summer 2000 and winter 2001) to determine diet structure. We detected significant differences between seasons and between the main foraging regions (Antarctic continental shelf versus pelagic). We used the FA profiles from 53 fish, squid and krill species to construct a discriminant function that would classify each seal, from its blubber sample as having a fish- or squid-FA profile. We determined that a higher proportion of M. leonina had fish-dominated diets during the winter and when foraging around the Antarctic continental shelf, and the majority had more squid-dominated diets during the summer when foraging pelagically. Thus, we were able to measure the coarse-scale diet structure of a major marine predator using FA profiles, and estimate its associated seasonal and temporal variation. PMID:12816642
Cherel, Y; Ridoux, V; Spitz, J; Richard, P
2009-06-23
Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in delta(13)C values (1.7 per thousand), indicating that they lived in closely related and overlapping habitats. delta(13)C values can be interpreted in terms of distribution with the more (13)C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more (13)C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had delta(15)N values ranging 4.6 per thousand, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species delta(15)N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) delta(15)N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.
Nishiguchi, Michele K.; Ruby, Edward G.; McFall-Ngai, Margaret J.
1998-01-01
One of the principal assumptions in symbiosis research is that associated partners have evolved in parallel. We report here experimental evidence for parallel speciation patterns among several partners of the sepiolid squid-luminous bacterial symbioses. Molecular phylogenies for 14 species of host squids were derived from sequences of both the nuclear internal transcribed spacer region and the mitochondrial cytochrome oxidase subunit I; the glyceraldehyde phosphate dehydrogenase locus was sequenced for phylogenetic determinations of 7 strains of bacterial symbionts. Comparisons of trees constructed for each of the three loci revealed a parallel phylogeny between the sepiolids and their respective symbionts. Because both the squids and their bacterial partners can be easily cultured independently in the laboratory, we were able to couple these phylogenetic analyses with experiments to examine the ability of the different symbiont strains to compete with each other during the colonization of one of the host species. Our results not only indicate a pronounced dominance of native symbiont strains over nonnative strains, but also reveal a hierarchy of symbiont competency that reflects the phylogenetic relationships of the partners. For the first time, molecular systematics has been coupled with experimental colonization assays to provide evidence for the existence of parallel speciation among a set of animal-bacterial associations. PMID:9726861
NASA Technical Reports Server (NTRS)
Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry
1993-01-01
Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
NASA Astrophysics Data System (ADS)
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
The epistellar body and what followed from its discovery.
Young, J Z
1990-07-01
The sequence of discoveries that has followed the investigation of this small yellow spot shows the value of studies begun out of "mere curiosity". The spot occurs on the stellate ganglion of octopods. It proved to be an enclosed sac, perhaps a gland. The search for it in squids and cuttlefishes led to the discovery of the giant nerve fibres. At first they were thought to be veins but we soon showed that they were nerve fibres concerned with jet propulsion. Their action potentials, membranes and synapses have been used for thousand of studies, including those that led to the Hodkin Huxley equations. They have been the basis of much of modern neuroscience. The epistellar body itself proved not to be a gland but a photoreceptor. Comparable photosensitive vesicles are especially large in the heads of deep-sea squids. In the mesopelagic ones they allow the squid to conceal itself by counterillumination, matching its own light output to the light coming from above. In bathypelagic squids the vesicles are enormous and probably keep the animals in the dark, where they breed. The function of the epistellar body, lying within the mantle of octopods is still unknown. It may act in the transparent larval stage to trigger the ejection of luminous plankton, which would be a hazard.
ERIC Educational Resources Information Center
Cui, Zhongmin; Kolen, Michael J.
2008-01-01
This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…
Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D
Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...
2015-01-12
Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less
TES Detector Noise Limited Readout Using SQUID Multiplexers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.
2004-01-01
The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.
The squid-Vibrio symbioses: from demes to genes.
Kimbell, Jennifer R; McFall-Ngai, Margaret J
2003-04-01
The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.
Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Ye, Jeng-Jia; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Hsiao, Chung-Der; Shen, Kang-Ning; Ching, Tzu-Yun; Wang, Ya-Hsien; Ye, Jeng-Jia; Tsai, Shiou-Yi; Wu, Shan-Chun; Chen, Ching-Hung; Wang, Chia-Hui
2016-07-01
In this study, the complete mitogenome sequence of the cryptic "lineage A" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consists of 16,605 bp, which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of "lineage A" S. lessoniana is 37.5% for A, 17.4% for C, 9.1% for G, and 35.9% for T and shows 87% identities to "lineage C" S. lessoniana. It is also noticed by its high T + A content (73.4%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage A" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Rosas-Luis, Rigoberto
2016-12-15
Squids are active and opportunistic predators that feed on a wide range of prey. Their active movements in the water column and their voracity promote a high consumption of food. In the pelagic environment off Ecuador, marine pollution is characterized by plastic debris with a mainland origin, including plastics trash of fishing gears. The objective of this work was to describe the presence of plastic remains in the stomach contents of Dosidicus gigas caught off the coast of Ecuador. Results demonstrated that 12% of the stomachs contained plastic remains. These plastics were identified as multifilament of polyethylene lines and polyvinyl chloride remains. Findings of this work could be related to an increase in the discharge of solid materials in the water column, increasing the probability to be ingested by the jumbo squid. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, B.; Godfrey, T.; Cox, D.; Li, T.; Gallop, J.; Galer, S.; Nisbet, A.; Romans, Ed; Hao, L.
2018-02-01
An important requirement across a range of sensitive detectors is to determine accurately the energy deposited by the impact of a particle in a small volume. The particle may be anything from a visible photon through to an X-ray or massive charged particle. We have been developing nanobridge Josephson junctions based SQUIDs and nanoSQUID devices covering the entire range of particle detection energies from 1eV to MeV. In this paper we discuss some developments in nanobridge Josephson junctions fabrication using focussed ion beam (FIB) and how these developments impact future applications. We focus on tuning of the transition temperature of a superconducting thin-film absorber, with the aim to match the absorber Tc to the working temperature range of the SQUID and also on using a new Xe FIB to improve Josephson junction and superconducting film quality.
Sensory acceptability of squid rings gamma irradiated for shelf-life extension
NASA Astrophysics Data System (ADS)
Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.
2017-01-01
The feasibility of extending the shelf-life of a squid product by gamma irradiation was analyzed. Illex argentinus rings were irradiated at 4 and 8 kGy; and stored at 4±1 °C during 77 days. No mesophilic bacteria, enterobacteriaceae and coliforms were detected in irradiated rings during storage. Psychrotrophic bacteria were significantly reduced by irradiation; their counts were fitted to a growth model which was further used for shelf-life estimations: 3 and 27 days for 0 and 4 kGy, respectively. Initially, non-irradiated as well as irradiated rings had very good sensory scores. The overall acceptability of 4 and 8 kGy rings did not decrease during 27 and 64 days, respectively, while control samples spoiled after 3 days. A radiation dose range for squid rings preservation was defined, which attained the technological shelf-life extension objective, without impairing sensory quality.
A 20-channel magnetoencephalography system based on optically pumped magnetometers
NASA Astrophysics Data System (ADS)
Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.
2017-12-01
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
Electron transport fluxes in potato plateau regime
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Hazeltine, R. D.
1997-12-01
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.
Bootstrap current in a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessel, C.E.
1994-03-01
The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.
Multi-baseline bootstrapping at the Navy precision optical interferometer
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.
2014-07-01
The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.
Bootstrap and fast wave current drive for tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, D.A.
1991-09-01
Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji
Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
NASA Astrophysics Data System (ADS)
Myers, Whittier Ryan
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 muT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz 1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T1 of ex vivo normal and cancerous prostate tissue differ significantly at 132 muT. A single-sided MRI system designed for prostate imaging could achieve 3 x 3 x 5 mm3 resolution in 8 minutes. Existing SQUID-based magnetoencephalography (MEG) systems could be used as microtesla MRI detectors. A commercial 275-channel MEG system could acquire 6-minute brain images with (4 mm)3 resolution and SNR 16.
Confidence limit calculation for antidotal potency ratio derived from lethal dose 50
Manage, Ananda; Petrikovics, Ilona
2013-01-01
AIM: To describe confidence interval calculation for antidotal potency ratios using bootstrap method. METHODS: We can easily adapt the nonparametric bootstrap method which was invented by Efron to construct confidence intervals in such situations like this. The bootstrap method is a resampling method in which the bootstrap samples are obtained by resampling from the original sample. RESULTS: The described confidence interval calculation using bootstrap method does not require the sampling distribution antidotal potency ratio. This can serve as a substantial help for toxicologists, who are directed to employ the Dixon up-and-down method with the application of lower number of animals to determine lethal dose 50 values for characterizing the investigated toxic molecules and eventually for characterizing the antidotal protections by the test antidotal systems. CONCLUSION: The described method can serve as a useful tool in various other applications. Simplicity of the method makes it easier to do the calculation using most of the programming software packages. PMID:25237618
Topics in Statistical Calibration
2014-03-27
on a parametric bootstrap where, instead of sampling directly from the residuals , samples are drawn from a normal distribution. This procedure will...addition to centering them (Davison and Hinkley, 1997). When there are outliers in the residuals , the bootstrap distribution of x̂0 can become skewed or...based and inversion methods using the linear mixed-effects model. Then, a simple parametric bootstrap algorithm is proposed that can be used to either
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Hazeltine, R.D.
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
Variable selection under multiple imputation using the bootstrap in a prognostic study
Heymans, Martijn W; van Buuren, Stef; Knol, Dirk L; van Mechelen, Willem; de Vet, Henrica CW
2007-01-01
Background Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable selection. Method In our prospective cohort study we merged data from three different randomized controlled trials (RCTs) to assess prognostic variables for chronicity of low back pain. Among the outcome and prognostic variables data were missing in the range of 0 and 48.1%. We used four methods to investigate the influence of respectively sampling and imputation variation: MI only, bootstrap only, and two methods that combine MI and bootstrapping. Variables were selected based on the inclusion frequency of each prognostic variable, i.e. the proportion of times that the variable appeared in the model. The discriminative and calibrative abilities of prognostic models developed by the four methods were assessed at different inclusion levels. Results We found that the effect of imputation variation on the inclusion frequency was larger than the effect of sampling variation. When MI and bootstrapping were combined at the range of 0% (full model) to 90% of variable selection, bootstrap corrected c-index values of 0.70 to 0.71 and slope values of 0.64 to 0.86 were found. Conclusion We recommend to account for both imputation and sampling variation in sets of missing data. The new procedure of combining MI with bootstrapping for variable selection, results in multivariable prognostic models with good performance and is therefore attractive to apply on data sets with missing values. PMID:17629912
2002-01-31
salinity , water temperature, dissolved oxy- gen and water clarity. Since temporal variation in the Chesapeake Bay ecosystem is high, the effects of year...temperature (p ɘ.001; ψ = 2.42) had significant impacts on squid catch probability, although the effects were con- founded by a water temperature × salinity ...commonly encountered in such waters during VIMS Trawl Surveys The synergistic and independent effects of salinity , water temperature and dissolved oxygen
Project SQUID: The Viscosity of the Isotopes of Hydrogen and Their Intermolecular Force Potentials
1963-12-01
values of the pseudo- Lennard - Jones potential for either hydrogen o- deuteriua. On the present evidence, and cn the present evidence alone, it would...W4drogesror deuterium forces the conclusion that neither gas obeys a lenrArd- Jones six- twelve potential , it is, nevertheless, useful to discuss the values...VISCOSITY OF THE ISOTOPES OF HYDROGEN AND THEIR INTERMOLECULAR FORCE POTENTIALS * by S. Kestir and A Nagashima Broow University December 1963 PROJECT SQUID
Multichannel System Based on a High Sensitivity Superconductive Sensor for Magnetoencephalography
Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio
2014-01-01
We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz1/2. The presented magnetoencephalography is the first system working in a clinical environment in Italy. PMID:25006995
Preparation and evaluation of squid ink polysaccharide-chitosan as a wound-healing sponge.
Huang, Na; Lin, Jiali; Li, Sidong; Deng, Yifeng; Kong, Songzhi; Hong, Pengzhi; Yang, Ping; Liao, Mingneng; Hu, Zhang
2018-01-01
A new type of wound healing agent was developed using two marine biomaterials (squid ink polysaccharide and chitosan) as carriers and calcium chloride as an initiator for coagulation. Based on central composite design-response surface methodology, comprehensive evaluation of appearance quality for composite sponges and water absorbency were used as evaluation indices to identify the optimized preparation conditions and further evaluate the performance of the squid ink polysaccharide-chitosan sponge (SIP-CS). The optimized formulation of SIP-CS was as follows: chitosan concentration, 2.29%; squid ink polysaccharide concentration, 0.55%; and calcium chloride concentration, 2.82%, at a volume ratio of 15:5:2. SIP-CS was conducive to sticking on the wound, characterized by the spongy property, strong absorptivity, and tackiness. Rabbit ear arterial, hepatic, and femoral artery hemorrhage experiments indicated that, compared with chitosan dressings and absorbable gelatin, the hemostatic times were shorter and the bleeding volume was smaller. Furthermore, SIP-CS absorbed a large amount of hemocytes, leading to rapid hemostasis. The healing areas and wound pathological sections in scalded New Zealand rabbits indicated that SIP-CS promoted wound healing more rapidly than chitosan and better than commercially available burn cream. Thus, SIP-CS is a good wound healing agent for rapid hemostasis, promoting burn/scalded skin healing, and protecting from wound infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Derby, Charles D; Tottempudi, Mihika; Love-Chezem, Tiffany; Wolfe, Lanna S
2013-12-01
Chemical and visual defenses are used by many organisms to avoid being approached or eaten by predators. An example is inking molluscs-including gastropods such as sea hares and cephalopods such as squid, cuttlefish, and octopus-which release a colored ink upon approach or attack. Previous work showed that ink can protect molluscs through a combination of chemical, visual, and other effects. In this study, we examined the effects of ink from longfin inshore squid, Doryteuthis pealeii, on the behavior of two species of predatory fishes, summer flounder, Paralichthys dentatus, and sea catfish, Ariopsis felis. Using a cloud assay, we found that ink from longfin inshore squid affected the approach phase of predation by summer flounder, primarily through its visual effects. Using a food assay, we found that the ink affected the consummatory and ingestive phase of predation of both sea catfish and summer flounder, through the ink's chemical properties. Fractionation of ink showed that most of its deterrent chemical activity is associated with melanin granules, suggesting that either compounds adhering to these granules or melanin itself are the most biologically active. This work provides the basis for a comparative approach to identify deterrent molecules from inking cephalopods and to examine neural mechanisms whereby these chemicals affect behavior of fish, using the sea catfish as a chemosensory model.
Iida, Tomohiro; Iwata, Yoko; Mohri, Tatsuma; Baba, Shoji A; Hirohashi, Noritaka
2017-10-11
Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar 'bent-cane' shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an 'overshoot' trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.
Shavandi, Amin; Bekhit, Alaa El-Din A; Ali, M Azam; Sun, Zhifa
2015-09-01
In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of -20, -80 and -196 °C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at -20 °C had higher mechanical properties and lower degradation rate compared with -80 °C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
2017-01-01
Summary Jumbo squid (Dosidicus gigas) muscle proteins show low functionality with limited use in gel products. This work aims to assess the influence of adding the natural and commercially available fibre, amidated low-methoxyl pectin (at 0.5, 1.0, 1.5, 2.0 and 3.0%), on the physicochemical and functional characteristics of jumbo squid (Dosidicus gigas) mantle muscle gels. The addition of 0.5% fibre showed an immediate effect on the gel texture profile analysis, improving hardness (p<0.05) from (3.4±0.7) N of the control (no added fibre) to (5.2±0.9) N, and increasing elasticity (p≥0.05). Shear force was significant only at 3.0% fibre addition. Water holding capacity also improved (p<0.05) with fibre addition (from 75% in the control to 90–95% after the treatments). Whiteness was affected (p<0.05) when 3.0% fibre was added. Differential scanning calorimetry showed two endothermic transition peaks in the gels. The second peak (actin) increased (p<0.05) by 1–2 °C with fibre addition. Therefore, the present study demonstrates that amidated low-methoxyl pectin (0.5–3.0%) is an excellent ingredient to improve jumbo squid mantle muscle protein functionality, increasing the gel texture and water retention characteristics. PMID:29089853
Potential role for microRNA in regulating hypoxia-induced metabolic suppression in jumbo squids.
Hadj-Moussa, Hanane; Logan, Samantha M; Seibel, Brad A; Storey, Kenneth B
2018-05-02
At night, Humboldt squid (Dosidicus gigas) rise to the ocean's surface to feed, but come morning, they descend into the ocean's oxygen minimum zone where they can avoid predators but must deal with severe hypoxia, high pressure, and very cold water. To survive this extreme environment, squid use various adaptations to enter a hypometabolic state characterized by metabolic rate suppression by 35-52%, relative to normoxic conditions. The molecular mechanisms facilitating this metabolic flexibility have yet to be elucidated in hypometabolic squid. Herein, we report the first investigation of the role of microRNAs, a rapid and reversible post-transcriptional master regulator of virtually all biological functions, in cephalopods. We examined expression levels of 39 highly-conserved invertebrate microRNAs in D. gigas brain, mantle muscle, and branchial heart, comparing hypoxic and normoxic conditions. Hypoxia-inducible microRNAs are potentially involved in facilitating neuroprotection, anti-apoptosis, and regenerative mechanisms in brain; inhibiting apoptosis and cell proliferation while conserving energy in heart; and limiting damage by reactive oxygen species and apoptosis in muscle. Rather than orchestrate global metabolic rate depression, the majority of hypoxia-inducible microRNAs identified are involved in promoting cytoprotective mechanisms, suggesting a regulatory role for microRNA in hypoxic marine invertebrates that sets the stage for mechanistic analyses. Copyright © 2018 Elsevier B.V. All rights reserved.
Arkhipkin, A; Barton, J; Wallace, S; Winter, A
2013-10-01
The Falkland Islands fishing industry is unique, as 60-80% of its annual catch consists of two squid species, Illex argentinus and Doryteuthis gahi. Short annual life cycles make both species susceptible to intra-annual environmental changes, resulting in large biomass fluctuations that must be addressed in management of the stocks. In the D. gahi fishery, short chains of communication between science, management and industry allow effective cooperation in the interest of long-term sustainable exploitation. The industry is responsive to short-notice requests for in-season information about the fishery. Management takes into account both scientific advice and industry recommendations, through ongoing consultations before and during the fishing seasons. As a result of this cooperation, D. gahi is one of the best managed squid fisheries in the world with local fishing companies being amongst the largest and most profitable enterprises in the Falklands economy. The I. argentinus fishery has the same potential, but a further level of cooperative management is needed as this squid is a straddling stock between several countries and the high seas. Development of a regional fisheries management organization in the South Atlantic Ocean is required to control multilateral exploitation and ensure long-term sustainability of I. argentinus stocks. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Recent advancements in the SQUID magnetospinogram system
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen
2017-06-01
In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.
Assessing uncertainties in superficial water provision by different bootstrap-based techniques
NASA Astrophysics Data System (ADS)
Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo Mario
2014-05-01
An assessment of water security can incorporate several water-related concepts, characterizing the interactions between societal needs, ecosystem functioning, and hydro-climatic conditions. The superficial freshwater provision level depends on the methods chosen for 'Environmental Flow Requirement' estimations, which integrate the sources of uncertainty in the understanding of how water-related threats to aquatic ecosystem security arise. Here, we develop an uncertainty assessment of superficial freshwater provision based on different bootstrap techniques (non-parametric resampling with replacement). To illustrate this approach, we use an agricultural basin (291 km2) within the Cantareira water supply system in Brazil monitored by one daily streamflow gage (24-year period). The original streamflow time series has been randomly resampled for different times or sample sizes (N = 500; ...; 1000), then applied to the conventional bootstrap approach and variations of this method, such as: 'nearest neighbor bootstrap'; and 'moving blocks bootstrap'. We have analyzed the impact of the sampling uncertainty on five Environmental Flow Requirement methods, based on: flow duration curves or probability of exceedance (Q90%, Q75% and Q50%); 7-day 10-year low-flow statistic (Q7,10); and presumptive standard (80% of the natural monthly mean ?ow). The bootstrap technique has been also used to compare those 'Environmental Flow Requirement' (EFR) methods among themselves, considering the difference between the bootstrap estimates and the "true" EFR characteristic, which has been computed averaging the EFR values of the five methods and using the entire streamflow record at monitoring station. This study evaluates the bootstrapping strategies, the representativeness of streamflow series for EFR estimates and their confidence intervals, in addition to overview of the performance differences between the EFR methods. The uncertainties arisen during EFR methods assessment will be propagated through water security indicators referring to water scarcity and vulnerability, seeking to provide meaningful support to end-users and water managers facing the incorporation of uncertainties in the decision making process.
Llinás, R; Sugimori, M; Lin, J W; Cherksey, B
1989-01-01
A Ca2+-channel blocker derived from funnel-web spider toxin (FTX) has made it possible to define and study the ionic channels responsible for the Ca2+ conductance in mammalian Purkinje cell neurons and the preterminal in squid giant synapse. In cerebellar slices, FTX blocked Ca2+-dependent spikes in Purkinje cells, reduced the spike afterpotential hyperpolarization, and increased the Na+-dependent plateau potential. In the squid giant synapse, FTX blocked synaptic transmission without affecting the presynaptic action potential. Presynaptic voltage-clamp results show blockage of the inward Ca2+ current and of transmitter release. FTX was used to isolate channels from cerebellum and squid optic lobe. The isolated product was incorporated into black lipid membranes and was analyzed by using patch-clamp techniques. The channel from cerebellum exhibited a 10- to 12-pS conductance in 80 mM Ba2+ and 5-8 pS in 100 mM Ca2+ with voltage-dependent open probabilities and kinetics. High Ba2+ concentrations at the cytoplasmic side of the channel increased the average open time from 1 to 3 msec to more than 1 sec. A similar channel was also isolated from squid optic lobe. However, its conductance was higher in Ba2+, and the maximum opening probability was about half of that derived from cerebellar tissue and also was sensitive to high cytoplasmic Ba2+. Both channels were blocked by FTX, Cd2+, and Co2+ but were not blocked by omega-conotoxin or dihydropyridines. These results suggest that one of the main Ca2+ conductances in mammalian neurons and in the squid preterminal represents the activation of a previously undefined class of Ca2+ channel. We propose that it be termed the "P" channel, as it was first described in Purkinje cells. Images PMID:2537980
Llinás, R; Sugimori, M; Lin, J W; Cherksey, B
1989-03-01
A Ca2+-channel blocker derived from funnel-web spider toxin (FTX) has made it possible to define and study the ionic channels responsible for the Ca2+ conductance in mammalian Purkinje cell neurons and the preterminal in squid giant synapse. In cerebellar slices, FTX blocked Ca2+-dependent spikes in Purkinje cells, reduced the spike afterpotential hyperpolarization, and increased the Na+-dependent plateau potential. In the squid giant synapse, FTX blocked synaptic transmission without affecting the presynaptic action potential. Presynaptic voltage-clamp results show blockage of the inward Ca2+ current and of transmitter release. FTX was used to isolate channels from cerebellum and squid optic lobe. The isolated product was incorporated into black lipid membranes and was analyzed by using patch-clamp techniques. The channel from cerebellum exhibited a 10- to 12-pS conductance in 80 mM Ba2+ and 5-8 pS in 100 mM Ca2+ with voltage-dependent open probabilities and kinetics. High Ba2+ concentrations at the cytoplasmic side of the channel increased the average open time from 1 to 3 msec to more than 1 sec. A similar channel was also isolated from squid optic lobe. However, its conductance was higher in Ba2+, and the maximum opening probability was about half of that derived from cerebellar tissue and also was sensitive to high cytoplasmic Ba2+. Both channels were blocked by FTX, Cd2+, and Co2+ but were not blocked by omega-conotoxin or dihydropyridines. These results suggest that one of the main Ca2+ conductances in mammalian neurons and in the squid preterminal represents the activation of a previously undefined class of Ca2+ channel. We propose that it be termed the "P" channel, as it was first described in Purkinje cells.
NASA Astrophysics Data System (ADS)
Semeniuk, Christina A. D.; Speers-Roesch, Ben; Rothley, Kristina D.
2007-10-01
Feeding marine wildlife as a tourism experience has become a popular means by which to attract both people and wildlife, although management efforts are still in their infancy. “Stingray City Sandbar” in the Cayman Islands, where visitors can hand feed free-ranging Southern Stingrays ( Dasyatis americana), is a world-famous attraction currently undergoing visitor and wildlife management. One plan is to decrease the amount of nonnatural food provided by tourists with the intention of decreasing stingray habituation to the artificial food source and promoting stingray health. However, the effectiveness of this action is uncertain given that neither the extent of squid composition in the stingray diet nor the degree of nutrient similarity between the fed and natural diets is unknown. We used fatty acid (FA) profile analysis to address these questions by assessing the serum nonesterified FA composition of fed and unfed stingrays around the island and compared them with FA profiles of (1) the provisioned food source (squid) and (2) other warm- and cold-water elasmobranchs (sharks and rays). Our results indicated that fed stingrays were distinct. The FA profiles of the fed stingray population were expressly different from those of the unfed populations and showed a remarkable similarity to the FA composition of squid, suggesting that squid is the main food source. The tropical fed stingrays also exhibited essential FA ratios, specific to both species and habitat, comparable with those of elasmobranchs and squid from cold-water environs, implying that the provisioned food does not provide a similar nutritional lipid composition to that eaten in the wild. Our results suggest that FA profiles are a valuable indicator for the management and monitoring of fed Southern Stingrays because they can be used to assess differences in diet composition and provide an index of nutritional similarity. Our findings are currently being used by Caymanian stakeholders in designing practical management actions for their wildlife attraction.
Incidental catch of marine birds in the north pacific high seas driftnet fisheries in 1990
Johnson, D.H.; Shaffer, T.L.; Gould, P.J.
1993-01-01
The incidental take of marine birds was estimated for the following North Pacific driftnet fisheries in 1990: Japanese squid, Japanese large-mesh, Korean squid, and Taiwanese squid and large-mesh combined. The take was estimated by assuming that the data represented a random sample from an unstratified population of all driftnet fisheries in the North Pacific. Estimates for 13 species or species groups are presented, along with some discussion of inadequacies of the design. About 416,000 marine birds were estimated to be taken incidentally during the 1990 season; 80% of these were in the Japanese squid fishery. Sooty Shearwaters, Short-tailed Shearwaters, and Laysan Albatrosses were the most common species in the bycatch.Regression models were also developed to explore the relations between bycatch rate of three groups--Black-footed Albatross, Laysan Albatross, and 'dark' shearwaters--and various explanatory variables, such as latitude, longitude, month, vessel, sea surface temperature, and net soak time (length of time nets were in the water). This was done for only the Japanese squid fishery, for which the most complete information was available. For modelling purposes, fishing operations for each vessel were grouped into 5-degree blocks of latitude and longitude.Results of model building indicated that vessel had a significant influence on bycatch rates of all three groups. This finding emphasizes the importance of the sample of vessels being representative of the entire fleet. In addition, bycatch rates of all three groups varied spatially and temporally. Bycatch rates for Laysan Albatrosses tended to decline during the fishing season, whereas those for Black-footed Albatrosses and dark shearwaters tended to increase as the season progressed. Bycatch rates were positively related to net soak time for Laysan Albatrosses and dark shearwaters. Bycatch rates of dark shearwaters were lower for higher sea surface temperatures.
NASA Astrophysics Data System (ADS)
Feng, Yongjiu; Chen, Xinjun; Liu, Yan
2017-07-01
With the increasing effects of global climate change and fishing activities, the spatial distribution of the neon flying squid ( Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean. This research aims to identify the spatial hot and cold spots (i.e. spatial clusters) of O. bartramii to reveal its spatial structure using commercial fishery data from 2007 to 2010 collected by Chinese mainland squid-jigging fleets. A relatively strongly-clustered distribution for O. bartramii was observed using an exploratory spatial data analysis (ESDA) method. The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from 2008 to 2010. The hot and cold spots in 2007 occupied 8.2% and 5.6% of the study area, respectively; these percentages for hot and cold spot areas were 5.8% and 3.1% in 2008, 10.2% and 2.9% in 2009, and 16.4% and 11.9% in 2010, respectively. Nearly half (>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8% in 2010, indicating that the hot spot areas are central fishing grounds. A further change analysis shows the area centered at 156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010. Furthermore, the hot spots were mainly identified in areas with sea surface temperature (SST) in the range of 15-20°C around warm Kuroshio Currents as well as with the chlorophyll- a (chl- a) concentration above 0.3 mg/m3. The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O. bartramii and is useful for sustainable exploitation, assessment, and management of this squid.
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
NASA Astrophysics Data System (ADS)
Olafsdottir, Kristin B.; Mudelsee, Manfred
2013-04-01
Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.
Toma, Tudor; Bosman, Robert-Jan; Siebes, Arno; Peek, Niels; Abu-Hanna, Ameen
2010-08-01
An important problem in the Intensive Care is how to predict on a given day of stay the eventual hospital mortality for a specific patient. A recent approach to solve this problem suggested the use of frequent temporal sequences (FTSs) as predictors. Methods following this approach were evaluated in the past by inducing a model from a training set and validating the prognostic performance on an independent test set. Although this evaluative approach addresses the validity of the specific models induced in an experiment, it falls short of evaluating the inductive method itself. To achieve this, one must account for the inherent sources of variation in the experimental design. The main aim of this work is to demonstrate a procedure based on bootstrapping, specifically the .632 bootstrap procedure, for evaluating inductive methods that discover patterns, such as FTSs. A second aim is to apply this approach to find out whether a recently suggested inductive method that discovers FTSs of organ functioning status is superior over a traditional method that does not use temporal sequences when compared on each successive day of stay at the Intensive Care Unit. The use of bootstrapping with logistic regression using pre-specified covariates is known in the statistical literature. Using inductive methods of prognostic models based on temporal sequence discovery within the bootstrap procedure is however novel at least in predictive models in the Intensive Care. Our results of applying the bootstrap-based evaluative procedure demonstrate the superiority of the FTS-based inductive method over the traditional method in terms of discrimination as well as accuracy. In addition we illustrate the insights gained by the analyst into the discovered FTSs from the bootstrap samples. Copyright 2010 Elsevier Inc. All rights reserved.
Elkomy, Mohammed H; Elmenshawe, Shahira F; Eid, Hussein M; Ali, Ahmed M A
2016-11-01
This work aimed at investigating the potential of solid lipid nanoparticles (SLN) as carriers for topical delivery of Ketoprofen (KP); evaluating a novel technique incorporating Artificial Neural Network (ANN) and clustered bootstrap for optimization of KP-loaded SLN (KP-SLN); and demonstrating a longitudinal dose response (LDR) modeling-based approach to compare the activity of topical non-steroidal anti-inflammatory drug formulations. KP-SLN was fabricated by a modified emulsion/solvent evaporation method. Box-Behnken design was implemented to study the influence of glycerylpalmitostearate-to-KP ratio, Tween 80, and lecithin concentrations on particle size, entrapment efficiency, and amount of drug permeated through rat skin in 24 hours. Following clustered bootstrap ANN optimization, the optimized KP-SLN was incorporated into an aqueous gel and evaluated for rheology, in vitro release, permeability, skin irritation and in vivo activity using carrageenan-induced rat paw edema model and LDR mathematical model to analyze the time course of anti-inflammatory effect at various application durations. Lipid-to-drug ratio of 7.85 [bootstrap 95%CI: 7.63-8.51], Tween 80 of 1.27% [bootstrap 95%CI: 0.601-2.40%], and Lecithin of 0.263% [bootstrap 95%CI: 0.263-0.328%] were predicted to produce optimal characteristics. Compared with profenid® gel, the optimized KP-SLN gel exhibited slower release, faster permeability, better texture properties, greater efficacy, and similar potency. SLNs are safe and effective permeation enhancers. ANN coupled with clustered bootstrap is a useful method for finding optimal solutions and estimating uncertainty associated with them. LDR models allow mechanistic understanding of comparative in vivo performances of different topical formulations, and help design efficient dermatological bioequivalence assessment methods.
Lightweight CoAP-Based Bootstrapping Service for the Internet of Things.
Garcia-Carrillo, Dan; Marin-Lopez, Rafael
2016-03-11
The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.
Lightweight CoAP-Based Bootstrapping Service for the Internet of Things
Garcia-Carrillo, Dan; Marin-Lopez, Rafael
2016-01-01
The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length. PMID:26978362
Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M
2016-01-01
Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.
A neural network based reputation bootstrapping approach for service selection
NASA Astrophysics Data System (ADS)
Wu, Quanwang; Zhu, Qingsheng; Li, Peng
2015-10-01
With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.